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Bouncing models are alternatives to inflationary cosmology that replace the initial big bang singularity
by a “bouncing” phase. A deeper understanding of the initial conditions of the universe, in these scenarios,
requires knowledge of quantum aspects of bouncing models. In this work, we propose two classes of
bouncing models that can be studied with great analytical ease and hence, provide a test bed for
investigating more profound problems in quantum cosmology of bouncing universes. Our model’s two key
ingredients enable us to do straightforward analytical calculations: (i) a convenient parametrization of the
minisuperspace of FRLW spacetimes and (ii) two distinct choices of the effective perfect fluids that source
the background geometry of the bouncing universe. We study the quantum cosmology of these models
using both the Wheeler-de Witt equations and the path integral approach. In particular, we found a
bouncing model analogue of the no-boundary wave function and presented a Lorentzian path integral
representation for the same. We also discuss the introduction of real scalar perturbations.
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I. INTRODUCTION

The inflationary scenario gives rise to significant
improvements to the Standard Big-Bang cosmology
(SBC)[1–5]. Inflation is credited for solving several issues
of SBC that include the horizon and flatness problems. The
causal mechanism of structure formation that the theory of
inflation offers has made it a proper science of precise and
observationally verifiable predictions. Despite these desir-
able features, inflation is not devoid of serious conceptual
challenges. For instance, if we consider the scalar field
inflation in the context of Einstein gravity, it can be shown
that there is an inevitable singularity before the onset of
inflation [6,7]. Another challenge to the inflationary models
is the trans-Planckian issue[8,9]. The term refers to the fact
that if the universe expanded slightly over 65 e-folds during
inflation, that is a little more than what is required to
resolve certain issues of SBC, then one can show that the
fluctuations which are within the Hubble radius today were
originally at sub-Planckian length scales during the onset of
inflation. The trans-Planckian problem challenges the
validity of “quantum field theory in classical spacetime”
approximation, which is at the heart of analysis of
perturbations in inflationary models. Deficiencies of the
inflationary paradigm, such as these, have inspired the
investigation of several viable alternative models for
the early Universe.

“Bouncing cosmology” refers to a broad class of
cosmological models characterized by a bounce, i.e., a
smooth transition from a contracting to expanding
phase. Bouncing models aim to resolve the fundamental
problems of SBC without invoking inflation. For instance,
by construction, bouncing cosmologies resolve the singu-
larity problem as it replaces the singularity by a bounce.
Bouncing models also avoids the trans-Planckian problem,
since, in the bouncing scenario, a given length scale of
fluctuation contracts to a nonzero minimum, thereby,
assuring that all wavelengths of relevance to cosmology
today have initially been far greater than the Planck length
during the bounce. Nevertheless, bouncing models resolve
the horizon problem, since, in a typical bouncing scenario,
the sub-Hubble wavelengths of the seed fluctuation modes
exit the Hubble radius and then reenter at a later time to
emerge as a scale of current cosmological interest, just as in
inflation (see, for instance, [10–12]). It is worth mentioning
that there are challenges in bouncing models as well. For a
recent review of progress and problems in bouncing
models, the reader may consult [13].
Our aim, in this work, is to explore the quantum

gravitational aspects of bouncing scenarios. There are,
however, several models of bouncing cosmologies and,
most of them are conceptually disparate [14]. To see this,
recall that the inevitable singularity that arises in homo-
geneous and isotropic cosmologies in Einstein gravity is a
consequence of Hawking-Penrose singularity theorems.
Hence, the several ways of realizing a bounce can be
viewed as essentially corresponding to the several ways of
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bypassing Hawking-Penrose singularity theorems’ assump-
tions. In order to realize a bouncing scenario, therefore, one
might resort to any of the diverse models of unconventional
physics which may include, among other things, concepts
from modified gravity theories[11,15–17], modified matter
[18–21], asymptotically safe gravity [22], string and string-
inspired theories [23–25] and loop quantum cosmology
[26–29]. Consequently, it is not easy to study the entire
family of bouncing cosmologies in a single framework.
Here, we adopt a simple phenomenological approach,
which we can use to study a range of bouncing models
of interest to theoretical cosmology.
Our starting point is the minisuperspace of homogeneous

and isotropic spacetimes, supplemented by an effective
potential UeffðaÞ that determines the classical dynamics of
“a,” the scale factor. The functional form of UeffðaÞ is such
that the scale factor’s classical dynamics gives rise to a
bouncing scenario. We introduce this effective potential
as a proxy for any of the unconventional physics that
can accomplish a bounce. An obvious advantage of this
approach is that we do not have to directly subscribe to any
particular bouncing model. It turns out that for several
models a suitable UeffðaÞ may be chosen to capture its
relevant features effectively. Our strategy then is to apply
principles of quantum cosmology to study the quantum
aspects of our model.
The paper’s structure is as follows: In Sec. II, we briefly

review the minisuperspace model of cosmology and intro-
duce a convenient parametrization of the metric. In Sec. III,
we introduce two classes of perfect fluid densities that give
rise to a wide range of bouncing cosmologies. We chose
specific forms for these densities such that they generate
effective potentials which, when rewritten in terms of a
suitable variable, transform into either a linear or a
quadratic form. Quantum aspects of these models are then
analyzed in Sec. IVusing the Wheeler-de Witt equation and
a recent approach to quantum cosmology, for instance,
prescribed in [30–32]. Followed by that, we introduce a
massive scalar field conformally coupled to the background
spacetime in Sec. V. We conclude with the summary and
discussion of our results in Sec. VI. (We shall henceforth
work in units with c ¼ ℏ ¼ 1, unless otherwise specified.)

II. MINISUPERSPACE MODEL OF COSMOLOGY:
THE GENERAL SETUP

We consider the minisuperspace of homogeneous
and isotopic FRLW spacetimes with flat spatial sections.
A convenient parametrization for this class of metrics is
given by,

ds2 ¼ −
N 2ðtÞ
qðtÞp dt2 þ qðtÞbjdxj2; ð1Þ

where p and b are both real numbers and are arbitrary at
this point. We shall, however, fix the values of p and b later,

based on the necessity to have a quadratic action. As we
shall see shortly, the analysis we hope to pursue here
greatly simplifies when the action is a quadratic functional.
Notice that the scale factor is given by aðtÞ ¼ qðtÞb=2.
Moreover, the time coordinate t, introduced above, is
neither the cosmic time τ, nor the conformal time η. The
time coordinate t is related to the cosmic time τ and the
conformal time η through the following relations,

dτ ¼ N ðtÞdt
qðtÞp=2 ; dη ¼ N ðtÞdt

qðtÞðpþbÞ=2 : ð2Þ

If we assume that the function N is a constant, then it is
evident that as the parameters p and b take values such that
pþ b ¼ 0 and p ¼ 0, then the time coordinate t reduces to
η and τ, respectively.
For the metric ansatz presented in Eq. (1), the Einstein-

Hilbert action takes the following form,

SEH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
R

¼ V3

�
3b
2

�Z
dt qðtÞ3bþp−4

2

�
1

N
ðpþ 2b − 2Þ _q2

þ 2
d
dt

�
1

N
q _q

�
−

2

N
_q2
�
; ð3Þ

where, the overdot denotes derivative with respect to t
and V3 is the spatial volume.1 However, unless the action
functional is quadratic in the dynamical variable qðtÞ, it is
difficult to employ the path-integral techniques. Thus, we
demand that the parameter p and b are constrained by the
following relation: 3bþ p ¼ 4. This constraint means that
the two independent parameters p and b in Eq. (1) boils
down to a single parameter, which we choose to be b.
After imposing the constraint 3bþ p ¼ 4, the Einstein-
Hilbert action SEH, together with the Gibbons-Hawking-
York boundary term for a non-null boundary, acquires the
following form:

SEH ¼ 1

2κ

Z
dx4

ffiffiffiffiffiffi
−g

p
R −

1

κ

Z
Boundary

d3y
ffiffiffi
h

p
K

¼ V3

2κ

Z
dt

�
−
3b2

2N

�
_q2 þ 3bV3

�
q _q
N

�
Boundary

−
1

κ

Z
Boundary

d3y
ffiffiffi
h

p
K

¼ V3

Z �
−

M
2N

�
dq
dt

�
2
�
dt; ð4Þ

1For a noncompact and flat FRLWuniverse, the spatial volume
V3 is infinite. We can, however, circumvent potential issues
arising out of infinite V3 by assuming that the spatial slices are
locally flat but, globally compact, like a torus [33,34]. The spacial
volume V3, in such cases, is finite.
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where, we have defined an “effective mass” M≡
fð3b2Þ=ð2κÞg with κ ¼ 8πG. Note that, in the second line
of the above equation, the extrinsic curvature terms
evaluated on the t ¼ constant boundary hypersurfaces
exactly cancels the total derivative term, thereby, reducing
SEH to the final expression. The parametrization of FRLW
metric we presented in Eq. (1) contains several scenarios
that have appeared in earlier works in the literature. These
include the choice b ¼ 1, which has been used to study de
Sitter cosmology in [35] and more recently in [32] to
describe the Lorentzian path integral approach to quantum
cosmology. Additionally, for b ¼ 4=3, the above para-
metrization has also appeared in [36] to rewrite the
minisuperspace Lagrangian into a quadratic form.
Finally, b ¼ 2 corresponds to the standard representation
of the metric in terms of the conformal time coordinate.
We have already described the Einstein-Hilbert part of

the gravitational action, along with the Gibbons-Hawking-
York boundary term, for the parametrization of the line
element presented in Eq. (1). We shall now introduce the
matter sector into the picture. The most straightforward
inclusion corresponds to the addition of a perfect fluid, with
energy density ρeff and pressure peff ∝ ρeff , for which the
complete action describing gravity plus perfect fluid system
is given by [37],

Sperfect ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
R −

1

κ

Z
Boundary

d3y
ffiffiffi
h

p
K

−
Z

d4x
ffiffiffiffiffiffi
−g

p
ρeffðqÞ

¼ V3

Z
dt

�
−

M
2N

�
dq
dt

�
2

þNUeffðqÞ
�
; ð5Þ

where, we have used Eq. (4) and have defined the effective
potential Ueff as,

2

UeffðqÞ≡ −qð3b−2ÞρeffðqÞ: ð6Þ

As evident from Eq. (5), the Lagrangian resembles that of a
point particle, with generalized coordinate q, moving in the
effective potential UeffðqÞ.
Another possible addition to our “gravity-perfect fluid

system” is a nonminimally coupled scalar field of mass m,
such that, the total action takes the following form,

Sconformal ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
R −

1

κ

Z
Boundary

d3y
ffiffiffi
h

p
K

−
Z

d4x
ffiffiffiffiffiffi
−g

p
ρeffðqÞ

þ
Z

d4x

�
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ − ξ

2
Rϕ2

�
;

ð7Þ

where, ξ ¼ 0 corresponds to the minimally coupled scalar
field and ξ ¼ ð1=6Þ will yield the conformally coupled
scalar field. Using the Fourier transform for the scalar field
ϕ and using the fact that the scalar field is real, the scalar
field action takes the following form,

Sscalar ¼
Z

d4x

�
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ − ξ

2
Rϕ2

�

¼
Z

dt
Z

d3k
ð2πÞ3

�
1

2N
q2j _ϕkj2

−
N
2
q2b−2ðjkj2 þm2qbÞjϕkj2 þ

3b2ξ
4N

_q2jϕkj2

þ 3bξ
2

1

2N
dq2

dt
djϕkj2
dt

�

−
3bξ
2

Z
dt
Z

d3k
ð2πÞ3

d
dt

�
1

2N
jϕkj2

dq2

dt

�
: ð8Þ

Redefining, the scalar field as, ϕk ¼
ffiffiffiffiffiffi
V3

p
qcϕ̃k, the above

action can be expressed as,

Sscalar ¼ V3

Z
dt
Z

d3k
ð2πÞ3

�
1

2N
q2þ2cj _̃ϕkj2

þ cþ 3bξ
4N

q2c
dq2

dt
djϕ̃kj2
dt

þ c2 þ ð3b2ξ=2Þ þ 6bcξ
2N

q2c _q2jϕ̃kj2

−
N
2
q2b−2þ2cðjkj2 þm2qbÞjϕ̃kj2

�

−
3bξV3

2

Z
dt
Z

d3k
ð2πÞ3

d
dt

�
1

2N
jϕkj2

dq2

dt

�
: ð9Þ

Note that, if we wish to remove the second term in the
matter action presented above then, the constant c must be
chosen such that c ¼ −3bξ. In that case, the coefficient
of the third term in the right-hand side of Eq. (9) yields
ðb2=2Þð−18ξ2 þ 3ξÞ, which vanish iff ξ ¼ 0 or ξ ¼ ð1=6Þ.
Therefore, for conformally coupled scalar field, Sscalar
simplifies considerably and reduces to the following form,

