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Identifying an entanglement island requires exquisite control over the entropy of quantum fields, which
is available only in toy models. Here we present a set of sufficient conditions that guarantee the existence of
an island and place an upper bound on the entropy computed by the island rule. This is enough to derive the
main features of the Page curve for an evaporating black hole in any spacetime dimension. Our argument
makes use of Wall’s maximin formulation and the quantum focusing conjecture. As a corollary, we derive a
novel entropy bound.
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I. INTRODUCTION

A. Entanglement wedges and islands

The quantum-corrected [1], covariant [2] Ryu-
Takayanagi [3] (RT) prescription computes the conformal
field theory (CFT) entropy of a boundary region in terms of
a dual asymptotically anti–de Sitter (AdS) bulk spacetime.
Originally an ad hoc proposal, it follows under certain
assumptions from a Euclidean gravitational path integral
[4–8]. This derivation implies that the RT prescription is
not tied to the AdS=CFT correspondence but can be
evaluated in any spacetime M.
Indeed, RT yields the Page curve [9] for the entropy of

the bulk radiation emitted by a black hole [10,11]. The bulk
state and geometry are treated semiclassically. In this
approximation, the radiation is thermal [12], and its von
Neumann entropy SðRÞ increases monotonically, implying
information loss [13]. Using the same semiclassical solu-
tion, the RT proposal computes the radiation entropy
differently, as the generalized entropy1 of the entanglement
wedge of the radiation, EðRÞ:

SðRÞ ¼ Sgen½EðRÞ�: ð1:1Þ

The boldface notation [15] distinguishes the (presumably
correct) entropy computed by RT from the entropy SðRÞ
computed directly from the semiclassical radiation state (see
[16,17] for a proposal to reconcile the bold and unbold states).
The original RT prescription defines an entanglement

wedge for regions on the conformal boundary of AdS. In
the present context, R is a bulk system, and the entangle-
ment wedge must be defined as follows [17]:

(i) EðRÞ ¼ I ∪ R, where I ⊂ M;
(ii) SgenðI ∪ RÞ is stationary under any local variations

of the boundary surface ∂I;
(iii) among all such regions globally, I yields the

smallest SgenðI ∪ RÞ.
The above definitions apply if R is a nongravitating

system external toM; in asymptotically AdS geometries the
radiation can be extracted into such a system [10,11]. We
now turn to the case where R is a weakly gravitating region
inside the spacetime. For example, R may be a distant
region occupied by Hawking radiation in an asymptotically
flat or AdS spacetime (see Ref. [16] for a detailed setup).
Physically, one expects the RT prescription for a weakly

gravitating region to reduce to that for a nongravitating
system, Eq. (1.1), and we shall assume this here. R resides
in a weakly gravitating region far from any potential island
I, so ∂I ∩ R̄ ¼ ∅, where an overbar denotes topological
closure. As before, stationarity of Sgen is required only
under variations of ∂I, not of ∂R. (This can be implemented
in a path integral derivation [18].) Thus, the definition of
EðRÞ is essentially unchanged.
However, in the presence of gravity, it is simplest to work

with the generalized entropy of the region R (a cutoff-
independent quantity), so we add its boundary area to both
sides of Eq. (1.1):
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1For a partial Cauchy surface X ⊂ M, SgenðXÞ ¼
Area½∂X�=4Gℏþ SðXÞ, where ∂ denotes the boundary of a
set, and SðXÞ is the renormalized von Neumann entropy of
the density operator of the quantum field theory state reduced to
X. See the Appendix in Ref. [14] for a detailed discussion of this
quantity.
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SgenðRÞ ¼ Sgen½EðRÞ�: ð1:2Þ

It is easy to derive the Page curve, at least approximately,
if one ignores condition 2. We will now summarize this
incomplete argument, before discussing how it can be
completed.
The Page time tPage is defined as the time when the black

hole and radiation entropies are equal in the semiclassical
analysis:

S½RðtPageÞ� ¼
AhðtPageÞ
4Gℏ

: ð1:3Þ

Let ÎðtÞ be the black hole interior at time t (see Fig. 1). The
Hawking “partners” in ÎðtÞ purify the radiation RðtÞ
emitted so far, hence

Sgen½ÎðtÞ ∪ R� ≈ AhðtÞ
4Gℏ

: ð1:4Þ

Before the Page time, this is greater than SðRÞ by
definition, so Î is not a viable island candidate; one finds
that IðtÞ ¼ ∅, EðRÞ ¼ R, and SðRÞ ¼ SðRÞ. This corre-
sponds to the rising part of the Page curve, where it agrees
with Hawking’s curve. But after the Page time, Sgen½ÎðtÞ ∪
R� < SðRÞ by Eqs. (1.3) and (1.4). Thus, the inclusion
of an island IðtÞ ≈ ÎðtÞ ≠ ∅ is favored, and we have
SðRÞ ¼ SðI ∪ RÞ ≈ Ah=4Gℏ. As the black hole evaporates
and its horizon shrinks, this yields the decaying part of the
Page curve required by unitarity.
The Page curve result has been extended to asymptoti-

cally flat spacetimes [19,20], settings with two layers of
holography [21,22], and eternal black holes [15].
Entanglement islands can also appear in cosmology, where
their significance is less obvious [23,24].

B. Summary and outline

Our brief summary of the Page curve result has a major
gap. We explained why condition 3 (global minimization of
Sgen) favors inclusion of the black hole interior ÎðtÞ in EðRÞ
after the Page time. However, we did not show that
condition 2 (local extremality) can be satisfied by some
deformation of ÎðtÞ small enough to preserve condition 3.
One way to fill this gap is to find IðtÞ exactly, and to

verify condition 2. However, explicit solutions of the
quantum extremality condition have been found only in
1þ 1 bulk dimensions [11,15,21], or in toy models of
higher-dimensional black holes [10]. The difficulty lies in
computing the von Neumann entropy SðI ∪ RÞ. This
depends on the detailed state of the dynamics of the
radiation fields, including modes with nonzero angular
momentum, and their interactions. Even free fields scatter
nontrivially in a black hole background, placing an exact
calculation out of reach.
In Sec. II, we develop an alternative way to ensure that

condition 2 holds. We show that the existence of a suitable
island I follows from simple sufficient conditions that are
easy to verify2: Let I0 be a region that (i) satisfies condition
1, SgenðI0 ∪ RÞ < SðRÞ, and suppose that (ii) the general-
ized entropy of I0 ∪ R increases under any small outward
deformation of I, or decreases under any such deformation.
Then there exists an island, I ≠ ∅, and moreover

SðRÞ ¼ SgenðI ∪ RÞ ≤ SgenðI0 ∪ RÞ: ð1:5Þ

We will illustrate in a number of examples that finding a
suitable I0 is not difficult; in particular, it suffices to
understand the scaling of corrections to simple models
of the entropy. Moreover, the upper bound (1.5) is powerful
enough to establish the main features of the Page curve for
an evaporating black hole.
In Sec. III, we consider a different but related problem

that yields to a similar analysis. We consider a spacetime
and (internal or external) reference system R in a pure state.
We show that the true entropy SðRÞ cannot exceed the
generalized entropy of appropriate bulk regions. For
example, if R is external, and M is an evaporating black
hole spacetime, an upper bound on SðRÞ is furnished by the
generalized entropy of the bulk region that can be probed
by an asymptotic observer (the black hole exterior).

II. SUFFICIENT CONDITIONS FOR ISLANDS

In this section we identify sufficient conditions for the
existence of an island. In Sec. II Awe begin with the case of
an external reference system, R ∩ M ¼ ∅. In Sec. II B we

FIG. 1. Left: evaporating black hole. Right: its Page curve.
After the Page time, the semiclassical entropy SðRÞ of the
Hawking radiation in the asymptotic region R exceeds the
Bekenstein-Hawking entropy of the black hole, Ah=4Gℏ. The
“Hawking partners” in the black hole interior purify R. (Dashed
lines indicate entanglement.) Therefore, adjoining Î to R de-
creases the generalized entropy Sgen. However, islands must have
stationary Sgen. Solving for this condition exceeds present
analytic control over the entropy. The island finder presented
here sidesteps this obstruction.

