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We study a sparse Sachdev-Ye-Kitaev (SYK) model with N Majoranas where only ∼kN independent
matrix elements are nonzero. We identify a minimum k ≳ 1 for quantum chaos to occur by a level statistics
analysis. The spectral density in this region, and for a larger k, is still given by the Schwarzian prediction of
the dense SYK model, though with renormalized parameters. Similar results are obtained for a beyond
linear scaling with N of the number of nonzero matrix elements. This is a strong indication that this is the
minimum connectivity for the sparse SYK model to still have a quantum gravity dual. We also find an
intriguing exact relation between the leading correction to moments of the spectral density due to sparsity
and the leading 1=d correction of Parisi’s U(1) lattice gauge theory in a d-dimensional hypercube. In the
k → 1 limit, different disorder realizations of the sparse SYK model show emergent random matrix
statistics that for fixed N can be in any universality class of the tenfold way. The agreement with random
matrix statistics is restricted to short-range correlations, no more than a few level spacings, in particular in
the tail of the spectrum. In addition, emergent discrete global symmetries in most of the disorder
realizations for k slightly below one give rise to 2m-fold degenerate spectra, withm being a positive integer.
For k ¼ 3=4, we observe a large number of such emergent global symmetries with a maximum 28-fold
degenerate spectra for N ¼ 26.
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I. INTRODUCTION

Models of interacting fermions with infinite-range inter-
actions in zero spatial dimension [1–4] were introduced
about 50 years ago to describe qualitative aspects of nuclear
dynamics. Later, they were broadly employed [5] to model
quantum chaotic dynamics in a many-body context and
also certain aspects of quantum magnetism [6].
More recently [7–10], a variant of these models based on

N Majoranas [7], the so-called Sachdev-Ye-Kitaev (SYK)
model, has attracted a lot of attention as a toy model for
holography and for its potential to reveal novel insights in
the dynamics of strongly interacting quantum matter. In the
low-temperature (strong-coupling) limit, the SYK model
shares the same pattern of soft breaking of conformal

symmetry [11] by finite temperature and quantum ð1=NÞ
effects as that of Jackiw-Teitelboim (JT) gravity [12,13], a
two-dimensional gravity theory with a dilaton in anti–de
Sitter space with nontrivial boundary conditions. This
symmetry-breaking pattern dictates low-temperature
thermodynamic properties [7,8,14–16] such as a linear
specific heat and an exponential growth of low-energy
excitations. These are all expected features in field theories
with a black hole gravity dual.
Another distinctive feature of these systems is quantum

chaos [17]. Quantum chaos reveals itself in level statistics
described by random matrix theory [18] and also in the
exponential growth at the scrambling time of quantum
corrections measured by certain out-of-time-order correla-
tion (OTOC) functions, with a growth rate controlled by the
Lyapunov exponent. Kitaev [7] found that this feature
occurs in the SYK model and that, in the strong-coupling,
low-temperature limit, the Lyapunov exponent saturates a
previously proposed universal bound on chaos [17].
Regarding level statistics, both the SYK model [16,
19–22] and JT gravity [23,24] are well described by
random matrix theory [25–29] which indicates that the
system is quantum chaotic at all timescales.
A natural question to ask is how the above features,

which determine the existence of a quantum black hole
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dual, are robust to deformations of the SYK model.
Typically, generalizations of the SYK model to higher
spatial dimensions [30] or involving more Majoranas than
the usual four-body interaction [31] share similar features.
However, the addition of an integrable two-body interac-
tion [32–34] prevents the saturation of the Lyapunov
exponent. Moreover, in a certain range of parameters,
the system is not quantum chaotic as spectral correlations
are well described by Poisson statistics, typical of an
integrable system.
Another example of a generalized SYK model in which

quantum chaos may not occur is that of a two-site coupled
SYK model that in the low-temperature limit is dual [35] to
an eternal traversable wormhole. It was shown in Ref. [36]
that the traversable wormhole phase is not quantum chaotic.
Quantum chaotic features are only observed for higher
temperatures where the gravity dual undergoes a thermody-
namic transition to a quantum two-black-hole background.
Another plausible deformation of the SYK model is to

relax the requirement of infinite-range interactions. Indeed,
in the context of condensed matter physics [37], interacting
quantum dots describing realistic electronic interactions are
qualitatively similar to the SYK model with complex
fermions but with a Fock space geometry living on a
Cayley tree rather than on a complete graph. The effect in
the SYKmodel of a sharp cutoff in Fock space distances [38]
induces a metal-insulator transition. However, not much is
known about the requirements on the range or the form of the
interactions that guarantee the existence of a gravity dual.
Progress on this problem would not only bring a more
detailed understanding on the conditions for a field theory to
have a gravity dual, but also it might be useful to identify
systems to test experimentally holography predictions.
Here we study the properties of a sparse SYK model

where some of the couplings are randomly set to zero with a
probability 1 − p, where p ∼ k=Nα, α > 0 and k is a
positive real number. This model was first articulated in
a talk given by Swingle [39]. Our main aim is to character-
ize the maximum sparseness for which both the spectral
density and spectral correlations are consistent with that of
a gravity dual. Namely, the spectral density is still described
by the Schwarzian prediction of the dense SYKmodel [7,8]
and level statistics are still quantum chaotic [16,20] and
therefore well modeled by random matrix theory. For that
purpose, we have computed analytically the spectral
density, and the partition function, by an explicit calcu-
lation of the moments of the Hamiltonian. We show that it
still has a Schwarzian form, and therefore it is likely related
to a gravity dual, provided that α ≤ 3 and, for α ¼ 3, k ∼ 1
or larger. A study of spectral correlations confirms agree-
ment with random matrix theory in this region of param-
eters which indicates the dynamics is still quantum chaotic
at late timescales. For k ¼ 1 extra symmetries and chiral
symmetries emerge for some disorder realizations, and
level statistics of the three Wigner-Dyson ensembles and

the three chiral ensembles are observed for an ensemble of
26 Majorana fermions. For k < 1we find a large number of
emergent discrete symmetries as well as chiral symmetries
leading to exact degeneracies in powers of 2.
We note that formally the SYK Hamiltonian is defined

over random hypergraphs. As we shall see, there are not
many mathematically rigorous results for generic random
hypergraphs as a function of the degree of sparseness. The
situation is different in the simpler case of random sparse
graphs, usually termed Erdős-Rényi graphs [40] which can
be cast as L × L matrices. There is a rather rigorous
characterization [41–44] of the bulk spectral properties:
level statistics consistent with the prediction of random
matrix theory will occur if the fraction of nonzero matrix
elements satisfies p ≥ Lϵ=L with ϵ > 0. In this region, the
spectral density is given by the semicircle law [45,46].
These results are fully consistent with numerical [47] and
analytical results [48,49] in the physics literature. Close to
the edge of the spectrum, the spectral region related to the
gravity dual, it was demonstrated rigorously [42] that, for
p ≥ Lϵ=L2=3, spectral correlations are described by random
matrix theory (RMT). As far as we know, it is unclear
whether this bound is optimal.
These findings cannot be directly applied to the sparse

SYKmodel as its Hamiltonian is not represented by a graph
but by a more complex random sparse hypergraph for
which not many explicit results for the density or spectral
correlations are available. An exception [50] is the spectral
density of a SYK-like model that can be cast as a

ffiffiffiffi
N

p
hypergraph. We refer to [51] and references therein for
recent mathematical results about the conditions to observe
the semicircle law in random hypergraphs. We are not
aware of any level statistics characterization of random
hypergraph in the mathematical literature. In the physics
literature, we refer to Refs. [52,53] for an analytical
calculation of the two-level correlation function in a
fermionic model with infinite-range interactions.
The paper is organized as follows: in Sec. II, we

introduce the sparse SYK model, the mechanism to tune
the sparseness and the regularity condition that makes the
connectivity on the hypergraph uniform for each disorder
realization. Section III is devoted to an analytical evaluation
of the spectral density as a function of the degree of
sparseness. We notice a striking equivalence between
leading corrections to the moments of the density, due to
the sparsity of the model, and leading 1=d corrections of the
same quantity in the Parisi U(1) gauge model on a d-
dimensional hypercube [54]. Based on exact analytical
results for low-order moments, we propose two approxi-
mate analytical expressions for moments of any order. For
one of them, we write down a closed analytical expression
for the spectral density. In Sec. IV, these predictions are
compared to numerical results resulting from the exact
diagonalization of the sparse SYK Hamiltonian. In Sec. V,
we turn to the study of the conditions for the existence of
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quantum chaos by an analysis of spectral correlations in
both the bulk and the edge of the spectrum as a function of
the degree of sparseness. Section VI is focused on the
description of emergent global symmetries that only occur
in the limit of strong sparsity. For a fixed number of
Majoranas, these additional symmetries, that depend on the
disorder realization, lead to spectral degeneracies and
spectral correlations described by random matrix ensem-
bles of different universality classes including those with
chiral symmetry. Finally, in Sec. VII, we summarize the
main results of the paper and list some problems for future
research. The numerical implementation of the regularity
condition is discussed in Appendix A. In Appendix B, we
discuss two examples of emergent symmetries.

II. SPARSE SYK MODEL

We investigate the following Hamiltonian representingN
strongly interacting Majorana fermions [7] with sparse
q-body infinite-range interactions. For q ¼ 4,

H ¼
X

1≤i<j<k<l≤N
xijklJijklγiγjγkγl; ð1Þ

where we have used Euclidean Dirac matrices γi to
represent Majorana fermions. Dirac matrices satisfy the
anticommutation relations

fγi; γjg ¼ 2δij: ð2Þ

They are the same as the anticommutation relations of
Majorana fermions up to a factor of 2, which will be
absorbed in the definition of the variance of Jijkl in Eq. (3).
The sparseness is implemented by the random variable
xijkl: xijkl ¼ 1 with probability p and xijkl ¼ 0 with
probability 1 − p. We may think of the interactions to be
defined on random hypergraphs: i ¼ 1; 2;…; N labels the
N vertices. A hyperedge connecting the i, j, k, l vertices is
present if xijkl ¼ 1. The expected number of the hyper-
edges (and hence the number of terms in the Hamiltonian)
is pðN

4
Þ. The hypergraph gets sparser as p gets closer to

zero, and p ¼ 1 gives the maximal number of hyperedges,
ðN
4
Þ, which results in the conventional “dense” SYK model.