2Although we have restricted ourselves to flat FRLW models,
one can easily extend our analysis to closed as well as open
FRLW cosmologies. In fact, one could imagine that UeffðqÞ
contains a contribution of the form −kq−2þ2b ∝ ffiffiffiffiffiffi−gp k

a2 (where
k ¼ 0;�1 for flat, closed/open spatial slices), to account for the
nonzero spatial curvature.
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Sconformal ¼ V3

Z
dt

�
−

M
2N

�
dq
dt

�
2

þNUeffðqÞ
�

þ V3

Z
dt
Z

d3k
ð2πÞ3

d
dt

�
1

2N
Sk

�

þ V3

Z
dt
Z

d3k
ð2πÞ3

�
μðqÞ
2N

���� dϕ̃k

dt

����2

−
N μðqÞω2

kðqÞ
2

jϕ̃kj2
�
; ð10Þ

where, the functions μðqÞ, ωkðqÞ and Sk are defined as,

μðqÞ ¼ q2−b; ω2
kðqÞ ¼ q2b−4ðk2 þm2qbÞ;

Sk ¼ −
b
4
jϕ2

kj
dq2

dt
: ð11Þ

Thus, the action for the scalar field ϕk, as presented
above, is also quadratic and each of the Fourier modes ϕk
depicts a harmonic oscillator with a time-dependent mass
μðqÞ and a time-dependent frequency ω2

kðqÞ. Therefore, the
equation of motion obtained by varying ϕk is given by:

d
dT

�
μðqÞ dϕk

dT

�
þ ω2

kðqÞϕk ¼ 0 ð12Þ

where, dT ≡N dt. Furthermore, the momentum
conjugate to q and ϕ̃k are, respectively, given by πq ¼
−ðM=N Þðdq=dtÞ and πk ¼ ðμðqÞ=2Þðdϕ̃k=dtÞ. We shall
now determine the Wheeler-DeWitt equation from the
action functional. To this end, we first determine the
Hamiltonian constraint, obtained by varying the action
Sconformal with respect to the lapse function N and then
setting N ¼ 1. This yields:

−
MV3

2

�
dq
dt

�
2

− V3UeffðqÞ

þ V3

Z
d3k
ð2πÞ3

�
μðqÞ
2

�
dQk

dt

�
2

þ μðqÞω2
kðqÞ

2
Q2

k

�
¼ 0;

ð13Þ

where, we have defined:

Qk ≡
� ffiffiffi

2
p

Re½ϕ̃k�; kz ≥ 0ffiffiffi
2

p
Im½ϕ̃k�; kz < 0:

ð14Þ

Expressing _q and _Qk in terms of the conjugate momentum
πq and πk, followed by promoting them to appropriate
operators, namely, πq ≡ −i∂q and πk ≡ −i∂Qk

(for ease
of notation and since further confusion is unlikely to arise,
we have henceforth renamed Qk as ϕk), we obtain the
following Wheeler-DeWitt equation,

�
1

2MV3

∂2

∂q2 − V3UeffðqÞ þ V3

Z
d3k
ð2πÞ3

�
−

1

2μðqÞ
∂2

∂ϕ2
k

þ μðqÞω2
kðqÞ

2
ϕ2
k

�	
Ψðq; fϕkgÞ ¼ 0; ð15Þ

where, Ψðq; fϕkgÞ is the wave function of the universe
describing the evolution of the scale factor (through qðtÞ)
and also the evolution of the matter field ϕk in a coherent
manner.
The first two terms of Eq. (15), which account for the

purely gravitational part, governs the leading order quan-
tum dynamics of the system considered here. We shall treat
the scalar field ϕk as a test field at the quantum level. As is
evident from Eq. (15), the dynamics of the gravity sector
is determined by the effective potential Ueff , which in turn
is determined by the effective energy density ρeff of the
perfect fluid system. In the next section, we will consider a
family of perfect fluid models that can accomplish the
bouncing scenario in the classical regime. Following that,
we will discuss the associated quantum scenario.

III. EFFECTIVE MATTER CONTENT OF
BOUNCING MODELS: GENERAL ANALYSIS

In the previous section, we discussed the general aspects
of minisuperspace model of cosmology consisting of a
single dynamical variable qðtÞ. The ansatz for the space-
time metric was chosen such that the gravitational part of
the action reduces to a quadratic functional of the dynami-
cal variable qðtÞ. We also considered the introduction of a
nonminimally coupled scalar field as well as a perfect fluid
with energy density ρeff. Therein, we saw that the variable
frequencies of the harmonic oscillator modes of the scalar
field are functionals of q alone, if and only if, the coupling
is either minimal or conformal. In this section, we will
discuss the possible forms of the energy density ρeff, which
can retain the quadratic nature of the action presented
in Eq. (10).
We start by considering an effective energy density ρeff

of the following form,

ρeffðaÞ ¼ ρ0

�
c1
an1

þ c2
an2

þ c3
an3

�
; ð16Þ

where, ρ0 is some energy density scale, ðc1; c2; c3Þ are real
constants, while ðn1; n2; n3Þ are positive numbers, not
necessarily integers. Recall that the scale factor is related
to qðtÞ via aðtÞ ¼ qðtÞb=2. Hence, the effective energy
density UeffðqÞ that appears in the action presented in
Eq. (10), takes the following form,

UeffðqÞ ¼ −q3b−2ρeffðqb=2Þ
¼ −ρ0½c1q3b−2−b

2
n1 þ c2q3b−2−

b
2
n2 þ c3q3b−2−

b
2
n3 �:
ð17Þ
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In order to facilitate explicit evaluation of the path integral
over q, we shall now choose the powers n1, n2 and n3
judiciously. Let us start by setting the power of q in the term
involving c1, in the last line of Eq. (17), to be such that
3b − 2 − ðb=2Þn1 ¼ 0. This yields,

b ¼ 4

6 − n1
; n1 ¼

2ð3b − 2Þ
b

: ð18Þ

Substituting the expression for b, presented above, in
Eq. (17), the effective potential due to the matter field
becomes

Ueff ¼ −ρ0
h
c1 þ c2q

2ðn1−n2Þ
6−n1 þ c3q

2ðn1−n3Þ
6−n1

i
: ð19Þ

Setting the power of q in the term involving c2 to identity
and the power of q in the term involving c3 to be quadratic,
we obtain the powers n2 and n3 as a function of n1 as,

Ueff ¼ −ρ0½c1 þ c2qþ c3q2�; n2 ¼
3

2
ðn1 − 2Þ;

n3 ¼ 2n1 − 6: ð20Þ

On the other hand, we could have also taken n2 to be
fundamental and have expressed the powers n1 and n3 in
terms of n2, which yield, b ¼ 6=ð6 − n2Þ and n1 ¼
ð2=3Þðn2 þ 3Þ as well as n3 ¼ ð2=3Þð2n2 − 3Þ. Similarly,
choosing n3 to be fundamental, one can express n1 and n2
in terms of it: b ¼ 8=ð6 − n3Þ, n1 ¼ ð1=2Þðn3 þ 6Þ, and
n2 ¼ ð3=2Þf1þ ðn3=2Þg. A list of such convenient choices
of the parameter b and the corresponding constraints
among ðn1; n2; n3Þ is given in Table I. We conclude that,
for the choice of parameters, as given in Table I, the action
becomes quadratic in the variable qðtÞ and thus path
integral can be explicitly computed.
So far, our analysis has been fairly general. In what

follows, we will be focussing on scenarios that give rise to
bounce, by choosing the energy density ρeff appropriately.
A generic bouncing scenario may be thought of as being
sourced by two species of matter fields; one of them
satisfying the energy condition, while the other violating
the same. Moreover, the latter is the factor that enables the
bounce. A possible form of ρeffðaÞ, that can realize a

classical bouncing scenario, consists of components of both
positive as well as negative energy densities which, in a
generic situation, takes the following form:

ρeffðaÞ ¼
X
n

ρþn
an

−
X
m

ρ−m
am

; ð21Þ

where ρþn and ρ−m as positive real numbers. Note that the
negative energy density terms could either be arising from
an exotic matter field (as, for instance, in [20,21,38]) or
emerging from the corrections to the Einstein-Hilbert
action introduced by a UV-complete quantum gravity
theory (as, for instance, in [15]). We would like to
emphasize that we shall not concern ourself with the origin
of the effective density ρeffðaÞ here. We take the point of
view that an appropriate ρeffðaÞ effectively captures most of
the essential aspects relevant to the bouncing cosmology
and, hence, we focus only on its repercussions to quantum
cosmology.
A reasonable scenario corresponds to the case where the

dominant contribution to the effective energy density near
the bounce is from only two components, namely, (1) a
certain type of “normal matter,” with density scaling as
a−nþ and (2) a certain type of “phantom matter” with
density scaling as a−n− . Motivated by this, we shall
henceforth consider effective densities of the form,

ρeffðaÞ ¼
ρþnþ
anþ

−
ρ−n−
an−

; ð22Þ

with n− > nþ. As we have already pointed out, for
convenient evaluation of path integrals, it is desirable to
choose the values of nþ and n− such that the action of the
gravity-fluid system Sperfect½N ; q� is a quadratic functional
of q. In light of our analysis leading to Eq. (20) and Table I,
the powers nþ and n− may be chosen such that, we have the
following two classes of effective energy densities:

ρðIÞeffðaÞ ¼ ρ0

�
1

an
−

1

a
ð6þ2nÞ

3

�
; bðIÞ ¼ 6

6 − n
; ð23Þ

ρðIIÞeff ðaÞ ¼ ρ0

�
1

an
−

1

a
ð6þnÞ

2

�
; bðIIÞ ¼ 8

6 − n
¼ 4

3
bðIÞ;

ð24Þ

where, n and ρ0 are real constants and, we have scaled
the scale factor such that the bounce happens at a ¼ 1.
The necessary condition for both the above effective
energy densities to describe a bounce is n < 6. It is worth
mentioning that these two classes of energy densities
together cover a wide range of physically relevant bouncing
scenarios. For example, substituting n ¼ 3 in the expres-

sion for ρðIÞeffðaÞ, we obtain an effective energy density that
describes a “matter bounce” scenario (denoted by subscript

TABLE I. The table shows the choices of the parameter b and
the corresponding constraints among the parameters ðn1; n2; n3Þ,
which may be implemented to reduce the effective potential to the
simple quadratic form UeffðqÞ ¼ −ρ0ðc2 þ c2qþ c3q2Þ.
b Constraint 1 Constraint 2
4

6−n1
n2 ¼ 3

2
ðn1 − 2Þ n3 ¼ 2n1 − 6

6
6−n2

n1 ¼ 2
3
ðn2 þ 3Þ n3 ¼ 2

3
ð2n2 − 3Þ

8
6−n3

n1 ¼ 1
2
ðn3 þ 6Þ n2 ¼ 3

2
ð1þ n3

2
Þ
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“mb”) that may be realized, for instance, in the context
of Horava-Lifshitz cosmology [15] or by invoking a
noncanonical, ghost field [21]:

ρðmbÞ
eff ðaÞ ¼ ρ0

�
1

a3
−

1

a4

�
: ð25Þ

Further, it is easy to see that the substitution of n ¼ 0 in the
first class of energy density, we obtain ρeffðaÞ¼ρ0ð1−a2Þ,
that is relevant for studying de Sitter spacetime in closed
slicing [39–41]. Referring to Table I and Eq. (16), we see

that two cases of energy densities ρðIÞeffðaÞ and ρðIIÞeff ðaÞ
correspond to c2¼1¼−c1 with c3¼0 and c3¼1¼−c1
with c2 ¼ 0, respectively. Consequently, the corresponding

effective potentials arising out of ρðIÞeffðaÞ and ρðIIÞeff ðaÞ,
respectively, reduce to the following simple forms:

UðIÞ
effðqÞ ¼ ρ0ð1 − qÞ; ð26Þ

UðIIÞ
eff ðqÞ ¼ ρ0ð1 − q2Þ; ð27Þ

Hence, we shall henceforth refer to the bouncing models

described by the effective densities ρðIÞeffðaÞ and ρðIIÞeff ðaÞ as
“the linear models” and “the quadratic models,” respec-
tively. Keeping our later purposes in mind, it will be useful
to introduce another constant hn, which in terms of ρ0 takes
the following form,

h2n ≡ 1

108
κðn − 6Þ2ρ0 ð28Þ

The constant hn may be viewed as the Hubble parameter
associated with the constant energy density ρ0 and will play
a significant role in the subsequent discussion. To sum-
marize, we have essentially brought down the analysis of a
wide class of bouncing cosmologies to that of a particle in
one dimensional quadratic or linear potentials! For com-

pleteness, the effective potentials UðIÞ
effðqÞ and UðIIÞ

eff ðqÞ have
been plotted in Fig. 1. The point corresponding to q ¼ 1
stands for the bounce and the region of parameter space
with q > 1 depicts the classically allowed region.
We shall now look at the classical spacetimes sourced by

the energy densities ρðIÞeffðaÞ and ρðIIÞeff ðaÞ. The classical
background spacetime can be found by solving the corre-
sponding Friedman equations. If we choose our time
coordinate such that the bounce happens at t ¼ 0, then
the background scale factors corresponding to the linear and
the quadratic models take the following forms, respectively:

aðIÞðtÞ ¼ ð1þ h2nt2Þ 3
6−n; ð29Þ

aðIIÞðtÞ ¼
�
cosh

�
3

2
hnt

�� 4
6−n
: ð30Þ

We caution the reader, once again, that the time coordinate t
is not the cosmic time. Consequently, the apparent simple
forms of the scale factors in Eq. (29) and Eq. (30) is rather
deceptive, that is to say, the scale factors aðIÞðtÞ and aðIIÞðtÞ
could, in general, be complicated functions of the cosmic
time τ. As an illustration, in the case of the matter-bounce
scenario described by the effective density in Eq. (25), it
turns out that the time coordinate t coincides with the
conformal time η and hence the background scale factor is
given by:

aðmbÞðtÞ ¼ ð1þ h23t
2Þ ¼ ð1þ h23η

2Þ: ð31Þ

However, the same scale factor, rewritten as a function of the
cosmic time τ, acquires a more complicated form:

aðmbÞðτÞ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9h23τ
2

4
þ 1

r
−
3h3τ
2

!
2=3

þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9h23τ
2

4
þ 1

r
þ 3h3τ

2

!
2=3

− 1: ð32Þ

Generically, the functional dependence of the scale factor on
the cosmic time and the conformal time is significantly
complicated.
In summary, we proposed two classes of bounce-

enabling effective energy densities in this section, namely,

ρðIÞeffðaÞ and ρðIIÞeff ðaÞ. These energy densities have the
desirable characteristic that one can reduce the dynamics

FIG. 1. The red graph shows the first kind of effective potential

UðIÞ
effðqÞ and the brown dashed graph shows the second kind of

effective potential UðIIÞ
eff ðqÞ. The shaded portion, with q > 1,

denotes the classically allowed region, describing a bouncing
universe.
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of the background spacetime, in the presence of these
densities, to that of a particle in one-dimensional quadratic/
linear potential. In what follows, we will provide a quantum
treatment of the bouncing universe, by first solving the
Wheeler-DeWitt equation and then using the path-integral
technique. As we shall shortly see, the specific forms of the

densities ρðIÞeffðaÞ and ρðIIÞeff ðaÞ facilitate easy evaluation of the
path integrals leading to the ground state wave function of
the universe. Hence, we hope that these classes of bouncing
universes furnish test-bed to study deeper aspects of
bouncing cosmologies.

IV. THE GROUND STATE WAVE FUNCTION
OF THE BOUNCING UNIVERSE

In this section, we study the quantum aspects of the
“linear” and the “quadratic” models of bounce introduced in
Sec. III. To this end, we attempt to evaluate the relevant
“ground state wave function of the universe” and its
properties. We shall take two different approaches for this
purpose—(1) using theWheeler-DeWitt equation and (2) the
path integral approach. We shall also make comparisons of
the results of these two approaches at appropriate junctures.

A. The Wheeler-de Witt equation and its solution

We have already seen that the gravity sector can be
conveniently described by the dynamical variable qðtÞ. The
corresponding Wheeler-de Witt equation for the gravity
sector reduces to the following one-dimensional time-
independent Schrödinger equations for, respectively, the
linear and the quadratic models:

�
−

∂2

∂q2 þ α2nð1 − qÞ
�
ΨðIÞðqÞ ¼ 0; ð33Þ

�
−

∂2

∂q2 þ
16

9
α2nð1 − q2Þ

�
ΨðIIÞðqÞ ¼ 0; ð34Þ

where, the factor ð16=9Þ comes from the relation between
bðIÞ and bðIIÞ, as presented in Eq. (24). The constant αn, on
the other hand, can be expressed as βnV3 where

β2n ≡ 2MðIÞρ0 ¼
9h2n

κ2ðn
6
− 1Þ4 ≡

h2n
l4
pðn6 − 1Þ4 : ð35Þ

Here, we have introduced a new length scale lp ¼
ffiffiffiffiffiffiffiffi
κ=3

p
,

which corresponds to the Planck length associated with the
quantum nature of the gravitational interaction.
Let us first consider the WdW equation associated with

the linear model. The general solution to Eq. (33) can be
written down in terms of the Airy functions involving two
arbitrary constants. Except for an overall normalization
constant, the other constant can be fixed by imposing
appropriate boundary conditions. Following [42], or

recently [43], one can impose the boundary condition
Ψða ¼ 0Þ ¼ 0, which corresponds to the choice that the
wave function must vanish at the singular point a ¼ 0.
Under this boundary condition, the WdW wave function is
given by:

ΨðIÞ
0 ðqÞ ¼ N ðIÞ

0

n
Biðα2=3n ÞAi½α2=3n ð1 − qÞ�

− Aiðα2=3n ÞBi½α2=3n ð1 − qÞ�
o
; ð36Þ

where, N ðIÞ
0 is a normalization constant. For q > 1, i.e.,

in the classical regime, one is interested in the limit
ðαn=l2

pÞ ≫ 1. In which case, we can use the following
expansions of the Airy functions,

AiðxÞ ∼
ffiffiffi
π

p
ð−xÞ1=4 cos

�
−
2

3
ð−xÞ3=2 þ π

4

�
; ðx < 0; jxj ≫ 1Þ

AiðxÞ ∼ 1ffiffiffi
π

p
x1=4

exp

�
−
2

3
x3=2

�
; ðx ≫ 1Þ ð37Þ

along with the fact that the expansion of BiðxÞ for negative,
but large x is identical to that of AiðxÞ, while for large
positive x, BiðxÞ is exponentially growing, the exact
opposite of the behavior of AiðxÞ, presented in Eq. (37).
Thus for q > 1 and for large ðαn=l2

pÞ limit, the asymptotic
expansion of the wave function ΨðIÞðqÞ takes the form:

ΨðIÞ
0 ðqÞ≈ N ðIÞ

0ffiffiffi
4

p
α2=3n ðq−1Þ

exp

�
2

3
αn

�
cos

�
2

3
αnðq−1Þ3=2−π

4

�

þO
�
exp

�
−
2

3
αn

�	
: ð38Þ

Notice that there is a noticeable similarity between the
above solution of the Wheeler-DeWitt equation and that
of the ground-state wave function of Hartle and Hawking
(HH), associated with the “no-boundary” proposal [6],
except for an exponentially suppressed term ∼ exp ð− 2

3
αnÞ,

which can be neglected in the semiclassical limit.
It is also possible to impose the Hartle-Hawking boundary

condition on the solution of the WdW equation. This will
result into a particular solution ΨðIÞ that may be regarded as
the natural analogue of the Hartle-Hawking wave function
for bouncing scenario. To this end, we demand that, in the
α ≫ 1 limit,ΨðIÞ is an exponentially growing function in the
range q < 1 (see, for instance, [41]). The corresponding
solution is given by:

ΨðIÞðqÞ ¼ NðIÞ

Aiðα2=3n Þ
Ai½α2=3n ð1 − qÞ�; ð39Þ

where NðIÞ is a normalization constant. Given the above
asymptotic expansion of the Airy function, it is evident that
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the above particular solution to the WdW equation allows
both ingoing and outgoing modes in the classical regime, as
fit for the Hartle-Hawking wave function. Thus, in the region
q > 1, the asymptotic expansion of the wave function
ΨðIÞðqÞ for αn ≫ 1 limit takes the form:

ΨðIÞðqÞ≈ NðIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2=3n ðq−1Þ4

q exp

�
2

3
αn

�
cos

�
2

3
αnðq−1Þ3=2−π

4

�
:

ð40Þ

While, in the classically forbidden region (q < 1) as well,
the wave function is exponentially suppressed. Thus this

Hartle-Hawking wave function differs from ΨðIÞ
0 ðqÞ by an

exponentially small correction. In particular, in the context of
de Sitter cosmology, the value of the no-boundary wave
function at a ¼ 0 is an exponentially small, nevertheless,
nonzero quantity. Therefore, the condition that the wave
function exactly vanishes at a ¼ 0 may be regarded as a
convenient approximation for the exact no-boundary wave
function, with the errors being negligible in the semiclassical
limit. In fact, for the numerical evaluation of the ground state
wave function, Hartle-Hawking also assumes the condition
Ψða → 0Þ ¼ 0 in their original work [39]. In a similar

manner, in the present context, we may regard ΨðIÞ
0 ðqÞ as a

convenient approximation of ΨðIÞðqÞ. The precise connec-
tion of the above wave function ΨðIÞðqÞ with the no-
boundary proposal will be made clear when we analyze
the above problem using the path integral formalism.
We shall now look at the WdWequation for the quadratic

model. The general solution to Eq. (34) can be written
down in terms of the parabolic cylinder functions DνðxÞ.
However, for our purpose it is convenient to work with
another set of linearly independent solutions [ [44], p.314-
p.317], namely, Wða;−xÞ and Wða;−xÞ. These functions
are constructed from linear combinations of two linearly
independent sets of standard parabolic cylinder functions.
Again, the general solution of the WdW equation will
involve two arbitrary constants and can be written as a
linear combination of Wða;−xÞ and Wða;−xÞ. In order to
derive particular solutions to the WdW equations, as in the
case of linear potential, we may impose the condition
Ψða ¼ 0Þ ¼ 0. However, the resulting particular solution
will be different from the Hartle-Hawking prescription by
exponentially small quantities. Thus we directly look for
the particular solution that may be regarded as the analogue
of the no-boundary wave function, which is given by:

ΨðIIÞðqÞ ¼ NðIIÞW
�
2

3
αn;−

2
ffiffiffi
2

pffiffiffi
3

p ffiffiffiffiffi
αn

p
q

�
; ð41Þ

where, NðIIÞ is a normalisation constant. For q > 1, i.e., in
the classically allowed region, the asymptotic expansion of
the above solution in the αn ≫ 1 limit is given by [44],

ΨðIIÞðqÞ ≈ NðIIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3
αnðq2 − 1Þ4

q exp

�
π

3
αn

�
cos

�
4

3
αnξðqÞ −

π

4

�
;

ð42Þ

where,

ξðqÞ≡ 1

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

q
−
1

2
log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

q �
: ð43Þ

As evident this particular solution involves both ingoing
and outgoing modes in the classically allowed region, as fit
for a Hartle-Hawking wave function.
It is worth emphasizing that even for a general quadratic

potential of the form UeffðqÞ ¼ −ρ0ðc1 þ c2qþ c3q2Þ,
with the coefficients fc1; c2; c3g such that classically a
bouncing scenario is feasible, the solution to the Wheeler-
DeWitt equation would have a structure identical to that
presented in Eq. (42). Thus, the results obtained above is
general enough to encompass aspects of all classes of
bouncing models whose effective potentials can be reduced
to a polynomial in q, of degree at most 2. Once again, we
see that the asymptotic expression for the wave function has
a close resemblance to that of the Hartle-Hawking wave
function, compatible with the no-boundary proposal. As we
shall shortly see in the next subsection, our path integral
analysis will reveal that this resemblance is not accidental.