2Reference [10] presents an elegant existence argument that
establishes an island in the setting of an evaporating black hole. It
makes use of properties of the event horizon and is inequivalent to
the more general argument presented here.
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allow R to intersect with M. In Sec. II C we consider
various examples in which our conditions easily establish
the presence of islands; in particular, we show that they
suffice to derive the Page curve.

A. External reference system

Let M be a semiclassical spacetime which together with
a reference system R is in a pure state. We take R to be
external to M. For definiteness, we assume that R is
nongravitating; otherwise, simply substitute S → Sgen when
the argument contains R.
Suppose there exists a partial Cauchy surface I0 ⊂ M

satisfying the following conditions:

ðiÞ SgenðI0 ∪ RÞ < SðRÞ; ð2:1Þ

ðiiÞ

8>><
>>:

kμΘμ½I0 ∪ R� ≥ 0; lμΘμ½I0 ∪ R� ≤ 0;

or

kμΘμ½I0 ∪ R� ≤ 0; lμΘμ½I0 ∪ R� ≥ 0;

ð2:2Þ

where Θ is the quantum expansion one-form [1,14] and k
and l are the outward and inward future-directed null
vectors normal to ∂I0. Thus, for example, kμΘμ½I0 ∪ R; y� is
the rate of change of Sgen, per unit transverse area and unit
affine parameter length, as I0 ∪ R is deformed outward
along the future-directed null geodesic orthogonal to I0 at y.
We drop the argument y when an equation holds for all y.
The first condition states that adjoining I0 to R decreases

the entropy, even as the Bekenstein-Hawking entropy of I0
is included. The second, Eq. (2.2), says that I0 ∪ R is
quantum normal (its generalized entropy does not decrease
under any small outward deformation of I0) or quantum
antinormal (the opposite).
We will now show that these conditions imply the

existence of a nonempty island region I. Our proof uses
the maximin construction of the Hubeny-Rangamani-
Takayanagi surface [25], which we assume extends to a
quantum maximin prescription [26]: On every Cauchy
surface of M, one finds the region I00 that minimizes
SgenðI00 ∪ RÞ. (Note that I00 may be the empty set.) One
then maximizes the same quantity over all Cauchy surfaces
of M. The island I is defined to be the region I00 that
achieves this maximum. (This is expected to exist [25,26].)
Note that we define I as an achronal region; hence it is

nonunique. Similarly, the maximin Cauchy slice Σ is
nonunique. The relevant unique object is the domain of
dependence DðIÞ. (We ignore the degenerate case where
there are two islands with identical generalized entropy but
different D.) Any other Cauchy slice of DðIÞ will be an
island if I is, though not every Cauchy slice of DðIÞ will be
part of a maximin slice Σ.
Our goal is to show that I ≠ ∅. In the normal case,

kμΘμ½I0 ∪ R� ≥ 0, we define

Ĩ0 ≡DðI0Þ ∩ Σ ð2:3Þ
as the representative of I0 on Σ. In the antinormal case,
kμΘμ½I0 ∪ R� ≤ 0, we define the representative instead as

Ĩ0 ≡ JðI0Þ ∩ Σ; ð2:4Þ
where J denotes all points that can be reached from I0 along
a causal curve (the future and past of I0). See Fig. 2 for a
demonstration. In either case, note that Ĩ0 is obtained from
I0 by deforming along an orthogonal null congruence with
initially negative quantum expansion. We assume the
quantum focusing conjecture (QFC) [14], that the quantum
expansion cannot increase along a null shape deformation.
This implies that

SgenðĨ0 ∪ RÞ ≤ SgenðI0 ∪ RÞ: ð2:5Þ

Since Σ is the maximin Cauchy slice,

SgenðĨ0 ∪ RÞ ≥ SgenðI ∪ RÞ: ð2:6Þ

Combined with Eq. (2.5), this implies3

SgenðI0 ∪ RÞ ≥ SgenðI ∪ RÞ: ð2:7Þ

Using the assumption in Eq. (2.1), we get

FIG. 2. Island finder. Suppose that I0 ∪ R is quantum normal
(top) or antinormal (bottom). Then the generalized entropy of
I0 ∪ R decreases along the dashed lines to Ĩ0 ⊂ Σ. An island I
with even smaller generalized entropy SgenðI ∪ RÞ must exist on
the maximin Cauchy slice Σ. If SgenðI0 ∪ RÞ < SðRÞ, the island
cannot be empty.

3This intermediate result is closely related to Corollary 16b of
[25]. A simple application of our argument to asymptotically AdS
spacetimes yields the following result: Given a partial Cauchy
slice A on the asymptotic boundary of AdS, let X be the RT
surface associated with A with homology slice H. Now,
consider another surface X0, homologous to A with homology
slice H0. If H0 is a quantum normal or antinormal region, then
SgenðHÞ ≤ SgenðH0Þ.
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SgenðI ∪ RÞ < SgenðRÞ: ð2:8Þ

Therefore, we conclude that I ≠ ∅.

B. Distant reference system

In Sec. II A, the reference system R was external to the
spacetimeM. We will now allow a system that is wholly or
partially inside the spacetime: R ∩ M ≠ ∅.
In order to generalize our island finder to this setting, we

shall require that there exists a partial Cauchy slice I0
spacelike to R such that I0 ∪ R is a quantum normal region
with respect to deformations at ∂I0. That is, we require

Ī0 ⊂ M − JðRÞ; ð2:9Þ

kμΘμ½I0 ∪ R� ≥ 0; ð2:10Þ

lμΘμ½I0 ∪ R� ≤ 0; ð2:11Þ

where as before an overbar denotes closure. As before,
Θμ½I0 ∪ R� is the quantum expansion one-form, and kμ and
lμ are future-directed null vectors fields in the normal bundle
of ∂I0 in the outward and inward directions respectively.
For example, these conditions will be satisfied when I0 is

the interior of a sufficiently large, approximately round
sphere in an asymptotically flat spacetime, and R is the
exterior of a slightly larger sphere concentric with the first,
or any subsystem thereof (such as the Hawking radiation
emitted by a black hole). Note that we do not require that R
be weakly gravitating, but in many examples of interest this
will be the case. Also, we do not require that Eqs. (2.10)
and (2.11) hold at ∂R.
Now, suppose there exists a partial Cauchy slice I0 ⊂

DðI0Þ satisfying the conditions (2.1) and (2.2). That is, I0 ∪
R is quantum normal or antinormal, and adjoining I0 to R
reduces the generalized entropy of R. Then there exists a
nonempty quantum extremal region Î ⊂ DðI0Þ satisfy-
ing SgenðÎ ∪ RÞ < SgenðRÞ.
Note that this conclusion is weaker than in Sec. II A: Î

need not globally minimize SgenðI ∪ RÞ among all eligible
regions, since we are restricting our search to a subset ofM.
However, the true entanglement wedge can only have lower
entropy, so SgenðÎ ∪ RÞ provides an upper bound. Note also
that when I0 ∪ R is quantum normal, we can set I0 ¼ I0, so
there is no need to identify a larger I0 region.

