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An exotic rotationally invariant harmonic oscillator (ERIHO) is constructed by applying a nonunitary
isotropic conformal bridge transformation (CBT) to a free planar particle. It is described by the isotropic
harmonic oscillator Hamiltonian supplemented by a Zeeman type term with a real coupling constant g. The
model reveals the Euclidean (jgj < 1) and Minkowskian (jgj > 1) phases separated by the phases g ¼ þ1

and g ¼ −1 of the Landau problem in the symmetric gauge with opposite orientation of the magnetic field.
A hidden symmetry emerges in the system at rational values of g. Its generators, together with the
Hamiltonian and angular momentum produce nonlinearly deformed uð2Þ and glð2;RÞ algebras in the cases
of 0 < jgj < 1 and ∞ > jgj > 1, which transmute one into another under the inversion g → −1=g.
Similarly, the true, uð2Þ, and extended conformal, glð2;RÞ, symmetries of the isotropic Euclidean
oscillator (g ¼ 0) interchange their roles in the isotropic Minkowskian oscillator (jgj ¼ ∞), while two
copies of the glð2;RÞ algebra of analogous symmetries mutually transmute in Landau phases. We show
that the ERIHO system is transformed by a peculiar unitary transformation into the anisotropic harmonic
oscillator generated, in turn, by anisotropic CBT. The relationship between the ERIHO and the subcritical
phases of the harmonically extended Landau problem, as well as with a plane isotropic harmonic oscillator
in a uniformly rotating reference frame, is established.

DOI: 10.1103/PhysRevD.103.106004

I. INTRODUCTION

The revival of interest in nonrelativistic conformal sym-
metry [1,2] was stimulated by nonrelativistic AdS/CFT
correspondence [3–6], its relevance to black holes physics
and cosmology [7–13], and its utility in the description of
strongly coupled condensed matter systems [14–17] and
QCD confinement problem [18,19]. In this context, the
mechanism to improve the properties of the scale-free
conformal mechanics proposed initially by de Alfaro,
Fubini, and Furlan [1] amounts to an improved choice of
the time coordinate in black holes physics since a usual time
variable is not a good global evolution coordinate on AdS2
[11]. Via the same basic mechanism, the mass and length
scales are introduced in holographic QCD [19]. On the other
hand, this mechanism corresponds to the Niederer’s trans-
formation [20], by which the relation between the free
particle’s and harmonic oscillator’s dynamics was estab-
lished at the classical and quantum levels. The latter
relationship, it turn, corresponds to different forms of
dynamics [21] with respect to the conformal symmetry.
In recent papers [22–24], the nonunitary conformal

bridge transformation (CBT) was introduced, by which
the noncompact and compact generators of the conformal
symmetry can be related in the spirit of Dirac’s different

forms of dynamics. This allowed us to establish the relation
between the quantum states and symmetries, including
hidden symmetries, of different asymptotically free and
associated harmonically trapped systems. The correspon-
dence comprises not only energy eigenstates of the sys-
tems, but also coherent and squeezed states. The nonunitary
CBT turns out to be closely related with a unitary trans-
formation between the quantum coordinate (Schrödinger)
and holomorphic (Fock-Bargmann) representations. Its
classical analog yields a canonical transformation corre-
sponding to the Hamiltonian vector flow produced by
generators of the conformal symmetry taken with particular
complex values of the parameters. Bearing in mind these
two last properties, the CBT shows some not explored yet
similarity with the PT -symmetry [25–29].
The CBT employed in Refs. [22–24] in different geo-

metric and dynamical backgrounds possesses the property
of rotational invariance. In this work, we exploit the
isotropy of the CBT to generate the exotic rotational
invariant one-parametric family of harmonic oscillator
systems which have a number of properties interesting
from a physical point of view. As will be showed, in
dependence on the value of the real parameter g, the family
reveals two distinct phases with Euclidean (jgj < 1) and
Minkowskian (jgj > 1) properties, which are separated by
the phases g ¼ þ1 and g ¼ −1 corresponding to the
Landau problem in the symmetric gauge with opposite
orientation of the magnetic field. At rational values of g,
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each system of the family possesses a hidden symmetry
[30], and so, is maximally superintegrable. Symmetries of
different phases mutually transmute under the inversion
g → −1=g, and in general case they generate nonlinear
algebras of the W-type [31]. We also reveal a unitary
relationship of the exotic rotationally invariant harmonic
oscillator (ERIHO) with the anisotropic harmonic oscillator
(AHO) systems, and establish the relation of our model
with subcritical phases of the harmonically extended
Landau problem.
The paper is organized as follows. In Sec. II, the basic

aspects associated with the CBT are reviewed. In Sec. III,
the nonunitary isotropic CBT is applied to a complex linear
combination of the generators of dilatations and rotations of
the two-dimensional free particle to produce the ERIHO.
The dynamics and symmetries of the system are discussed
in detail there at the classical and quantum levels. In
Sec. IV, the anisotropic CBT is used to generate the AHO
from the free particle. In Sec. V, the relationships of the
ERIHO with the AHO, harmonically extended Landau
problem, and a plane isotropic harmonic oscillator in a
uniformly rotating reference frame are explored. The final
Sec. VI is devoted to the discussion and outlook.

II. THE CONFORMAL BRIDGE
TRANSFORMATION

The technique of CBT [22] allows us to relate asymp-
tomatically free systems (such as a free particle, or
conformal mechanics model), characterized by the
soð2; 1Þ conformal symmetry, with harmonically confined
models that are slð2;RÞ conformal invariant (such as the
harmonic oscillator, or the conformal mechanics model of
de Alfaro, Fubini and Furlan [1]). In this section we review
the basic aspects associated with this transformation to
apply it then for the construction of the ERIHO.
Consider the quantum conformal soð2; 1Þ algebra

½D̂; Ĥ� ¼ iℏĤ; ½D̂; K̂� ¼ −iℏK̂; ½K̂; Ĥ� ¼ 2iℏD̂;

ð2:1Þ

where Ĥ, D̂ and K̂ are implied to be, respectively, the
Hamiltonian, the dilatation generator, and the generator of
special conformal transformations of a system, and we
assume here that the operators D̂ and K̂ do not depend
explicitly on time. By taking linear combinations

Ĵ 0 ¼
1

2ωℏ
ðĤ þ ω2K̂Þ;

Ĵ � ¼ −
1

2ωℏ
ðĤ − ω2K̂ � 2iωD̂Þ; ð2:2Þ

we produce the slð2;RÞ algebra

½Ĵ 0; Ĵ �� ¼ �Ĵ �; ½Ĵ −; Ĵ þ� ¼ 2Ĵ 0: ð2:3Þ

Though both algebraic structures are isomorphic, from a
physical point of view they describe the systems with
essentially different properties if Ĵ 0 is identified as the
Hamiltonian of another model. The generator Ĥ of the
soð2; 1Þ symmetry is noncompact and has a continuous
spectrum. It represents the Hamiltonian of an asymptom-
atically free (for jxj → ∞) particle. On the other hand, the
operator Ĵ 0 is a compact generator of the slð2;RÞNewton-
Hooke symmetry [20,32–35]. It is characterized by a
discrete spectrum corresponding to the associated harmoni-
cally trapped system. The Planck constant ℏ and parameter
ω > 0 of the dimension of frequency introduced in (2.2)
guarantee the dimensionless character of the generators Ĵ 0

and Ĵ �.
The nonunitary operators

Ŝ ¼ e−
ω
ℏK̂e

Ĥ
2ℏωe

i
ℏ lnð2ÞD̂ ¼ e−

ω
ℏK̂e

i
ℏ lnð2ÞD̂e Ĥ

ℏω;

Ŝ−1 ¼ e−
i
ℏ lnð2ÞD̂e− Ĥ

2ℏωe
ω
ℏK̂; ð2:4Þ

relate (intertwine) the sets of generators (Ĥ, D̂, K̂) and (Ĵ −,
Ĵ 0, Ĵ þ) by a similarity transformation,

ŜðĤÞŜ−1 ¼ −ωℏĴ −; ŜðiD̂ÞŜ−1 ¼ ℏĴ 0;

ŜðK̂ÞŜ−1 ¼ ℏ
ω
Ĵ þ: ð2:5Þ

The systems described by the Hamiltonians Ĥ and Ĵ 0

correspond, according to Dirac [21], to two different forms
of dynamics associated here with conformal symmetry.
This is the quantum version of the CBT, for some earlier
applications of which see Refs. [22–24]. This transforma-
tion implies, in particular, that

D̂jλi ¼ iℏλjλi ⇒ Ĵ 0ðŜjλiÞ ¼ λŜjλi; ð2:6Þ

ĤjEi ¼ EjEi ⇒ Ĵ −ðŜjEiÞ ¼ −
E
ℏω

ŜjEi: ð2:7Þ

One sees [22,24] then that to get normalizable eigenfunc-
tions of the operator Ĵ 0, the formal eigenvector jλi of the
operator D̂ has to satisfy the following properties:

(I) The series expð Ĥ
2ℏωÞjλi ¼

P∞
n¼0

1
n!ð2ℏωÞn ðĤÞnjλi has

to reduce to a finite number of terms, i.e., jλi should
be a Jordan state of the operator Ĥ corresponding to
zero energy.1

(II) The wave functions hxjλi must not have poles and
have to be single-valued.

1The wave functions of generalized Jordan states correspond-
ing to energy λ satisfy relations of the form PðĤÞΩλ ¼ ψλ, where
Ĥψλ ¼ λψλ and PðηÞ is a polynomial [36–38]. Here we consider
the Jordan states satisfying the relations ðĤÞlΩλ ¼ λψλ with
λ ¼ 0 for a certain natural number l.
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On the other hand, the eigenvectors jEi (physical, or
nonphysical, with complex eigenvalues in general case)
of Ĥ are transformed into eigenvectors of the lowering
operator Ĵ − of the slð2;RÞ algebra. Therefore, the result-
ing eigenstates in (2.7) are the coherent states of the system
with the Hamiltonian Ĵ 0.
The classical analog of the CBT is given by the complex

canonical transformation [22,24]

T ðτ; β; δ; γ; tÞ ¼ T2ωJ 0
ðτÞ ∘Tβδγ ∘THð−tÞ; ð2:8Þ

where

expðγFÞ⋆fðq; pÞ ≔ fðq; pÞ þ
X∞
n¼1

γn

n!
fF; f…; fF; fg…gg|fflffl{zfflffl}

n

≕TFðγÞðfÞ ð2:9Þ

is a Hamiltonian flux generated by a phase space function
F, and

Tβδγ ≔ TK0
ðβÞ ∘THðδÞ ∘TD0

ðγÞ
¼ TK0

ðδÞ ∘TD0
ðγÞ ∘THð2δÞ; ð2:10Þ

with δ ¼ i
2ω

; β ¼ −iω; γ ¼ − ln 2: ð2:11Þ

Here, D0 ¼ Djt¼0 and K0 ¼ Kjt¼0, and we assume that the
generators of dilatations, D, and special conformal trans-
formations, K, are explicitly depending on time, dynamical
integrals of motion satisfying a relation of the form
_A ¼ fA;Hg þ ∂A