The couplings Jijkl are Gaussian random variables with the
distribution

PðJijklÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
23N3p
3!πJ2

s
exp

�
−
23N3pJ2ijkl

3!J2

�
; ð3Þ

where J sets the scale of the distribution. We will set J ¼ 1
for later numerical calculations. We focus on a probability
p that scales as p ∼ N−3 for which it is convenient to define
an order-one quantity k:

k ¼ p
N

�
N
4

�
: ð4Þ

We shall study other scalings p ∼ N−α, but unless stated
explicitly, we set α ¼ 3.
Although the numerical results of this paper will be

restricted to q ¼ 4, certain analytical results will also be
available for other integer values of q > 0. For general q,
we write the Hamiltonian as

H ¼
X
α

xαJαΓα; ð5Þ

where α is a multi-index with q elements:

α ¼ fi1; i2;…; iqg; 1 ≤ i1 < i2 < � � � < iq ≤ N; ð6Þ

so that α can take ðNqÞ different values. The random
coupling Jα follows a Gaussian distribution:

PðJαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q−1Nq−1p
ðq − 1Þ!πJ2

s
exp

�
−
2q−1Nq−1pJ2α
ðq − 1Þ!J2

�
; ð7Þ

and Γα is the product of q Dirac matrices indexed by α:

Γα ¼ iqðq−1Þ=2γi1γi2 � � � γiq : ð8Þ

The hyperedge variable xα is defined analogously, the
probability p now scales as N1−q and

k ¼ p
N

�
N
q

�
: ð9Þ

When k is small, some of the random hypergraphs are
disconnected. The disconnectedness makes the Hamiltonian
split into a sum of sub-Hamiltonians defined on independent
tensor subspaces. In this case, the spectral statistics become a
superposition of statistics from different sectors possibly
belonging to different symmetry classes. To mitigate this
complication,we can consider regular hypergraphs only; that
is, we can impose that every vertex has the same degree kq,
namely each vertex is contained in the same number kq of
hyperedges. This regularity condition is imposed as a set of
constraints on xα:X

α∋m
xα ¼ kq; for any m ¼ 1; 2;…; N; ð10Þ

where
P

α∋mmeans that, among the ðNqÞ choices ofα, we sum
over those α that contain a given integer m. The value of k
must be chosen so that kq is a positive integer. This regularity
condition implies that every realization of the Hamiltonian
contains exactly kN ¼ pðNqÞ number of independent nonzero
terms, as opposed to the casewithout the regularity condition
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where kN is only the number of nonzero terms on average.
For ordinary random graphs, where each edge connects two
vertices, graphs are almost surely connected provided they
are regular and its vertex degree is larger than 2 [40,55,56].
For random regular hypergraphs, since a hyperedge connects
more than two vertices, we expect connectivity to be more
easily achievable and hence the vertex degree need not be as
large. This is indeed true for any vertex degree kq > 1 for
which any random regular hypergraphs will be almost surely
connected [57]. However, aswewill see, evenwith regularity
condition, in the very sparse regime 1=q < k ≤ 1, spectral
statistics can still be a superposition of independent spectra
because there are new emergent global symmetries.

III. SPECTRAL DENSITY: ANALYTICAL
RESULTS

We evaluate analytically the spectral density by an
explicit computation of the moments of the sparse SYK
Hamiltonian:

M2l ¼ 2−N=2hTrH2li: ð11Þ

The spectral density can be expressed as

ρðEÞ ¼ 2−N=2 1

2π

Z
∞

−∞
dte−iEthTreiHti

¼ 1

2π

Z
∞

−∞
dte−iEt

X
l

1

ð2lÞ! ðitÞ
2lM2l: ð12Þ

Since we have a Gaussian distribution of Jα [in the notation
of Eq. (5)], the calculation of the average requires us to
consider all possible Wick contractions. In the end, we will
also need to average over the random variable xα.
After averaging over Jα, the result depends on whether

pairs of two factors Γα are adjacent or not. In the former
case we can use that

Γ2
α ¼ 1; ð13Þ

while in the latter case, the Γα’s can be made adjacent by
using [16]

ΓαΓβ − ð−1ÞcαβΓβΓα ¼ 0; ð14Þ

where cαβ ¼ jα ∩ βj is the number of indices that α and β
have in common. An exact calculation of a generic trace
requires us to keep track of correlations with other factors
Γ. This is in general a challenging combinatorial problem
but some low-order moments have been evaluated exactly
[16,58] for the dense SYK model. The simplest Wick
contraction in which Eq. (14) plays a role is

2−N=2
X
α;β

TrΓαΓβΓαΓβ ¼
X
α;β

ð−1Þcαβ ; ð15Þ

out of which we will define an order-one quantity

η ≔
�
N
q

�
−2X

α;β

ð−1Þcαβ ¼
�
N
q

�
−1

×
Xq
cαβ¼0

ð−1Þcαβ
�

q
cαβ

��
N − q
q − cαβ

�
: ð16Þ

In general, a Wick contraction that contributes to M2l is a
trace of a product of 2l matrices Γ, whose subscripts form l
pairs that are summed over. Repeatedly using Eqs. (13) and
(14), we can move all the pairs of Γ’s with the same
subscripts next to each other and produce a purely
combinatorial expression of the form�

N
q

�
−l X

α1;α2;…;αp

ð−1Þ
P

crossings
cαiαj ; ð17Þ

where cαiαj ¼ jαi ∩ αjj and
P

crossings includes all those
pairs of i, j for which αi and αj form a “crossing”
configuration in the trace:

2−N=2Trð…Γαi…Γαj…Γαi…Γαj…Þ: ð18Þ

The binomial factor in front of Eq. (17) is to normalize the
sum to an order-one quantity, which can be alternatively
understood as normalizing the moments M2l to reduced
moments M2l=Ml

2 as we shall see soon. There is an
intersection graph representation [58] of the quantity
defined in Eq. (17):
(1) Draw l vertices labeled by α1;α2;…; αp.
(2) If any cαiαj is in the

P
crossings cαiαj , connect the

vertices αi and αj by an edge.
We can now rewrite Eq. (17) in terms of intersection
graphs: a Wick contraction represented by an intersection
graph G that contributes to the 2lth reduced moment has a
value of [59]

ηG ¼
�
N
q

�
−l X

α1;α2;…;αl

ð−1ÞcðGÞ; ð19Þ

where cðGÞ ¼ P
ðαiαjÞ∈G cαiαj , ðαiαjÞ is an edge of the

graph G connecting the vertices αi and αj and cαiαj is the
number of common indices in αi and αj. We give two
examples of intersection graphs and what they represent
in Fig. 1.
In this notation, the reduced moments for the dense SYK

model can be written as

M2l;SYK=Ml
SYK;2 ¼

X
G

ηG; ð20Þ

whereG are all the l-vertex intersection graphs representing
Wick contractions. An important approximation to the
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dense SYK model moments is the so-called Q-Hermite
approximation [19,20,50,58]:

ηG ≈ ηEðGÞ; ð21Þ

where η is defined in Eq. (16) and EðGÞ is the number of
edges in G. Under this approximation, the dense SYK
moments are

M2l;SYK=Ml
SYK;2

≈
X
G

ηEðGÞ ¼ 1

ð1 − ηÞl
Xl

i¼−l
ð−1Þi

�
2l

iþ l

�
ηiði−1Þ=2; ð22Þ

where the second equality is the Riordan-Touchard formula
[60,61]. The moments of the Riordan-Touchard formula
are exactly the moments of the weight function of the
Q-Hermite polynomials [62]:

ρQHðEÞ¼cN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðE=E0Þ2

q Y∞
m¼1

�
1−4

E2

E2
0

�
1

2þηmþη−m

��
;

ð23Þ

where

E0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
4σ2

1 − η

s
ð24Þ

is the ground state energy. This is the reason why we called
Eq. (21) the Q-Hermite approximation for the (dense) SYK
moments.
When it comes to averaging over xα, the regularity

conditionmatters.Without the regularity condition, a generic
averaging hxα1xα2 � � � xαli can be worked out by simply
noting that x2α ¼ xα, hxαi ¼ p and that two x variables are
statistically independent if they have different subscripts.
With the regularity condition, two x variables can be
correlated even if they have different subscripts (essentially
because, given the regularity constraint, the various x
variables are not extracted independently from each other),
whichmakes the combinatorial problemmuchmoredifficult.
For this reason, in this paper analytical results are only
available for the model without the regularity condition, and
the regularmodelwill only be studied numerically. However,
since the regularity condition in Eq. (10) implements N
constraints on ðNqÞ otherwise independent variables, we
expect that the regularity condition only modifies the
moments by contributions of order 1=Nq−1 which are
subleading with respect to those considered below.

Without the regularity condition, the second moment is given by

M2 ¼ 2−N=2TrH2 ¼
�
N
q

�
hJ2αihx2αi ¼

�
N
q

�
×
ðq − 1Þ!J2
2qNq−1p

× p ¼
�
N
q

� ðq − 1Þ!J2
2qNq−1 ; ð25Þ

which is the same as for the dense SYK model. To calculate the fourth moment we need to be careful with the average over
xα variables because

hxαxβi ¼
�
p if α ¼ β;

p2 if α ≠ β:
ð26Þ

We write down the result in terms of the reduced fourth moment without the regularity condition:

M4=M2
2 ¼

1

p2ðNqÞ2
�
2p2

�
N
q

���
N
q

�
− 1

�
þ 2p

�
N
q

�
þ
�
N
q

��
p2

Xq
r¼1

ð−1Þr
�
q
r

��
N − q
q − r

�
þ p

�
N
q

���

¼ 2þ ηþ 3

kN
ð1 − pÞ

¼ M4;SYK=M2
2;SYK þ 3

kN
ð1 − pÞ; ð27Þ

where M4;SYK is the fourth moment of the dense SYK model and η is given by Eq. (16). Similarly, the result for the sixth
moment without the regularity condition is

FIG. 1. Two examples of intersections graphs G for the dense
SYK model. The left graph represents ðNqÞ−2

P
α1α2

ð−1Þcα1α2
which is the η defined in Eq. (16); the right graph represents
ðNqÞ−3

P
α1α2α3

ð−1Þcα1α2þcα1α3þcα2α3 which is the T6 defined in
Eq. (30).
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M6=M3
2 ¼ M6;SYK=M3

2;SYK þ 3

kN
ð1 − pÞð9þ 6ηÞ þ 15

ðkNÞ2 ð1 − 3pþ 2p2Þ: ð28Þ

Likewise, the full expression for the eighth moment without the regularity condition is

M8=M4
2 ¼ M8;SYK=M4

2;SYK þ 3ð1 − pÞ
kN

ð56þ 86ηþ 52η2 þ 16T6Þ þ
1

ðkNÞ2 ð1 − 2pþ p2Þð144ηþ 171Þ

þ 1

ðkNÞ2 ð1 − 3pþ 2p2Þð180ηþ 240Þ þ 105

ðkNÞ3 ð1 − 7pþ 12p2 − 6p3Þ; ð29Þ

where T6 is the value for the triangle intersection graph (see Fig. 1):

T6 ≔
�
N
q

�
−3 1

2N=2

X
αβγ

TrΓαΓβΓγΓαΓβΓγ; ð30Þ

which in the Q-Hermite approximation Eq. (21) is given by
T6 ≈ η3. In principle, it is possible to compute higher-order
moments but the final expression becomes increasingly
cumbersome. It is clear from the explicit calculations so far,
and from a general proof to be given soon, that the leading
moment is always that corresponding to the dense SYK
model. Hence, in the large N limit, we already know the
behavior of sparse SYK moments: they are the same as the
large N limit of the dense SYK model. Two commonly
taken large N limits are
(1) Fixed q and N → ∞.—In this limit the global

spectral density approaches a Gaussian.
(2) Fixed q2=N and N → ∞.—In this limit the global

spectral density approaches the density function of the
Q-Hermite polynomialswithQ ¼ ηwhich for largeN
can be approximated as Q → expð−2q2=NÞ [50].