1. Proof, part I

The proof strategy is similar to that in Sec. II A, except that
wewish to restrict our search to the closed setDðI0Þ.4Wewill
first assume a strict version of conditions (2.10) and (2.11):

kμΘμ½I0 ∪ R� > 0; ð2:12Þ
lμΘμ½I0 ∪ R� < 0: ð2:13Þ

Later, wewill demonstrate how to relax this assumption back
to conditions (2.10) and (2.11).
Let Î be the maximin region of DðI0Þ ∪ R, and let Σ be

a Cauchy surface of DðI0Þ on which Î minimizes the
generalized entropy of Î ∪ R among all subregions
of Σ. Without loss of generality, we may take Î ⊂ Σ:
Since any Cauchy surface of DðÎÞ is an equally good
maximin region, we set Î → Σ ∩ DðÎÞ. As in Ref. [25],
we assume that Î is stable: Any nearby Cauchy surface Σ0

obtained by infinitesimal deformation of Σ contains a
locally minimal region Î0 infinitesimally close to Î
with SgenðÎ0 ∪ RÞ ≤ SgenðÎ ∪ RÞ.
It immediately follows from the analysis of Sec. II A

that

SgenðÎ ∪ RÞ < SgenðRÞ: ð2:14Þ

We will now show that ∂ Î ∩ ∂DðI0Þ ¼ ∅. This precludes
the (unwanted) possibility that I ∪ R is maximin but not
locally stationary. It follows that Î ∪ R is a quantum
extremal region [25].
∂DðI0Þ is the disjoint union of three sets: ∂I0, and two

null hypersurfaces Nþl and N−k that lie in the future and
past of I0 respectively. The latter sets are generated by
future- and past-directed null geodesics orthogonal to
∂I0 in the inward direction which end at caustics or
self-intersections [29]. Let lμ (kμ) be the normal vector
field to Nþl (N−k) obtained by parallel propagation of
lμj∂I0 (kμj∂I0).
Let ΣM be a Cauchy surface of M that intersects each

null generator of Nþl and N−k at most at one point.
Let ΣN ≡ ΣM ∩ DðI0Þ. By Eqs. (2.12), (2.13), and the
QFC [14],

kμΘμ½ΣN ∪ R;p� > 0 for all p ∈ N−k ∩ ∂I0; ð2:15Þ

lμΘμ½ΣN ∪ R;p� < 0 for all p ∈ Nþl ∩ ∂I0: ð2:16Þ

Suppose for contradiction that there exists a point
q ∈ ∂DðI0Þ ∩ ∂ Î. The generator of ∂DðI0Þ that contains
q, and hence its tangent vector lμ or kμ, will be normal to
∂ Î at q. (If q ∈ ∂I0, this statement holds for either generator
emanating from q.) Since Nþl (N−k) is nowhere to the past
(future) of Î, Theorem 1 in Ref. [30] implies

kμΘμ½Î ∪ R; q� > 0 for q ∈ N−k ∩ ∂I0; ð2:17Þ

lμΘμ½Î ∪ R; q� < 0 for q ∈ Nþl ∩ ∂I0: ð2:18Þ
4A maximin procedure restricted to entanglement wedges of

AdS without reflecting boundary conditions was considered in
[27]. See also Appendix B of [28] for a related discussion.
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Suppose first that q ∈ ∂I0. In this case the above
expansions imply that a small inward deformation of Î
will decrease the generalized entropy, in contradiction with
the minimality of SgenðÎ ∪ RÞ among all subregions of the
maximin Cauchy surface Σ (See left Fig. 3).
We will now demonstrate this rigorously, using the

notion of a surface-orthogonal exponential map [29],

expK∶NK → M; ðp; vÞ → cp;vð1Þ; ð2:19Þ

which takes a vector v in the normal bundle NK of a
smooth submanifold K at the point p to the point at affine
distance 1 along the unique geodesic through p with
tangent vector v. We will use gexp to denote an exponential
map in which the submanifold Σ plays the role of M in the
above definition.
Let ṽμðpÞ be a smooth inward-directed vector field in the

normal bundle to ∂ Î viewed as a submanifold of Σ. We
define the continuous one-parameter family of inward
deformations of Î as the regions

ÎðϵÞ ¼ intfgexp∂ Îðp; ϵṽμðpÞÞ∶p ∈ ∂ Îg: ð2:20Þ

Similarly, in the manifold M we define

iðϵÞ ¼ Î ∩ Intfexp∂ Îðp; ϵvμðpÞÞ∶p ∈ ∂ Îg; ð2:21Þ

where v is the push forward of ṽ under the embedding map
of Σ into M, and IntX denotes the spacetime region
spacelike and interior to X. For sufficiently small ϵ, both
families are well defined. Moreover,

Sgen½ÎðϵÞ ∪ R� ¼ Sgen½iðϵÞ ∪ R� þOðϵ2Þ: ð2:22Þ

In M, the deformation profile vμ ∈ N∂ Î can be decom-
posed as

vμ ¼ −akμ þ blμ; ð2:23Þ
where a and b are positive definite functions. Hence,

dSgen½ÎðϵÞ ∪ R�
dϵ

����
ϵ¼0

¼
Z

dx
ffiffiffi
h

p
vμΘμ½Î ∪ R�; ð2:24Þ

where h refers to the intrinsic metric of ∂ Î. We now choose
ṽ≡ 0 outside a δ-neighborhood of q in ∂ Î. For small
enough δ, vμΘμ½Î ∪ R� < 0 in the entire δ-neighborhood,
by Eqs. (2.17) and (2.18) and continuity. Hence,

dSgen½ÎðϵÞ ∪ R�
dϵ

����
ϵ¼0

¼ dSgen½iðϵÞ ∪ R�
dϵ

����
ϵ¼0

< 0: ð2:25Þ

Hence, Î does not minimize the generalized entropy on Σ.
This contradicts our assumption that Î is a maximin region.
Therefore, no such point q ∈ ∂ Î ∩ ∂I0 can exist:

∂ Î ∩ ∂I0 ¼ ∅: ð2:26Þ
Suppose instead that q ∈ ∂DðI0Þ − ∂I0. In this case,

minimality of SgenðÎ ∪ RÞ on Σ, together with Eq. (2.17) or
(2.18), implies that a small deformation of Σ into the
interior ofDðI0Þ near qwill produce a Cauchy surface of I0
whose minimal-Sgen region (together with R) has greater
generalized entropy than Î ∪ R. But this is impossible if Î
was constructed by the maximin procedure. Again we will
now aim to make this argument rigorous.
For definiteness, we assume that q ∈ Nþl. (If instead

q ∈ N−k, the time reverse of our argument applies.) In any
open neighborhood OðqÞ, Σ (and hence Î) must enter the
interior, OðqÞ ∩ Σ ∩ int½DðI0Þ� ≠ ∅, or else Eq. (2.18)
would violate the minimality of SgenðÎ ∪ RÞ on Σ. Hence
the inward-directed vector field tμ orthogonal to ∂ Î and
tangent to Î is spacelike in an open neighborhood of q on
∂ Î. Moreover, Σmust contain the null generator segment of
Nþl connecting ∂I0 to q, or Σ would fail to be achronal.
Let the achronal hypersurfaces ΣðϵÞ be a smooth one-

parameter deformation of Σ such that ΣðϵÞ agrees with Σ
outside a δ-neighborhood of q (and everywhere for ϵ ¼ 0).
We also require that Σðϵ2Þ is nowhere to the future of Σðϵ1Þ
if ϵ1 < ϵ2. The stability assumption guarantees the exist-
ence of a smooth one-parameter family of regions ÎðϵÞ,
each of which locally minimizes Sgen½ÎðϵÞ ∪ R� on the
corresponding ΣðϵÞ (See right Fig. 3). By the max step of
maximin,

dSgen½ÎðϵÞ ∪ R�
dϵ

≤ 0: ð2:27Þ

For small enough ϵ, there exists an infinitesimal vector field
wμ in the normal bundle of ∂ Î in a neighborhood of q such
that

∂ ÎðϵÞ ¼ fexp∂ Îðp; ϵwμðpÞ þOðϵ2ÞÞ∶p ∈ ∂ Îg: ð2:28Þ

FIG. 3. Maximin restricted to the domain of dependence
(“wedge”) DðI0Þ returns a region Î on a maximin slice Σ. If I0 ∪
R is quantum normal, then ∂ Î cannot intersect ∂DðI0Þ (dashed).
Left: If Î ∩ ∂I0 ≠ ∅, then SgenðÎðϵÞ ∪ RÞ < SgenðÎ ∪ RÞ, contra-
dicting the min of maximin. Right: If Î ∩ ∂DðI0Þ − ∂I0 then
SgenðÎðϵÞ ∪ RÞ > SgenðÎ ∪ RÞ on the deformed slice ΣðϵÞ violates
the max of maximin.
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We have

dSgen½ÎðϵÞ ∪ R�
dϵ

¼
Z

dx
ffiffiffi
h

p
wμΘμ½Î ∪ R�: ð2:29Þ

Since tμ is spacelike, it is linearly independent of lμ, so
there exists a unique decomposition

wμ ¼ ctμ þ dð−lμÞ ð2:30Þ

with c and d non-negative functions on ∂ Î that vanish
outside an open neighborhood of q. Hence

Sgen½Î ∪ R�
dϵ

¼
Z

dx
ffiffiffi
h

p
½ctμΘμ þ dð−lμÞΘμ�: ð2:31Þ

The first term is positive definite by the minimality of
Sgen½Î ∪ R� on Σ; the second is positive by Eq. (2.18).
Hence

Sgen½Î ∪ R�
dϵ

> 0; ð2:32Þ

which contradicts Eq. (2.27). Therefore,

∂ Î ∩ Nþl ¼ ∅; ð2:33Þ

and a time-reversed argument implies

∂ Î ∩ N−k ¼ ∅: ð2:34Þ

Together with Eq. (2.26) this establishes that

Î ⊂ int½DðI0Þ�; ð2:35Þ

hence Î is locally quantum extremal.