∂t ¼ 0. In correspondence with this, in
the composed Hamiltonian flux (2.8), the first transforma-
tion THð−tÞ removes the t dependence in the dynamical
integrals D and K. The second transformation relates these
generators at t ¼ 0 with the generators of the slð2;RÞ
algebra J 0 and J � taken at τ ¼ 0 (this is the classical
analog of the quantum similarity transformation presented
above). Finally, T2ωJ 0

ðτÞ restores the τ dependence2 of the
generators J �.
In particular case of the d-dimensional quantum free

particle, its conformal symmetry generators are given in the
Schrödinger representation by

Ĥ ¼
Xd
i¼1

Ĥi; D̂ ¼
Xd
i¼1

D̂i; K̂ ¼
Xd
i¼1

K̂i; ð2:12Þ

Ĥi ¼
−ℏ2

2m
∂2

∂x2i ; D̂i ¼ −i
ℏ
2

�
xi

∂
∂xi þ

1

2

�
; K̂i ¼

m
2
x2i :

ð2:13Þ

Here, each set of generators Ĥi, D̂i and K̂i satisfies the
soð2; 1Þ algebraic relations (2.13), and so, the operators Ĥ,
D̂ and K̂ generate the same soð2; 1Þ Lie algebra.
By using generators (2.12) to construct the conformal

bridge operators (2.4), one gets

Ŝ ¼ Πd
i¼1Ŝi; Ŝi ¼ e−

ω
ℏK̂ie

Ĥi
2ℏωe

i
ℏ lnð2ÞD̂i ; ½Ŝi; Ŝj� ¼ 0:

ð2:14Þ

The CBT produced by the operator Ŝ and its inverse is a
composition of d independent transformations. Each of
these transformations touches a particular spatial direction,
leaving the rest invariant, and here we use the same
parameter ω to guarantee the rotational invariance of the
transformation. Later we will consider other possibilities.
In correspondence with (2.5), the total transformation Ŝ
produces the generators

Ĵ 0 ¼
Xd
i¼0

Ĵ i
0 ¼

1

2ωℏ
Ĥosc; Ĵ � ¼

Xd
i¼0

Ĵ i
�; ð2:15Þ

Ĵ i
0 ¼

1

2

�
âþi â

−
i þ 1

2

�
¼ 1

2ωℏ
Ĥi

osc; Ĵ i
� ¼ 1

2
ðâ�i Þ2;

ð2:16Þ

where Ĥosc ¼
P

d
i¼1 Ĥ

i
osc is the quantum Hamiltonian of

the d-dimensional isotropic harmonic oscillator, and

â�i ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r �
xi ∓ ℏ

mω

∂
∂xi

�
; ½â�i ; â�j � ¼ 0;

½â−i ; âþj � ¼ δij; ð2:17Þ

are the usual first-order ladder operators of the system.
In the free particle system, we also have the linear

momenta operators and the Galilean boosts for each
direction,

p̂j ¼ −iℏ
∂
∂xj ; ξ̂j ¼ mxj; ½ξ̂j; ξ̂k� ¼ ½p̂j; p̂k� ¼ 0;

½ξ̂j; p̂k� ¼ iℏmδjk: ð2:18Þ

The application of the CBT to these operators produces (no
summation over repeated index)

Ŝðp̂jÞŜ−1 ¼ Ŝjðp̂jÞŜ−1
j ¼ −i

ffiffiffiffiffiffiffiffiffiffi
mℏω

p
â−j ; ð2:19Þ

2We are interested in time dependence of the classical
dynamical integrals as we will investigate the classical dynamics
of the corresponding systems. The time dependence in the
operators in Heisenberg picture can be restored analogously
by inclusion of the respective evolution operators, but we will not
be interested in it at the quantum level.
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Ŝðξ̂jÞŜ−1 ¼ Ŝjðξ̂jÞŜ−1
j ¼

ffiffiffiffiffiffiffi
mℏ
ω

r
âþj : ð2:20Þ

The angular momentum tensor

M̂ij ¼
1

m
ðξ̂ip̂j − ξ̂jp̂iÞ ¼ −iℏðâþi â−j − âþj â

−
i Þ ð2:21Þ

commutes with the operator Ŝ and its inverse.
As any symmetry generator of the d-dimensional free

particle (harmonic oscillator) is a function of ξ̂i and p̂i (â�i ),
the CBT allows us to map the integrals of one system to
those of another system.

III. EXOTIC ROTATIONALLY INVARIANT
HARMONIC OSCILLATOR

From now on we restrict ourselves to the case of d ¼ 2
and extend the CBT of the previous section to generate and
investigate the ERIHO. For this we exploit the invariance of
the rotation generator p̂φ ¼ M̂12 under the CBT described
in the previous section, and consider a complex linear
combination of the classical free particle symmetry gen-
erators 2iD0 þ gpφ, where g is a real parameter, to produce
the associated system as a generalization of the isotropic
harmonic oscillator that is obtained at g ¼ 0. One has
2iD0 þ gpφ ¼ xjΔjkpk, where Δjk ¼ iδjk þ gϵjk is the
complex tensor satisfying the relations

ΔjkΔjl ¼ ðg2 − 1Þδkl; detΔ ¼ g2 − 1: ð3:1Þ

Based on (3.1), one can expect that the one-parametric
family of the quantum planar rotationally invariant systems
described by

Ĥg ¼ Ŝωð2iD̂þ gp̂φÞŜ−1 ¼ Ĥosc þ gωp̂φ ð3:2Þ

should have essentially different physical properties and
symmetries in the cases g2 < 1 and g2 > 1 separated by the
special parameter values g ¼ �1. The symmetries and the
states of the quantum (and corresponding classical) system
Ĥg has to be related by the CBT to those of the operator
2iD̂þ gp̂φ of the free particle.
In terms of the “circular” ladder operators,

b̂−1 ¼ 1ffiffiffi
2

p ðâ−1 − iâ−2 Þ; b̂þ1 ¼ ðb̂−1 Þ†;

b̂−2 ¼ 1ffiffiffi
2

p ðâ−1 þ iâ−2 Þ; b̂þ2 ¼ ðb̂−2 Þ†; ð3:3Þ

being unitary transformation of â�i and satisfying relations
½b̂�i ; b̂�j � ¼ 0, ½b̂−i ; b̂þj � ¼ δij, the Hamiltonian Ĥg takes the
form

Ĥg ¼ ℏωðl1b̂
þ
1 b̂

−
1 þ l2b̂

þ
2 b̂

−
2 þ 1Þ;

l1 ¼ 1þ g; l2 ¼ 1 − g: ð3:4Þ

This expression for Ĥg reminds us the AHO Hamiltonian,
but presented here in a rotationally invariant form. The
angular momentum operator p̂φ ¼ ϵijx̂jp̂j ¼ −iℏϵijâþi â−j
is represented as

p̂φ ¼ ℏðb̂þ1 b̂−1 − b̂þ2 b̂
−
2 Þ; ð3:5Þ

and it commutes with Ĥg, ½Ĥg; p̂φ� ¼ 0.
The one-parameter family (3.4) of the ERIHOs is

interesting as it interpolates between different types of
mechanical systems depending on the value of the real
parameter g:
(1) When g ¼ 0, we have the planar isotropic harmonic

oscillator.
(2) For g ¼ �1, the system corresponds to the Landau

problem of a particle of charge q in magnetic field
B3 ¼ ϵij∂iA�

j ¼∓ B given by the two-dimensional
vector potential in symmetric gauge

A�
i ¼ � 1

2
Bϵijxj ⇒ ω ¼ ωB ≡ qB

2mc
; ð3:6Þ

where we assume qB > 0.
(3) The case jgj < 1 looks like the Euclidean AHO with

different frequencies ω1 ≠ ω2, ωi ¼ liω. When
jgj > 1 we have instead the form of the Minkow-
skian AHO with frequencies of two different signs.
Notice that the family with jgj > 1 resembles the

Pais-Uhlenbeck oscillator [39].3

(4) In the limit g → ∞, one has g−1Ĥg → ωp̂φ. In terms
of the operators b̂�i this corresponds to the isotropic
Minkowskian oscillator, see Eq. (3.5).

The first two cases were analyzed in the light of the CBT
in [22]. In this section we investigate the properties of
the ERIHO (3.2) in the general case, at the classical and
quantum levels. This will allow us to reveal rather non-
trivial relations between dynamics and symmetries of the
systems with different values of the parameter g. In
particular, between those corresponding to the isotropic
Minkowskian oscillator case, g2 ¼ ∞, on the one hand, and
the cases of the isotropic harmonic oscillator, g ¼ 0, and
Landau problem, g2 ¼ 1.

A. Classical picture

Let us consider the classical system described by the
Hamiltonian

3Pais-Uhlenbeck oscillator attracted recently considerable
attention in relation to the PT -symmetry, see Refs. [40–42].
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Hg ¼ Hosc þ gωpφ; Hosc ¼
1

2m
pipi þ

1

2
mω2xixi;

ð3:7Þ

being the classical analog of (3.2). As in the quantum case,
this Hamiltonian arises by applying the classical CBT to
the complex linear combination ωð2iDþ gpφÞ of the
symmetry generators of the free particle system.
In terms of the classical analogues of circular ladder

operators

b−1 ¼ 1ffiffiffi
2

p ða−1 − ia−2 Þ; bþ1 ¼ ðb−1 Þ�;

b−2 ¼ 1ffiffiffi
2

p ða−1 þ ia−2 Þ; bþ2 ¼ ðb−2 Þ�; ð3:8Þ

a�i ¼
ffiffiffiffiffiffiffi
mω

2

r �
xi ∓ i

mω
pi

�
; ð3:9Þ

Hamiltonian (3.7) takes the form

Hg ¼ ωðl1b
þ
1 b

−
1 þ l2b

þ
2 b

−
2 Þ; l1 ¼ 1þ g; l2 ¼ 1 − g:

ð3:10Þ

The equations of motion and their solutions are

_b�i ¼ fb�i ;Hgg ¼ �iωlib�i ⇒ b�i ðtÞ ¼ e�iωlitb�i ð0Þ≔ b�i :

ð3:11Þ

Using (3.8) and (3.9), we have
ffiffiffiffiffiffiffi
mω

p ðx1 þ ix2Þ ¼
bþ1 þ b−2 , and find the trajectory of the particle,

zðtÞ ¼ x1ðtÞ þ ix2ðtÞ ¼ R1eiγ1eiωl1t þ R2e−iγ2e−iωl2t;