However, wewould like to understand how the largeN limit
is approached or, in otherwords, wewould like to understand
the sparse SYK model at large but finite N with q fixed.
Moreover, we would also like to understand the form of the
low-energy excitations slightly above the ground state for the
q ¼ 4 model, which is not captured by the two above-
mentioned global limits. The form of the spectral density in
this infrared region is relevant to the type of gravitational
theory the sparse SYK model might be dual to.

We now set out to study the finite N behavior of the
sparse SYK moments. As a start, we would like to draw the
readers’ attention to the subleading terms of the moments.
If we apply the Q-Hermite approximation defined in
Eq. (21), the subleading terms in Eqs. (27)–(29) become

M4=M2
2∶

3

kN
;

M6=M3
2∶

3

kN
ð9þ 6ηÞ;

M8=M4
2∶

3

kN
ð56þ 86ηþ 52η2 þ 16η3Þ: ð31Þ

Surprisingly, these expressions are strikingly similar to
certain subleading contributions to the moments of Parisi’s
U(1) lattice gauge theory in a hypercube [54,63,64] which
we now discuss in detail.

A. Relation to Parisi’s U(1) lattice gauge
theory in large d dimensions

TheParisimodel is aU(1) lattice gauge theorydefined on a
d-dimensional hypercube. The gauge links are chosen such
that the magnitude of the magnetic flux through each
hypercube face is ϕ, but with random signs. The first eight
reduced moments of Parisi’s model up to subleading order
are [63]

M4=M2
2 ¼

d − 1

d
ð2þ cosϕÞ þ 1

d
;

M6=M3
2 ¼

ðd − 1Þðd − 2Þ
d2

ð5þ 6 cosϕþ 3 cos2ϕþ cos3ϕÞ þ d − 1

d2
ð9þ 6 cosϕÞ;

M8=M4
2 ¼

ðd − 1Þðd − 2Þðd − 3Þ
d3

ð14þ 28 cosϕþ 28 cos2ϕþ 20 cos3ϕþ 10 cos4ϕþ 4 cos5ϕþ cos6ϕÞ

þ ðd − 1Þðd − 2Þ
d3

ð56þ 86 cosϕþ 52 cos2ϕþ 16 cos3ϕÞ: ð32Þ
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Note we will slightly abuse the terms “leading” and
“subleading” for Parisi’s model: the natural parameter for
the large d expansion of M2l=Ml

2 is not powers of 1=d but
dðd − 1Þ � � � ðd −mþ 1Þ=dl instead. Hence for the 2lth
moment, leading means m ¼ l and subleading means
m ¼ l − 1.We see that ifwe applyQ-Hermite approximation
to both the leading and the subleadingmoments of the sparse
SYK model and make the identification of η ¼ cosϕ, then
the leading moments of the sparse SYK model Eq. (22) are
exactly the same as the Parisi leading moments; the 1=kN
coefficients of the subleading moments of the sparse SYK
model Eq. (31) are exactly 3 times that of Parisi’s hypercube
model. In summary we have

ðsparse SYK momentsÞQH
¼ ðParisi leading coefficientsÞ

þ 3

kN
ðParisi subleading coefficientsÞ þ � � � ; ð33Þ

at least based on the observation of the first eight moments of
both models.
We will see now why Eq. (33) is true not only for the first

eight but for all moments. In the sparse SYK model, an
intersection graph G represents a value of

hηGix ¼ ðkNÞ−l
X

α1;α2;…;αl

ð−1ÞcðGÞhxα1xα2 � � � xαli; ð34Þ

where the notation hηGix serves to distinguish it from its
dense SYK counterpart ηG and reminds us of the fact that
there is an extra averaging over x variables in the sparse
SYKmodel. We shall distinguish the two cases in the actual
drawings of the intersection graphs by annotating the
vertices of the sparse SYK intersection graphs by
ðαi; xαiÞ, as opposed to by αi alone for the dense SYK
intersection graphs defined earlier. See Fig. 2 for an

example. If all the subscripts in Eq. (34) are different,
hxα1xα2 � � � xαli will be equal to pl; if two of the subscripts
become equal, hxα1xα2 � � � xαli will be enhanced by a factor
of 1=p, but the restriction on the summation will suppress
the sum by ðNqÞ, and the total effect is a 1=ðkNÞ suppression.
It is clear then that at leading order in 1=ðkNÞ, Eq. (34) is
given by

�
N
q

�
−l X

α1;α2;…;αl

ð−1ÞcðGÞ; ð35Þ

coinciding with the dense SYK model value ηG. This
proves that to leading order, the moments of the sparse
SYK are exactly the same as those of the dense SYK.
Hence, in the Q-Hermite approximation, they are given by
the Q-Hermite moments Eq. (22). In the case of the Parisi
model, it is already understood that the leading contribution
is given by the Q-Hermite prediction [65]. Therefore, to
leading order, Eq. (33) is proven; namely, the moments of
both the dense SYK model (after Q-Hermite approxima-
tion) and the Parisi model are given by the Q-Hermite
prediction. This is perhaps not too surprising, but we will
see that the subleading correction in Eq. (33) arises in a
much more subtle and surprising way.

The subleading order of Eq. (34) can be written as

ðkNÞ−1
�
N
q

�
−lþ1

� X
α1¼α2;α3…;αl

ð−1ÞcðGÞ þ
X

α1¼α3;α2;…;αl

ð−1ÞcðGÞ þ � � � þ
X

α1;α2;…;αl−1¼αl

ð−1ÞcðGÞ
�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ðl

2
Þ

; ð36Þ

where there are ðl
2
Þ sums corresponding to letting two out of the l subscripts be equal. One might worry about excluding the

cases where even more indices are equal, but they are of higher order and do not enter into our consideration here. We can
summarize the above results as

hηGix ¼ ηG þ
�
l
2

�
subleading terms in Eq: ð36Þ þO

�
1

N2

�
: ð37Þ

For example, Fig. 2 gives an intersection graphG that contributes the sixth moment, and in the form of Eq. (37) its value can
be written as

FIG. 2. An intersection graph example of Eq. (37). Note the
left-hand side and the first term on the right-hand side have
identical graphs but different labeling of the vertices, and hence
the left represents hηGix whereas the first term on the right
represents ηG.
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ðkNÞ−3
X

α1;α2;α3

ð−1Þcα1α2þcα2α3 hxα1xα2xα3i

¼
�
N
q

�
−3 X

α1;α2;α3

ð−1Þcα1α2þcα2α3 þ 1

kN

�
N
q

�
−2
�X

α2;α3

ð−1Þcα2α2þcα2α3 þ
X
α1;α2

ð−1Þcα1α2þcα1α2 þ
X
α1;α2

ð−1Þcα1α2þcα2α2

�

¼
�
N
q

�
−3 X

α1;α2;α3

ð−1Þcα1α2þcα2α3 þ 1

kN

�
N
q

�
−2
�X

α2;α3

ð−1Þcα2α3 þ
X
α1;α2

1þ
X
α1;α2

ð−1Þcα1α2
�
þOð1=N2Þ; ð38Þ

where from the second line to the third line we used
ð−1Þcα2α2 ¼ ð−1Þq ¼ 1 and ð−1Þ2cα1α2 ¼ 1.
From this example, it is clear that there is a natural

graphical representation of the subleading calculations:
(1) Merge two vertices αi, αj of the intersection graph

G, and let the merged vertices inherit the origi-
nal edges.

(2) There may be loops [an edge connecting a vertex
back to itself, representing ð−1Þq] and 2-multiedges
[two edges connecting the same pair of vertices,
representing ð−1Þ2cαiαj ] formed after step 1; delete all
such loops and 2-multiedges. Call the resulting
graph Gðαi;αjÞ.

(3) The subleading contribution to hηGix is given by

1

kN

X
fαi;αjg⊂vðGÞ

ηGðαi;αjÞ
; ð39Þ

where vðGÞ denotes the vertex set ofG and ηGðαi ;αjÞ
is

the value for which the intersection graph Gðαi;αjÞ
would represent a dense SYK model. When the Q-
Hermite approximation is applied, this gives

1

kN

X
fαi;αjg⊂vðGÞ

ηE½Gðαi ;αjÞ�; ð40Þ

where E½Gðαi;αjÞ� denotes the number of edges in the
graph Gðαi;αjÞ.

Figure 3 illustrates an example of the application of these
rules. The above merge and delete graphical rules to
calculate the subleading moments, which result in
Eq. (40), are exactly the same as the “averaged scheme”
defined in [64] for calculating the subleading moments of
the Parisi hypercube model, except that the averaged
scheme for the Parisi model has an extra factor of 1=3.
We can now conclude that Eq. (33) holds for all moments.
Such coincidence does not hold to the next order in
1=ðkNÞ, as is evident by comparing the eighth moments
of the sparse SYK and the Parisi model at higher orders.