B. Path integral approach

Having described the “wave function of the universe” for
the linear and quadratic models using the Wheeler-de Witt
equation, let us now try to study the quantum aspects of
these models using the path integral formalism. Prior to
that, let us briefly review some fundamentals of the path
integral approach to the minisuperspace model.
Recall that the action Sperfect½q;N � describing the gravity

sector is given by Eq. (5). Following [35], it is convenient to

use a gauge in which _N ¼ 0 and hence the physical time T,
defined through the following relation, T ¼ R N dt,
becomes T ¼ N t. For simplicity, but without losing gen-
erality, we will restrict ourselves within the time interval
0 ≤ t ≤ 1, which translates into 0 ≤ T ≤ N . We can then
construct a path integral kernel from the gravitational action
Sperfect, with the boundary condition that qðT ¼ N Þ ¼ q1
and qðT ¼ 0Þ ¼ q0, as follows:

Kðq1;N ; q0; 0Þ≡
Z

qðT¼N Þ¼q1

qðT¼0Þ¼q0

D½q� exp
�
i V3

Z
N

0

dT 0

×

�
−
M
2

�
dq
dT 0

�
2

þUeffðqÞ
�	

; ð44Þ

One can check that the Hamiltonian constraint indeed
generates translation in the physical time coordinate T,
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such that the kernel Kðq1;N ; q0; 0Þ satisfies the following
differential equation: HperfectKðq1;N ; q0; 0Þ ¼ i∂NKðq1;
N ; q0; 0Þ. Here, Hperfect is the Hamiltonian associated with
the bouncing model with perfect fluid source, given by,

Hperfect ¼
1

2MV3

∂2
q1 − V3Ueffðq1Þ ð45Þ

Let us now consider a wave function Ψðq1Þ, constructed
out of a square integrable function ψðq0Þ and the kernel
Kðq1;N ; q0; 0Þ, in the following manner:

Ψðq1Þ ¼
Z
C

�Z
∞

−∞
Kðq1;N ; q0; 0Þψðq0Þdq0

�
dN ð46Þ

where, the integration overN is performed along a contour
C in complex N -plane, which is yet to be fixed. Using the
evolution equation of the Kernel along the lapse function
N , which is generated by the Hamiltonian constraint, as
depicted above, we obtain,

HperfectΨðq1Þ¼
Z
C

�Z
∞

−∞
i∂NKðq1;N ;q0;0Þψðq0Þdq0

�
dN

ð47Þ

where, Hperfect is the Hamiltonian defined in Eq. (45).
Therefore, if we further demand that Ψðq1Þ should satisfy
the Wheeler-DeWitt equation, i.e., HperfectΨðq1Þ ¼ 0, then
we can perform the integration over the lapse function N
and hence arrive at the following condition,Z

∞

−∞
Kðq1;N f; q0; 0Þψðq0Þdq0

−
Z

∞

−∞
Kðq1;N i; q0; 0Þψðq0Þdq0 ¼ 0; ð48Þ

where, N i and N f are the endpoints of the contour C. One
way of achieving this condition is to choose the endpoints
such that, the kernel identically vanishes at these points, as,
for instance, is the case for the contours used in [32,35,45].
Another possibility would be to choose the contour of N
integration to be a closed one [46]. Even though both of
these possibilities mathematically are viable, for the pur-
pose of our current discussion, we shall see that the former
choice is more natural for the structure of the path integral
kernel in both linear and quadratic models. The seminal
work of Hartle and Hartle [39], on the other hand, may be
viewed as an approach based on a contour along the
imaginary axis of the complex N -plane and, therefore,
is usually referred to as the Euclidean path integral
approach. Recently[47,48], however, evidences have
emerged of serious problems with the approach based on
the imaginary line contour. One might argue that the most
natural choice of the contour is the one along the real line.

Moreover, recent investigations based on the real line
contour, dubbed the “Lorentzian quantum cosmology,”
seems to be devoid of the issues encountered in the
Euclidean approach[30,32] and, hence, shall be the basis
of our analysis in this section.

1. The linear model

The path integral kernel for the linear model is essen-
tially the kernel of a one dimensional particle, subject to a
constant force and hence can be evaluated explicitly. The
explicit form of the kernel being,

KðIÞðq1;N ; q0; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
iM
2πN

r
exp

h
iSðIÞ

cl ½q1; q0;N �
i

ð49Þ

where, SðIÞ
cl is just the action Sperfect½q� evaluated at the

classical solution satisfying the boundary conditions
qðT ¼ 0Þ ¼ q0 and qðT ¼ N Þ ¼ q1 > 1. The explicit

form of SðIÞ
cl in terms of q0, q1 and the lapse N is given by,

SðIÞ
cl

V3

¼ 1

2l2
pð1 − n

6
Þ2
�
−
ðq1 − q0Þ2

2N
− h2nðq1 þ q0ÞN

þ h4n
6
N 3 þ 2h2nN

�
: ð50Þ

In the context of de Sitter spacetime, the original no-
boundary prescription of HH for defining a wave of the
universe corresponds to choosing an initial wave function
ψðq0Þ ∝ δðq0Þ. Another possibility would be to choose
ψðq0Þ ∝ δðq0 − q̄Þ, followed by taking q̄ → 0 limit [45].
However, recent, more careful mathematical considerations
have shown that such approaches lead to physical and
mathematical issues [47–49]. It is worth mentioning that
principles of loop quantum cosmology has been employed
recently to attempt to rescue the no-boundary proposal
[50,51]. On the other hand, a promising approach that
retains the no-boundary wave function, strictly in the
context of canonical quantum cosmology, has been pro-
posed in [31,32]. Therein, the authors choose an initial
state ψðq0Þ that corresponds to a well-defined Euclidean
momentum, in which case, the corresponding perturbations
can be shown to be Gaussian distributed. Motivated by this,
we demand that the initial wave function ψðq0Þ corre-
sponds to that of a momentum eigenstate with momentum
p ¼ −Mv, where, v≡ ðdq=dTÞT¼0 ¼ N −1 _qð0Þ. It is then
instructive to define the momentum space kernel as the
Fourier transform of the position space kernel, yielding,

KðIÞðq1;N ;−Mv; 0Þ≡
Z

KðIÞðq1;N ; q0; 0Þe−iMvV3q0dq0

¼ eiS̃
ðIÞ
cl ½q1;−Mv;N �; ð51Þ
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where, S̃ðIÞ
cl is the action Sperfect½q� − SBoundary½q0�, evaluated

at the classical solution q̃ðIÞcl ðtÞ which satisfies the boundary
conditions N −1 _qð0Þ ¼ v and qðT ¼ N Þ ¼ q1. The boun-
dary term SBoundary½q0� has the form: N −1MV3qð0Þ _qð0Þ
and, the dot, as usual, denotes a derivative with respect to t.
The solution to the equation of motion of qðtÞ with the

above boundary conditions takes the following explicit
form:

q̃ðIÞcl ðtÞ ¼ h2nN 2t2 −N ðh2nN þ vÞ þN tvþ q1: ð52Þ

Motivated by the recent results of [32] in the context of de
Sitter spacetime, where the no-boundary wave function was
realised by choosing the initial momentum to be purely
imaginary, we demand that the v ¼ 2ihn. With this choice

of the initial velocity v and the classical solution q̃ðIÞcl ðtÞ,
the explicit form of the classical action S̃ðIÞ

cl takes the
following form,

S̃ðIÞ
cl

V3

¼ 1

2l2
pð1 − n

6
Þ2
�
2h4n
3

�
N þ i

hn

�
3

− 2h2n

�
N þ i

hn

�
ðq1 − 1Þ − 4ihn

3

�
: ð53Þ

In order to determine the wave function from the path
integral kernel, we need to integrate over the lapse function
N . The integral should be over a contour for which the
kernel vanishes sufficiently fast as one approaches the

endpoints, i.e., the real part of iS̃ðIÞ
cl should take a large

and negative value as we approach the endpoints of the
contour. Taking fN þ ði=hnÞg as reiθ, we obtain from

Eq. (53), that ReðiS̃ðIÞcl Þ takes large negative values, such
that KðIÞðq1;N ;−Mv; 0Þ vanishes, for large values of r, if
ðsin3 θ − 3 sin θ cos2 θÞ < 0. Thus the momentum space
kernel identically vanishes in the asymptotic regions in
the complex N -plane, provided we restrict ourselves
to the following regions: Arg½fN þ i=ðhnÞg� ∈ ð0; π=3Þ ∪
ð2π=3; πÞ ∪ ð4π=3; 5π=3Þ (These regions have been
depicted in Fig. 2 in dark shades of blue). The saddle

points of S̃ðIÞ
cl , which we shall require shortly, turns

out to be,

N̄ ðIÞ
� ¼ −

i
hn

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 − 1

p
hn

; ð54Þ

The classical solutions q̃ðIÞcl ðtÞ with the above choice for the
lapse function and with v ¼ 2ihn is given by:

q̃ðIÞcl;�ðtÞ ¼ t2
h
ðq1 − 2Þ∓ 2i

ffiffiffiffiffiffiffiffiffiffiffiffi
q1 − 1

p i
þ t


2� 2i

ffiffiffiffiffiffiffiffiffiffiffiffi
q1 − 1

p �
:

ð55Þ

Therefore, we see that the saddle points describe geom-
etries in which the scale factor aðtÞ ¼ qðtÞ3=ð6−nÞ vanishes
at t ¼ 0 (since q̃ðIÞcl;�ðt ¼ 0Þ ¼ 0) and equals q3=ð6−nÞ1 at

t ¼ 1 (since q̃ðIÞcl;�ðt ¼ 1Þ ¼ q1).
The Lorentzian contour, namely the real line, is the most

natural choice for the N integration that evaluates the
wave function. Fortunately, from Fig. 2, we see that the
N -integral along the real line is convergent. In order to find
the asymptotic expression for the wave function, however,
we will employ the saddle approximation. The steepest

descent/ascent curves associated with the action S̃ðIÞ
cl are

shown in Fig. 2 along with the saddle points N̄ ðIÞ
cl;�. The

regions where the real part of iS̃ðIÞ
cl becomes large and

negative are also presented. The relevant saddle points that
contribute to the evaluation of the integral, according to
Picard-Lefschetz theory [30,32], are the ones that can be
approached by flowing down (i.e., in view of Fig. 2, toward
the direction of darker shades of blue) the original
integration contour. This dictates that the appropriate
contour, to which the real line should be deformed to,

corresponds to CðIÞþ þ CðIÞ− . With the relevant saddle points
determined, we can now evaluate the saddle point approxi-
mation of the no-boundary wave function for the bouncing
model, yielding,

FIG. 2. The steepest descent/ascent curves in the complex N -

plane, that pass through the saddle points N̄ ðIÞ
� , for the linear

model are represented by the black curves. The contour-plots for

the function Re½i2l2
pfðn=6Þ − 1g2V−1

3 S̃ðIÞ
cl � are also presented,

using the color coding scheme given by the right inset, to better
visualize the descent/ascent directions (the plots are for the
parameter values hn ¼ 1 and q1 ¼ 3). The dark red, horizontal
line is the real line contour over which the integration of the lapse
function needs to be performed to evaluate the no-boundary wave
function. The real line contour can be smoothly deformed into the

union of dashed red contours CðIÞþ and CðIÞ− , thereby, enabling
us to perform saddle point approximation. See text for more
discussion.