ð3:12Þ

where Ri ≥ 0 and γi ∈ R are the integration constants. The
exponents in (3.12) evolve in opposite, clockwise and
counterclockwise, directions in the case g2 < 1, while for
g2 > 1 they evolve in one of the two directions depending
on the sign of g. At g2 ¼ 1 one of the frequencies ωi ¼ liω
vanishes and (3.12) describes a closed circular trajectory.
At g ¼ þ1 (g ¼ −1), ω2 ¼ 0 (ω1 ¼ 0), and the orbit is a
circumference of radius R1 (R2) centered at ðX1; X2Þ with
Z ¼ X1 þ iX2 ¼ R2e−iγ2 (Z ¼ R1eiγ1). In general, the tra-
jectories will be closed for arbitrary choice of the initial
data (integration constants) iff the condition l1=l2 ¼
q2=q1 with q1; q2 ∈ Z is fulfilled, that implies rational
values for the parameter g ¼ ðq2 − q1Þ=ðq1 þ q2Þ. Some
trajectories for rational values of g are shown in Figs. 1
and 2.
Rescaling the frequency parameter, ω → ω=jgj, and

taking limit jgj → ∞, Hamiltonian (3.10) reduces to the
Hamiltonian of the isotropic Minkowskian oscillator

H∞ ¼ ϵ∞ωpφ ¼ ϵ∞ωðbþ1 b−1 − bþ2 b
−
2 Þ; ð3:13Þ

where ϵ∞ ¼ �1 for g → �∞. Solution to equations of
motion for system (3.13) are obtained from (3.12) by the
same procedure ω → ω=jgj, jgj → ∞,

zðtÞ ¼ xðtÞ þ iyðtÞ ¼ R1eiðωtþγ1Þ þ R2eiðωt−γ2Þ: ð3:14Þ

For the sake of definiteness we assume here ϵ∞ ¼ þ1.
Equation (3.14) describes a circular trajectory centered at
the origin, for which the squared radius is given by

x2ðtÞ þ y2ðtÞ ¼ R2
1 þ R2

2 þ 2R1R2 cosðγ1 þ γ2Þ; ð3:15Þ

and so, ðR1 − R2Þ2 ≤ x2ðtÞ þ y2ðtÞ ≤ ðR1 þ R2Þ2. From
the viewpoint of dynamics, the case of the isotropic
Minkowskian oscillator is similar, on the one hand, to
the case of Euclidean isotropic oscillator (g ¼ 0), whose
trajectories also are centered at the origin, but which are
ellipses that reduce to circular trajectories only for par-
ticular choice of the initial data. On the other hand, the
isotropic Minkowskian oscillator is similar to the case of
Landau problem (g2 ¼ 1), where trajectories are circular,
but which are centered at the origin only for a particular
choice of the initial data.
The explicitly depending on time complex phase space

functions

β�j ¼ b�j e
∓iωljt; j ¼ 1; 2; ð3:16Þ

that correspond to the integration constants b�j ð0Þ ¼
Rje�iγj , are the dynamical integrals of motion, which
generate the two-dimensional Heisenberg algebra. In the
case g ¼ þ1 (g ¼ −1), one pair of them transforms into the
true, not depending explicitly on time mutually conjugate
complex integrals of motion of the Landau problem. Being
multiplied by 1ffiffiffiffiffi

mω
p , they correspond to the coordinates

ðX1; X2Þ of the center of the circular orbit having nonzero
Poisson brackets fX1; X2g ¼ g

2mω, g ¼ �1. Using these,
dynamical in the case g2 ≠ 1 integrals (3.16), one can
construct ten quadratic integrals

J � ¼ e∓2iωtb�1 b
�
2 ; J 0 ¼

1

2
ðbþ1 b−1 þ bþ2 b

−
2 Þ ¼

1

2ω
Hosc;

ð3:17Þ

L2 ¼
1

2
ðbþ1 b−1 − bþ2 b

−
2 Þ ¼

1

2
pφ; L� ¼ e∓2iωgtb�1 b

∓
2 ;

ð3:18Þ

B�
1 ¼ e∓2iωl1tðb�1 Þ2; B�

2 ¼ e∓2iωl2tðb�2 Þ2: ð3:19Þ

In this set, only J 0 and L2 are the true integrals for general
case of g since Hg ¼ 2ωðJ 0 þ gL2Þ and fJ 0;L2g ¼ 0.
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Here, the quantities (3.17) and (3.18) generate, respectively,
the slð2;RÞ and the suð2Þ algebras. All the quadratic
integrals (3.17), (3.18), and (3.19) generate the spð4;RÞ
algebra with the following nonzero Poisson brackets,

fJ 0;J �g ¼∓ iJ �; fJ −;J þg ¼ −2iJ 0; ð3:20Þ

fL2;L�g ¼∓ iL�; fLþ;L−g ¼ −2iL2; ð3:21Þ

fJ �;L∓g ¼ �iB�
2 ; fJ �;L�g ¼ �iB�

1 ; ð3:22Þ

fJ 0;B�
j g ¼∓ iB�

j ; fJ ∓;B�
2 g ¼∓ 2iL∓;

fJ ∓;B�
1 g ¼∓ 2iL�; ð3:23Þ

fL2;B�
j g ¼ �ð−1ÞjiB�

j ;

fL�;B
∓
1 g ¼ �2iJ ∓; fL�;B�

2 g ¼∓ 2iJ �; ð3:24Þ

fB−
1 ;B

þ
1 g ¼ −4iðJ 0 þ L2Þ;

fB−
2 ;B

þ
2 g ¼ −4iðJ 0 − L2Þ: ð3:25Þ

By taking repeatedly the Poisson brackets of any of five sets
of four integrals ðJ �;L�Þ, ðJ �;B�

1 Þ, ðJ �;B�
2 Þ, ðL�;B�

1 Þ
and ðL�;B�

2 Þ, all the spð4;RÞ algebra is produced. On the
other hand, we notice that the algebra contains the suð2Þ ⊕
uð1Þ ≅ uð2Þ subalgebra generated by the set of integrals

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Trajectories for some rational values of g. In cases (b), (e), and (h), pφ ¼ 0 and trajectories pass through the origin. In cases (a),
(d) and (g), pφ < 0, while cases (c), (f) and (i) correspond to pφ > 0.
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ðS1Þ∶ ðL2;L�Þ ⊕ J 0; L2
2 þ LþL− ¼ J 2

0; ð3:26Þ
where the second equality corresponds to relation between
the Casimir element of the suð2Þ subalgebra and central
element J 0 of the uð2Þ.
The spð4;RÞ algebra also contains three copies of the

Lie algebra slð2;RÞ ⊕ uð1Þ ≅ glð2;RÞ generated by any
of the three sets of integrals

ðS2Þ∶ ðJ 0;J �Þ ⊕ L2; −J 2
0 þ J þJ − ¼ −L2

2;

ð3:27Þ

ðS3Þ∶
�
1

2
ðJ 0 − L2Þ;

1

2
B�
2

�
⊕ ðJ 0 þ L2Þ;

−
�
1

2
ðJ 0 − L2Þ

�
2

þ 1

2
Bþ
2

1

2
B−
2 ¼ 0; ð3:28Þ

ðS4Þ∶
�
1

2
ðJ 0 þ L2Þ;

1

2
B�
1

�
⊕ ðJ 0 − L2Þ;

−
�
1

2
ðJ 0 þ L2Þ

�
2

þ 1

2
Bþ
1

1

2
B−
1 ¼ 0: ð3:29Þ

Here, analogously to (3.26), we indicated the values taken
by the Casimir element of the slð2;RÞ subalgebra in each
copy of glð2;RÞ.
In the case g ¼ 0, besides J 0 and L2, the system has two

additional true integrals of motion L� not depending
explicitly on time, and so, the uð2Þ subalgebra is the true
symmetry of the isotropic harmonic oscillator Hosc. For it,

the slð2;RÞ part of the (S2) subalgebra corresponds to the
dynamical conformal symmetry.
For Landau problem with g ¼ 1, the subalgebra (S3)

corresponds to the true symmetry of the system, while its
dynamical conformal symmetry is generated by the slð2;RÞ
part of the (S4) subalgebra. In the case of Landau problem
with g ¼ −1, the true symmetry corresponds to subalgebra
(S4), and its dynamical conformal symmetry is generated by
the slð2;RÞ part of the subalgebra (S3).
In the case of the isotropic Minkowskian oscillator

(obtained by ω → ω=jgj, jgj → ∞), the subalgebra (S2)
with its slð2;RÞ part corresponds to the true symmetry,
while the suð2Þ part of the (S1) subalgebra is its dynamical
conformal symmetry. We have here a kind of transmutation
of the true symmetry into dynamical conformal symmetry
and vise versa when we pass over from g ¼ 0 to the
jgj ¼ ∞ case. We return to this point below in Sec. V B.
Analogous phenomenon of transmutation of symmetries
takes place for the Landau problem corresponding to the
cases of g ¼ þ1 and g ¼ −1. However, one notes that in
the Landau problem in both cases the true and dynamical
conformal symmetries correspond to different realizations
of the same glð2;RÞ algebra.
In the case of the isotropic Euclidean oscillator (g ¼ 0),

the integrals J 0 ¼ 1
2ωHosc and L2 ¼ 1

2
pφ define the major

and minor semiaxes of the elliptic orbit, while the pair of
the integrals L� defines its orientation in the plane via their
phase (γ1 − γ2), see Eq. (3.12). The modulus of L� is fixed
by the integrals J 0 and L2 via the suð2Þ Casimir value,
see Eq. (3.26).
In the case of the isotropic Minkowskian oscillator,

the radius of its circular orbit centered at the origin is

(a) (b) (c)

(d) (e) (f)

FIG. 2. Trajectories for some rational values of g and R1=R2. “Dual” figures (a) and (d), see below, correspond to a general case
R1jl1j ¼ R2jl2j of the trajectories with cusps, in which velocity turns into zero. In dual cases (b)-(e) and (c)-(f) the indicated equality is
violated, and corresponding trajectories are smooth.
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defined by the three parameters R1, R2 and ðγ1 þ γ2Þ, see
Eq. (3.14), which are fixed, again, by the integrals
L2 ¼ 1

2ωH∞, J 0, and by the phase of the true integrals
J � of the system. The modulus of J � is fixed, in turn, by
the integrals J 0 and L2 via the slð2;RÞ Casimir value,
see Eq. (3.27).
In the Landau problem, the radius of the circular

orbit is defined by the corresponding Hamiltonian Hg¼1 ¼
2ωðJ 0 þ L2Þ (Hg¼−1 ¼ 2ωðJ 0 − L2Þ), while its center is
given by the slð2;RÞ generators B�

2 (B�
1 ) (being the

squares of the corresponding linear integrals β�2 (β�1 )).
Zero values of the slð2;RÞ classical Casimirs in Eqs. (3.28)
and (3.29) reflect the fact that in the Landau problem
dynamics is effectively governed by the corresponding
one-dimensional harmonic oscillator HamiltoniansHg¼1 ¼
ωbþ1 b

−
1 (Hg¼−1 ¼ bþ2 b

−
2 ) [22].