B. The renormalized and subleading Q-Hermite
approximations

The leading intersection graphs G introduced in the
previous section can be summed by the Riordan-Touchard
formula [60,61] after applying the Q-Hermite approxima-
tion, ηG ≈ ηEðGÞ, to both the leading and subleading terms:

M2l

Ml
2

≈
X
G

ηEðGÞ þ 1

kN

X
G

X
fαi;αjg⊂vðGÞ

ηE½Gðαi;αjÞ�

¼ 1

ð1 − ηÞl
Xl

i¼−l
ð−1Þi

�
2l

iþ l

�
ηiði−1Þ=2

þ 1

kN

X
G

X
fαi;αjg⊂vðGÞ

ηE½Gðαi ;αjÞ�: ð41Þ

We will call Eq. (41) the subleading Q-Hermite approxi-
mation. One can easily check that only including the
leading term results in a fairly large discrepancy with
the exact result so the subleading term is an important
contribution. We would like to get a grasp of how accurate
the subleading Q-Hermite approximation is. In Fig. 4 we
compare the exact results for the sixth and eighth moments
with the sixth and eighth moments approximated this way
at different values of N and k. Rather surprisingly, this
approximation works quite well, even for k ¼ 1 or small N,
provided that 1=ðkNÞ ≪ 1.
The Riordan-Touchard formula enables us to calculate

the leading term of arbitrarily high moment very efficiently
and gives the analytic expression Eq. (23) for the spectral

FIG. 3. The “merge and delete” procedures applied in the
example of Eq. (38). We show how to obtain the subleading-
moment intersection graphs from the leading-moment intersec-
tion graph in Fig. 2. There are three subleading graphs
corresponding to the merging of α1α2, α1α3 and α2α3; we have
drawn two of them because merging α1α2 and merging α2α3
result in identical graphs.
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density to leading order. Marinari, Parisi and Ritort [63]
computed the subleading term in Eq. (41) up to the 18th
moment numerically, but we are not yet able to find a
Riordan-Touchard-like formula for the subleading terms. A
related difficulty is then that we are not able to write down
an analytic expression for the subleading spectral density.
At this point we can simply remark that it would be
worthwhile to find a Riordan-Touchard-like formula since
it would solve the subleading problem of two models at one
stroke. This difficulty prompts us to try a different strategy
of approximating moments. We will only use the leading
moment expression, but with a renormalized η, with the
hope it can capture subleading effects beyond it natural
range of applicability of relatively low moments. More
specifically, calling this renormalized parameter ηðkÞ, the
moments are given by

M2l

Ml
2

≈
X
G

ηðkÞEðGÞ

¼ 1

ð1 − ηðkÞÞl
Xl

i¼−l
ð−1Þi

�
2l

iþ l

�
ηðkÞiði−1Þ=2: ð42Þ

We dub this approximation the renormalized Q-Hermite
approximation.
The lowest moment in which η starts to make an

appearance is M4=M2
2. The renormalized Q-Hermite

approximation Eq. (42) predicts M4=M2
2 ¼ 2þ ηðkÞ

whereas the exact result Eq. (27) gives M4=M2
2 ¼ 2þ ηþ

3=ðkNÞ up to subleading corrections in the 1=kN expan-
sion. Hence, a simple matching gives

ηðkÞ ¼ ηþ 3

kN
: ð43Þ

We remark that this renormalized Q-Hermite approxima-
tion already fails to fully capture the subleading term of the
sixth moment (except at η ¼ 1). However, this approxi-
mation can be justified a posteriori: we shall see it is
surprisingly close to the exact moments for certain ranges
of N and k and to the resulting spectral density as well.
In order to gain a more quantitative understanding of

the suitability of these approximations, we compare the
subleading Q-Hermite (see Fig. 4) and the renormalized
Q-Hermite approximation (see Fig. 5) with exact results for
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FIG. 4. The accuracy of subleading Q-Hermite approximation. The sixth and eighth moments for q ¼ 4 are plotted with varying N.
The solid lines represent the exact moments; the dashed lines represent the sum of leading and subleading moments, both with
Q-Hermite approximation applied.
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FIG. 5. The accuracy of renormalized Q-Hermite approximation. The sixth and eighth moments for q ¼ 4 are plotted as a function of
N. The solid lines represent the exact moments; the dashed lines represent the Q-Hermite approximation applied to the leading moments,
but with a renormalized ηðkÞ ¼ ηþ 3=ðkNÞ.
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the sixth and eighth moments of the q ¼ 4 model Eq. (1).
We have observed that
(1) in the very sparse limit, k ¼ 1, the subleading

Q-Hermite approximation is the better approxima-
tion for N ⪅ 60;

(2) when N is relatively small, N ⪅ 30, the subleading
Q-Hermite approximation is the better approxi-
mation;

(3) for larger k, such as k ≥ 3, the accuracy of the
renormalizedQ-Hermite approximation starts to catch
up with that of the subleading Q-Hermite approxi-
mation, and rather surprisingly at first glance, beyond
N ¼ 40 its accuracy exceeds that of the subleading
Q-Hermite approximation. This can be understood
partly from the observation that for η ¼ 1 the renorm-
alization cancels the 1=ðkNÞ terms exactly in case of
the sixth and eighth moments. In fact, it can be shown
[66] that this observation for η ¼ 1 is true for all
moments due to a result for edge counting of
intersecting graphs. We will see in the next section
that this results in a surprisingly good agreement
between the renormalized Q-Hermite prediction and
the numerical spectral density.

Finally, we note that the moments in Eq. (42) give rise to
the same spectral density as in Eq. (23) but with η replaced
by its renormalized version ηðkÞ:

ρrenQHðEÞ ¼ cN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðE=E0ðkÞÞ2

q Y∞
m¼1

×

�
1 − 4

E2

E2
0

�
1

2þ ηðkÞm þ ηðkÞ−m
��

; ð44Þ

where cN is a normalization constant and

E0ðkÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2

1 − ηðkÞ

s
ð45Þ

is the ground state energy.
We compare in next section this analytical prediction

with the numerical spectral density from the exact diago-
nalization of the sparse SYK Hamiltonian Eq. (1).

C. Conditions for the existence of a gravity dual

A distinctive feature of the existence of a gravity dual in
the context of the SYK model is that, for E sufficiently
close to the ground state E0, the spectral density becomes

ρSchwðEÞ ∼ sinhðγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − E0

p
Þ ð46Þ

with γ a nonuniversal constant directly related to η. This is
the result of the exact quantum path integral computation of
the classical Schwarzian action [68] which is 1=N exact.
The classical Schwarzian captures the soft breaking from

conformal to SLð2; RÞ symmetry that characterizes both the
infrared limit of the SYK model and certain near AdS2
backgrounds [7,8,11]. These symmetry considerations are
enough to determine the effective low-energy theory that is
then quantized.
The analytical moment calculation that we have carried

out indicates that, for the sparse SYK model with α < 3,
corrections due to the sparsity of the Hamiltonian are
subleading with respect to 1=N corrections which strongly
suggests that the spectral density is still given by Eq. (46)
and therefore it could still have a gravity dual. The case
α ¼ 3 is more interesting. The leading correction due to the
sparsity of the Hamiltonian is of order 1=kN and therefore
it modifies the expansion leading to the Q-Hermite
approximation in the dense SYK. However, the analytical
moment calculation earlier in this section, together with the
comparison of the renormalized Q-Hermite approximation
with numerical results, supports that Eq. (44) provides a
good description of the spectral density of the model for
large but finite N and even relatively small k provided that
1=kN is small. In principle, this means that the expression
for the spectral density Eq. (46) is still valid with γ ¼ γðkÞ.
This will be shown explicitly in Fig. 10, but it may be
argued that we had to remove by hand the strong fluctua-
tions of E0 in order to clearly observe the edge of the
spectrum which casts some doubts on the applicability of
Eq. (46) and indirectly on the existence of a gravity dual.
We think that these concerns are unfounded. The fluctua-
tions in E0 are a direct consequence of the quantization
procedure we have followed. Instead of picking up the
classical low-energy effective theory and then quantizing
the gravitational degrees of freedom of interest, we are
quantizing the full theory without suppressing other
degrees of freedom which leads to strongly enhanced
fluctuations. Moreover, the collective excitations that
induce fluctuations in E0 are also 1=N suppressed so we
expect them to become a smaller problem if larger N could
be explored numerically. Therefore, we believe that remov-
ing the fluctuations of E0, a degree of freedom of no direct
interest in our analysis, is an approximation in line with that
of first identifying the effective low-energy classical action
and then proceeding with the quantization [68]. This is
specially true when we have strong evidence that the
renormalized Q-Hermite approach provides a very good
description of the spectral density in the bulk of the spectrum.
It is a quite exciting prospect that even a strongly sparse

SYK model could have a gravity dual. If so, it may be
possible to push this idea further and investigate specific
conditions on the geometry of the Fock space which could
be favorable to the existence of a gravity dual. More
specifically, it may be possible to establish the minimum
requirements on connectivity so that the spectral density
has black-hole-like features such a stretched exponential
form, ∝ ea

ffiffiffiffiffiffiffiffiffi
E−E0

p
with a independent of energy, in the

infrared limit.
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IV. SPECTRAL DENSITY: NUMERICAL RESULTS

We compute the eigenvalues of the Hamiltonian Eq. (1)
by exact diagonalization techniques. The resulting spectral
density is very sensitive to the probability p ∼ k=Nα. For
α > 3, and a small value of k, we observe (see Fig. 6) a
depletion of eigenvalues around toE ¼ 0 and an increase of
statistical fluctuations.
For α < 3 and k > 1, we expect the spectral density to be

similar to that of the dense SYK model. We focus on the
case α ¼ 3, that according to the previous analytical results
is the critical case to observe controlled deviations from the
results for the dense SYK model. The first question we aim
to clarify is whether the spectral density of the sparse SYK
in this case is still well described by the Q-Hermite result
Eq. (44) so that the effect of sparsing can be included in a
redefinition of η. This also means that the low-energy
excitations are well described by the Schwarzian prediction
which would support the existence of a gravity dual. In
Fig. 7, we show the spectral density for α ¼ 3 and k ¼ 4
and compare the result with the renormalized Q-Hermite
spectral density Eq. (44). Apart from deviations in the tail
region, we find excellent agreement for both N ¼ 32 (left)
and N ¼ 26 (right). The results for k ¼ 0.75, where

fluctuations from one realization to the next are large,
are shown in Fig. 8, left. The Q-Hermite density is again
given by Eq. (44) with the renormalized parameter
ηðkÞ ¼ ηþ 3=kN. We show results with and without the
regularity condition which has only a minor effect on the
spectral density. The good agreement is surprising in
the very sparse regime because the level density of each
realization deviates strongly from the average result. For
example, the width of the spectrum of a realization may be
a factor of 2 larger, or the spectrum may show macroscopic
gaps. To understand better the agreement with the Q-
Hermite result we plot in the right panel of Fig. 8 the
distribution of the smallest eigenvalue with and without the
regularity condition. The analytical result is a Gaussian
located at the Q-Hermite prediction for the smallest
eigenvalue with a width σ determined by M22 [as defined
in Eq. (50)] as σ ¼ 2=kN. The width is in agreement with
the numerical results, in particular when the regularity
condition is imposed, but the average position is well below
the numerical result. How can we reconcile this with the
good agreement of the overall spectral density? Because the
ensemble fluctuations of the individual eigenvalues are
much larger than the level spacing, the tail of the spectral

FIG. 6. Spectral density ρðEÞ obtained from the exact diagonalization of the Hamiltonian Eq. (1) for N ¼ 24 and 5000 disorder
realizations. Left: For α > 3, a depletion of the eigenvalue density occurs for E ∼ 0 that increases with α. Right: For the critical scaling
α ¼ 3, we observe similar features for k < 1. For k > 1, the density is qualitatively similar to the dense SYK model.
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FIG. 7. Spectral density ρðEÞ obtained from the exact diagonalization of the Hamiltonian Eq. (1) for k ¼ 4 and comparison with the
renormalized Q-Hermite prediction Eq. (44) for N ¼ 32 (left) and N ¼ 26 (right).
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density is not determined by the distribution of the lowest
eigenvalue, but rather by the totality of the distribution of
the excited states which are exponentially close to the
ground state.
The situation gets better for larger k. In Fig. 9 we show

the distribution of the first ten eigenvalues (red curves) for
N ¼ 26 and k ¼ 1 with (left) and without (right) the
regularity condition as well as the analytical result for
the distribution of the smallest eigenvalues (black curve).
The width of the distribution is much larger than the level
spacing, and the distributions of the first ten eigenvalues are
almost identical. The analytical and numerical are clearly
closer, and it is clear that a large number of small
eigenvalues contribute to the tail of the spectral density.
These results are a strong indication that α ¼ 3 and k ∼ 1

is the maximum degree of sparseness, or the connectivity in
Fock space, that can support the existence of a gravity dual.
Despite the good agreement, we observe visible

differences in the infrared part of the spectrum. The
numerical result has a smooth tail while the renormalized
Q-Hermite density predicts an edge. The reason behind the
numerical tail is the strong fluctuations of E0 for different
disorder realizations. It is well known that disorder induces

collective excitations in the spectrum, which blur the
existence of spectral edges.
In order to study the tail in more detail we remove these

collective excitations by dividing all eigenvalues of each
realization by its largest eigenvalue. The spectral density of
these renormalized eigenvalues for an ensemble of 1000
realizations with N ¼ 26 and k ¼ 4 is shown in Fig. 10. It
is also shown the Q-Hermite spectral density with fitted
values for η ¼ 0.129 and E0 ¼ 1.008. The fitted value of η
is considerably less that the theoretical value of 0.164
[without the 1=ðkNÞ correction] or 0.193 [with the 1=ðkNÞ
correction]. One might argue that η should be given by the
value corresponding to the internal fourth moment Eq. (55),
but it is actually quite a bit smaller. In the right panel for
Fig. 10, we depict a magnification of the tail of the spectral
density. There is an agreement with the Q-Hermite spectral
density (red curve) almost to the square root edge.