2. Proof, part II

We will now discuss what happens if we relax the
conditions (2.12) and (2.13) to their nonstrict versions
(2.10) and (2.11). We will argue that while in this case Î
might not be contained in int½DðI0Þ�, an island candidate
still exists; i.e., there exists Î ⊂ DðI0Þ such that Î ∪ R is
quantum extremal and SgenðÎ ∪ RÞ < SgenðRÞ.
Let us start with the case where there exists at least a

point p ∈ ∂I0 where kμΘμ½I0 ∪ R;p� > 0 and a point q
(p ¼ q is allowed) where lμΘμ½I0 ∪ R;p� < 0. Then, ∂ Î
cannot be a cross section of N−k (Nþl) because then by the
QFC there would be a point r in the cross section, along the
same generator as p (q), where kμΘμ½Î ∪ R; r� > 0

(lμΘμ½Î ∪ R; r� < 0). As discussed above, this contradicts
maximin.
If ∂ Î only partially coincides with ∂DðI0Þ then there

must exist a point r in the boundary of the intersection set

such that in any sufficiently small neighborhood of it ∂ Î
and N−k (Nþl) do not coincide. In the ℏ → 0 limit, Lemma
B of [30] implies that there exists a point s in a neighbor-
hood of r such that kμθμ½Î; s� > 0 (lμθμ½Î; s� < 0). Here, we
will assume that Lemma B of [30] continues to hold when
we replace the classical expansion with the quantum
expansion.5 We will then conclude that kμΘμ½∂ Î∪R;s�>0

(lμΘμ½∂ Î ∪ R; s� < 0). However, s ∈ int½DðI0Þ�, so a non-
zero quantum expansion at s is not allowed by maximin.
Next, we consider the case where lμΘμ½I0 ∪ R� ¼ 0 (the

case with k and l exchanged is similar by time-reflection
symmetry). By the previous arguments, ∂ Î cannot intersect
N−k. Also, by the quantum version of Lemma B, ∂ Î cannot
intersect Nþl only in part. We will therefore focus on
discussing the case where ∂ Î is a cross section of Nþl.
Associated with any cross section L of Nþl, we can

define a partial Cauchy slice ΣL of DðI0Þ which intersects
Nþl at L. Let L1 be the latest cross section ofNþl such that
any other cross section L in the past of L1 satisfies
lμΘμ½ΣL ∪ R� ¼ 0.6 By the QFC, any cross section L
which is partly in the future of L1 needs to contain at
least a point r at which lμΘμ½ΣL ∪ R; r� < 0. Hence, ∂ Î
must be a cross section in the past of L1. Furthermore, a
maximin Cauchy slice Σ corresponding to Î cannot
intersect the future of L1 as it would violate the minimality
of SgenðÎ ∪ RÞ. Σ then has to leave Nþl in the past of L1 or
on L1. Let L2 be the cross section at which Σ leaves Nþl.
Then, kμΘμ½ΣL2

∪ R� ≤ 0 or else the min condition is
violated. Since kμΘμ½I0 ∪ R� ≥ 0, we expect that there
exists a cross section L3 between ∂I0 and L2 such that
kμΘμ½ΣL3

∪ R� ¼ 0. In the classical limit in particular, we
expect that the results of [31] showing a similar existence
on spacelike Cauchy surfaces can be applied here by taking
a limit of spatial Cauchy surfaces that approach Nþl.
Together with stationarity along Nþl, this would imply that
ΣL3

∪ R is quantum extremal.

C. Examples

We will now present some examples where the above
sufficient conditions (i) and (ii) provide an efficient

5Our assumption is motivated by the semiclassical generali-
zation of many similar conditions on the classical expansion [14].
Note that if the von Neumann entropy term in the quantum
expansion is OðGℏÞ while the classical expansion is Oð1Þ,
Lemma B trivially generalizes to the version with quantum
expansions.

6If such L1 does not exist, then Nþl is a semi-infinite
stationary null hypersurface which, at least classically, by the
no-hair theorem needs to be a semi-infinite portion of the horizon
of a Kerr-Newman black hole. And since kμΘμ½I0 ∪ R� ≥ 0, ∂I0
needs to lie fully in the past of the bifurcation surface which
provides us with a classical extremal surface on Nþl. We then
expect to find a quantum extremal region Î ∪ R such that ∂ Î is
either on or near this classical extremal surface.
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diagnostic for the existence of islands. We will require no
detailed calculations of matter entropy and its derivatives,
nor will we be forced to assume special symmetries, low
dimensions of spacetime, or adopt other toy models. Our
sufficient conditions establish the existence of an island and
its key properties, at the cost of not exactly locating the
island.
In a final example, we show that neither of the two

sufficient conditions can be eliminated.

1. Evaporating black hole after the Page time

For concreteness, we pick asymptotically flat boundary
conditions, though our conclusion will not depend on this
choice. We furthermore assume that the black hole mostly
radiates massless particles, as will be the case if its initial
mass is sufficiently large.
We consider an evaporating black hole formed in a pure

state. At late times, the spacetime will be approximately
spherically symmetric. Let r ¼ ðA=4πÞ1=2 be the area
radius of spheres. Near the horizon, the metric is well
approximated by

ds2 ¼ −
�
1 −

rsðvÞ
r

�
dv2 þ 2dvdrþ r2dΩ2: ð2:36Þ

Due to evaporation, rsðvÞ decreases slowly with retarded
time v: drs=dv ∼ −OðGℏ=r2sÞ. For r ≫ rs, the metric is
well approximated instead by the outgoing Vaidya metric
[32], but this will not be important in our analysis.
Let u be retarded time on Iþ, and let R be the portion of

Iþ given by u ≤ u0; see Fig. 4. R is a reservoir that
contains the Hawking radiation emitted until the time u0.