The closed character of the trajectories for rational values
of the parameter g different from the already discussed
cases of g ¼ 0, �1, �∞ indicates that some additional true
integrals of motion also have to appear in the corresponding
systems. Such integrals, however, are of higher order and,
as we will see, produce nonlinear deformations of the uð2Þ
and glð2;RÞ symmetries in the cases of g2 < 1 and g2 > 1,
respectively. They can be found by taking the products of
dynamical integrals βþj and β−j so that the time-dependent
exponential factors in them will be canceled. For this,
consider the dynamical integrals

Lþ
j1;j2

¼ ðβþ1 Þj1ðβ−2 Þj2 ¼ e−iωðj1l1−j2l2Þtðbþ1 Þj1ðb−2 Þj2 :
L−
j1;j2

¼ ðLþ
j1;j2

Þ�; ð3:30Þ
where, in principle, the indexes j1, j2 can take any non-
negative integer values. In order (3.30) would be true
integrals for the system Hg, fHg;L�

j1;j2
g ¼ 0, there should

exist the exponents ji ¼ si that obey the relation

s1l1 − s2l2 ¼ 0: ð3:31Þ
The condition (3.31) is satisfied iff g ¼ ðs2 − s1Þ=
ðs1 þ s2Þ. The positive integer numbers s1 and s2 can be
chosen in such a way that the fraction is irreducible, that we
will imply in what follows. So, two additional higher order
true integrals L�

s1;s2 of the indicated form exist for rational
values of g with jgj < 1.
The time-independent integrals L�

s1;s2 are eigenstates of
the true integrals J 0, L2 in the sense of Poisson brackets,
while dynamical integrals J �, change their indexes by
transforming them into dynamical integrals:

fL2;L�
s1;s2g ¼∓ i

2
ðs1 þ s2ÞL�

s1;s2 ;

fJ 0;L�
s1;s2g ¼∓ i

2
ðs1 − s2ÞL�

s1;s2 ; ð3:32Þ

fJ �;L�
s1;s2g ¼ �is2L�

s1þ1;s2−1;

fJ ∓;L�
s1;s2g ¼∓ is1L�

s1−1;s2þ1: ð3:33Þ

Taking Poisson brackets of J 0, L2, and J � with the
generated integrals L�

s1þ1;s2−1 and L�
s1−1;s2þ1, we continue

the process, producing in this way the finite set of the
integrals

L�
s1þs2;0

;…;L�
s1;s2 ;…L�

0;s1þs2
; ð3:34Þ

in which only L�
s1;s2 are the true, not depending explicitly

on time, integrals, while the rest are dynamical, time-
dependent higher order integrals. Using the Jacobi identity,
one can show that the phase space functions fL−

n1;n2 ;L
þ
r1;r2g

with n1 þ n2 ¼ r1 þ r2 ¼ s1 þ s2 Poisson commute with
L2, and therefore, this bracket must be a function of the
slð2;RÞ generators (3.17) and the angular momentum.
Moreover, one has

ffL−
s1;s2 ;L

þ
s1;s2g;J 0g ¼ 0⇒ fL−

s1;s2 ;L
þ
s1;s2g ¼ FgðHg;L2Þ;

ð3:35Þ

where Fg is a polynomial function of Hg and L2. In
conclusion, the set (J 0, J �, L2, L�

k;s1þs2−k), where
k ¼ 0;…; s1 þ s2, produces a finite dimensional nonlinear
algebra, in which the nonlinear subalgebra generated by
true integrals Hg, L2, and L�

s1;s2 corresponds to a deforma-
tion of uð2Þ.
The already discussed in detail cases of the isotropic

Euclidean oscillator and Landau problems with their
spð4;RÞ Lie algebra can also be included in the described
structure. The case s1 ¼ s2 ¼ 1 reproduces here the case
g ¼ 0, for which the integrals L2 and L�

1;1 ¼ L�, generate
the suð2Þ hidden symmetry of the system. On the other
hand s1 ¼ 0 and s2 ¼ 2 (s1 ¼ 2 and s2 ¼ 0) yields g ¼ 1

(g ¼ −1), for which L�
0;2 ¼ 2B�

2 (L�
2;0 ¼ 2B�

1 ). Taking
s1 ¼ 0 and s2 ¼ 1 (s1 ¼ 1 and s2 ¼ 0), we reproduce
the first order true integrals for the Landau problem with
g ¼ 1 (g ¼ −1), L�

0;1 ¼ b∓2 (L�
1;0 ¼ b∓1 ), that generate

translations of particle’s coordinates xi.
If instead of (3.36) we consider the dynamical integrals

J þ
j1;j2

¼ ðβþ1 Þj1ðβþ2 Þj2 ¼ e−iωðj1l1þj2l2Þtðbþ1 Þj1ðbþ2 Þj2 ;
J −

j1;j2
¼ ðJ þ

j1;j2
Þ�; ð3:36Þ

one notes that the J �
s1;s2 are the time-independent, true

integrals of motion if an only if the condition

s1l1 þ s2l2 ¼ 0; ð3:37Þ

is satisfied, i.e., when g ¼ ðs2 þ s1Þ=ðs2 − s1Þ, that implies
jgj > 1. In this case, we consider the Poisson bracket
relations of J �

s1;s2 with the true integrals J 0 andL2 and two
other generators L� of the dynamical suð2Þ symmetry:
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fJ 0;J �
s1;s2g ¼∓ i

2
ðs1 þ s2ÞJ �

s1;s2 ;

fL2;J �
s1;s2g ¼∓ i

2
ðs1 − s2ÞJ �

s1;s2 ; ð3:38Þ

fL�;J �
s1;s2g ¼∓ is2J

þ
s1þ1;s2−1;

fL∓;J �
s1;s2g ¼ �is1J

þ
s1−1;s2þ1: ð3:39Þ

By the same reasoning as in the case of rational g with
jgj < 1, we generate the set

J �
s1þs2;0

;…;J �
s1;s2 ;…;J �

0;s1þs2
; ð3:40Þ

in which only J �
s1;s2 are the true integrals, while the rest are

the dynamical integrals of motion. They together with J 0,
L2, and L� generate a finite nonlinear algebra, in which
fJ −

j1;j2
;J þ

j1;j2
g is a polynomial function ofHg and L2 only.

Taking here s1 ¼ 0 and s2 ¼ 2 (s1 ¼ 2 and s2 ¼ 0),
we reproduce the quadratic integrals J �

0;2 ¼ 2B�
2 (J �

2;0 ¼
2B�

1 ) of the Landau problem with g ¼ 1 (g ¼ −1). The
values s1 ¼ 0 and s2 ¼ 1 (s1 ¼ 1 and s2 ¼ 0) provide us
with the corresponding linear integrals of the Landau
problem with g ¼ 1 (g ¼ −1). On the other hand, setting
formally s1 ¼ s2 ¼ 1, we reproduce the true integrals
J �

1;1 ¼ J � of the isotropic Minkowskian oscillator, which
together with J 0 and H∞ ¼ 2ωL2 generate its Lie alge-
braic glð2;RÞ symmetry. In the case of finite rational values
of g with jgj > 1, the subalgebra generated by J �

s1;s2, J 0,
and Hg is identified as a nonlinear deformation of
the glð2;RÞ.
We do not consider here a rather complicated complete

nonlinear Poisson bracket algebraic structure generated
by the true and dynamical integrals in the case of rational
values of the parameter g different from the already
discussed particular cases. We only note that the repeated
Poisson brackets of higher order dynamical integral
Lþ
s1þs2;0

¼ J þ
s1þs2;0

(L−
s1þs2;0

¼ J −
s1þs2;0

) of the case
g ¼ ðs2 − s1Þ=ðs2 þ s1Þ ≔ gs1;s2< , jgs1;s2< j < 1, with quad-
ratic dynamical integrals L− (Lþ) generate all the set
(3.40) of the integrals that we have had in the case of Hg

with g¼ðs2þs1Þ=ðs2−s1Þ≔gs1;s2> ¼1=gs1;s2< , jgs1;s2> j > 1.
All the integrals (3.40) are, however, dynamical for the
system Hg with g ¼ gs1;s2< . Analogously, the repeated
Poisson brackets of higher order dynamical integral
J þ

s1þs2;0
(J −

s1þs2;0
) of the case g ¼ gs1;s2> with quadratic

dynamical integrals L− (Lþ) generate all the set (3.34) of
the integrals that we have had in the case of Hg with
g ¼ gs1;s2< . All integrals (3.34) are dynamical for the system
Hg with g ¼ gs1;s2> . From this point of view we also have a
kind of transmutation of symmetries for the “dual” pairs of
the systems with g ¼ gs1;s2< and g ¼ gs1;s2> ¼ 1=gs1;s2< , where
the nonlinearly deformed uð2Þ and glð2;RÞ subalgebras
generated by the sets (Hg, L2, L�

s1;s2) and (Hg, J 0, J �
s1;s2)

change their role in the sense of the true and dynamical
subsymmetries.

B. Quantum picture

Now, we return to the quantum system (3.2) to analyze,
in the light of the CBT, its spectrum, integrals associated
with degeneracy of the energy levels, and spectrum gen-
erating ladder operators.
To find normalizable eigenstates and the spectrum of the

system (3.2) by means of the CBT, we exploit its rotational
invariance reflected, particularly, in the form of classical
solutions (3.12), and pass over from Cartesian coordinates
xi to the complex variable z ¼ x1 þ ix2, ∂

∂z ¼ 1
2
ð ∂
∂x1 − i ∂

∂x2Þ.
In terms of z and z�, the equation for formal eigenfunctions
ϕλðx1; x2Þ ¼ hx1; x2jλi of the non-Hermitian operator
2iD̂þ gp̂φ takes the form

ð2iD̂þgp̂φÞϕλ¼ℏ

�
ð1þgÞz ∂∂zþð1−gÞz� ∂

∂z�
�
ϕλ¼ λϕλ:

ð3:41Þ

The well defined in R2 simultaneous eigenfunctions of the
mutually commuting operators 2iD̂ and p̂φ are

ϕn1;n2 ¼ zn1ðz�Þn2 ; ð3:42Þ

where n1 and n2 are non-negative integers. They satisfy
relations

p̂−ϕn1;n2 ¼ −2iℏn1ϕn1−1;n2 ; p̂þϕn1;n2 ¼ −2iℏn2ϕn1;n2−1;

ð3:43Þ

ξ̂þϕn1;n2 ¼ mϕn1þ1;n2 ; ξ̂−ϕn1;n2 ¼ mϕn1;n2þ1; ð3:44Þ

where p̂� ¼ p̂1 � ip̂2 and ξ̂� ¼ ξ̂1 � iξ̂2. Therefore, free
particle quadratic operators Ĥ, D̂, K̂ and p̂φ act on states
(3.42) as follows:

Ĥϕn1;n2 ¼ −
2ℏ
m

n1n2ϕn1−1;n2−1; K̂ϕn1;n2 ¼
m
2
ϕn1þ1;n2þ1;