A. Scale fluctuations

For sparse matrices, the number of independent stochas-
tic variables defining the Hamiltonian is kN. Therefore the
relative error in an observable is 1=

ffiffiffiffiffiffi
kN

p
. If we decompose
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FIG. 9. Distribution of the ten smallest eigenvalues for an ensemble of 5000 configurations for N ¼ 26 and k ¼ 1 imposing the
regularity condition (red curves, left) and without imposing the regularity condition (red curves, right). The analytical result given by the
black curve has the right width but its average position disagrees with the numerical results.
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FIG. 8. Left: spectral density ρðEÞ of the Hamiltonian Eq. (1) for N ¼ 32 and k ¼ 3
4
both with (blue points) and without the regularity

condition (red points). Right: distribution of the smallest eigenvalue of theses ensembles of 1000 configurations compared to a Gaussian
with average given by Eq. (45) and width given by Eq. (50).
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each eigenvalue into the ensemble average and a small
deviation:

Ei ¼ hEii þ δEi; ð47Þ

we thus have that

δEi

Ei
∼

1

kN
: ð48Þ

This corresponds to scale fluctuations of the eigenvalues. It
is natural to introduce a stochastic variable ξ:

Ei ¼ hEiið1þ ξÞ ð49Þ

that describes the scale fluctuations of the spectrum over
different disorder realizations. The scale fluctuations follow
from the variance of the second moment:

M2;2 ¼ 2−NhTrH2TrH2i − 2−NhTrH2i2
¼ ½hð1þ ξÞ4i − hð1þ ξÞ2i2�2−NhTrH2i2: ð50Þ

For the contribution of scale fluctuations to the reduced
moment we find

M2;2

M2
2

− 1 ¼ 4hξ2i þOðξ4Þ: ð51Þ

On the other hand, we can evaluate the above moment
exactly through Wick contractions and explicit trace
calculation, and the exact result is

M2;2

M2
2

− 1 ¼ 2

kN
: ð52Þ

This results in

hδE2
i i

hEii2
¼ hξ2i ¼ 1

4

�
M2;2

M2
2

− 1

�
¼ 1

2kN
: ð53Þ

This means that the Thouless scale is only
ffiffiffiffi
N

p
when

k ¼ Oð1Þ. The Oð1=N2Þ correction also includes the 1=Nq

contribution from the dense SYK model [64].
In Fig. 10, we have eliminated the scale fluctuations by

normalizing the eigenvalues by the largest eigenvalue. Let
us estimate the value of the effective value of η. The scale
fluctuations give the following correction to the reduced
fourth moment:

M4

M2
2

¼ M4

M2
2

				
int
ð1þ 4hξ2iÞ

¼ M4

M2
2

				
int

�
1þ 2

kN

�
; ð54Þ

where the subscript “int” (internal) refers to the fourth
moment where the contributions of the scale fluctuations
have been eliminated. This gives the internal fourth reduced
moment

M4

M2
2

				
int

¼ 2þ η −
1

kN
−

2η

kN
; ð55Þ

where the last term is subleading. Indeed this gives a
reduced value of η, but the fitted value of η is still
considerably smaller.
It is straightforward to numerically calculate hδE2

i i for an
ensemble of sparse SYK Hamiltonians. In Fig. 11 we show
δEi ≡ hδE2

i i1=2 versus the ensemble average hEii of the ith
eigenvalue for N ¼ 32 and various values of k. In particu-
lar, for larger values of k there is a linear dependence on
hEii confirming the above analysis. The slope of the curves
versus 1=k is given in the right panel of Fig. 11 and
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FIG. 10. Spectral density ρðEÞ for N ¼ 26 and an ensemble of 1000 disorder realizations without imposing the regularity condition.
The red curve line is the renormalized Q-Hermite result Eq. (44) with η a fitting parameter. The agreement is excellent even in the tail of
the spectrum (right) where fluctuations are stronger. This is an indication that the sparse SYK model may have a gravity dual even for
this large degree of sparseness.
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compared to Eq. (53) (red solid curve). Except for the point
at k ¼ 3=4, the agreement is excellent.

V. SPECTRAL STATISTICS AND
QUANTUM CHAOS

We now study the late time dynamics associated with the
Hamiltonian Eq. (1) by a level statistics analysis. Spectral
correlations are a valuable probe to describe the quantum
dynamics for long timescales of the order of the inverse
mean level spacing. Agreement with RMT signals that the
dynamics is quantum chaotic while Poisson statistics
corresponds to an insulator or an integrable system [69].
The bulk of the spectrum corresponds to the high-

temperature phase while the low-temperature and strongly
coupled region is related to the lowest eigenvalues of the
spectrum. In principle, only the latter is related to the
existence of a gravity dual.
In order to proceed, we obtain the spectrum of the model

by exact diagonalization techniques. Since the matrix
representation of the Hamiltonian is extremely sparse,
the use of Lanczos’s algorithm allows us to reach up to
N ¼ 42 Majoranas. As already discussed, for sufficiently
small k, it is useful to impose the regularity condition
Eq. (10) so that all Majoranas live on a connected hyper-
graph. We discuss in Appendix A an efficient method for
the numerical implementation of the regularity condition.
Except for the calculation of the form factor, the

procedure of spectral unfolding is carried out by relatively
low-order < 5 polynomials.
Since our main goal is to establish the maximum

sparseness consistent with quantum chaos, we will be
mostly interested in short-range spectral correlators, such
as the level spacing distribution, PðsÞ, and the adjacent gap
ratio. The former is defined as the probability to find two
consecutive eigenvalues Ei and Eiþ1 at a distance s ¼
ðEiþ1 − EiÞ=Δ (withΔ the average local level spacing). For
a fully quantum chaotic system it is given by Wigner-
Dyson statistics [70] which is well approximated by the so-
called Wigner surmise that depends on the universality

classes [69]. For the Gaussian orthogonal ensemble
(GOE), Gaussian unitary ensemble (GUE), and Gaussian
symplectic ensemble (GSE) it is given by PW;βðsÞ ¼
aβsβ expð−bβsβÞ with β ¼ 1, 2, 4, respectively. aβ and
bβ are numerical coefficients [69]. For an insulator, or a
generic integrable system, it is given by Poisson statistics,
PPðsÞ ¼ e−s. The adjacent gap ratio is defined as [71–73]

ri ¼
minðδi; δiþ1Þ
maxðδi; δiþ1Þ

ð56Þ

for the ordered spectrum Ei−1 < Ei < Eiþ1 where
δi ¼ Ei − Ei−1. For a Poisson distribution, it is equal to
hriP ≈ 0.38 while for a random matrix ensemble it depends
on the symmetry class, with hri ≈ 0.53, 0.60, and 0.67 for
the GOE, GUE, and GSE [74], respectively. The advantage
of hri over PðsÞ is that it does not require us to unfold the
spectrum. For that reason, we will also consider the full
distribution of the adjacent gap ratio ρðrÞ. An analytical
Wigner surmise for ρðrÞ is available for different random
matrix ensembles [74]:

ρW;βðrÞ ¼ Aβ
ðrþ r2Þβ

ð1þ rþ r2Þ1þ3β=2 ð57Þ

with β ¼ 1, 2, 4 for GOE, GUE, and GSE, respectively. The
prefactor Aβ is a numerical coefficient and r≡ δi=δiþ1 [74]
[note the difference with Eq. (56)]. We note that despite
PðsÞ and ρðrÞ are both short-range spectral correlators that
probe the quantum dynamics at times of the order and
larger than the Heisenberg time, ρðrÞ is a shorter-range
correlator than PðsÞ. Therefore, we expect that deviations
from RMT predictions will become more apparent in PðsÞ.
We start the spectral analysis with the study of spectral

correlations near the center of spectrum, usually called the
bulk, corresponding to the high-temperature phase.
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FIG. 11. Left: the root mean ensemble fluctuations of eigenvalues versus the eigenvalues for N ¼ 32, q ¼ 4 and various values of k as
shown in the legend of the figure. Right: The slope of these curves versus 1=k is shown in the right figure and is compared to the
analytical result 1=

ffiffiffiffiffiffi
kN

p
. It is not clear why the point at k ¼ 3=4 deviates so much.
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A. Bulk

We define the bulk as the central part of the spectrum
comprising 80% of eigenvalues unless another percentage
is explicitly stated. Our first task is to determine the critical
scaling pðN