The boundary of the past of R is given by u ¼ u0. We will
be interested in the behavior of the metric only near the
retarded time when this surface intersects the stretched
horizon rs, so it will be sufficient to set rs to that value and
neglect its v dependence from here on. Let As ¼ 4πr2s be
the area of the stretched horizon where it meets the past of
R. Let Ah ¼ 4πr2h be the area of the event horizon where it
intersects the future of As; the areas satisfy

As ¼ Ah þOðGℏÞ: ð2:37Þ

We choose u0 late enough so that SðRÞ > Ah=4Gℏþ
log c1, where log c1 will be small in a sense made precise
below. That is, R extends to after the Page time, with a little
room to spare. We seek an I0 that satisfies our sufficient
conditions while placing a tight bound on the entropy SðRÞ.
Let I0ðr; vÞ be a Cauchy slice of the interior of the sphere

ðr; vÞ. Since SgenðI0 ∪ RÞ is well defined only for achronal
I0 ∪ R, we require I0ðr; vÞ ⊂ M − J−ðRÞ, or u > u0. In the
ingoing coordinates of Eq. (2.36), u ¼ u0 corresponds to a
function r0ðvÞ defined implicitly by v ¼ u0 þ 2r�ðr0Þ,
where r�ðrÞ ¼ rþ rh logð rrh − 1Þ. Near the horizon, this
satisfies

Δr0ðvÞ≡ r0ðvÞ − rh ¼ rh exp

�
v − u0
2rh

− 1

�
: ð2:38Þ

We thus require r < r0ðvÞ for the boundary of I0.
Quantum normalcy of I0 ∪ R requires that the genera-

lized entropy grows along both of the null directions away
from I0. Any future outward light cone outside the horizon
is a null surface of constant u that reaches Iþ. Hence it is a

FIG. 4. Evaporating black hole after the Page time. Hawking radiation has accumulated in R. As shown on the left, the boundary of the
past of R denoted by r0ðvÞ intersects the stretched horizon (shown in purple) at the sphere As, which together with the Ah sphere on the
event horizons reside at retarded time vs. We consider candidate regions I0 with boundary ∂I0 on a causal horizon spacelike to R (gray
regions). The generalized second law implies that SgenðI0 ∪ RÞ increases under future outward deformations. For future inward
deformations, quantum normalcy follows from the (trivial) classical normalcy in the dark gray subregion, which is chosen to keep
quantum corrections to the expansion small. The I0 that minimizes SgenðI0 ∪ RÞ subject to these restrictions is shown in pink. Its
boundary is located atΔv ¼ rs log c1 to the future of Ah, as shown on the right. We show that it provides an extremely tight upper bound
on the true entropy SðRÞ ¼ SgenðI ∪ RÞ ≤ SgenðI0 ∪ RÞ ¼ Ah=4GℏþOð1Þ.
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causal horizon. The generalized second law of thermody-
namics [33,34] applies to all causal horizons. It implies that
the future outward quantum expansion at I0 is positive if ∂I0
is outside the horizon. (In more general settings that are not
exactly spherically symmetric, we can accomplish the same
goal by choosing ∂I0 to be a cut of a causal horizon.) We
thus require r > rh.
The past outward classical expansion is trivially pos-

itive: ∂rA ¼ 8πr. Quantum normalcy follows if the quan-
tum correction 4Gℏ∂rSðI0 ∪ RÞ is negligible, i.e., if
∂rSðI0 ∪ RÞ ≪ r=Gℏ. Let Σ be a global Cauchy slice
containing I0 ∪ R and define I0c ¼ Σ − ðI0 ∪ RÞ. By purity
of the global quantum state, SðI0 ∪ RÞ ¼ SðI0cÞ.
Dimensional analysis dictates that the leading divergence

in the renormalized entropy scales as

∂ρSðI0cÞ ∼Oð1=ρÞ; ð2:39Þ

where ρ ¼ r0 − r and we may assume ρ ≪ r0. To see this,
suppose first that the only available scales are r and ρ. Terms
stronger than Eq. (2.39) would be of the form ∂rSðI0cÞ ∼
rn=ρnþ1 with n > 0 and positive coefficient. Such a term
would imply that at fixed ρ, dS=dr < 0, which is not
physically sensible. In the presence of an additional mass
scalem ∼ ℏ=λ, an enhancement of Eq. (2.39) would have to
take the form ∂rSðI0cÞ ∼ λn=ρnþ1, n > 0. Formally, this is an
enhancement for ρ ≪ λ, but physically, a mass scale cannot
have any physical effect in this UV regime.
Hence, quantum normalcy is assured if we require

r0 − r > c1
Gℏ
r

; c1 ≫ 1: ð2:40Þ

To summarize, we may consider any I0 whose boundary is
in the range

rh ≤ r ≤ r0ðvÞ þ c1
Gℏ
r

; c1 ≫ 1: ð2:41Þ

We now minimize SgenðI0 ∪ RÞ over this range. By
purity, SgenðI0 ∪ RÞ ¼ 4πr2 þ 4GℏSðI0cÞ. Along any
ingoing light cone, the classical area decreases rapidly
and Δr only increases as we go to smaller r, so we are
driven to the smallest r in the search space, the event
horizon. Scanning in the other null direction, along the
event horizon, SgenðI0cÞwill decrease toward the past, by the
generalized second law (GSL).
Hence we obtain the tightest upper bound on SðRÞ by

choosing I0 to be the interior of the event horizon, as early
as is possible while maintaining Eq. (2.40). With the
boundary of I0 on the event horizon, r − r0 ¼ Δr0 ∝
expðv=2rhÞ by Eq. (2.38). Moreover, at Ah, we have r0 ¼
rs and hence Δr0 ∼OðGℏ=rhÞ. To grow this by the factor
of c1 demanded in Eq. (2.40), we must choose

v ¼ vs þ rh log c1, where vs is the v-coordinate of As
and Ah.
To summarize, the optimal choice of I0 is

ðr; vÞ ¼ ðrh; vs þ rh log c1Þ; c1 ≫ 1: ð2:42Þ

The true entropy SðRÞ is upper bounded by

SgenðI0 ∪ RÞ ¼ πr2

Gℏ
þ SðI0cÞ ¼

Ah

4Gℏ
þOðlog c1Þ: ð2:43Þ

Note that the OðGℏÞ area difference between the event
horizon and the stretched horizon is negligible. The
Oðlog c1Þ term captures both the (negative) correction to
the horizon area due to evaporation since Ah, and the
(positive, and larger) correction due to the von Neumann
entropy of SðI0cÞ.
We stress that this upper bound is quite tight. The correct

SðRÞ is given by Eq. (2.43) with Oðlog c1Þ replaced by
Oð1Þ. Recall that c1 should be large enough to overcome
anyOð1Þ coefficients that might enhance the von Neumann
entropy in an exact calculation. But it is itself Oð1Þ in that
sense, and log c1 is even smaller. In particular, we can
always choose log c1 ≪ log logðAh=GℏÞ in the semiclass-
ical limit.
We also emphasize that exact spherical symmetry is not

crucial; our argument only relies on the scaling behavior of
the relevant terms.

2. Recollapsing flat universe

Our next example was studied in detail in Ref. [24].7

Consider a radiation-dominated, spatially flat Friedmann-
Robertson-Walker (FRW) universe M with cosmological
constant Λ, purified by a thermal state on a Minkowski
background MR without gravity (See Fig. 5). The metric of
M and MR is

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dΩ2Þ; ð2:44Þ

ds2R ¼ −dt2R þ dr2R þ r2RdΩ2
R: ð2:45Þ

Without loss of generality, one can set the scale factorað0Þ ¼
1 at the turnaround time t ¼ 0, when da=dt ¼ 0 and hence
−Λ=8πG ¼ ρrad. A thermofield double (TFD) state is con-
structed at t ¼ 0, tR ¼ 0.
A simple implication of the TFD state suffices for the

purposes of our analysis. Consider two spatial regions, one
in M at t ¼ 0 and the other in MR at tR ¼ 0. The von
Neumann entropy of their union vanishes approximately, if

7Reference [24] considered a different but related question to
ours: Given a region I in the cosmology, can one find a region R
in the reference spacetime such that I is an island with respect to
R? By contrast, we specify a reference region R and use our
sufficient conditions to establish the existence of an island for it.
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they have the same spatial coordinates. If the regions are
unequal, then the von Neumann entropy of their union will
be given by the sum of the thermal entropy of the non-
overlap portions:

S ¼ sradðV̂ þ V̂RÞ; ð2:46Þ
where V̂ and V̂R are the volumes of the nonoverlap portions
in M and in MR, and the entropy density is srad ∼ ρ3=4rad .
These statements receive corrections on scales below the
thermal length scale, λ ∼ ρ−1=4rad .
Now choose R ⊂ MR to be a ball of radius rR at tR ¼ 0,

and I0 ⊂ M a ball of radius r < rR at t ¼ 0. By time
symmetry around t ¼ tR ¼ 0, the region I0 ∪ R will be
quantum normal or antinormal. We have

SgenðI0 ∪ RÞ − SðRÞ ¼ πr2

Gℏ
−
4πsrad
3

r3: ð2:47Þ

To satisfy our second condition, this must be negative, so
we require

r > rcrit ≡ 3

4πGsrad
: ð2:48Þ

This condition on I0 can be satisfied, and hence an island
I ⊂ M must exist, for a sufficiently large reference
region, rR > rcrit.
Going beyond spherical symmetry, we can choose R to

be any convex reference region of arbitrary shape in MR,
and let I0 be the identical coordinate region in M. Then
I0 ∪ R will be normal or antinormal by convexity and time
symmetry. Moreover,

SgenðI0 ∪ RÞ − SðRÞ ¼ A½∂I0�
4Gℏ

− ðVR þOðA½∂R�λÞÞsrad
ð2:49Þ

will be negative for any sufficiently large region of fixed
shape. Any such references region must have an island I.
Note that I will not be the identical coordinate region to

R, because of the OðA½∂I0�λÞ corrections to the von
Neumann entropy. Moreover, in the nonspherical case,
minimization of the area term will favor a more round
shape for I than for R.