ð3:45Þ

2iD̂ϕn1;n2 ¼ ℏðn1 þ n2 þ 1Þϕn1;n2 ;

p̂φϕn1;n2 ¼ ℏðn1 − n2Þϕn1;n2 : ð3:46Þ

From the first equation in (3.45), we see that the action
of the free particle Hamiltonian on ϕn1;n2 decreases both
indexes n1 and n2, and annihilates ϕn1;0 and ϕ0;n2 . It is clear
then that functions (3.42) are the zero energy Jordan states
of Ĥ. Using Eq. (3.46), we find the normalized wave
functions Ψn1;n2 ¼ N n1;n2Ŝϕn1;n2 (where N n1;n2 is a
numerical factor, see below) of Ĥg,
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ĤgΨn1;n2 ¼ En1;n2Ψn1;n2 ; En1;n2 ¼ ℏωðl1n1 þ l2n2 þ 1Þ;
ð3:47Þ

which simultaneously are eigenfunctions of the angular
momentum operator, p̂φΨn1;n2 ¼ ℏðn1 − n2ÞΨn1;n2 . Note
that the spectrum of the system has degeneracies if an
only if g is a rational number. All energy levels are positive
if jgj ≤ 1, while for jgj > 1 the energy levels can take
negative values and the spectrum is not bounded from
below. Moreover, for rational g with jgj < 1 each energy
level is finitely degenerate and the ground state with n1 ¼
n2 ¼ 0 is nondegenerate, while for rational g with jgj ≥ 1
each energy level has infinite degeneracy. In the limit case
of the Landau phase g ¼ þ1 (g ¼ −1), one has l2 ¼ 0
(l1 ¼ 0), and all the energy levels, including the lowest
Landau level, become infinitely degenerate.
The explicit action of the CBT operator Ŝ on functions

ϕn1;n2 is computed by employing the inverse Weierstrass
transformation [22,43]

e
−1
4
d2

dη2ηn ¼ 2−nHnðηÞ; ð3:48Þ
where HnðηÞ are the Hermite polynomials. This gives us
the normalized eigenfunctions

Ψn1;n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mω

ℏπn1!n2!

r
Hn1;n2

� ffiffiffiffiffiffiffi
mω

ℏ

r
x1;

ffiffiffiffiffiffiffi
mω

ℏ

r
x2

�
e−

mω
2ℏ ðx21þx2

2
Þ;

ð3:49Þ

N n1;n2 ¼
�
2ℏ
mω

�n1þn2
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1!n2!π
p

: ð3:50Þ

Here, the functions

Hn1;n2ðη1; η2Þ ¼ 2n1þn2
Xn1
k¼0

Xn2
l¼0

ðiÞn1−n2þl−kHlþkðη1Þ

×Hn1þn2−l−kðη2Þ; ð3:51ÞZ
∞

−∞

Z
∞

−∞
Hn1;n2ðη1; η2ÞHl1;l2ðη1; η2Þe−ðη

2
1
þη2

2
Þdη1dη2

¼ πn1!n2!δn1;l1δn2;l2 ; ð3:52Þ
correspond to the generalized Hermite polynomials of two
indexes [44].
Using the CBT relations

Ŝðp̂−ÞŜ−1 ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω

p
b̂−1 ;

Ŝðp̂þÞŜ−1 ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω

p
b̂−2 ; ð3:53Þ

Ŝðξ̂þÞŜ−1 ¼
ffiffiffiffiffiffiffiffiffi
2mℏ
ω

r
b̂þ1 ; Ŝðξ̂−ÞŜ−1 ¼

ffiffiffiffiffiffiffiffiffi
2mℏ
ω

r
b̂þ2 ;

ð3:54Þ

one finds the action of operators b̂�i on eigenstates (3.49),

b̂−1Ψn1;n2 ¼
ffiffiffiffiffi
n1

p
Ψn1−1;n2 ; b̂−2Ψn1;n2 ¼

ffiffiffiffiffi
n2

p
Ψn1;n2−1

ð3:55Þ

b̂þ1 Ψn1;n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ 1

p
Ψn1þ1;n2 ;

b̂þ2 Ψn1;n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
Ψn1;n2þ1; ð3:56Þ

wherefrom it is clear that they are spectrum generating
operators.
Let us study the spectral characteristics for the cases in

which g is a rational number. We do not consider the issue
of the quantum algebra here which inherits the properties of
the corresponding classical algebra, but only identify the
integrals associated with the spectral degenerations of the
system.
Case jgj < 1. Let us assume that g ¼ gs1;s2< ¼ s2−s1

s2þs1
is an

irreducible fraction with some fixed non-negative integer
values of s1 and s2. In this case the condition (3.31) is
fulfilled, implying that En1;n2 ¼ En1þjs1;n2−js2 , where j is an
integer number such that n1 þ js1 ≥ 0, n2 − js2 ≥ 0. One
can construct the quantum operators

L̂þ
s1;s2 ¼ ðb̂þ1 Þs1ðb̂−2 Þs2 ; L̂−

s1;s2 ¼ ðL̂−
s1;s2Þ†; ð3:57Þ

which are the direct quantum analogs of (3.30) with
j1 ¼ s1, j2 ¼ s2, ½Ĥg; L̂

�
s1;s2 � ¼ 0. These quantum integrals

can be obtained by application of the conformal bridge
transformation to the free particle higher order operators

Ŝþs1;s2 ¼ ðξ̂þÞs1ðp̂þÞs2 ; Ŝ−s1;s2 ¼ ðp̂−Þs1ðξ̂−Þs2 ; ð3:58Þ

which commute with the operator 2iD̂þ gp̂φ with
g ¼ gs1;s2< .
Using relations (3.55) and (3.56) we get

L̂þ
s1;s2Ψn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2!Γðn1 þ s1 þ 1Þ
n1!Γðn2 − s2 þ 1Þ

s
Ψn1þs1;n2−s2 ; ð3:59Þ

L̂−
s1;s2Ψn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!Γðn2 þ s2 þ 1Þ
n2!Γðn1 − s1 þ 1Þ

s
Ψn1−s1;n2þs2 : ð3:60Þ

These equalities imply that the operators L̂�
s1;s2 allow us to

obtain the complete set of physical eigenstates which have
the same energy but different angular momentum eigen-
values starting from some fixed eigenstate Ψn1;n2 , i.e., they
correspond to integrals of motion associated with hidden
symmetries of the system which are responsible for
degeneracy of the spectrum. In the cases g ¼ 0 and
g ¼ �1 we recover the symmetry operators of the isotropic
harmonic oscillator and the Landau system in the sym-
metric gauge, respectively.
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Case jgj > 1. We suppose now that g ¼ gs1;s2> ¼ s2þs1
s2−s1

is
an irreducible fraction with s1 ≠ s2. In this case the
condition s1l1 þ s2l2 ¼ 0 is fulfilled, implying that
En1;n2 ¼ En1þjs1;n2þjs2 , where now j is an integer number
such that n1 þ js1 ≥ 0, n2 þ js2 ≥ 0. We can construct
here the operators

Ĵ þ
s1;s2 ¼ ðb̂þ1 Þs1ðb̂þ2 Þs2 ; Ĵ −

s1;s2 ¼ ðĴ −
s1;s2Þ†; ð3:61Þ

which are the quantum analogs of the integrals (3.36) with
j1 ¼ s1 and j2 ¼ s2, ½Ĥg; Ĵ

�
s1;s2 � ¼ 0.

These integrals are obtained by the application of the
CBT to the free particle higher order operators

Ξ̂þ
s1;s2 ¼ ðξ̂þÞs1ðξ̂−Þs2 ; Ξ̂−

s1;s2 ¼ ðp̂þÞs1ðp̂−Þs2 ; ð3:62Þ

which commute with the operator 2iD̂þ gp̂φ with
g ¼ gs1;s2> . Their action on the eigenstates is given by

Ĵ −
s1;s2Ψn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!n2!

Γðn1− s1þ 1ÞΓðn2− s2þ 1Þ

s
Ψn1−s1;n2−s2 ;

ð3:63Þ

Ĵ þ
s1;s2Ψn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðn1þ s1þ 1ÞΓðn2þ s2þ 1Þ

n1!n2!

s
Ψn1þs1;n2þs2 :

ð3:64Þ

All the normalizable eigenfunctions with the same energy
can be obtained by repeated application of these operators
to some fixed state Ψn1;n2 . It is worth to note here the

difference in the action of the integrals L̂�
s1;s2 in the case

g ¼ s2−s1
s2þs1

, and integrals Ĵ �
s1;s2 for g ¼ s2þs1

s2−s1
. In the first case,

after repeated application of the corresponding integral
operator with index plus or minus, at some step we obtain
zero due to appearance of a Gamma function pole in
denominator of coefficients in (3.59) and (3.60). A similar
situation we have only for the action of the operator Ĵ −

s1;s2

in the case of g ¼ s2þs1
s2−s1

, but the repeated application of the

operator Ĵ þ
s1;s2 will never produce zero, see the coefficient

in Eq. (3.64). This difference is just another reflection of the
finite and infinite degeneracy of energy levels in the two
indicated cases.
In conclusion of this section, we show how the CBT can

be used to construct coherent states for the system Ĥg. For

this we consider the exponential function e
1ffiffi
2

p ðαzþβz�Þ, which,
in dependence on the values of the parameters α; β ∈ C is
either the plane wave eigenfunction, or formal, nonphysical
eigenfunction of the free particle Hamiltonian operator Ĥ.
The application of the CBT operator yields

Se
1ffiffi
2

p ðαzþβz�Þ ¼
ffiffiffi
2

p
e−

mω
2
zz�þαzþβz�− ℏ

mωαβ

¼
X∞
n¼0

Xn
k¼0

�
ℏ
mω

�n
2 αn−kβkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k!ðn − kÞ!p αn−kβkΨn−k;k

¼ Cα;βΦðx1; x2; α; βÞ; ð3:65Þ

where Cα;β ¼
ffiffiffi
π

p
e−

ℏ
2mωðjαj2þjβj2Þ, and Φðx1; x2; α; βÞ is a

normalized function. The expansion of Φðx1; x2; α; βÞ over
the orthonormal eigenstates of the system allows us to see
how these states transform under time translations and
rotations,

e−
it
ℏĤgΦðx; y; α; βÞ ¼ Φðx; y; αe−iωl1t; βe−iωl2tÞ; ð3:66Þ

e
iγ
ℏp̂φΦðx; y; α; βÞ ¼ Φðx; y; αeiγ; βe−iγÞ: ð3:67Þ

On the other hand, the introduced exponential is an
eigenstate of the operators p̂�, and then one has

b̂−1Φðx; y; α; βÞ ¼
ffiffiffiffiffiffiffi
ℏ
mω

r
αΦðx; y; α; βÞ;

b̂−2Φðx; y; α; βÞ ¼
ffiffiffiffiffiffiffi
ℏ
mω

r
βΦðx; y; α; βÞ: ð3:68Þ

As these functions are the eigenstates of the lowering
operators b̂−i , and theymaintain their formwithout dispersion
while time evolves, we conclude that Φðx; y; α; βÞ are
coherent states for the system Ĥg.