RAJEEV, MONDAL, and CHAKRABORTY PHYS. REV. D 103, 106008 (2021)

106008-10



ΨðIÞðq1Þ ∼

0
B@ ei

π
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∂2
N S̃ðIÞ

cl

q
j
eiS̃

ðIÞ
cl

1
CA

N̄ ðIÞ
cl;þ

þ

0
B@ e−i

π
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∂2
N S̃ðIÞ

cl j
q eiS̃

ðIÞ
cl

1
CA

N̄ ðIÞ
cl;−

∝ exp

�
2αn
3

�
cos ½2

3
ðq − 1Þ3=2αn − π

4
�ffiffiffi

4
p ðαnÞ2ðq − 1Þ ; ð56Þ

which is clearly consistent with Eq. (40).
Having described the derivation of the no-boundary

wave function from the path integral analysis with mixed
boundary condition, let us discuss its interpretation. We

have seen that the saddle point solution q̃ðIÞcl;�ðtÞ satisfies

q̃ðIÞcl;�ð0Þ ¼ 0 and q̃ðIÞcl;�ð1Þ ¼ q1. Therefore, the correspond-
ing geometry may be imagined as describing an evolution
from a point-sized to a finite-sized universe. This is
reminiscent of the famous Hartle-Hawking saddle point
geometry that appears in the context of Euclidean path
integral approach to de Sitter cosmology [39]. Therein, the
corresponding wave function is usually interpreted as
describing “tunneling from nothing.” One might, therefore,
be tempted to bestow an analogous interpretation on the
wave function ΨðIÞðq1Þ, with the Hawking-Hartle geometry
replaced by the appropriate generalization of it in the
context of bounce (For representation purpose, in Fig. 3,
we have presented the saddle point geometry correspond-
ing to a matter-bounce scenario). However, we argue
that such an interpretation is questionable. In fact, the
wave function ΨðIÞðq1Þ has a form similar to the original

Hartle-Hawking wave function precisely because the latter
also has both the expanding and contracting branches of
the de Sitter spacetime. In the latter context, it has already
been found in [32] that the conventional interpretation of
the no-boundary wave function, as describing tunnelling
from nothing, is problematic. In order to appreciate how
this translates to in the bouncing scenario, note that even
though the dominant contribution to the path integral
leading to ΨðIÞðq1Þ is from the Hartle-Hawking-like saddle
point geometry, corresponding to a spacetime that emerges
from zero size, the off-shell geometries can emerge from
any size. This fact is evident from Eq. (51), where we have
clearly performed a summation over all values of the initial
size q0 to define the wave function. In the spirit of [32], and
in the light of Eq. (51) it is more reasonable to interpret
ΨðIÞðq1Þ as describing a transition from the state of a
specific Euclidean momentum. However, it is worth men-
tioning that the bouncing analogue of the tunneling wave
function of Vilenkin [41], which offers a more appropriate
description of tunneling from nothing, can also be con-
structed in an analogous manner.

2. The quadratic model

Having described the linear model in the previous
section, we will now present the scenario in which the
effective potential appearing in the Wheeler-DeWitt equa-
tion for the gravity and the perfect fluid system is quadratic
in the dynamical variable q. In this model, the action is
that of a one-dimensional particle moving in a quadratic
potential, for which the path integral kernel can be
evaluated explicitly and takes the following form:

KðIIÞðq1;N ; q0; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3MiV3

2 sinh ð3
2
hnN Þ

s
eiS

ðIIÞ
cl ½q1;q0;N � ð57Þ

where, SðIIÞ
cl is the action Sperfect½q� [see Eq. (5)] evaluated at

the classical solution satisfying the Dirichlet boundary
conditions: qðt ¼ 0Þ ¼ q0 and qðt ¼ 1Þ ¼ q1 > 1. The
explicit form of the action is given by the following
expression,

SðIIÞ
cl

V3

¼ 8

9l2
pðn6 − 1Þ2

�
−

3hn
4 sinh ð3

2
hnN Þ

�
cosh

�
3

2
hnN

�

× ðq21 þ q20Þ − 2q0q1

	
þ 9

8
h2nN

	
: ð58Þ

As in the case of linear model, we now demand that
the initial wave function Ψðq0Þ corresponds to a state of
definite momentum p ¼ −Mv. This implies that the
relevant kernel is the momentum space kernel, with the
following expression,

FIG. 3. The saddle point geometry that would be relevant to
Euclidean path integral approach to matter bounce. The surface
denotes the x − η plane, with periodic identification assumed
along the x direction. The orange-colored portion denotes the
Lorentzian part of the geometry, while blue denotes the Euclidean
portion. There is a true singularity at the center of the Euclidean
portion, unlike the Hawking-Hartle geometry which is smooth
everywhere.
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KðIIÞðq1;N ;−Mv; 0Þ≡
Z

KðIIÞðq1;N ; q0; 0Þe−iMvV3q0dq0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sech

�
3

2
hnN

�s
eiS̃

ðIIÞ
cl ½q1;−Mv;N �;

ð59Þ

where, as in the linear case, S̃ðIIÞ
cl is the action

Sperfect½q� − SBoundary½q�, evaluated at the classical solution

q̃ðIIÞcl ðtÞ, which satisfies the boundary conditionN −1 _qð0Þ ¼
v and qð1Þ ¼ q1, with the boundary term SBoundary½q�
having the form: N −1MV3qð0Þ _qð0Þ and, the dot denotes
a derivativewith respect to t. First of all, the explicit form of

the solution q̃ðIIÞcl ðtÞ, given the above boundary conditions,
is given by:

q̃ðIIÞcl ðtÞ ¼ sechð3hnN
2

Þ
3hn

�
3hnq1 cosh

�
3

2
hnN t

�

þ 2v sinh

�
3

2
hnN ðt − 1Þ

��
: ð60Þ

Following [32] and the analysis in the case of the linear
potential, for the quadratic model we have to choose v ¼
ð3ihn=2Þ in order to get the no-boundary wave function for
the bouncing model under consideration. With this choice
of the velocity v, the action on the classical trajectory

q̃ðIIÞcl ðtÞ becomes:

S̃ðIIÞ
cl

V3

¼ 8

9l2
pðn6 − 1Þ2

�
9h2nN
8

−
3

4
hnsech

�
3hnN
2

�

×

�
ðq21 þ 1Þ sinh

�
3hnN
2

�
þ 2iq1

�	
: ð61Þ

Again, we need to find out the asymptotic regions in the
complex N -plane, where the endpoints of the contours
associated with the N integration must lie, so that the
endpoint contribution to the kernel identically vanishes.

This requires Re½iSðIIÞ
cl � < 0, which for large values of jN j

demands: Im½N � > 0. The immediate consequence of this
condition is that, unlike in the case of the linear model, the
N integral along real line contour and hence, the strictly
Lorentzian path integral, is not convergent. Convergence
of the N integration demands that we choose a slightly
modified contour, namely, the continuous curve joining
−∞e−i0

þ
to ∞ei0

þ
, represented by the red curve C̃ðIIÞ

in Fig. 4.
In order to obtain the saddle points, first of all we need to

compute the derivative of the classical action with respect
to the lapse function N , which yields,

1

V3

∂S̃ðIIÞ
cl

∂N
¼ 9

8
h2n þ

9

8
h2nsech

�
3hnN
2

�

×
�
−ðq21 þ 1Þsech

�
3hnN
2

�
þ 2iq1 tanh

�
3hnN
2

��

¼ 9

8
h2nsech2

�
3hnN
2

��
iq1 þ sinh

�
3hnN
2

��
2

: ð62Þ

Setting the above expression to zero, we obtain,
sinhð3hnN =2Þ ¼ −iq1, solving which we obtain an infinite
number of saddle points for the action S̃ðIIÞ

cl and they are
given by:

N̄ ðIIÞ
j;� ¼ ð4j − 1Þπi

3hn
� 2

3hn
log


q1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 − 1

q �
; j ∈ Z:

ð63Þ

At these saddle points, substitution of the respective values
of the lapse function N yields the following expression for

the classical solution q̃ðIIÞcl ðtÞ,

FIG. 4. The steepest descent/ascent curves in the complex N -
plane for the quadratic model are represented by the black curves.

The contour-plots for Re½ið9=8Þl2
pðn=6 − 1Þ2V−1

3 S̃ðIIÞ
cl � is also

presented, with the color coding scheme given in the right inset,
to better visualise the descent/ascent directions (the parameter
values for the above plot correspond to: hn ¼ 1 and q1 ¼ 3). The
dashed purple lines are the branch cuts of the preexponential
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sechð3hnN =2Þp

. The horizontal, green line is the real line
contour. However, convergence of the N -integral demands that
we choose a slightly modified contour, namely, the red continu-
ous curve C̃ðIIÞ, joining −∞e−i0

þ
to ∞ei0

þ
. This continuous red

contour can be smoothly deformed into the dashed red curve CðIIÞ,
that pass through the saddle points, thereby enabling us to
evaluate the saddle point approximation. See text for more
discussion.
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q̃ðIIÞclðj;�ÞðtÞ ¼ sin

�

ð4j− 1Þπ ∓ 2i log



q1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
q21 − 1

q �� t
2

�
;

j ∈ Z: ð64Þ

It can be easily verified that the above solutions
indeed satisfy the necessary boundary conditions, namely,

q̃ðIIÞclðj;�Þð0Þ ¼ 0 and q̃ðIIÞclðj;�Þð1Þ ¼ q1 and this holds for

all j ∈ Z.
The above analysis determines the saddle points of the

classical action, S̃ðIIÞ
cl in the complex N plane and the

associated classical trajectory. In order to perform saddle
point approximation of the no-boundary wave function, we
need to first identify the relevant contour, which passes
through the saddle points and have vanishing endpoint
contributions to the kernel. The steepest descent/ascent

curves for iS̃ðIIÞ
cl ðN Þ is depicted in Fig. 4. Besides, the

contours associated with constant values of the Re½iS̃ðIIÞ
cl �

have also been depicted, to better visualize the descent/
ascent directions. As prescribed by the Picard-Lefschetz
theory, we can deform the original integration contour C̃ðIIÞ

into the red dashed contour CðIIÞ (see Fig. 4), without
touching the branch cuts of the preexponential factor
sechð3hnN =2Þ appearing in Eq. (62). Having identified
the appropriate contour, we can now evaluate the
N -integral using the saddle point approximation in the
limit ðV3hn=l2

pÞ ≫ 1. The dominant contribution to

the integral comes from the saddle points N̄ ðIIÞ
0;þ and

N̄ ðIIÞ
0;−, since the contributions from N ðIIÞ

j;� are exponentially
suppressed for j > 1. Therefore, the saddle point approxi-
mation of the no-boundary wave function for the quadratic
class of bouncing models, is given by:

ΨðIIÞðq1Þ ∼

0
B@ ei

π
4eiS̃

ðIIÞ
clffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j cosh ð3
2
hnN Þj

q
1
CA

N 0;þ

þ

0
B@ e−i

π
4eiS̃

ðIIÞ
clffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j cosh ð3
2
hnN Þj

q
1
CA

N 0;−

∝ e
π
3
αn
cos ½4

3
αnξðqÞ − π

4
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðαnÞ2ðq2 − 1Þ4
p ; ð65Þ

where,

ξðqÞ≡ 1

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

q
−
1

2
log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

q �
: ð66Þ

Once again, we see that the result is consistent with that
obtained from the Wheeler de-Witt equation.
Having derived the no-boundary wave function from the

path-integral prescription with an appropriate choice of
the integration contours, let us try to provide a physical
interpretation to the same. Just as we have obtained in the

case of the linear model, the saddle point solution q̃ðIIÞcl;�ðtÞ
indeed satisfies the relevant boundary conditions, given by:

q̃ðIIÞcl;�ð0Þ ¼ 0 and q̃ðIIÞcl;�ð1Þ ¼ q1. The corresponding geom-
etry, therefore, acquires the interpretation of an evolution
from a point-sized to a finite-sized universe. Once again,
one is reminded off the quintessential saddle point geom-
etry of the Euclidean path integral approach to de Sitter
cosmology [39] and the corresponding wave function of the
universe that is usually interpreted as describing tunneling
out of nothing. However, with the hindsight of our argu-
ments in the case of the linear model, we maintain that such
an interpretation is questionable. This is appreciated once
we observe that even though the dominant contribution to
the path integral leading to ΨðIIÞðq1Þ is from the Hartle-
Hawking like saddle point geometry, corresponding to a
spacetime that emerges from zero size, the off-shell
geometries can emerge from any size. This fact is evident
from Eq. (59), where we have clearly performed a sum-
mation over all values of the ‘initial size’ q0 to define
the wave function. A more reasonable interpretation for
ΨðIIÞðq1Þ, in the spirit of [32] and in the light of Eq. (59),
seems to be that it describes a transition from the state of a
specific Euclidean momentum.