4
Þ ¼ kN4−α for which the dynamics is quantum

chaotic; namely, level statistics are well described by RMT.
For that purpose, we first compute PðsÞ defined above for
N ¼ 26, k ¼ 2 and different scalings of the probability p
parameterized by α. The results depicted in Fig. 12 strongly
suggest that the maximum sparseness consistent with
quantum chaotic dynamics is approximately p ∝ 1=N3,
namely, α ¼ 3. This is in agreement with the prediction for
Erdős-Rényi graphs adapted to random hypergraph repre-
sented by the Hamiltonian Eq. (1). We note that for α > 3,
not only the tail is exponential, as for Poisson statistics, but
also there is a peak for small s related to spectral
degeneracies that we shall see soon are related to the
presence of emergent global symmetries for sufficiently
strong sparseness.
In order to see that α ¼ 3 corresponds to the maximum

sparseness, called from now on the critical scaling, we first
study the level statistics for a larger k ¼ 4 and different N’s.
The global symmetries of the SYK model depend on N
[16,21], so a study of theN dependence in the sparse casewill
also provide useful information about the robustness of these
symmetries against the sparsing procedure. We have found
that the agreementwith theRMTresults corresponding to the
different universality classes (GOE, GUE, and GSE) is
excellent; see Fig. 12. Moreover, the results for N ¼ 26
and N ¼ 30, both belonging to GUE, are almost indistin-
guishable. Both features provide convincing evidence that in
the region k ≫ 1 and α ¼ 3 the system is still fully quantum
chaotic with not much difference with the dense case at least
for short-range correlations of few neighboring eigenvalues.
We note that this robustness of quantum chaos is

remarkable. The dense SYK model has ∼N4 nonzero
different entries while the sparse one only 4N. This is

however the analytical prediction resulting from a heuristic
extrapolation of the rigorous mathematical results [41,42],
and numerical simulations [47], for random sparse graphs
to hypergraphs such as the sparse SYK model: the
dynamics is quantum chaotic and spectral correlation are
described by RMT only for sufficiently large k.
We now turn to the study of the dependence of spectral

correlations on k for this critical scaling (p ∼ k=N3) to
determine the minimum k ¼ kc for which this agreement to
RMT persists. The theoretical expectation for random
graphs [47] is that kc ≳ 1. In the previous investigation
of level statistics for α > 3, we have noticed the emergence
of level degeneracies at least for some disorder realizations.
Qualitatively, the reason is that the quantum dynamics is
very sensitive to the overall connectivity of the hypergraph.
Therefore, for sufficiently small k, or large α, level statistics
strongly depend on the connectivity of the disorder
realization. As an example, for sufficiently small k ≤ 2,
in some cases, we observe double degeneracy while in
other realizations, the spectrum has a chiral symmetry
E → −E. For some disorder realizations, both a double
degeneracy and a chiral symmetry occur at the same time.
We will study this phenomenon in more detail in later
sections. For the moment, we remark that large sparseness
allows extra symmetries and chiral symmetries to emerge.
Without the regularity condition, this effect of sparseness is
more pronounced because disconnected hypergraphs can
be present; the regularity condition eliminates the discon-
nectedness and mitigates the complication of emergent
symmetries—however, symmetries can still emerge once
sparseness is further increased.
As an indication of the effect of the regularity condition,

in Fig. 13, we compare results for the distribution of gap
ratios ρðrÞ and PðsÞ with and without the regularity
condition for the N ¼ 32 sparse SYK model. For k ¼ 4
no difference is observed even in the tail of the distribution.
For k ¼ 2, the degeneracy only appears in some of the
realizations of the nonregular case, which results in a large

FIG. 12. Left: the nearest neighbor spacing distribution PðsÞ for N ¼ 26 and different scalings p ∝ 1=Nα in the bulk of the spectrum.
No regularity condition has been imposed. In agreement with the theoretical prediction, the critical scaling is at α ¼ 3. For α > 3,
corresponding to a more sparse Hamiltonian, we observe spectral quasi-degeneracy leading to an anomalous peak for small spacings and
a gradual approach to Poisson statistics. Right: PðsÞ for α ¼ 3, k ¼ 4 and different values of N. We observe an excellent agreement with
the predictions of RMT for the different values of N corresponding to different universality classes.
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peak at the origin (see green square in Fig. 13, left). Here
the effect of the hypergraph disconnectedness is concretely
at display: for N ¼ 32, k ¼ 2 without the regularity
condition, often enough a realization misses a fermion,
say γ32. Hence it is really an N ¼ 31 model in disguise,
which is incidentally still in the GOE class [75]. This
produces a twofold degeneracy because the extra symmetry
γ32 anticommutes with the chirality operator γc ¼

Q
32
i¼1 γi.

However in this case fixing the γc chirality, which we
always do, is enough to eliminate the degeneracy. What
happens much less often, but still with a non-negligible
probability, is that a realization can altogether miss two
fermions, say γ31 and γ32. In this case we have an N ¼ 30
model in disguise, which is in the GUE class. This is a
fourfold degenerate situation: twofold from the extra
symmetries γ31 and γ32 and another twofold from the fact
that the N ¼ 30 model (GUE) has a time-reversal operator
that anticommutes with the N ¼ 30 chirality operator [16].
Fixing the γc chirality only eliminates the former twofold
degeneracy and this explains the degenerate data point in
the left figure of Fig. 13. Therefore, to reach any firm

conclusion from the study of spectral statistics, we have to
classify the realizations of the Hamiltonian with all emergent
symmetries taken into account (see next section). Therefore,
for the study of the critical k for quantum chaos to occur, it is
advantageous to rely on regular hypergraphs, whichwill also
exhibit degeneracies and emergent symmetries but only for
smaller k’s with respect to those in the nonregular case.
In agreement with the theoretical expectation (see

Fig. 14), deviations from RMT become more evident as
k decreases. The tail becomes gradually exponential and
more importantly, for k ¼ 1.25, we again observe a peak in
PðsÞ for very small s instead of the expected level repulsion
PðsÞ → 0 as s → 0. By direct inspection of the spectrum,
we have found that, even after the regularity condition is
imposed, the peak is related to an emergent spectral
degeneracy. As k → 1, an almost exact twofold eigenvalue
degeneracy occurs for some disorder realizations. The peak
becomes again very large which prevents a meaningful
spectral analysis without further processing of the spectra.
We postpone this analysis to later sections. For the

moment, we just mention this degeneracy in the k → 1 limit

FIG. 13. Left: distribution function of the adjacent gap ratio ρðrÞ for k ¼ 2 with and without imposing the regularity condition. In the
latter, we observe a peak in the r ≈ 0 region while in the regular case the agreement with RMT prediction is excellent for all values of r.
Right: PðsÞ for k ¼ 4 with and without the regularity condition. We do not observe any difference even in the tail of the distribution.

FIG. 14. The nearest neighbor spacing distribution PðsÞ for N ¼ 32 and different k with pðN
4
Þ ¼ kN in linear (left) and logarithmic

scale (right). In agreement with the theoretical prediction, we find good agreement with RMT for sufficiently large k. As k decreases, we
observe a bump for small spacings which suggests that the spectrum starts to develop a twofold degeneracy. For k ¼ 1, not shown, the
degeneracy is exact for some realizations. We shall see that this is due to additional global symmetries induced by the increased
sparseness. The regularity condition is imposed.
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is related to the existence of additional global symmetries,
represented by commuting and anticommuting operators,
induced by the sparseness of the Hamiltonian. Once they
are taken into account, the level spacing distribution still
shows level repulsion but deviates markedly from the RMT
prediction. The asymptotic decay is indeed exponential as
for Poisson statistics. However, strictly speaking, it is
unclear whether the nature of the quantum chaos transition
is quantitatively similar to that of the Anderson metal-
insulator transition or an chaos-integrable transition. The
route to integrability is highly nonuniversal. In many cases
it is not properly a transition but rather a crossover at least
from the point of view of spectral statistics. To be specific,
harmonic oscillators are integrable and a rectangular
billiard is also integrable but the spectral correlations are
very different so the transition from chaos to integrability
will depend on the integrable system. By contrast, an
Anderson insulator has Poisson statistics and the transition
can be typically characterized by critical exponents and the
scale invariance of level statistics at the transition so it is
largely universal. We will return to this point when we
investigate the k ¼ 1 case in more detail.
One disadvantage of PðsÞ is that it requires unfolding of

the spectrum. This does not pose any problem for large k, but
as spectral degeneracies start to appear for smaller k, it is
more challenging to carry out the unfolding procedure. In
order to further characterize the deviations from RMT, we
investigate the average adjacent gap ratio hriwhich does not
require any unfolding and also provides information on the
nature of very short-range spectral correlations. Taking the
60% of the eigenvalues around E ¼ 0, we have found
that even for k ¼ 1.25, the deviation from the RMT pre-
diction is very small. For N ¼ 34, hri ¼ 0.600195 while
hriGUE ≈ 0.5996. Similar results are obtained for other N’s
or k > 1.25. If we consider the 90% of the spectrum around
E ¼ 0, we observe small deviations, for N ¼ 32, k ¼ 1.25,
hri ¼ 0.5068 while hriGOE ≈ 0.5307.
Although these results are not inconsistent with those

from the level spacing distribution, it appears that

deviations from RMT predictions are smaller for this
correlator. A possible reason for this quantitative difference
is that the gap ratio provides information of spectral
correlations of shorter range than PðsÞ. In order to confirm
this prediction, we compute the full distribution of the
adjacent gap ratio ρðrÞ using the 90% of the eigenvalues.
Results depicted in Fig. 15 are consistent with those of hri.
Agreement with the RMT prediction is excellent except for
k ¼ 1.25. The main difference being the large enhancement
of ρðrÞ for very small r at k ¼ 1.25. By direct inspection of
the spectrum, we associate this peak to an emergent
degeneracy of the spectrum. Therefore, even considering
only regular hypergraphs, it is not enough to remove these
spectral degeneracies related to new global symmetries of
the system. The regularity condition only shifts its appear-
ance to even smaller values of k ≈ 1.25.
In summary, we have found that a sparse SYK model

with N Majoranas is still quantum chaotic for sufficiently
high energies, or temperatures, provided that the proba-
bility p ∝ 1=Nα with α < 3. For α ¼ 3, spectral correla-
tions are still well described by random matrix theory for
k ≫ 1. For k ∼ 1, we gradually notice deviations from this
prediction. In the k → 1 limit spectral degeneracies are
frequently observed which makes the spectral analysis
difficult even if the regularity condition is taken into
account.
However, the spectral region related to the possible

existence of a gravity dual is the edge corresponding to
the lowest eigenvalues and not the bulk of the spectrum. We
now move to the study of this region.

B. The edge

In this section we study the spectral correlations of the
lowest eigenvalues relevant for the time evolution of the
system in the low-temperature limit. This is the only region
that may be related to a gravity dual. Technically, it is more
challenging to reach firm conclusions because the small
spectral window close to the ground state limits substan-
tially the use of spectral averaging to diminish statistical

FIG. 15. Distribution function of the adjacent gap ratio ρðrÞ in linear (left) and log (right) scale. For k > 1.25, the agreement with the
RMT prediction is excellent with no visible deviations. However, for k ¼ 1.25, it has a large peak (right plot) at small r which suggests
that, even for k > 1, some disorder realization may have spectral degeneracies. The regularity condition is imposed.
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fluctuations. Moreover, the rigorous mathematical results
for sparse random graphs are less sharp for the edge of the
spectrum as compared to the bulk. As was mentioned
earlier, for a random graph, RMT spectral correlations at
the edge of the spectrum and a semicircular spectral density
law occur for p ≫ 1=L2=3, where L is the matrix size. A
naive translation of these result to the sparse SYK would
lead to a critical scaling p ≫ 1=N8=3. However, we stress
that the results for graphs are not necessarily applicable
here and that, even if they are applicable, the bound on p to
observe RMT correlation does not have to be optimal;
namely, it may be that an even stronger sparsing, such as
1=N3, may still lead to RMT correlations at the edge of the
spectrum.
In order to proceed with the spectral analysis, we obtain

only the 2N lowest eigenvalues by exact diagonalization
using special techniques for sparse matrices based on the
Lanczos algorithm which allows us to reach N ¼ 42. For a
given set of parameters, we carry out ensemble average
until we have at least 104 eigenvalues.