IV. GENERATION OF AHO
BY ANISOTROPIC CBT

In the previous section we have discussed the ERIHO
generated from the two-dimensional free particle by the
rotationally invariant CBT. In this section we explore the
possibility of connecting the free particle and the AHO
which does not have rotational invariance. For this, we
employ an anisotropic CBT.
Consider the following generator of the CBT (no

summation over the repeated index)

Ŝω1;ω2
¼ Ŝω1

Ŝω2
; Ŝωi

¼ e−
ωi
ℏ K̂ie

Ĥi
2ℏωie

i
ℏ lnð2ÞD̂i : ð4:1Þ

In the case ω1 ≠ ω2, this generator is anisotropic (rota-
tionally noninvariant) operator. Instead of the linear
combination of the free particle symmetry generators
ωð2iD̂þ gp̂φÞ, we apply the anisotropic CBT to the two
operators

2iD̂� ≔ 2iðω1D̂1 � ω2D̂2Þ: ð4:2Þ
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By using the decomposition (2.12) and the second relation
in (2.5), we obtain4

Ŝω1;ω2
ð2iD̂�ÞŜ−1

ω1;ω2
¼

X2
i¼1

ð�1Þi−1
�
−
ℏ2

2m
∂2

∂x2i þ
mω2

i

2
x2i

�

≔ Ĥð�Þ
ω1;ω2

: ð4:3Þ

When we choose the positive sign, the operator ĤðþÞ
ω1;ω2

corresponds to the Hamiltonian operator of the usual,
Euclidean AHO system.When the negative sign is selected,

Ĥð−Þ
ω1;ω2

corresponds to the Minkowskian AHO.
Acting on the momenta operators and the Galilean boost

generators of the free particle, the anisotropic CBT pro-
duces

Ŝω1;ω2
ðp̂iÞŜ−1

ω1;ω2
¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffi
mℏωi

p
â−ωi

;

Ŝω1;ω2
ðξ̂iÞŜ−1

ω1;ω2
¼

ffiffiffiffiffiffiffi
mℏ
ωi

s
âþωi

; ð4:4Þ

where

â�ωi
¼

ffiffiffiffiffiffiffiffiffi
mωi

2ℏ

r �
xi ∓ ℏ

mωi

∂
∂xi

�
ð4:5Þ

are the first-order ladder operators for each direction. From
here, we find that the angular momentum is not invariant
under the anisotropic CBT,

Ŝω1;ω2
ðp̂φÞŜ−1

ω1;ω2
¼ −iℏ

� ffiffiffiffiffiffi
ω2

ω1

r
âþω1

â−ω2
−

ffiffiffiffiffiffi
ω1

ω2

r
âþω2

â−ω1

�
:

ð4:6Þ

Instead of the angular momentum operator in the case of
Ĥg, the AHO systems

Ĥð�Þ
ω1;ω2

¼ ℏ

�
ω1âþω1

â−ω1
� ω2âþω2

â−ω2
þ 1

2
ðω1 � ω2Þ

�
ð4:7Þ

are characterized here by the obvious symmetry generators

L̂ð�Þ
ω1;ω2

¼ ℏðω1âþω1
â−ω1

∓ ω2âþω2
â−ω2

Þ: ð4:8Þ

Therefore, in the case ω1 ¼ ω2 ¼ ω (â�ωi
→ â�i ), the

Hamiltonian of the isotropic, in the sense of (1þ 1)-
dimensional Lorentzian metric, Minkowskian oscillator

Ĥð−Þ
ω;ω ¼ ℏωðâþ1 â−1 − âþ2 â

−
2 Þ ð4:9Þ

is invariant under the soð1; 1Þ transformations generated by
the operator

L̂1;1 ¼ x̂1p̂2 þ x̂2p̂1 ¼ iℏðĵþ − ĵ−Þ; ĵ� ¼ â�1 â
�
2 :

ð4:10Þ

The true integrals ĵ�, together with5 ĵ0 ¼ 1
2ωℏL

ð−Þ
ω;ω ¼

1
2ωℏ ðĤosc − ℏωÞ produce the slð2;RÞ symmetry algebra

of the system (4.9). As ĵ0 and the combination ℏðĵ− þ
ĵþÞ ¼ p̂1p̂2

2m −mωx̂1x̂2 are the second order in momenta
integrals of motion, they correspond to the hidden sym-
metry operators [30].
The obvious choice for the well defined in R2 eigen-

functions that obey the eigenvalue equation 2iD̂�ϕλ ¼ λϕλ

corresponds to

ϕn1;n2 ¼ xn11 xn22 ð4:11Þ

with non-negative integer values of n1 and n2. These
eigenfunctions satisfy the relations

p̂1ϕn1;n2 ¼ −iℏn1ϕn1−1;n2 ; p̂2ϕn1;n2 ¼ −iℏn2ϕn1;n2−1;

ð4:12Þ

ξ̂1ϕn1;n2 ¼ mϕn1þ1;n2 ; ξ̂2ϕn1;n2 ¼ mϕn1;n2þ1: ð4:13Þ

They are the zero energy Jordan states (generally, of
different orders in the case of n1 ≠ n2) of the one-
dimensional Hamiltonian operators Ĥi, and the action of
Ŝω1;ω2

on them yields

Ŝω1;ω2
ϕn1;n2ðx1; x2Þ

¼
�
ω1

ω2

�
−1
4

�
ℏ
m

�n1þn2þ1

2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1!n2!π

p
ψn1;n2ðx1; x2Þ; ð4:14Þ

ψn1;n2ðx1; x2Þ ¼ ψn1ðx1Þψn2ðx2Þ; ð4:15Þ

ψniðxiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2nini!

p
�
mωi

πℏ

�1
4

Hni

� ffiffiffiffiffiffiffiffiffi
mωi

ℏ

r
xi

�
e−

mωi
2ℏ x

2
i ;

ð4:16Þ
where Hni are the Hermite polynomials. Meanwhile, the
formal eigenvalue equation

4As before, one could introduce the notation l1 ¼ 1þ g,
l2 ¼ 1 − g, g ∈ R, ωi ¼ liω, and instead of (4.2), apply the
CBT (4.1) to the operator 2iωD̂g ≔ 2iωðl1D1 þ l2D2Þ. This,
however, will not change the final results, see below.

5In the context of the symmetry transmutation, the planar
isotropic harmonic oscillator Hamiltonian appears here as the
integral of the system we are dealing with. It is invariant under
suð2Þ transformations generated by (3.18) taken with g ¼ 0,
which for the system (4.9) correspond to the explicitly depending
on time, dynamical integrals.
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2iD̂�ϕn1;n2 ¼ ℏ

�
ω1n1 � ω2n2 þ

ω1 � ω2

2

�
ϕn1;n2 ð4:17Þ

implies that

Ĥð�Þ
ω1;ω2

ψn1;n2 ¼ℏ

�
ω1n1�ω2n2þ

ω1�ω2

2

�
ψn1;n2 : ð4:18Þ

From here it follows that the energy values of the Euclidean

AHO ĤðþÞ
ω1;ω2

are positive, while in the case of Minkowskian

AHO described by Ĥð−Þ
ω1;ω2

the spectrum is not bounded
from below.
From relations (4.4), (4.12), and (4.13), one concludes

that (4.5) are the spectrum generating operators that satisfy
relations

â−ω1
ψn1;n2 ¼

ffiffiffiffiffi
n1

p
ψn1−1;n2 ; â−ω2

ψn1;n2 ¼
ffiffiffiffiffi
n2

p
ψn1;n2−1;

ð4:19Þ

âþω1
ψn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ 1

p
ψn1þ1;n2 ;

âþω2
ψn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
ψn1;n2þ1: ð4:20Þ

On the other hand, it is well known that besides the

integrals (4.8), both systems Ĥð�Þ
ω1;ω2

have additional, higher
order true integrals of motion when frequencies are
commensurable, ω1=ω2 ¼ l2=l1 [31]. In the case of

ĤðþÞ
ω1;ω2

, these integrals can be obtained by applying the
anisotropic CBT to the higher order operators

Ŝl1;l2 ¼ ðξ̂1Þl1ðp̂2Þl2 ; Ŝl2;l1 ¼ ðp̂1Þl1ðξ̂2Þl2 ; ð4:21Þ

which commute with D̂þ in this case. One has

Ŝω1;ω2
ðŜl1;l2ÞŜ−1

ω1;ω2
∝ L̂þ

l1;l2
:

Ŝω1;ω2
ðŜl2;l1ÞŜ−1

ω1;ω2
∝ L̂−

l1;l2 ; ð4:22Þ

L̂þ
l1;l2

¼ ðâþω1
Þl1ðâ−ω2

Þl2 ; L̂−
l1;l2 ¼ ðL̂þ

l1;l2
Þ† ¼ L̂þ

l2;l1
:

ð4:23Þ

The explicit action of these hidden symmetry operators is
given by

L̂−
l1;l2ψn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!Γðn2 þ l2 þ 1Þ
n2!Γðn1 − l1 þ 1Þ

s
ψn1−l1;n2þl2 ; ð4:24Þ

L̂þ
l1;l2

ψn1;n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2!Γðn1 þ l1 þ 1Þ
n1!Γðn2 − l2 þ 1Þ

s
ψn1þl1;n2−l2 : ð4:25Þ

In the special case in which ω1 ¼ ω2, implying

l1 ¼ l2 ¼ 1, integral operators L̂�
1;1 and L̂ðþÞ

2 ¼ 1
2
p̂φ, to

which the operator 1
2ω L̂

ðþÞ
ω;ω from (4.8) is reduced, generate

the suð2Þ algebra. For l1 ≠ l2, the integrals L̂
ðþÞ
ω1;ω2

and L̂�
l1;l2

together with Hamiltonian ĤðþÞ
ω1;ω2

generate a nonlinear
deformation of uð2Þ. Classical analogs of L̂�

l1;l2 correspond
to hidden symmetries because they generate the trans-
formations that mix coordinates and momenta in phase
space.

In the case of Ĥð−Þ
ω1;ω2

, additional true integrals are
obtained from the operators

P̂l1;l2 ¼ ðp̂1Þl1ðp̂2Þl2 ; Ξ̂l1;l2 ¼ ðξ̂1Þl1ðξ̂2Þl2 ; ð4:26Þ

which commute with D̂−. They are transformed by the
anisotropic CBT into

Ŝω1;ω2
ðΞ̂l1;l2ÞŜ−1

ω1;ω2
∝ ĵþ

l1;l2

Ŝω1;ω2
ðP̂l1;l2ÞŜ−1

ω1;ω2
∝ ĵ−

l1;l2 ; ð4:27Þ

ĵþ
l1;l2

¼ ðâþω1
Þl1ðâþω2

Þl2 ; ĵ−
l1;l2 ¼ ðĵþ

l1;l2
Þ†: ð4:28Þ

They act on the eigenstates ψn1;n2ðx1; x2Þ as follows,

j−
l1;l2

ψn1;n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1!n2!
Γðn1 − l1 þ 1ÞΓðn2 − l2 þ 1Þ

s
ψn1−1;n2−1;

ð4:29Þ

jþ
l1;l2

ψn1;n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðn1 þ l1 þ 1ÞΓðn2 þ l2 þ 1Þ

n1!n2!

s
ψn1þ1;n2þ1:

ð4:30Þ

In the case l1 ¼ l2 ¼ 1 (ω1 ¼ ω2 ¼ ω), the system Ĥð−Þ
ω;ω, as

we already noted, corresponds to the soð1; 1Þ-invariant
Minkowskian oscillator (4.9), for which the not depending
explicitly on time integrals (4.10), j�

1;1 ¼ j�, ĵ0 ¼
1

2ωℏ ðĤosc − ℏωÞ and Ĥð−Þ
ω;ω generate the glð2;RÞ symmetry.