C. Shear instability and its quantum analogue

In Sec. II, we have discussed the metric ansatz, which is
spatially homogeneous and isotropic. As a consequence,
the geodesics comoving with the Hubble flow are free from
any shear. In addition, the effect of any classical shear
perturbations to the background FRW spacetime is to add
an effective fluid with its density scaling as a−6. Therefore,
in the standard cosmology, the effects of shear can be safely
ignored for sufficiently large values of the scale factor. On
the contrary, for bouncing scenarios, the effective energy
density arising from the classical shear will inevitably
become dominant at sufficiently small values of the scale
factor and can potentially affect the bouncing models [52].
We shall shortly discuss how this effect translates to in the
quantum picture.
For a brief review of the classical picture along the lines

discussed in this work, in particular following the metric
ansatz presented in Sec. II, we start with the following
parametrization of the Bianchi I universe,
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ds2 ¼ −
N ðtÞ2

qðtÞð4−3bÞ dt
2 þ qðtÞb

�
exp

� ffiffiffiffiffi
2κ

3

r
fθ1ðtÞ −

ffiffiffi
3

p
θ2ðtÞg

�
dx2

þ exp

� ffiffiffiffiffi
2κ

3

r
fθ1ðtÞ þ

ffiffiffi
3

p
θ2ðtÞg

�
dy2 þ exp

�
−2

ffiffiffiffiffi
2κ

3

r
θ1ðtÞ

�
dz2
�
: ð67Þ

It follows that qðtÞb=2 is the geometric mean of the scale
factors along the three independent spatial directions.
Substitution of the above metric ansatz in the Einstein-
Hilbert action with a perfect fluid source, i.e., in the action
given by Eq. (5) yields:

SðshearÞ
perfect ¼ V3

Z
dt

�
−

M
2N

�
dq
dt

�
2

þNUeffðqÞ
�
dt

þ V3

Z
dt

�
q2

2N

�
dθ1
dt

�
2

þ q2

2N

�
dθ2
dt

�
2
�
: ð68Þ

Variation of the above action with respect to the lapse
function N , and then setting the lapse function N to unity,
we obtain the classical Hamiltonian constraint to read3:

−
M
2

�
dq
dt

�
2

− UeffðqÞ þ
q2

2

��
dθ1
dt

�
2

þ
�
dθ2
dt

�
2
�
¼ 0:

ð69Þ

Further, the variation of the action functional with respect
to θ1;2 yields the classical equation of motion for θ1 and θ2
as: _θ1;2 ∝ ð1=q2Þ, where ‘dot’ denotes derivative with
respect to t. Using this result in the constraint equation,
we get:

−
M
2

�
dq
dt

�
2

−UeffðqÞ þ
ρθ
q2

¼ 0 ð70Þ

where, ρθ is a constant, related to the proportionality
factor between _θ and ð1=q2Þ. Using the expression of
the effective energy densityUeff, as given in Eq. (6), we see
that the presence of the ðρθ=q2Þ term in Eq. (70) can be
interpreted as arising from an effective energy density ρθ,
which scales as q−3b ¼ a−6. If the value of ρθ is sufficiently
large, such that ðdq=dtÞ never vanishes, the bouncing
scenario becomes classically forbidden. In particular,
for the linear model, setting ðdq=dtÞ ¼ 0, we obtain,
ρ0q3 − ρ0q2 þ ρθ ¼ 0. Introducing, a new variable x

through the following relation: q ¼ xþ ð1=3Þ, the
above algebraic equation translates into, x3 − ð1=3Þxþ
f−ð2=27Þ þ ðρθ=ρ0Þg ¼ 0. The reduced algebraic equation
would have positive real solution consistent with classical
bounce, provided f−ð2=27Þ þ ðρθ=ρ0Þg2 < 4ð1=3Þ6.
Thereby, we yield the following condition for a classical
bounce to occur:

ρθ
ρ0

<
4

27
: ð71Þ

On the other hand, for the quadratic model, the relevant
algebraic equation becomes, ρ0q4 − ρ0q2 þ ρθ ¼ 0 and
hence real and positive solutions for q will exist, provided
the following inequality holds,

ρθ
ρ0

<
1

4
: ð72Þ

This finishes our discussion about the effect of shear on the
classical FRW spacetime with a bouncing origin, where the
contribution from the shear must satisfy the conditions
presented in Eq. (71) and Eq. (72) respectively.
We shall now look at the quantum analysis of the

problem and the starting point of the same is the relevant
Wheeler-de Witt equation, which in the present context
takes the following form,

�
−

1

2MV3

� ∂2

∂q2
�
þV3UeffðqÞþ

1

2q2V3

∇2

�
Ψðq;θ1;θ2Þ¼0;

ð73Þ

where, ∇2 ≡ ð∂=∂θ1Þ2 þ ð∂=∂θ2Þ2. Given the above dif-
ferential equation, it is evident that the ðθ1; θ2Þ sector
and the main gravitational degree of freedom q, do not
interact with each other. Hence, it is advisable to look for
separable solutions of the Wheeler-DeWitt wave function
Ψðq; θ1; θ2Þ of the following form,

Ψðq; θ1; θ2Þ ¼ ψ jkjðqÞeiV3ðk1θ1þk2θ2Þ; ð74Þ

where, jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
. Then ψ jkjðqÞ can be shown

to satisfy the following one-dimensional Schrödinger
equation:

�
−

1

2MV3

� ∂2

∂q2
�
þ V3UtotalðqÞ

�
ψ jkjðqÞ ¼ 0; ð75Þ

3If the spatial slices are closed, in addition to the terms in
Eq. (69), we get an extra term given by q2n=ð6−nÞUðθ1; θ2Þ and
qð2nþ4Þ=ð6−nÞUðθ1; θ2Þ, respectively, for the linear and the quad-
ratic model, with Uðθ1; θ2Þ describing an effective potential for
θ1;2. For sufficiently small values of the scale factor and θ1;2, one
can reduce the constraint equation to Eq. (69), if we assume that
we can neglect the extra term in comparison to Ueff . This is
possible when 2 < n < 6, for both the models.
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where, the total effective potential UtotalðqÞ is given by,

UtotalðqÞ≡UeffðqÞ −
ρθ
q2

; ð76Þ

with the density ρθ ≡ ðjkj2=2Þ. We see that this is consistent
with our classical analysis of the problem. Once again, we
obtain the conditions Eq. (71) and Eq. (72), respectively,
for the bounce to occur in the linear and quadratic models.
The typical form of the total effective potential UtotalðqÞ,
when these conditions are met, is shown in Fig. 5.
Even though the bouncing scenario can be realized

classically for the parameter ranges presented in Eq. (71)
and Eq. (72), it is evident from Fig. 5 that there is also a
region that corresponds to a classical crunch. Classically,
however, a solution to Einstein’s equations will correspond
to either one of the two scenarios. Quantum mechanically,
on the other hand, tunneling is possible from one region
to another. Similar quantum tunneling scenarios in cosmol-
ogy has been previously considered in the literature, for
instance, in the context of a branelike universe [53]. We
reserve the exact analysis of the current problem for a future

publication, however, we present here the WKB probability
T for tunneling from the bouncing regime to the regime
depicting classical crunch:

T ¼ exp

�
−2
Z

q>

q<

V3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MUtotalðqÞ

p
dq

�

≡ exp
h
−2V3

ffiffiffiffiffiffiffiffiffiffiffiffi
2Mρ0

p
Γ
i
; ð77Þ

where, q< and q> are classical turning points such that,
0 < q< < q> (see also Fig. 5). In the light of Eq. (71) and
Eq. (72), it is convenient to define the following param-
eters: σ1 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið27ρθ=4ρ0Þ
p

and σ2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4ρθ=ρ0Þ

p
, respec-

tively, for the linear and quadratic models, such that
0 < σ1; σ2 < 1. It is now straightforward to evaluate the
defining integral in the exponential of Eq. (77) and hence
determine Γðσ1Þ and Γðσ2Þ respectively. These can be
expressed in terms of the Elliptic integrals with the
following expressions:

Γðσ1Þ ≈ ðα1 − α2σ1Þ þ σ21ðβ1 þ β2 ln σ1Þ ð78Þ

Γðσ2Þ ¼
π

4
ð1 − σ2Þ ð79Þ

where, the coefficients appearing in the expression
for Γðσ1Þ has the following numerical expressions:
α1 ¼ 0.666706, α2 ¼ 0.607517, β1 ¼ −0.059189, and
β2 ¼ 0.028686, respectively. For illustration purpose, for
a fixed value of V3

ffiffiffiffiffiffiffiffiffiffiffiffi
2Mρ0

p
, the typical behavior of the

transition probability T as function of σ1 and σ2, for the
linear and the quadratic model are given in Fig. 6. As
evident, when both σ1 and σ2 are near unity, i.e., when ρθ is
comparable to ρ0, the tunnelling probability increases.
However, we caution that the WKB tunneling amplitude

FIG. 6. The red graph shows T ðσ1Þ and the blue dashed graph
shows T ðσ2Þ, with V3

ffiffiffiffiffiffiffiffiffiffiffiffi
2Mρ0

p
fixed to a value of 50 in both the

cases. Note, however, that the WKB tunneling probability cannot
be trusted for σ1, σ2 ≈ 1, since, in this regime WKB approxi-
mation fails.

FIG. 5. The typical form of the total effective potential Utotal ¼
Ueff − ðρθ=q2Þ has been demonstrated, when a classical bouncing
scenario is allowed. The two classical turning points are marked
q< and q>, respectively and the shaded portions with q > q> and
q < q< denote the classically allowed regions. The (blue) region
to the left of the plot (0 < q < q<) describes a big crunch
scenario, wherein the classical domain the universe started from
a zero size, reaches a maximum q value, and then reduces back to
zero. While the (red) region to the right (q> < q < ∞) describes
the bouncing scenario, where the universe reaches a minimum
value of q and then re-expands. Classically, a solution of the
relevant Einstein’s equations describes either of these two
scenarios. However, quantum mechanically, tunneling from
one region to the other is allowed.
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cannot be trusted for σ1, σ2 in the neighborhood of 1, since,
there the WKB approximation essentially fails. Moreover,
by virtue of an effect analogous to the “reflection over-the-
barrier” in standard quantum mechanics, the tunneling
probability T for σ1; σ2 > 1 is less that 1, despite the fact
that in this parameter range classical bounce is not possible.
This interesting aspect, which is a direct consequence of
quantum cosmology, warrant further study and, hence,
shall be explored in a future publication.

V. INTRODUCING MATTER FIELD

So far, we have discussed the quantum cosmology of a
universe with the matter source being a perfect fluid with
energy density ρeffðaÞ, given by Eq. (23) and Eq. (24),
respectively, such that the action functional becomes at
most quadratic in the dynamical variable q. However, there
can be further fundamental fields living in the spacetime,
and for simplicity, we choose a single conformally coupled
scalar field. This will drive home the essential features
arising out of addition of such matter fields in the quantum
analysis of the bouncing model. Thus our starting point will
be the Wheeler-DeWitt equation presented in Eq. (15), on
which we will apply the WKB expansion and hence shall
determine the behavior of the matter fields in the classically
allowed and in the classically forbidden regions explicitly.
First of all, we will provide the key equations arising out of
the WKB expansion of the Wheeler-DeWitt equation in the
next section.

A. Wheeler-DeWitt equation with matter
and the WKB expansion

As we have already remarked, we shall be treating the
matter field ϕ, which is a conformally coupled scalar field
appearing in Eq. (10), as a test field in a given background.
The precise sense in which one can perform this analysis is
through WKB expansion and it will be convenient for our
purpose to follow the approach of [54,55]. The starting
point being the following ansatz for the Wheeler-DeWitt
wave function Ψðq; fϕkgÞ as a solution to Eq. (15), with
the effective potentials of the form given in Eq. (26) or
Eq. (27):

Ψðq; fϕkgÞ ¼ exp

�
iV3

l2
p

X∞
j¼0

l2j
p Sjðq; fϕkgÞ

�
: ð80Þ

We now demand that Ψðq; fϕkgÞ solves the Wheeler-
DeWitt equation at all orders in l2

p. At the first three
leading orders, namely l−4

p , l−2
p and l0

p, implies:

∂ϕk
S0 ¼ 0; ð81Þ

ð∂qS
ðIÞ
0 Þ2 þ h2n

ðn
6
− 1Þ4 ð1 − qÞ ¼ 0; ð82Þ

ð∂qS
ðIIÞ
0 Þ2 þ

�
16

9

�
h2n

ðn
6
− 1Þ4 ð1 − q2Þ ¼ 0; ð83Þ

−
2ið∂qS0Þ

b2
∂qζðq;fϕkgÞ

¼V3

Z
d3p
ð2πÞ3

�
−

1

2μðqÞ∂
2
ϕp
þ1

2
μðqÞωpðqÞ2ϕ2

pÞζðq;fϕkg
�
;

ð84Þ

where the function ζðq; fϕkgÞ is defined as,

ζðq; fϕkgÞ≡
ffiffiffiffiffiffiffiffiffiffiffi
S00ðqÞ

p
ffiffiffiffiffiffi
V3

p eiV3S1ðq;fϕkgÞ: ð85Þ

The first equation ∂ϕk
S0 ¼ 0, arising from setting the

coefficient of l−4
p to zero, merely tells us that the zeroth

order contribution to the action, i.e., S0 is independent of
the matter degrees of freedom ϕk. In addition, Eq. (82)
and Eq. (83) are the Hamilton-Jacobi equations for the two
scenarios of interest, as discussed in earlier sections.
Finally, one can introduce the time coordinate t in the
present formalism via the following relation:

−
2ð∂qS0Þ

b2
¼ dq

dt
: ð86Þ

With this definition, it is easy to see that Eq. (82) and
Eq. (83) are equivalent to the classical constraint equation,
given by Eq. (13), with the matter field neglected.
Moreover, the third equation, namely Eq. (84), takes form
of the following time-dependent Schrödinger equation:

i∂tζ ¼ V3

Z
d3p
ð2πÞ3

�
−

1

2μðqðtÞÞ ∂
2
ϕp

þ 1

2
μðqðtÞÞω2

pðqðtÞÞϕ2
p

�
ζ ð87Þ

where, qðtÞ corresponds to the classical solutions of the
purely gravitational part arising from Eq. (82) and Eq. (83),
respectively. Therefore, Eq. (87) mathematically describes
the paradigm of quantum field theory, with ϕk being the
Fourier modes of the field in a time dependent background
spacetime, which has been discussed extensively in the
literature (see, for example, [56–59]). It is instructive to
take the following Gaussian ansatz for the solution of
Eq. (87),

ζðqðtÞ; fϕkgÞ ∝ exp

�
V3

Z
d3k
ð2πÞ3

�
iμðtÞ _uk

2uk
ϕ2
k

��
: ð88Þ

For the above ansatz to solve Eq. (87), the function ukðtÞ
must satisfy the following differential equation:
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ük þ
_μ

μ
_uk þ ω2

kuk ¼ 0; ð89Þ

where, μðtÞ≡ μðqðtÞÞ, ω2
kðtÞ≡ ω2

kðqðtÞÞ and the dot
denotes a derivative with respect to the time coordinate t
introduced in Eq. (86). Since, we want the solution for
ζðqðtÞ; fϕkgÞ, presented in Eq. (88) to depict a stable
situation, the real part of the argument of the exponential
must be negative [40] and thus, in addition to Eq. (89), the
solution uk must satisfy the following condition:

Re

�
iμðtÞ _uk

uk

�
< 0: ð90Þ

In summary, we find that the leading order solution in lp of
the Wheeler-DeWitt equation can be written as:

Ψðq; fϕkgÞ ≈
ffiffiffiffiffiffi
V3

pffiffiffiffiffiffiffiffiffiffi∂qS0
p e

i
V3
l2p
S0ðqÞ

ζðq; fϕkgÞ; ð91Þ

with S0ðqÞ satisfying Eq. (82) or, Eq. (83) depending on the
nature of the effective potential and ζ satisfies Eq. (87). In
the subsequent sections, we will analyze the nature of the
solution uk, which sits in the function ζðqðtÞ; fϕkgÞ to
completely understand the behavior of Ψðq; fϕkgÞ. Since
the effective potentials UeffðqÞ has classical turning points,
pertaining to the bouncing models we are considering, it
will be convenient to analyze the WKB solutions in the
classically allowed and forbidden regions separately.

B. Classically allowed region

For the bouncing models under consideration, the
classically allowed region corresponds to the following
range of the dynamical variable: 1 < q < ∞. As evident
from Fig. 1, the effective potentials appearing in the

Wheeler-DeWitt equation, i.e., UðIÞ
effðqÞ and UðIIÞ

eff ðqÞ,
respectively take negative values and therefore, the sol-
utions to Eq. (82) and Eq. (83), respectively, takes the form:

SðIÞ0;�ðqÞ ¼ �βnl2
p

Z
qð>1Þ

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1 − q0Þ

p
dq0;

SðIIÞ0;�ðqÞ ¼ � 4

3
βnl2

p

Z
qð>1Þ

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1 − q02Þ

q
dq0: ð92Þ

Here, we have used the definition of βn, from Eq. (35).
From Eq. (86), it follows that for ð∂qS0Þ < 0, we have
ðdq=dtÞ > 0, i.e., as the action decreases with q, the

universe expands. Thus we notice that, SðI;IIÞ0;− ðqÞ corre-

sponds to the expanding phase, while, SðI;IIÞ0;þ ðqÞ corresponds
to the contracting phase of the bouncing universe. Keeping
this in mind, we integrate, Eq. (92) and then substituted the
same in Eq. (91), to obtain the general solution to the
Wheeler-DeWitt equation at Oðl0

pÞ as:

ΨðIÞðq; fϕkgÞ ≈ AðIÞ
þ

e
2i
3
αnðq−1Þ

3
2

½α2nðq − 1Þ�14 ζ
ðIÞ
þ ðq; fϕkgÞ

þ AðIÞ
−

e−
2i
3
αnðq−1Þ

3
2

½α2nðq − 1Þ�14 ζ
ðIÞ
− ðq; fϕkgÞ; ð93Þ

ΨðIIÞðq; fϕkgÞ ≈ AðIIÞ
þ

e
4i
3
αnξðqÞ

½α2nðq2 − 1Þ�14 ζ
ðIIÞ
þ ðq; fϕkgÞ

þ AðIIÞ
−

e−
4i
3
αnξðqÞ

½α2nðq2 − 1Þ�14 ζ
ðIIÞ
− ðq; fϕkgÞ: ð94Þ

In the above solutions of the Wheeler-DeWitt equation

with matter fields, AðIÞ
� and AðIIÞ

� are arbitrary constants,
αn ≡ V3βn, with βn defined in Eq. (35) and ξðqÞ is a
function of the expansion parameter q, given by Eq. (43). In
order to fix the unknown constants, we may impose the
boundary condition that in the absence of the conformally
coupled scalar field, the Wheeler-DeWitt wave function
must take the form presented in Eq. (56) and Eq. (65),
respectively for the two choices of the effective potential.
This yields the following conditions on the unknown

coefficients: AðIÞ
þ ¼ AðIÞ

− ≡ AðIÞ and AðIIÞ
þ ¼ AðIIÞ

− ≡ AðIIÞ.
As emphasized above, these conditions ensure that the
wave functions reduce to that of the Hawking-Hartle
prescription when matter fields are neglected.
What remains, is to find out the appropriate solutions

ζðtÞ to Eq. (87). As remarked earlier, we shall take ζðtÞ to
be of the Gaussian form presented in Eq. (88) and hence the
task of finding a solution for ζðtÞ boils down to finding a
solution for ukðtÞ from Eq. (89). Let us denote the
independent solutions to Eq. (89) for the two effective

potentials, as uðIÞk;� and uðIIÞk;�, respectively. These in turn will

provide us the functions ζðIÞ� and ζðIIÞ� , used in Eq. (93) and
Eq. (94), respectively. Thus the time dependent harmonic

oscillator equation, Eq. (89) for the functions uðIÞk;� and uðIIÞk;�
take the following form:

üðIÞk;� þ _μðIÞ

μðIÞ
_uðIÞk;� þ ½ωðIÞ

k;��2uðIÞk;� ¼ 0; ð95Þ

üðIIÞk;� þ _μðIIÞ

μðIIÞ
_uðIIÞk;� þ ½ωðIIÞ

k;��2uðIIÞk;� ¼ 0; ð96Þ

where, the time dependent mass function μðtÞ and the time
dependent frequency function ωkðtÞ has the following
expressions, for the two choices of the effective potentials,
appearing in the Wheeler-DeWitt equation:

μðIÞðtÞ ¼ ð1þ h2nt2Þ
2ðn−3Þ
ðn−6Þ ;

ωðIÞ
k;�ðtÞ2 ¼ ð1þ h2nt2Þ−

4ðn−3Þ
ðn−6Þ ½k2 þm2ð1þ h2nt2Þ 6

6−n�: ð97Þ
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μðIIÞðtÞ ¼
�
cosh

�
3

2
hnt

��2ðn−2Þ
ðn−6Þ

;

ωðIIÞ
k;�ðtÞ2 ¼

�
cosh

�
3

2
hnt

��
−4ðn−2Þ

ðn−6Þ

×

�
k2 þm2

�
cosh

�
3

2
hnt

�� 8
6−n
	
: ð98Þ

The solutions to Eq. (95) and Eq. (96), which may lead to a
stable wave function for the Wheeler-DeWitt equation
are obtained by imposing the additional condition as in
Eq. (90) on uk. We shall now study various properties of
the function uk, leading to stable Wheeler-DeWitt wave
functions.
For notational convenience, we shall momentarily ignore

the subscripts (I) and (II) until absolutely necessary. We
closely follow the strategy described in [60], where solution
generating technique of a time-dependent harmonic oscil-
lator has been studied in great detail. The general solution
to a time-dependent harmonic oscillator equation of the
form Eq. (89) can be written in terms of a complex function
vkðtÞ as follows:

ukðtÞ ¼ v�kðtÞ þ BkvkðtÞ; ð99Þ

where, Bk is a constant and can be treated as the ratio
between two Bogoliubov coefficients among the mode
functions uk and vk. Additionally, we consider the func-
tions vk and v�k as linearly independent solutions of
Eq. (89), that satisfies the following Wronskian condition:

iμðtÞ½v�k _vk − vk _v�k� ¼ 1: ð100Þ

For the solution uk, presented above, we obtain:
Re½iμðtÞð _uk=ukÞ� ¼ fðjBkj2 − 1Þ=2jukj2g. Thus imposing
the stability condition as presented in Eq. (90), on the
solution uk, we obtain,

jBkj2 < 1: ð101Þ

It is worth mentioning that one can also express the functions
vkðtÞ that satisfy Eq. (100) in terms of two real functions
χkðtÞ and ΘkðtÞ as follows: vkðtÞ ¼ χkðtÞe−iΘkðtÞ. Here, the
phase factor ΘkðtÞ is related to the amplitude χkðtÞ through
the following relation: _ΘkðtÞ¼f1=2μðtÞχ2kðtÞg and the
amplitude χkðtÞ satisfies the differential equation of a
time-dependent harmonic oscillator with a source term,
f1=4μðtÞ2χ3kðtÞg. With this notation, general solutions

uðIÞk;� and uðIIÞk;� can be written as,

uðI;IIÞk;� ðtÞ ¼ χðI;IIÞk ðtÞeiΘðI;IIÞ
k ðtÞ þ BðI;IIÞ

k;� χðI;IIÞk ðtÞe−iΘðI;IIÞ
k ðtÞ;

ð102Þ

and the stability condition further implies the following

restriction on the function BðI;IIÞ
k;� : jBðI;IIÞ

k;� j2 < 1. Since the
function qðtÞ, depicting expansion of the universe must
be continuous at the bounce, i.e., at q ¼ 1, it follows

that: ζðI;IIÞþ ðq ¼ 1; fϕkgÞ ¼ ζðI;IIÞ− ðq ¼ 1; fϕkgÞ [40,61].
This condition translates to

BðI;IIÞ
k;þ ¼ BðI;IIÞ

k;− ¼ BðI;IIÞ
k ; ð103Þ

and all of these coefficients must have an absolute value less
than unity. Thus a general solution to the Wheeler-DeWitt
equation up to Oðl0

pÞ, in the classical regime is given by
Eq. (93) and Eq. (94), respectively, with the ζðtÞ given by
Eq. (88) and Eq. (102), keeping in mind the condition
jBkj2 < 1, for stability. This completes our analysis of the
solution to the Wheeler DeWitt equation in the classically
allowed region. Next, we shall see how a similar analysis can
be performed for the classically forbidden region as well.