We first investigate the critical scaling pðN
4
Þ ¼ kN

identified in the bulk of the spectrum. We study the
dependence of level statistics on k with the goal to clarify
whether spectral correlations are still quantum chaotic and,
if so, to identify the approximate critical k ¼ kc. Results,
depicted in Fig. 16, show a gradual weakening of quantum
chaotic features as k is reduced. An exception to this trend
is PðsÞ for k ¼ 4 and N ¼ 34 which is closer to Poisson
than that of k ¼ 2. Presently, we do not have a clear
understanding of this anomalous deviation. Results for the
adjacent gap ratio (see Fig. 18) indicates that the spectrum,
at least for very short-range correlations, is quantum
chaotic in the large k limit.
In the k ≈ 1 region, no level repulsion is observed which

indicates that the Hamiltonian is too sparse to sustain
quantum chaotic features. It is important to note that, also in
the tail of the spectrum, we observe degeneracies of the
spectrum for k → 1 though not in all disorder realizations.
For the analysis of the spectral correlations, we have
removed them ad hoc. This will be justified in the next

FIG. 16. Left: the nearest neighbor spacing distribution PðsÞ, pðN
4
Þ ¼ kN, N ¼ 26 and different values of k. Right: the same for

N ¼ 34. Even for k ≫ 1 spectral correlations deviate strongly from the RMT prediction (GUE). Results for different values of N are
qualitatively similar which reinforces the idea that the quantum chaos transition occurs at k ≳ 1. For k ¼ 1, we have noticed spectral
degeneracies in some of the disorder realizations which we have removed for the calculation of PðsÞ. We do not fully understand the
reason why PðsÞ for N ¼ 34 and k ¼ 4 deviates from the RMT prediction more strongly than for smaller k.

FIG. 17. Left: the nearest neighbor spacing distribution PðsÞ, pðN
4
Þ ¼ kN, k ¼ 3=2 and different values of N. Right: log scale. In this

critical region, spectral correlations show deviations from the RMT prediction though level repulsion is still clearly observed. The N
dependence is relatively weak. These features are qualitatively similar to those of a critical system [76,77] approaching a quantum chaos
transition.

GARCÍA-GARCÍA, JIA, ROSA, and VERBAARSCHOT PHYS. REV. D 103, 106002 (2021)

106002-18



section by the existence of global symmetries that cause the
spectral degeneracies.
A feature of criticality [76,77] is the weak or no

dependence of spectral correlations on the system size
N. Results depicted in Fig. 17 show a weak N dependence
in the k ∼ 1 region. Furthermore, spectral correlations
deviate strongly from the RMT prediction. This is con-
sistent with the idea that k ≈ 1 is the maximum sparseness
consistent with quantum chaotic features.
The calculation of the adjacent gap ratio hri (see Fig. 18)

confirms that the maximum degree of sparseness consistent
with quantum chaotic features k ¼ kc ≳ 1. For smaller k,
the gap ratio deviates strongly from the random matrix
prediction and approaches the Poisson limit. Our main aim
here is identify the region of parameters for which quantum
chaos occurs rather than the description and nature of the
transition. Although a transition to Poisson statistics and a
critical region with approximately size-invariant spectral
correlations are typical ofmetal-insulator transitions induced
by disorder, further investigations, beyond the scope of the
paper, would be necessary to reach a firm conclusion.

VI. EMERGENT SYMMETRIES AND QUANTUM
CHAOS

Having identified the critical sparseness pðN
4
Þ ¼ kN with

k≳ 1 to observe quantum chaotic features, we now focus
on the limiting case k ¼ 1. Depending on the value of N
mod 8, the SYK model for even q is in one of the three
Wigner-Dyson universality classes, while the SYK model
for odd q is in one of the three chiral randommatrix classes.
In this section, we show that, for small k ¼ 1, at least six of
the ten RMT universality classes emerge from a SYK
model for a single value of N in the GUE class. Since the

joint spectral density of the superconducting ensembles
[78] is of the same general form as the chiral ensembles, our
observables cannot distinguish the two. The study of
emergent symmetries requires a large ensemble and,
although we show some results for N ¼ 34, our main
analysis focuses on N ¼ 26 where we can easily generate a
large number of disorder realizations with and without the
regularity condition.
Even after the regularity condition is imposed, for some

disorder realizations, we observe what appears to be an
exact twofold degeneracy while for other realizations there
is no degeneracy or only a quasidegeneracy. In addition, the
spectrum for some disorder realizations has a chiral
symmetry E → −E while for others there are both chiral
and twofold degeneracy. As an example, in Fig. 19, we
depict results for different disorder realizations for N ¼ 34
and k ¼ 1where only a spectral average is carried out in the
central spectral window comprising 90% of the total
number of eigenvalues ∼65000. Surprisingly, despite the
fact that the symmetry for N ¼ 34 is GUE, we observe for
some disorder realizations GOE and GSE symmetry. For
others disorder realizations, a spacing distribution resem-
bling that of the superposition of two random matrix
ensembles is observed.
For a more systematic study, we turn toN ¼ 26 and k ¼ 1

where more disorder realizations can be generated. We start
our analysis with an ensemble of 5000 configurations with-
out imposing the regularity condition. To determine if a
spectrum has chiral symmetry, we compute [79]

X
Ei≠0

sgnðEiÞ
jEij

: ð58Þ

For a finite spectrum, it vanishes if the eigenvalues occur in
pairs, while it is of order 2N=2 for realizations of the sparse

FIG. 19. PðsÞ for N ¼ 34 and k ¼ 1. The 90% of the
eigenvalues around the center of the spectrum are considered.
Each curve represents results for different disorder realizations,
namely, without any ensemble average. For comparison, we also
include the random matrix prediction for different universality
classes and Poisson statistics.

FIG. 18. Adjacent gap ratio hri, Eq. (56) for pðN
4
Þ ¼ kN and

different k’s corresponding to the lowest 2N eigenvalues of the
Hamiltonian Eq. (1). As k → 1, the adjacent gap ratio decreases
and approaches the Poisson limit. We note that, for k ¼ 1, the
spectrum of some disorder realizations, especially for larger
values of N, shows a twofold degeneracy which was removed
before the calculation of hri. Emergent global symmetries are the
origin of the spectral degeneracy. See text for more detail.
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SYK model without chiral symmetry. Disorder realizations
are labeled by the index χ ¼ 0, when there is no chiral
symmetry, and χ ¼ 1, when there is chiral symmetry. In
Fig. 20, we show a histogram of hri þ χ for this ensemble.
The red dotted lines denote thevalues of the adjacent ratio for
the various ensembles. Since the adjacent ratio is averaged
over the spectrum (with the exclusion of 100 eigenvalues in
both tails), up to corrections that vanish for largeN, the chiral
ensembles and the Wigner-Dyson ensembles have the same
values depending on the Dyson index. It is clear from this
figure that it does not make sense to calculate spectral
correlation by averaging over the full ensemble. Rather, it
is necessary to partition the ensemble into subensembles
corresponding to the peaks in Fig. 20.
In order to investigate the scale to which quantum

chaotic features persists, we turn to the connected spectral
form factor [20,81–84] for the unfolded spectrum:

KcðtÞ ¼
hZ�ðtÞZðtÞi
hZð0Þi2 −

hZ�ðtÞihZðtÞi
hZð0Þi2 ð59Þ

with Z ¼ P
i e

iλit−βλi with λi the unfolded eigenvalues and
β the inverse temperature (only the β ¼ 0 case will be
considered). We have removed the disconnected part
related to the one-point function. In order to reduce finite
size effects, the sum of λk is cut off by a Gaussian factor

e−λ
2
i =2W

2 ð60Þ

with a width W determined such that a significant fraction
of the eigenvalues is included in the calculation. For
example, in the case of N ¼ 26 with 4096 eigenvalues,
we choose W ¼ 500 or W ¼ 1000. In agreement with
previous spectral analysis [20,22], we have observed

(see Fig. 21) for k ≫ 1, an excellent agreement with
RMT predictions even for relatively short times. The
smearing of the peak at t ¼ 2π (the Heisenberg time) is
a well-documented finite size effect.
In Fig. 22 we show the connected form factor calculated

from the unfolded eigenvalues for a subensemble with
hri þ χ within 0.01 from the value of the random matrix
theory in the legend of the figure. The eigenvalues
have been unfolded by fitting the spectral density of
the Q-Hermite polynomials corrected by 1þ a2H

Q
2 ðxÞþ

a4H
Q
4 ðxÞ þ a6H

Q
6 ðxÞ þ a8H

Q
8 ðxÞ. In addition, the unfolded

eigenvalues of each realization have been rescaled to have
an average spacing equal to 1. Despite the limitations on the
ensemble average to reduce statistical fluctuations due to
the different universality classes, we observe very good
agreement with universal randommatrix results. Deviations
from RMT occur at t < 0.5 where we observe a large peak
which should not be confused with the peak due to the
disconnected part of the form factor. The width of the peak
is of the order 1=W, but its area, which is responsible for
deviations of the number variance from the RMT results,
does not depend on W.
Next we consider realizations with a adjacent ratio of

about 0.42 which show a pronounced peak in Fig. 20 both
with χ ¼ 1 and without chiral symmetry χ ¼ 0. The value
of this ratio corresponds to the superposition of two GOEs,
two GUEs or a GOE and GUE with ratios equal to 0.421,
0.423 and 0.423, respectively, in this order. The analytical
result of the form factor for the superposition of two
ensembles with an equal total number of eigenvalues
follows from the superposition rule for the point correlator
of unfolded eigenvalues [69]. It is simply given by