Note that analogously to the ERIHO, here the bounded and
unbounded from below character of the spectra in the cases
of Euclidean and Minkowskian AHO systems is encoded
in the structure of coefficients in Eqs. (4.24), (4.25) and
(4.29), (4.30), respectively.
By applying the anisotropic CBT to the physical, or to

nonphysical eigenstates e
1ffiffi
2

p ðα1x1þα2x2Þ, α1; α2 ∈ C, of the
free particle Hamiltonian, we obtain

Φðx1; x2; α1; α2Þ ≔ Ŝω1;ω2
e

1ffiffi
2

p ðα1x1þα2x2Þ

¼
ffiffiffi
2

p
e−

ℏ
4mð

α2
1

ω1
þα2

2
ω2
Þ−m

2ℏðω1x21þω2x22Þþα1x1þα2x2 :

ð4:31Þ
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These functions correspond to coherent states for both

systems Ĥð�Þ
ω1;ω2

as they satisfy the relations

â−ωi
Φðx; y; α1; α2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωi

s
αiΦðx; y; α; βÞ: ð4:32Þ

When comparing these results with the quantum analysis
of the ERIHO systems, we observe that both models are
really similar. Their spectra in Euclidean and Minkowskian
cases have similar characteristics, while the corresponding
spectrum-generating operators and the integral operators in
both classes of models act in a similar way on their
respective eigenstates. At the same time we note that the
difference in their properties with respect to the planar
rotations reveals itself in classical dynamics. This can be
observed by comparing the form of trajectories in the
ERIHO systems with those in the systems discussed in the
present section, for which trajectories are described by
equations

x1ðtÞ ¼ A1 cosðω1tÞ þ B1 sinðω1tÞ;
x2ðtÞ ¼ A2 cosðω2tÞ þ B2 sinðω2tÞ: ð4:33Þ

In the case of commensurable frequencies these trajectories
also are closed but they are represented by Lissajous
curves, some examples of which are shown in Fig. 3.
Essential difference also consists in the fact that

Eqs. (4.33) describing the trajectories have exactly the same

form for the Euclidean, HðþÞ
ω1;ω2

, and Minkowskian, Hð−Þ
ω1;ω2

,
AHOs with the same values of frequencies ω1 and ω2

(though the same trajectories correspond to different energies
in the two indicated cases), while the form of dynamics
and corresponding trajectories Euclidean (jgj < 1) and
Minkowskian (jgj > 1) ERIHO systems is different.
Nevertheless, the similarities at the quantum level

indicate that the two classes of the harmonic oscillator
systems should be related somehow, and in the next section
we describe their relationship.

V. RELATIONSHIPS OF THE ERIHO

With the help of a unitary transformation, which corre-
sponds to a rotation in the three-dimensional “ambient
space” of the suð2Þ algebra, in this section we show that the
ERIHO and AHO can be related to each other. We also
relate the ERIHO with g2 < 1 and g2 > 1 with the Landau
problem in the presence of the additional attractive and
repulsive harmonic potentials.

A. Relationship of the ERIHO and AHO systems

Let us consider again the ERIHO Hamiltonian

Ĥg ¼ ℏωðl1b̂
þ
1 b̂

−
1 þ l2b̂

þ
2 b̂

−
2 þ 1Þ;

l1 ¼ 1þ g; l2 ¼ 1 − g; ð5:1Þ

and introduce the unitary operator [24]

Û ¼ exp
�
−i

2π

3

1ffiffiffi
3

p ðL̂1 þ L̂2 þ L̂3Þ
�
; ð5:2Þ

L1 ¼
1

2
ðL− þ LþÞ ¼

1

2
ðâþ1 â−2 þ âþ2 â

−
1 Þ;

L3 ¼
i
2
ðL− − LþÞ ¼

1

2
ðâþ1 â−1 − âþ2 â

−
2 Þ; ð5:3Þ

see Eqs. (3.18) and (3.3). It produces the unitary trans-
formation

Ûâ�j Û
† ¼ e�iπ

4b̂�j ; ð5:4Þ

ÛL̂1Û
† ¼ L̂3; ÛL̂2Û

† ¼ L̂1; ÛL̂3Û
† ¼ L̂2: ð5:5Þ

Using these relations, we find that

Ĥg ¼ ÛðĤn−i
g ÞÛ†; where

Ĥn−i
g ¼ ℏωðl1â

þ
1 â

−
1 þ l2â

þ
2 â

−
2 þ 1Þ: ð5:6Þ

(a) (b) (c)

FIG. 3. Trajectories of the anisotropic harmonic oscillator with commensurable frequencies.
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Unlike Ĥg, Hamiltonian operator Ĥn−i
g is not invariant

under the soð2Þ rotations. In terms of the coordinates and
momenta operators, Ĥn−i

g is presented as

Ĥn−i
g ¼ 1

2m
ðl1p̂2

1 þ l2p̂2
2Þ þ

mω2

2
ðl1x21 þ l2x22Þ: ð5:7Þ

After the quantum canonical transformation of anisotropic
rescaling,

xi → x0i ¼
ffiffiffiffiffiffiffi
jlij

p
xi; p̂i → p̂i

0 ¼ p̂i=
ffiffiffiffiffiffiffi
jlij

p
; ð5:8Þ

we recognize

Ĥn−i0
g ¼ signðl1Þ

�
p̂02

1

2m
þmΩ2

1

2
x021

�

þ signðl2Þ
�
p̂02

1

2m
þmΩ2

2

2
x022

�
; Ωi ¼ jlijω:

ð5:9Þ

When jgj < 1, the operator Ĥn−i0
g can be interpreted as the

Hamiltonian of a one-parametric family of Euclidean AHO
systems. On the other hand, when jgj > 1 we have a one-
parametric family of Minkowskian AHO models.
By applying unitary transformation inverse to (5.8), and

then the transformation inverse to (5.4), (5.5), to the true
and dynamical integrals of the system Ĥg, one gets, in
particular,

b̂�i → â�Ωi
; L̂�

s1;s2 → L̂�
s1;s2 ; Ĵ �

s1;s2 → ĵ�
s1;s2 ;

ð5:10Þ

Ĵ � → ĵΩ1;Ω2

� ¼ â�Ω1
â�Ω2

; L̂� → L̂Ω1;Ω2

� ¼ â�Ω1
â∓Ω2

;

ð5:11Þ

Ĵ 0 −
1

2
→ ĵΩ1;Ω2

0 ¼ 1

2
ðâþΩ1

â−Ω1
þ âþΩ2

â−Ω2
Þ; ð5:12Þ

L̂2 → L̂Ω1;Ω2

2 ¼ 1

2
ðâþΩ1

â−Ω1
− âþΩ2

â−Ω2
Þ: ð5:13Þ

So, we find that both, the ERIHO and AHO systems are
unitary equivalent being related by the described compo-
sition of the two unitary transformations. The peculiarity of
this relation is that (5.4) and (5.5) corresponds to a
particular suð2Þ rotation in a fictitious three-dimensional
space corresponding to the index of the suð2Þ generators,
and the rotational invariance in the R2 configurational
space is broken by the anisotropy of the rescaling trans-
formation (5.8). Notice that unitary transformation (5.8)
generated by the operator expðiðD̂1 ln jl1j þ D̂2 ln jl2jÞÞ is
a Bogolyubov transformation [45] corresponding to a

hyperbolic soð1; 1Þ ⊕ soð1; 1Þ rotation in terms of the
operators ðâþ1 ; â−1 Þ, ðâþ2 ; â−2 Þ. In order to relate the isotropic
Minkowskian case of the ERIHO with its soð1; 1Þ analog
(4.9), it is necessary to make a change ω → ω=jgj in (5.9),
and then take a limit jgj → ∞.
According to Eq. (5.4), the classical analog of the unitary

transformation generated by (5.2) mixes coordinates and
momenta variables. Then, with taking into account the
classical analog of the unitary anisotropic rescaling trans-
formation (5.8), one can show that classical solutions (3.12)
and (4.33) correspond to the same trajectories in four-
dimensional phase space projected onto two different two-
dimensional hyperplanes there which correspond to coor-
dinate variables xi and x0i of the ERIHO and AHO systems.

B. Relationship with harmonically
extended Landau problem

Let us consider the Landau problem in symmetric gauge
assuming that the particle is subject to the action of the
additional quadratic potential term. The Hamiltonian of the
system is

H� ¼ 1

2m
ðΠ�

i Þ2 þ
1

2
mΛx2i ; Π�

i ¼ pi −
q
c
A�
i ; ð5:14Þ

where Λ ∈ R is a constant of dimension ½t−2� and A�
i is

given in (3.6). Note that when q ¼ 0, Hamiltonian (5.14)
with Λ < 0 corresponds to the inverted isotropic harmonic
oscillator. If we choose the case of the positive upper index
[that corresponds to g ¼ 1 in (3.6)], and expand this
Hamiltonian, we obtain

Hþ ¼ 1

2m
ðp2

1 þ p2
2Þ þ

m
2
ðω2

B þ ΛÞðx21 þ x22Þ þ ωBpφ;

ωB ¼ qB
2mc

; ð5:15Þ

where now we do not restrict the sign of qB. Assuming that
Λ > −ω2

B, i.e., that in the case of the inverted harmonic
potential its coupling constant jΛjm is not too strong, we
denote

ω2 ¼ ω2
B þ Λ; ω2 > 0: ð5:16Þ

With this restriction, the system is confined: all its
trajectories are bounded, while the quantum spectrum is
discrete. Introducing the parameter g defined by relationsffiffiffiffiffiffijΛjp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − g2j

p
ω, signðgÞ ¼ signðqBÞ, Hamiltonian

(5.15) takes then the form of the Hamiltonian of the
ERIHO system,

Hþ ¼ Hosc þ gωpφ ¼ Hg: ð5:17Þ

Therefore, the case of Landau problem (in symmetric
gauge) subjected to the additional action of the isotropic
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harmonic potential trap (Λ > 0) is equivalent to the
Euclidean case of the ERIHO system with g2 < 1, while
the case of not too strong inverted isotropic harmonic
potential (0 > Λ > −ω2

B) is equivalent to the Minkowskian
case of the ERIHO system with g2 > 1. Having this
relationship of the ERIHO systems Hg with g2 < 1 and
g2 > 1 with the Landau problem supplemented, respec-
tively, with the attractive and repulsive harmonic potential
terms, one can understand the phenomenon of transmuta-
tion of symmetries discussed in Sec. III A in the light of
different realizations of conformal symmetries considered
in [34].
In the critical case Λ ¼ −ω2

B, frequency ω turns into
zero, and Hamiltonian (5.15) takes the form Hc ¼
1
2mpipi þ ωBpφ. The system Hc is not confined anymore,
its trajectories are infinite, and the corresponding quantum
spectrum is continuous and not bounded from below.
In supercritical case Λ < −ω2