3. Bag of gold

Next, we discuss a time-symmetric slice of a “bag-of-
gold” geometry [35] shown in Fig. 6. Its defining feature is
the existence of an arbitrarily large volume of space behind
a throat (a minimal area surface) of fixed area. To construct
it, we glue the interior of a sphere of radius r1 of a closed
FRW universe, at the time of recollapse, da=dt ¼ 0, to the
exterior of a sphere of the same size behind the bifurcation
surface in a maximally extended Schwarzschild spacetime
[36]. The corresponding spatial metrics are

ds2in ¼ aðdχ2 þ sin2χdΩ2Þ; 0 ≤ χ ≤ χ1; ð2:50Þ

ds2out¼
�
1−

r0
r

�
−1
dr2þr2dΩ2; r0≤ r≤ r1; ð2:51Þ

where in the second line we omitted the portion of the
Schwarzschild metric outside of the bifurcation surface as it
will not be needed for the analysis below.
Let r0 be the radius of the throat, and let χ be the angle at

which the metrics are glued. The gravitational constraints
imply χ1 > π=2 and

FIG. 5. Spatially flat radiation-dominated universe with neg-
ative cosmological constant, purified by a reference universe
(thermal Minkowski space, right). If we choose a large enough
reference region R at tMink ¼ 0, then the region I0 at the
turnaround time t ¼ 0 satisfies our sufficient conditions. There-
fore an island I must exist.

FIG. 6. A time-symmetric Cauchy slice of a bag-of-gold
geometry. The bag has large entropy (gray) compared to the
area of its throat, and it purifies the reference system R. Then it is
easy to find a (classically and quantum) antinormal region I0
(pink) such that SgenðI0 ∪ RÞ < SðRÞ. Hence, there must exist an
island I. I is expected to be approximately the interior of the
classically minimal surface labeled r0.
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a sin χ1 ¼ r1; ð2:52Þ

a sin3 χ1 ¼ r0: ð2:53Þ

The Friedmann equation implies that the energy density in
the bag is

ρ ¼ 1

8πGa2
: ð2:54Þ

Now suppose that the bag contains thermal photon
radiation purified by an external reference system R.
The entropy density in the bag is s ∼ ρ3=4, and hence

SðRÞ ∼ ðGℏÞ−3=4a3=2: ð2:55Þ

Let I0 be the interior of some sphere r0 between the edge of
the bag r1 and the throat r0, hence

SgenðI0 ∪ RÞ ∼ r02

Gℏ
: ð2:56Þ

By time reversal symmetry, I0 ∪ R is quantum normal or
antinormal. Moreover, we can achieve SðRÞ > SgenðI0 ∪ RÞ,
by an arbitrarily largemargin, by takinga largewhile holding
r0 and r0 fixed. (This will only increase r1.) Hence, our
conditions are satisfied, and a nontrivial island I ⊂ M
must exist.
Importantly, this construction is insensitive to the spheri-

cal symmetry that we assumed for simplicity. It is also
insensitive to the addition of perturbative matter near the
throat. Such modifications can affect the precise position of
the island, which may be very hard to determine. But so
long as they are small enough, our sufficient conditions will
hold, and they guarantee the existence of an island.

4. Collapsing star (an example without islands)

To illustrate the importance of condition (ii), let us
discuss a case for which condition (i) Eq. (2.1) is satisfied,
but condition (ii) Eq. (2.2) is violated. Consider an
Oppenheimer-Snyder spacetime: A black hole formed by
the collapse of a “star” modeled as a spherical, homo-
geneous ball of dust.
Suppose that the star is in a maximally mixed state with

entropy Sstar and let R be an early portion of Iþ which
contains only a purification of the star (and no Hawking
radiation), giving SðRÞ ¼ Sstar. We choose I0 to be the
interior of a sphere just outside of the star and very close
to the singularity (see Fig. 7). Then SgenðI0 ∪ RÞ≈
Að∂I0Þ=4Gℏ. Picking Sstar large with Að∂I0Þ held fixed,
we can arrange for

1 ≪ SgenðI0 ∪ RÞ ≪ SðRÞ: ð2:57Þ

The first inequality ensures semiclassical control at ∂I0. The
second states that condition (i) is satisfied (by an arbitrarily

large margin). However, ∂I0 is a classically trapped surface,
i.e., θk < 0, θl < 0. And since ∂I0 is not close to ∂J−ðRÞ, we
expect quantum corrections to be small:Θl ¼ θl þOðGℏÞ.
Condition (ii) is therefore violated.
Indeed, there are no islands associated with R in this

spacetime. To see this, note that there are no classically
extremal spheres. As in the previous example, near ∂J−ðRÞ,
quantum corrections to θl can become large, but ∂J−ðRÞ
stays far from the horizon and so has large classical (and
quantum) expansion everywhere.
This example shows that condition (ii) is essential, so is

condition (i), of course. For example, supposewe choseR to
be a later portion of Iþ. As before, R contains only the
purification of the star, but no Hawking radiation. Since
∂J−ðRÞ gets close to the horizon, whereΘk can vanish, there
will be a quantum extremal region Ĩ withΘl ¼ 0. However,
this region fails to be an island because SgenðĨ ∪ RÞ > SðRÞ.

III. NEW ENTROPY BOUND

In this section, we will show that in a globally pure state,
the entropy of a reference system R cannot exceed the
generalized entropy of suitable asymptotic regions. We
consider an external reference system in Sec. III A, and we
generalize to R ⊂ M in Sec. III B. We discuss examples in
Sec. III C.

A. External reference system

Given an external reference system R, an island I ⊂ M in
a semiclassical spacetime M is defined as a region that is
quantum extremal and homologous to R (i.e., ∂I ⊂ M),

FIG. 7. Collapse of a spherical star that is maximally entangled
with a distant reservoir R. I0 (pink) is the interior of a sphere
surrounding the star at a time close to the singularity. Hence ∂I0
has a small area, and condition (i) can be satisfied by an arbitrarily
large margin. But I0 is quantum trapped and so fails to satisfy
condition (ii). Indeed, R does not possess any island in this
spacetime.
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such that SgenðI ∪ RÞ is minimal among all such regions. In
Sec. II A we identified sufficient conditions for I ≠ ∅.
We will now employ similar techniques to derive an

entropy bound on the exact entropy of the reference system
SðRÞ assuming that this is computed by the “island
formula”:

SðRÞ ¼ SgenðI ∪ RÞ: ð3:1Þ

Following Ref. [21], we denote R in boldface when
referring to the exact (nonperturbatively computed) state
of the region. We write R when referring to the semiclassi-
cally computed state. For simplicity, we will assume that
the global quantum state is pure,

SðR ∪ MÞ ¼ 0; ð3:2Þ

though generalizations can easily be considered.
Let I0c ⊂ M be any partial Cauchy slice of M that is

quantum normal or antinormal:8><
>:

kμΘμ½I0c� ≥ 0; lμΘμ½I0c� ≤ 0;

or

kμΘμ½I0c� ≤ 0; lμΘμ½I0c� ≥ 0;

ð3:3Þ

where k and l are the future-directed null vector fields
orthogonal to ∂I0c. We also require that I0c is “asymptotic,”
though only in the weak sense that in the conformally
compactified spacetime,