C. Classically forbidden region

For completeness we present here an analysis of the
wave function with matter field in the classically forbidden
region. For the bouncing models we are considering,
the classically forbidden region corresponds to the range

0 < q < 1. In this range, the effective potentials UðIÞ
effðqÞ

and UðIIÞ
eff ðqÞ take positive values, as shown in Fig. 1. Thus

using the same parametrizations as in the case of classically
allowed region, the solutions to Eq. (82) and Eq. (83) can,
therefore, be written as,

iS̄ðIÞ0;�ðqÞ ¼ �βnl2
p

Z
qð<1Þ

1

dq0
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − q0

p
;

iS̄ðIIÞ0;�ðqÞ ¼ � 4

3
βnl2

p

Z
qð<1Þ

1

dq0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q02

q
: ð104Þ

Note that the action S̄ðI;IIÞ0;� ðqÞ is related to SðI;IIÞ0;� ðqÞ, derived
in the previous section, through analytic continuation of the
dynamical variable qðtÞ. Similarly, the time coordinate t
must also be analytically continued, and hence following
Eq. (86), it is convenient to define the Euclidean time
coordinates τ� in the following manner:

dq
dτ�

¼∓ i
2ð∂qS̄0;�Þ

b2
: ð105Þ

It then follows that the Euclidean time coordinates τ�
defined above corresponds to the Wick rotations of the
original Lorentzian time coordinate t, such that: t → iτþ and
t → −iτ−. Performing the Wick rotation and analytic con-
tinuation to the complex q plane, we can now write down the
general solution to the Wheeler-DeWitt equation to Oðl0

pÞ,
in the classically forbidden region (i.e., 0 < q < 1) as,
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ΨðIÞðq; fϕkgÞ ≈ ĀðIÞ
þ

e−
2
3
αnð1−qÞ

3
2

½α2nð1 − qÞ�14 ζ̄
ðIÞ
þ ðq; fϕkgÞ

þ ĀðIÞ
−

e
2
3
αnð1−qÞ

3
2

½α2nð1 − qÞ�14 ζ̄
ðIÞ
− ðq; fϕkgÞ; ð106Þ

ΨðIIÞðq; fϕkgÞ ≈ ĀðIIÞ
þ

e−
4
3
αn ξ̄ðqÞ

½α2nð1 − q2Þ�14 ζ̄
ðIIÞ
þ ðq; fϕkgÞ

þ ĀðIIÞ
−

e
4
3
αn ξ̄ðqÞ

½α2nð1 − q2Þ�14 ζ̄
ðIIÞ
− ðq; fϕkgÞ; ð107Þ

where, the function ξ̄ðqÞ is defined as: ξ̄ðqÞ ¼
ð1=2Þ½q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
− cos−1ðqÞ�. Further, the matter wave

functions ζ̄ðI;IIÞ� in the classically forbidden region in terms
of the Euclidean time coordinate becomes,

ζ̄ðI;IIÞ� ðτ�Þ ∝ exp

�Z
d3k
ð2πÞ3

�
�μðI;IIÞ

ū0ðI;IIÞk;�
2ūðI;IIÞk;�

ϕ2
k

��
; ð108Þ

where the prime denotes derivative with respect to the
appropriate Euclidean time coordinates τ� and, the functions

ūðIÞk;� and ūðIIÞk;� are solutions of the Euclidean versions of
Eq. (95) and Eq. (96), respectively. For large values of αn, we
expect the wave functions ΨðI;IIÞ to exponentially decay to
zero as q → 0. Hence, we demand that the unknown
coefficients should be such that, ĀðIÞ

− ¼ ĀðIIÞ
− ¼ 0. This

implies that the only Wick rotation relevant to the matter
sector of the no-boundary wave function is t → iτþ.
Therefore, for notational convenience we shall henceforth
avoid the subscript “þ” and express ΨðI;IIÞ in the classically
forbidden region as:

ΨðIÞðq; fϕkgÞ ≈ ĀðIÞ e−
2
3
αnð1−qÞ

3
2

½α2nð1 − qÞ�14 ζ̄
ðIÞðq; fϕkgÞ; ð109Þ

ΨðIIÞðq; fϕkgÞ ≈ ĀðIIÞ e−
4
3
αn ξ̄ðqÞ

½α2nð1 − q2Þ�14 ζ̄
ðIIÞðq; fϕkgÞ; ð110Þ

where, ζ̄ðI;IIÞðτÞ is given by Eq. (108), keeping in mind that
only the “positive” branch of the solution is allowed.
Momentarily dropping the superscripts (I) and (II) for
notational convenience, following our analysis for the
classically allowed region, we can express the general
solution ūk appearing in Eq. (108) in terms of two linearly
independent solutions v̄k;1 and v̄k;2 of the time-dependent
harmonic oscillator as:

ūk ¼ v̄k;1 þ B̄kv̄k;2: ð111Þ

Here, B̄k is the ratio of the two Bogoliubov coefficients
appearing from the rotation between the basis vectors ūk

and v̄k. Following the analysis of the previous section, we
may express the basis solutions v̄k;1 and v̄k;2 in terms of two
real functions obtained by the Euclidean continuation of the
solutions in the previous section, yielding,

v̄k;1ðτÞ ¼ χ̄kðτÞe−Θ̄kðτÞ; v̄k;2ðτÞ ¼ χ̄kðτÞeΘ̄kðτÞ; ð112Þ

where, χ̄kðτÞ≡ χkðiτÞ and Θ̄0
kðτÞ≡ f1=2μðiτÞχ̄2kðτÞg. In

terms of these two real functions along with the complex
function B̄k, the stability condition presented in Eq. (90), for
the classically forbidden region takes the following form:

Re
�
μðiτÞ ū

0
k

ūk

�

¼ μðiτÞ
�
χ̄0kðτÞ
χ̄kðτÞ

þ Θ̄k
0ðτÞðe4Θ̄kðτÞjB̄kj2 − 1Þ

ðe2Θ̄kðτÞ þ Re½B̄k�Þ2 þ Im½B̄k�2
�

< 0

ð113Þ

For the real function χ̄kðtÞ, we may choose an initial
condition, such that for some value of the Euclidean time
τ1, fχ̄0kðτ1Þ=χ̄kðτ1Þg ¼ 0 and therefore, the stability con-
dition presented in Eq. (113), at the Euclidean time τ1,
translates to:

jB̄ðI;IIÞ
k j2 < e−4Θ̄

ðI;IIÞ
k ðτ1Þ ð114Þ

where we have retained the superscripts for clarity.
Additionally, the continuity at the classical turning point

imposes the condition [40,61]: B̄ðI;IIÞ
k ¼ BðI;IIÞ

k . This implies
that we cannot specify the matter-sector wave function

uniquely, but only up to the constants B̄ðI;IIÞ
k . A special

choice of B̄ðI;IIÞ
k that corresponds to the condition that the

solution ūkðτÞ vanish at q ¼ 0 is given by

B̄ðI;IIÞ
k ¼ −e−2Θ̄

ðI;IIÞ
k ðτ0Þ ð115Þ

where, τ0 is defined via qðτ0Þ ¼ 0. This choice may be
considered as the generalization of the Euclidean vacuum
introduced by Hartle and Hawking in the context of de Sitter
spacetime. An interesting special case occurs when
Θ̄kðτ0Þ → ∞ for all values of k. If this condition is satisfied,
we can choose τ1 ¼ τ0 and, therefore, Eq. (114) implies

B̄ðI;IIÞ
k ¼ 0, which in turn implies that a unique wave

function exists.

VI. DISCUSSION

Bouncing cosmologies, generally, aim to solve the
fundamental issues of the SBC without resorting to the
inflation mechanism. Moreover, certain shortcomings of
the inflationary paradigm, such as the ‘TransPlanckian’ and
the singularity problem, can be bypassed in a bouncing
scenario. Consequently, cosmological models with a
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bounce, as against a singularity, are gaining interest as
viable alternatives to the much-celebrated inflationary
models. In light of this, we attempted to analyze the
quantum aspects of bouncing cosmologies, which will
be of relevance, especially, to the study of quantum seeds
of structure formation.
Since there are several, conceptually disparate, routes to

realize a bounce, it is practically difficult to adopt a single
framework to study the set of all bouncing models in its
entirety. Therefore, we employed a phenomenological
approach, that accommodates the essential aspects of a
wide class of bouncing models, while at the same time,
render analytical calculations tractable. There are two key
aspects to this approach; one concerns the kinematics,
while the other concerns the dynamics of the set of
bouncing universes of our current interest. A convenient
parametrization of the FRLW spacetime in terms of the
variable qðtÞ, as given in Eq. (1), together with the
condition p ¼ 4 − 3b, is the kinematic ingredient of our
scheme. Two classes of effective perfect-fluids that source
the background FRLW spacetime, which are described by

their respective energy densities ρðIÞeff and ρ
ðIIÞ
eff , constitute the

second, dynamical aspect. The aforementioned, specific
parametrization of the FRLW metric was so chosen, such
that it leaves the gravitational part of the action a quadratic
functional of _qðtÞ. On the other hand, the specific form of

the energy densities ρðIÞeff and ρðIIÞeff , as presented in Eq. (23)
and Eq. (24), were so chosen such that: (1) the classical
solutions of the corresponding equations of motion
describe bouncing scenarios and (2) for an appropriate
choice of the parameter b, the perfect-fluid part of the
action is a linear/quadratic functional of qðtÞ, for densities
ρðIÞeff and ρðIIÞeff , respectively. Hence, we refer to the class of

bouncing universes described by ρðIÞeff as the ‘linear model’

and that by ρðIIÞeff as the ‘quadratic model’. The kinematic
and dynamic aspects of our approach, together, enable us to
study two wide classes of bouncing cosmologies with
considerable analytic comfort.
We explored the quantum aspects of our model using the

framework of minisuperspaces. To this end, we have
followed two different approaches: (1) using the appro-
priate minisuperspace Wheeler-de Witt equations and
(2) using the minisuperspace path integral. Thanks to the
specific choice of the dynamical variable qðtÞ and the
density of the effective fluid, we can find the solutions of
the gravitational Wheeler-de Witt equation, for both classes
of bouncing models we introduced, analytically. These
solutions encode the initial conditions of the universe and
hence, is of importance to early universe cosmology. In the
context of de Sitter spacetime, a particular solution to the
corresponding Wheeler-De Witt equation, namely, the no-
boundary wave function, is widely utilized in cosmology
for its several appealing features. On account of this, it is

worthwhile to investigate the properties of the natural
generalization of the no-boundary wave function for
bouncing cosmologies. We presented the explicit expres-
sions for the gravitational part of the bouncing-model
counterpart of the no-boundary wave function, which are
denoted by ΨðIÞðqÞ and ΨðIIÞðqÞ, respectively, for the linear
and quadratic models.
The no-boundary wave function was originally envi-

sioned as arising out of a Euclidean path integral over
compact and regular metrics. Recently, it has become clear
that, when one attempts a more rigorous calculation, such
a Euclidean path integral is ill-defined and divergent.
Moreover, even though a well defined, convergent
Lorentzian path integral, with the initial condition corre-
sponding to a zero-sized universe, can give rise to the no-
boundary wave function, it leads to unstable perturbation.
These issues can, however, be circumvented by imposing
an initial condition corresponding to a well-defined
Euclidean momentum associated with the scale factor.
Motivated by this, we investigated the extension of this
new path integral approach, to the case of bouncing
cosmologies. We found that the dominant contribution to
the bouncing-model counterpart of the no-boundary wave
function comes from a geometry that corresponds to a
spacetime that evolves from zero size to a finite size. One is,
thus, reminded of the Hawking-Hartle saddle geometry that
appears in the context of Euclidean path integral approach
to de Sitter cosmology. But, in view of the fact that one is
fixing the initial momentum, as against setting the initial
size to zero, in the new approach, the off-shell geometries
can have any initial size. Consequently, one must not
interpret the analogue of the no-boundary wave functions
thus obtained, as the amplitudes for creation of the universe
from “nothing.” A more sensible interpretation would be,
that the wave functions are amplitudes for the transition
from an initial state of well defined Euclidean momentum
to a state of well-defined size.
Finally, we introduced a real scalar field conformally

coupled to the background FRLW spacetime. The quantum
theory of the gravity-scalar system can be studied using the
corresponding Wheeler-de Witt equation. Since exact
solutions could not be found in this case, we progressed
by assuming that the scalar fields are perturbations at the
quantum level. To enforce this assumption mathematically,
we started off by taking the solution to be exponential of a
power series in l2

p, with the lowest power being l−2
p .

Demanding that this wave function solves the correspond-
ing Wheeler-de Witt equation at all orders of l2

p, implies
that the coefficients of l2

p in the power series that define the
wave function satisfy a set of differential equations. At the
first two leading orders, the corresponding differential
equation satisfied by the coefficients can be shown to be
equivalent to the Hamilton-Jacobi equation of the gravita-
tional part. In the next order, we obtain a differential
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equation that essentially describes the paradigm of quan-
tum field theory in curved spacetime. We then proceeded
to find the bouncing-model analogue of the wave function
that corresponds to the no-boundary proposal for the
gravity-scalar system. Interestingly, we found that the wave
function, in general, is not unique. Only when Θ̄kðτÞ, a
certain function of the Euclidean time τ, diverges at the
point of singularity, do we get a unique wave function. This
has the consequence that the initial conditions of the
universe have a certain level of arbitrariness that cannot,
in general, be fixed without invoking further principles.
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