B, ω2 is negative, and
Hamiltonian (5.15) takes the form of a two-dimensional
inverted oscillator Hamiltonian plus a Zeeman type term,
Hsc ¼ 1

2m ðp2
1 þ p2

2Þ − m
2
jω2jðx21 þ x22Þ þ ωBpφ. All the

peculiar properties of the critical case, i.e., infinite classical
trajectories and continuous spectrum not bound from
below, are inherited by Hsc.
One can notice that the critical case corresponds here to

the dynamics of a free particle in a noninertial, uniformly
rotating reference frame that is described by the Lagrangian

LΩ ¼ 1

2
mð_r⃗þ Ω⃗ × r⃗Þ2: ð5:18Þ

Indeed, choosing Ω⃗ ¼ q
2mc B⃗, and assuming that the uniform

magnetic field B⃗ is oriented perpendicular to the plane with
coordinates x1, x2, the dynamics in the direction orthogonal
to this plane will be free. Neglecting this free part of the
dynamics, Lagrangian (5.18) can be reduced to

Lþ
Ω ¼ LL þ 1

2
mω2

Bðx21 þ x22Þ;

LL ¼ 1

2
mð_x21 þ _x22Þ þ

q
c
Aþ
i xi; ð5:19Þ

where LL is the Lagrangian of the Landau problem in the
symmetric gauge. Hamiltonian (5.15) in the critical case of
Λ ¼ −ω2

B corresponds exactly to the Lagrangian Lþ
Ω. Then,

our ERIHO system admits yet another interpretation as a
plane isotropic harmonic oscillator described by a potential
U ¼ 1

2
kðx21 þ x22Þ in a noninertial, uniformly rotating

reference frame. The cases 0 < k < mω2
B, k ¼ mω2

B and
k > mω2

B correspond to the phases jgj > 1, jgj ¼ 1 and
0 < jgj < 1, respectively, with singg ¼ singΩ3. The inertial
case Ω ¼ 0 with k ¼ mω2 corresponds, obviously, to the
isotropic Euclidean oscillator (g ¼ 0). From this point of
view, the Minkowskian phase, g2 > 1, corresponds to the

case when the rotation frequency of the noninertial refer-
ence frame dominates the oscillator frequency, Ω2 > k=m,
while their equality, Ω2 ¼ k=m, corresponds to the Landau
phases g ¼ �1.

VI. DISCUSSION AND OUTLOOK

We studied the ERIHO system that represents an
isotropic Euclidean planar harmonic oscillator supple-
mented by a kind of Zeeman-like term with a dimensionless
coupling constant g. The system was obtained by general-
izing the conformal bridge transformation construction of
Refs. [22–24] that allows to relate harmonically confined
models with associated asymptotically free systems. To this
aim, we applied a certain nonunitary rotationally invariant
conformal intertwining operator to the complex linear
combination of the free particle’s dilatation and rotation
integrals.
We showed that the Hamiltonian of the obtained ERIHO

system Hg can be presented as a sum of the two circular
oscillatory modes taken with the relative weights (1þ g)
and (1 − g). As a consequence, the system reveals three
different phases depending on the coupling constant value.
In the case of g2 < 1, the system represents the Euclidean
phase of the ERIHO, that turns into isotropic planar
oscillator at g ¼ 0. The case g2 > 1 corresponds to the
Minkowskian phase of the ERIHO, which under frequency
rescaling ω → ω=jgj and taking the infinite limit jgj → ∞
transforms into the isotropic, soð2Þ-invariant Minkowskian
oscillator. In the cases g ¼ �1 the system reduces to the
Landau problem in the symmetric gauge with the opposite
orientation of the magnetic field. The trajectories are closed
for arbitrary choice of the initial data only for rational
values of g. They have central symmetry except the cases
g ¼ �1 with arbitrary-centered circular orbits. For g ¼ 0
and jgj ¼ ∞, the trajectories are, respectively, elliptic and
circular.
The closed character of the trajectories at rational values

of g is reflected in the presence of the hidden symmetry
described by the pair of not depending explicitly on time,
true integrals of motion that appear in addition to the
HamiltonianHg and angular momentum pφ. The additional
integrals are quadratic in the circular oscillator variables in
the cases g ¼ 0, g2 ¼ 1 and g2 ¼ ∞. Moreover, in par-
ticular cases of g ¼ �1, they are quadratic in the true linear
integrals corresponding to the translation symmetry gen-
erators which are the noncommuting coordinates of the
circumference’ center. In the indicated exceptional cases,
the four true integrals together with other six explicitly
depending on time, dynamical integrals of the second order
generate the spð4;RÞ Lie algebra, and the pairs of excep-
tional cases (g ¼ 0, jgj ¼ ∞) and (g ¼ þ1, g ¼ −1) are
related by a transmutation of symmetries in the following
sense. The spð4;RÞ algebra of the isotropic Euclidean case
(g ¼ 0) contains the uð2Þ ≅ suð2Þ ⊕ uð1Þ subalgebra,
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generated by the four true integrals, and the glð2;RÞ ≅
slð2;RÞ ⊕ uð1Þ algebra, in which slð2;RÞ corresponds
to the conformal symmetry while the center uð1Þ is
generated by pφ. In the isotropic Minkowskian oscillator
case (jgj ¼ ∞), these symmetries are interchanged: the
subalgebra glð2;RÞ is generated by the true integrals, while
uð2Þ is associated with its conformal, dynamical symmetry.
In the cases g ¼ �1 the true and extended conformal
symmetries generate two copies of the same subalgebra
glð2;RÞ. The generators of these subalgebars are inter-
changed under the change g ¼ þ1 ↔ g ¼ −1.
In general case of rational values of g the pair of

additional true integrals is of higher order in circular
oscillator variables. In the case of g2 < 1 with g ¼ gs1;s2< ¼
ðs2 − s1Þ=ðs2 þ s1Þ, where positive integer numbers s1 and
s2 are chosen so that the fraction is irreducible, the pair of
mutually complex conjugate additional integrals are of the
order s1 þ s2 in circular oscillator variables, and together
with Hg and pφ they generate a nonlinear deformation of
the uð2Þ algebra. When g2>1 with g ¼ gs1;s2> ¼ ðs2 þ s1Þ=
ðs2 − s1Þ ¼ 1=gs1;s2< , the corresponding additional true
integrals have the same order s1 þ s2 in circular oscillator
variables, but together with Hg and pφ they generate,
instead, a nonlinear deformation of the glð2;RÞ. So, in the
case of rational g any system Hg is maximally super-
integrable [46,47]. Notice that if to change the notation
s1 ↔ s2 in the case g2 > 1, we find that the corresponding
generators of hidden symmetries of the same orders s1 þ s2
in the phases with g2 < 1 and g2 > 1 will mutually trans-
mute under the inversion g → −1=g. Then the statement on
transmutation (duality) under the inversion g → −1=g can
also be extended for the sets of generators of the true and
extended conformal symmetries in the Landau problem
with the opposite orientation of the magnetic field (g ¼ þ1
and g ¼ −1).
At the quantum level, the system with g2 < 1 has a

discrete positive spectrum with finite degeneracy of energy
levels. The quantum analogs of the additional true integrals
of motion control this degeneracy and allow to generate any
state with a given energy value starting from any eigenstate
with the same value of energy. In the case of rational g with
g2 > 1, the picture is similar, but there spectrum is not
bounded from below and each energy level is infinitely
degenerate.
On the other hand, we showed how the usual AHO

systems can be generated from the free particle by using a
certain rotationally noninvariant, anisotropic conformal
bridge transformation. In such systems, as is well known,
the trajectories are closed in the case of commensurable
frequencies and represent the Lissajous curves. The pecu-
liarity of the AHO systems in comparison with the ERIHO
systems is that in them the trajectories are the same in
the cases of Euclidean and Minkowskian planar oscillators
with the same values of frequencies. We showed that
the ERIHO and AHO systems with the corresponding

parameter values can be related by a unitary canonical
transformation that represents a composition of a certain
suð2Þ rotation in an “ambient” three-dimensional space
and of anisotropic rescaling, which is an soð1; 1Þ ⊕
soð1; 1Þ Bogolyubov transformation.
We also showed that the ERIHO systems are equivalent

to the Landau problem in symmetric gauge subjected to the
action of the additional rotationally invariant harmonic
potential term 1

2
mΛx2i . In this case the systems with positive

coupling constant Λ > 0 correspond to the ERIHO systems
with g2 < 1, while the negative values 0 > Λ > −ð qB

2mcÞ2,
corresponding to the inverted oscillator in the subcritical
phase, yield the ERIHO systems with g2 > 1. In the case of
critical, Λ ¼ −ð qB

2mcÞ2 and supercritical values Λ < −ð qB
2mcÞ2

of the coupling constant of the inverted harmonic potential
term, classical trajectories are infinite, and the quantum
spectrum is continuous and not bounded from below. These
phases with critical and super-critical values of the inverted
potential term coupling have no analogs in the studied by us
ERIHO systems. But we notice here that such phases
appear in the systems with exotic Newton-Hooke sym-
metries and noncommutative geometry [32,48].
Finally, we showed that our ERIHO admits yet another

interpretation as a plane isotropic harmonic oscillator in a
uniformly rotating reference frame. From this point of view,
the phases g2 < 1, g2 ¼ 1 and g2 > 1 correspond, respec-
tively, to the cases Ω2 < k=m, Ω2 ¼ k=m and Ω2 > k=m,
where Ω is the angular frequency of the reference frame,
and k is the harmonic oscillator constant. Critical case of
the harmonically extended Landau problem in this case
corresponds to a free particle in a uniformly rotating
reference frame.
A phase transition in rotating harmonically trapped

Bose-Einstein condensates is expected at Ω2 ¼ k=m, see
[49–51] and references therein. It is interesting whether the
described peculiar properties related to hidden symmetries
emerging at rational values of g reveal themselves some-
how in such systems. Taking into account the unitary
equivalence of the ERIHO and AHO systems, in this
context one also can expect that Bose-Einstein condensates
in rotationally noninvarint harmonic anisotropic traps
[52,53] should exhibit properties similar to those they have
in rotating harmonic traps.
In conclusion, we note some problems that deserve

attention for further research.
First of all, the considered CBTs of the rotationally

invariant and rotationally noninvariant nature can be gener-
alized for dimensions higher than two. Furthermore, the
conformal potential term γ=ðxixiÞ can be included into
the initial free particle Hamiltonian, and analysis also can
be extended for Calogero-type systems that would corre-
spond to the case of anisotropic CBT. Having in mind the
constructions based on exotic Galilean and Newton-Hooke
symmetries [48,54], relevant to the physics of anyons
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[55,56], it also would be interesting to apply our analysis to
the case of noncommutative geometry.
In a recent paper [24], by applying the CBT to the study

of dynamics in a cosmic string background, we revealed a
kind of quantum anomaly there. It would be interesting to
investigate what happens with the quantum anomaly in the
presence of the Zeeman-like term. In fact, our interest in
studying the ERIHO systems arose from an attempt to
understand, in the light of symmetries, the Landau problem

in a geometric background with topological defects such as
a conical one [57,58] and a background of a rotating cosmic
string [59,60].
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