∂Σ ⊂ ∂I0c; ð3:4Þ

where Σ is a Cauchy slice ofM. That is, I0c must contain the
asymptotic region of M, but it may extend deep into the
interior ofM. A simple example of a region I0c that satisfies
Eqs. (3.3) and (3.4) is the exterior of a sufficiently large
approximately round sphere.
Let I0 be the complement of I0c on some global Cauchy

slice of M. By Eqs. (3.2) and (3.3), I0 ∪ R will be
antinormal or normal. By Eq. (3.4), I0 is homologous to
R. Our notation reflects the fact that I0 shares these
properties with the region denoted I0 in Sec. II A.
However, here we do not assume the inequality

SgenðI0 ∪ RÞ < SðRÞ, and hence we will not be guaranteed
the existence of an island I ≠ ∅. This does not affect the
maximin analysis performed in Sec. II A: (Anti)normalcy
of I0 ∪ R implies that the true island I satisfies

SgenðI ∪ RÞ ≤ SgenðI0 ∪ RÞ; ð3:5Þ

regardless of whether I is the empty set or not. Using
Eqs. (3.1) and (3.2), we thus find the entropy bound

SðRÞ ≤ SgenðI0cÞ: ð3:6Þ

B. Distant reference system

The bound (3.6) generalizes to the case where R ⊂ M,
subject to appropriate modifications. (It is easy to general-
ize further to the case where R is partly internal to M and
partly an external system.) We shall assume that gravity is
negligible in R, so that the notion of an exact state ofR can
be made precise. The island rule can then be adapted to
compute the generalized entropy of R:

SgenðRÞ ¼ SgenðI ∪ RÞ; ð3:7Þ

where I is an island (possibly the empty set), as described
above. The relevant homology rule is I ⊂ int½M − JðRÞ�,
where J denotes the union of the causal past and future.
We again assume global purity, SðMÞ ¼ 0. To obtain a

bound on SgenðRÞ, we consider a spatial region I0c that
satisfies the following conditions (see Fig. 8):

(i) For I0 to be of the correct homology type, without
directly referring to I0,8 we require that I0c is adjacent
to R in M, and in the conformally compactified
spacetime M̃, I0c contains any conformal boundary
portions not covered by R:

∂I0c ⊃ ∂ðΣ̃ − R̄Þ; ð3:8Þ

where Σ̃ ⊃ R is a Cauchy slice of M̃, and R̄ denotes
the closure of R in M̃.

(ii) I0c is quantum normal or antinormal under shape
deformations of its inner boundary in M, i.e.,
at ð∂I0c − ∂RÞ ∩ M.

(iii) I0c contains a region I0;c that is quantum antinormal
at ∂I0;c − ∂R. (Normal is not allowed in this
criterion.)

Global purity implies that I0 ∪ Rwill be quantum normal
or antinormal at ∂I0. It also guarantees quantum normalcy
of I0 ∪ R, where I0 ≡ Σ − I0;c − R and Σ is a Cauchy
surface that contains I0;c and R. By Sec. II B, the maximin
procedure restricted to the wedgeDðI0Þwill return a region

FIG. 8. The entropy SðRÞ of an external or distant reference
system R must be less than the generalized entropy of any region
I0c that is normal or antinormal (blue).

8Our goal is to formulate a bound in terms of quantities that are
accessible to an asymptotic observer.
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Î ⊂ int½DðI0Þ� that satisfies the homology rule and has
stationary SgenðÎ ∪ RÞ under shape deformations at ∂ Î.
Note that Î may be empty, and SgenðÎ ∪ RÞ need not be

globally minimal, since the true island I may not be
contained in DðI0Þ. However, we have

SgenðI ∪ RÞ ≤ SgenðÎ ∪ RÞ: ð3:9Þ

The quantum (anti)normalcy of I0 implies

SgenðÎ ∪ RÞ ≤ SgenðI0 ∪ RÞ: ð3:10Þ

Using Eqs. (3.7) and global purity, we thus find the entropy
bound

SgenðRÞ ≤ SgenðI0cÞ: ð3:11Þ

Recall that ∂I0c ⊃ ∂R, so in any situation where the
generalized entropy can be separated into a regularized
entropy and Bekenstein-Hawking term, the area terms
associated with ∂R will cancel, and Eq. (3.11) reduces
to Eq. (3.6).

C. Examples and discussion

The bound (3.11) and its external R version (3.6) are
powerful and versatile. They require knowledge only of R
and I0c, but not of the rest of the spacetime M. The only
nontrivial condition Eq. (3.3) can be easily verified. Often
the quantum expansion is dominated by the classical
expansion, so that it is easy to check whether I0c is quantum
(anti)normal, yet the bound remains nontrivial.
For example, by the generalized second law, causal

wedges of a boundary region must be quantum antinormal.9

This follows both for asymptotically anti–de Sitter and flat
spacetimes. When R is disjoint from the conformal com-
pletion of M, this ensures the quantum antinormalcy of I0c.
The requirement that R and I0c be spacelike separated

prevents the application of the GSL when R is part of the
conformal completion ofM. For instance, suppose that R is
a subset of Iþ. The GSL can still be applied to any future
causal horizon associated with Iþ regions including R,
guaranteeing kμΘμ ≥ 0. However, all past horizons will
intersect the past of R, blocking the application of the GSL
to I0c along them. To establish that lμΘμ ≤ 0, we can use the
classical area law on past horizons, so long as quantum
corrections to lμθμ are negligible (see Fig. 9, left).
More generally, when R is a subset of M, the classical

area law ensures condition (3.3) if the quantum corrections
to both expansions are suppressed (see right Fig. 9). This
causal wedge method for finding I0c suggests a nice

physical interpretation of I0c as a region that can be explored
geometrically by asymptotic observers.
The bound thus tells us that SðRÞ cannot be greater than

the generalized entropy of any causal wedge region (subject
to quantum effects on the expansion remaining negligible).
If I0c is a whole Cauchy surface Σ of M, this reduces to the
trivial statement that SðRÞ ≤ SðΣÞ. (In this case, by purity,
equality must hold.) But if I0c has a boundary in M, the
bound is nontrivial. Indeed, a quantum antinormal causal
wedge can reach very close [O½ðGℏÞ1=2� distance] to a
black hole horizon. For a black hole after the Page time, this
means that the bound becomes nearly saturated. The bound
then implies the nontrivial statement of unitarity.
The bound simplifies if I0c contains little matter entropy,

so that

SgenðI0cÞ ≈
A

4Gℏ
: ð3:12Þ

In this case,

SðRÞ ≲ A
4Gℏ

: ð3:13Þ

The entropy deliverable to an asymptotic observer by a
spacetime causally explored to an inner boundary of area A
cannot be greater than A=4Gℏ.
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FIG. 9. Not a Schwarzschild black hole. This could be a highly
dynamical spacetime far from a stationary black hole solution. I0c
is quantum antinormal, so SðRÞ ≤ SgenðI0cÞ. In the left example, R
is on the conformal boundary. Quantum antinormalcy follows
from the GSL (future null congruence), and from the classical
area theorem (past null congruence) if quantum corrections are
small. In the right example, R is inside the spacetime. Quantum
antinormalcy follows by the area theorem and smallness of
corrections if ∂I0c stays far enough from the horizon.

9Note that the causal wedge is not in general a domain of
dependence. The region that is always quantum normal is the
maximal Cauchy evolution of the causal wedge.

RAPHAEL BOUSSO and ARVIN SHAHBAZI-MOGHADDAM PHYS. REV. D 103, 106005 (2021)

106005-12



[1] N. Engelhardt and A. C. Wall, Quantum extremal surfaces:
Holographic entanglement entropy beyond the classical
regime, J. High Energy Phys. 01 (2015) 073.

[2] V. E. Hubeny, M. Rangamani, and T. Takayanagi, A
covariant holographic entanglement entropy proposal,
J. High Energy Phys. 07 (2007) 062.

[3] S. Ryu and T. Takayanagi, Holographic Derivation of
Entanglement Entropy from AdS=CFT, Phys. Rev. Lett.
96, 181602 (2006).

[4] A. Lewkowycz and J. Maldacena, Generalized gravitational
entropy, J. High Energy Phys. 08 (2013) 090.

[5] T. Faulkner, A. Lewkowycz, and J. Maldacena, Quantum
corrections to holographic entanglement entropy, J. High
Energy Phys. 11 (2013) 074.

[6] X. Dong and A. Lewkowycz, Entropy, extremality, Euclid-
ean variations, and the equations of motion, J. High Energy
Phys. 01 (2018) 081.

[7] G. Penington, S. H. Shenker, D. Stanford, and Z. Yang,
Replica wormholes and the black hole interior, arXiv:
1911.11977.

[8] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and
A. Tajdini, Replica wormholes and the entropy of Hawking
radiation, J. High Energy Phys. 05 (2020) 013.

[9] D. N. Page, Information in Black Hole Radiation, Phys.
Rev. Lett. 71, 3743 (1993).

[10] G. Penington, Entanglement wedge reconstruction and the
information paradox, J. High Energy Phys. 09 (2020) 002.

[11] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield,
The entropy of bulk quantum fields and the entanglement
wedge of an evaporating black hole, J. High Energy Phys.
12 (2019) 063.

[12] S.W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[13] S. W. Hawking, Breakdown of predictability in gravitational
collapse, Phys. Rev. D 14, 2460 (1976).

[14] R. Bousso, Z. Fisher, S. Leichenauer, and A. C. Wall,
Quantum focusing conjecture, Phys. Rev. D 93, 064044
(2016).

[15] A. Almheiri, R. Mahajan, and J. Maldacena, Islands outside
the horizon, arXiv:1910.11077.

[16] R. Bousso and M. Tomašević, Unitarity from a smooth
horizon?, Phys. Rev. D 102, 106019 (2020).

[17] R. Bousso and E. Wildenhain, Gravity/ensemble duality,
Phys. Rev. D 102, 066005 (2020).

[18] X. Dong, X.-L. Qi, Z. Shangnan, and Z. Yang, Effective
entropy of quantum fields coupled with gravity, J. High
Energy Phys. 10 (2020) 052.

[19] F. F. Gautason, L. Schneiderbauer, W. Sybesma, and L.
Thorlacius, Page curve for an evaporating black hole,
J. High Energy Phys. 05 (2020) 091.

[20] T. Hartman, E. Shaghoulian, and A. Strominger, Islands in
asymptotically flat 2D gravity, J. High Energy Phys. 07
(2020) 022.

[21] A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, The
page curve of Hawking radiation from semiclassical geom-
etry, J. High Energy Phys. 03 (2020) 149.

[22] A. Almheiri, R. Mahajan, and J. E. Santos, Entanglement
islands in higher dimensions, SciPost Phys. 9, 001
(2020).

[23] Y. Chen, V. Gorbenko, and J. Maldacena, Bra-ket worm-
holes in gravitationally prepared states, J. High Energy
Phys. 02 (2021) 009.

[24] T. Hartman, Y. Jiang, and E. Shaghoulian, Islands in
cosmology, J. High Energy Phys. 11 (2020) 111.

[25] A. C. Wall, Maximin surfaces, and the strong subadditivity
of the covariant holographic entanglement entropy,
Classical Quant. Grav. 31, 225007 (2014).

[26] C. Akers, N. Engelhardt, G. Penington, and M. Usatyuk,
Quantum maximin surfaces, J. High Energy Phys. 08 (2020)
140.

[27] D. Marolf, A. C. Wall, and Z. Wang, Restricted maximin
surfaces and HRT in generic black hole spacetimes, J. High
Energy Phys. 05 (2019) 127.

[28] A. R. Brown, H. Gharibyan, G. Penington, and L. Susskind,
The python’s lunch: Geometric obstructions to decoding
Hawking radiation, J. High Energy Phys. 08 (2020) 121.

[29] C. Akers, R. Bousso, I. F. Halpern, and G. N. Remmen,
Boundary of the future of a surface, Phys. Rev. D 97,
024018 (2018).

[30] A. C. Wall, The generalized second law implies a quantum
singularity theorem, Classical Quant. Grav. 30, 165003
(2013).

[31] L. Andersson and J. Metzger, The area of horizons and the
trapped region, Commun. Math. Phys. 290, 941 (2009).

[32] S. Abdolrahimi, D. N. Page, and C. Tzounis, Ingoing
Eddington-Finkelstein metric of an evaporating black hole,
Phys. Rev. D 100, 124038 (2019).

[33] J. D. Bekenstein, Black holes and the second law, Lett.
Nuovo Cimento 4, 737 (1972).

[34] A. C. Wall, A proof of the generalized second law for
rapidly changing fields and arbitrary horizon slices, Phys.
Rev. D 85, 104049 (2012).

[35] D. Marolf, Black holes, AdS, and CFTs, Gen. Relativ.
Gravit. 41, 903 (2009).

[36] G. T. Horowitz, The positive energy theorem and its
extensions, in Proceedings of the Conference on
Asymptotic Behavior of Mass and Spacetime Geometry
(Springer, Berlin, Heidelberg, 1983), p. 0001, https://
doi.org/10.1007/BFb0048063.

ISLAND FINDER AND ENTROPY BOUND PHYS. REV. D 103, 106005 (2021)

106005-13

https://doi.org/10.1007/JHEP01(2015)073
https://doi.org/10.1088/1126-6708/2007/07/062
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1007/JHEP08(2013)090
https://doi.org/10.1007/JHEP11(2013)074
https://doi.org/10.1007/JHEP11(2013)074
https://doi.org/10.1007/JHEP01(2018)081
https://doi.org/10.1007/JHEP01(2018)081
https://arXiv.org/abs/1911.11977
https://arXiv.org/abs/1911.11977
https://doi.org/10.1007/JHEP05(2020)013
https://doi.org/10.1103/PhysRevLett.71.3743
https://doi.org/10.1103/PhysRevLett.71.3743
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevD.93.064044
https://doi.org/10.1103/PhysRevD.93.064044
https://arXiv.org/abs/1910.11077
https://doi.org/10.1103/PhysRevD.102.106019
https://doi.org/10.1103/PhysRevD.102.066005
https://doi.org/10.1007/JHEP10(2020)052
https://doi.org/10.1007/JHEP10(2020)052
https://doi.org/10.1007/JHEP05(2020)091
https://doi.org/10.1007/JHEP07(2020)022
https://doi.org/10.1007/JHEP07(2020)022
https://doi.org/10.1007/JHEP03(2020)149
https://doi.org/10.21468/SciPostPhys.9.1.001
https://doi.org/10.21468/SciPostPhys.9.1.001
https://doi.org/10.1007/JHEP02(2021)009
https://doi.org/10.1007/JHEP02(2021)009
https://doi.org/10.1007/JHEP11(2020)111
https://doi.org/10.1088/0264-9381/31/22/225007
https://doi.org/10.1007/JHEP08(2020)140
https://doi.org/10.1007/JHEP08(2020)140
https://doi.org/10.1007/JHEP05(2019)127
https://doi.org/10.1007/JHEP05(2019)127
https://doi.org/10.1007/JHEP08(2020)121
https://doi.org/10.1103/PhysRevD.97.024018
https://doi.org/10.1103/PhysRevD.97.024018
https://doi.org/10.1088/0264-9381/30/16/165003
https://doi.org/10.1088/0264-9381/30/16/165003
https://doi.org/10.1007/s00220-008-0723-y
https://doi.org/10.1103/PhysRevD.100.124038
https://doi.org/10.1007/BF02757029
https://doi.org/10.1007/BF02757029
https://doi.org/10.1103/PhysRevD.85.104049
https://doi.org/10.1103/PhysRevD.85.104049
https://doi.org/10.1007/s10714-008-0749-7
https://doi.org/10.1007/s10714-008-0749-7
https://doi.org/10.1007/BFb0048063
https://doi.org/10.1007/BFb0048063