KcðtÞ ¼ αKc;1ðt=αÞ þ ð1 − αÞKc;2ðt=ð1 − αÞÞ ð61Þ
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FIG. 20. Distribution of the adjacent gap ratios for an ensemble
of 5000 disorder realizations of the sparse SYK Hamiltonian with
N ¼ 26, q ¼ 4, k ¼ 1 and no regularity condition. The red line
shows the analytical value of the adjacent gap ratio of the
corresponding ensemble. We note that for convenience we set
χ ¼ 1 (0) for realizations with (without) chiral symmetry.
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FIG. 21. Connected spectral form factor KcðtÞ in units of the
Heisenberg time. Unfolding was carried out by the Q-Hermite
method [22]. For k ¼ 4, we find a large ramp and saturation in
excellent agreement with the random matrix prediction. The peak
for short time is a well-known finite size effect [22].
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FIG. 22. Connected form factor for the unfolded spectrum where we have grouped disorder realizations with the same global
symmetries. No regularity condition is imposed. Surprisingly, despite the large degree of sparseness, k ¼ 1, the numerical results
follows rather closely the predictions of random matrix theory. For each of the figures the value of hri þ χ is within 0.01 equal to the
corresponding random matrix theory.
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FIG. 23. The spectral form factor of the sparse SYK model with N ¼ 26, q ¼ 4 and k ¼ 1 for realizations with adjacent ratio in the
interval [0.41, 0.43] with no chiral symmetry in the left panel and with chiral symmetry in the right panel. Also shown are the analytical
results for the superposition of GOEþ GOE, GOEþ GUE and GUEþ GUE; see Eq. (61) with α ¼ 1=2. No regularity condition is
imposed.
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with α, not to be confused with the scaling of probability
introduced earlier, the fraction of the realizations in class 1,
and the rest, 1 − α, in class 2. In Fig. 23, we show the
spectral form factor of the realizations with adjacent ratio in
the interval [0.41, 0.43] (left) and in the interval [1.41,
1.43]. The solid curves represent the analytical results (61)
for α ¼ 1

2
. We find good agreement with the result of the

superposition of a GOE and a GUE.
Since the spectral form factor agrees well with the

universal random matrix results, we expect that also the
nearest neighbor spacing distribution is given by RMT. In
Fig. 24, we show the spacing distribution corresponding to
the eigenvalues of Fig. 22. We have excluded realizations
with spacings > 5 which actually occur quite frequently.
We even have observed spacings of order 100 times the
average spacing. Including these realizations would shift

the peak somewhat to the left, but otherwise the agreement
with RMT is again good.
We now study the same parameters k ¼ 1 andN ¼ 26 but

imposing the regularity condition. In this case, about half of
the realization have chiral symmetry, and about a quarter are
doubly degenerate, but we did not observe higher degener-
acies in our ensemble of 5000. For smaller values of k, below
k ¼ 1, the number of emergent symmetries rapidly increases.
In an ensemble of 5000 disorder realizations, forN ¼ 26 and
k ¼ 3

4
, with no regularity condition, the maximum degen-

eracy is 29-fold. Degeneracies always appear in powers of 2
which points to the presence of discrete symmetries that
square to one or zero or to symmetries of theHamiltonian that
contain both commuting and anticommuting combinations.
Already for k ¼ 3

4
, in particular with the regularity condition,

almost all realizations have chiral symmetry and a large
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FIG. 24. Level spacing distribution PðsÞ for the same spectrum as Fig. 22. We observe both a good agreement with the RMT
prediction and, depending on the disorder realization, results corresponding to different universality classes including the chiral random
matrix ensembles (χ ¼ 1).
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number of degeneracies appear in the spectrum. In Fig. 25,
we show a histogram of the 2-logarithm of the degeneracy of
the spectrum for N ¼ 26 and k ¼ 0.75. With the regularity
condition (left) the spectrum of almost all configurations is
either eightfold or 16-fold degenerate.Without the regularity
condition, we find awider distribution of the degeneracies up
to a 512-fold degeneracy.

A. Origin of the emergent symmetries

We now investigate the origin of the emergent sym-
metries in the sparse limit. For the model without the
regularity condition, we can imagine an extreme sparseness
k ∼ 1=N. Then a realization of the Hamiltonian typically
involves only one product of four Dirac matrices, namely

H ¼ Ji1i2i3i4γi1γi2γi3γi4 ð62Þ

with no Einstein summation convention. Such a
Hamiltonian has two energy levels with energies
�Ji1i2i3i4 , each level having a 2N=2−1 degeneracy. This
Hamiltonian has a large number of symmetries including
chiral symmetries and symmetries responsible for the
observed spectral degeneracies. These symmetries are
represented by a product of Majoranas

ilðl−1Þ=2
Yl
m¼1

γjm ð63Þ

that commute with the Hamiltonian if fi1; i2; i3; i4g and
fj1; j2;…; jlg have an even number of common elements
or anticommute with the Hamiltonian if fi1; i2; i3; i4g and
fj1; j2;…; jlg have an odd number of common elements.
The former operators form a large non-Abelian symmetry
group which explains the observed large degeneracy; the
latter kind of operators are the chiral symmetries which
explain why the energies come in pairs �E.
The same story holds when the model becomes slightly

less sparse, when the Hamiltonian is a sum several products
of Dirac matrices: an l-body operator defined in Eq. (63) is
a symmetry (chiral symmetry) if fj1; j2;…; jlg have an

even (odd) number of common elements with the set of
subscripts of every term in the Hamiltonian. A simple
example is the following: for N ¼ 10, q ¼ 4 and k ¼ 0.5
with the regularity condition, we can for example obtain a
Hamiltonian of the form

H ¼ J1357γ1γ3γ5γ7 þ J25610γ2γ5γ6γ10

þ J34610γ3γ4γ6γ10 þ J2789γ2γ7γ8γ9 þ J1489γ1γ4γ8γ9:

ð64Þ

The symmetries are

A1¼ γ2γ4γ6γ8; A2¼ γ3γ4γ7γ8; A3¼ γc¼ i
Y10
l¼1

γl; ð65Þ

B1¼ γ1γ2γ5γ9; B2¼ γ6γ8γ9γ10; B3¼ γ1γ2γ4γ7γ10; ð66Þ

and all the operators generated by the above six operators.
There is no chiral symmetry for this Hamiltonian. Note that
A1, A2, and A3 commute with each other and

fA1; B1g ¼ 0; ½A2; B1� ¼ 0; ½A3; B1� ¼ 0;

fA2; B2g ¼ 0; ½A1; B2� ¼ 0; ½A3; B2� ¼ 0;

fA3; B3g ¼ 0; ½A1; B3� ¼ 0; ½A2; B3� ¼ 0: ð67Þ

Hence ðH;A1; A2; A3Þ gives a complete set of quantum
numbers of the form ðE;�1;�1;�1Þ and B1, B2, and B3,
respectively, flip the quantum numbers of A1, A2, and A3

without changing the energy. Therefore, for such a system,
each eigenvalue is 23 ¼ 8-fold degenerate. This explains
the numerical degeneracies depicted in Fig. 25. We stress
that the spectral degeneracy is directly related to the
non-Abelian nature of the symmetry group. Symmetry in
itself only implies simultaneous diagonalization with the
Hamiltonian but not degeneracy. We can also find examples
where there are chiral symmetries but no spectral degen-
eracy and examples where both are present.
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FIG. 25. Histogram of the 2-logarithm of the degeneracy of the spectrum for N ¼ 26 and k ¼ 0.75 both with the regularity condition
(left) and without the regularity condition (right). The total number of disorder configurations is 1000.
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Given the above discussion, it becomes interesting to ask
statistically how the number of symmetries and chiral
symmetries scales with respect to N at different values
of k. A precise study of this question is beyond the scope of
the current paper, but we mention on the fly our preliminary
numerical observations for spectra obtained imposing the
regularity condition in the generation of the Hamiltonian:
(1) If k < 1, the number of emergent symmetries grows

quickly as N grows.
(2) If k ¼ 1, the number of emergent symmetries stays

more or less constant (or grows very slowly) as
N grows.

(3) If k > 1, emergent symmetries only rarely occur
and with a frequency that decreases rapidly as k
increases.

The presence of emergent symmetries or chiral sym-
metries can alter the RMT symmetry class naively expected
from the corresponding dense SYKmodel. For example the
q ¼ 4 dense SYK model does not have any chiral sym-
metry and hence always falls into one of the three Wigner-
Dyson ensembles, whereas in the very sparse regime of the
q ¼ 4 sparse SYK model we see how chiral symmetry can
emerge, and hence chiral ensembles can appear. The
emergent symmetries can also alter the symmetry class
in more subtle ways. We see that the N ¼ 26, q ¼ 4
(regular) sparse SYK model, whose dense counterpart
always lies in the GUE class, can have realizations in
the GOE and GSE classes in the very sparse regime k ¼ 1
(Fig. 24). To explain this we first briefly recap why the
dense N ¼ 26, q ¼ 4 SYK model is always GUE. For any
even N, there are exactly two independent symmetries for
the dense SYK model: a unitary symmetry

γc ≔ iNðN−1Þ=2 YN
l¼1

γl ð68Þ

and an antiunitary symmetry

T ≔ CK; ð69Þ

where K is the complex conjugation and C is the charge
conjugation matrix such that CγiC−1 ¼ �γTi . Since we
always look at the eigenvalue statistics in a fixed quantum
number sector of the unitary symmetry, for the antiunitary
symmetry to play a role it must commute with the unitary
symmetry. Hence we have

½T; γc� ≠ 0 ⇒ GUE;

½T; γc� ¼ 0; T2 ¼ 1 ⇒ GOE;

½T; γc� ¼ 0; T2 ¼ −1 ⇒ GSE: ð70Þ

For N ¼ 26, T and γc do not commute (in fact they
anticommute) and hence we have GUE for the dense
model. However in the case of the N ¼ 26; q ¼ 4; k ¼ 1
(regular) sparse model, it could happen that we have an
emergent unitary symmetry A such that

fA; γcg ¼ 0; ½A; T� ¼ 0: ð71Þ

Then we can define a new antiunitary symmetry

T 0 ¼ AT; ð72Þ

which commutes with γc, and T 02 ¼ 1 or −1 depending on
which Dirac matrices A contains. The former case gives us
GOE and the latter gives us GSE. In Appendix B we give
two concrete examples of this phenomenon. There also can
be scenarios where the emergent symmetries give rise to
degeneracies but do not change the symmetry class, such as
the example shown in Fig. 26.
Once these degeneracies are taken into account, so that

we fix xijkl and carry out disorder average over Jijkl only,
we observe the following (see Fig. 26): PðsÞ in the bulk of
the spectrum is well described by RMT but only for s < 1;
for larger s, the agreement with Poisson statistics is
excellent. By contrast, PðsÞ in the tail of the spectrum
comprising the lowest 2N eigenvalues shows excellent
agreement overall with Poisson statistics. Results for the

FIG. 26. Left: adjacent gap ratio distribution ρðrÞ for N ¼ 26 and k ¼ 1, 1000 disorder realizations, for both the bulk and the tail (2N
lowest eigenvalues) of the spectrum. The regularity condition is imposed. Right: the same for PðsÞ. We have fixed the nonzero xijkl so
that the system has a global symmetry that leads to a double degeneracy of the spectrum for all disorder realizations. This degeneracy is
removed in the calculation of PðsÞ and ρðrÞ.
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distribution of the gap ratio ρðrÞ are qualitatively similar;
the bulk of the spectrum is well described by RMT
while the tail by Poisson statistics. There is no discrepancy
with the level spacing results because the gap ratio provides
spectral information of the shortest-range scale, a region
where PðsÞ still agrees with GUE. The tail of the spectrum
is close to the prediction for Poisson statistics though we
observe a peak at small r likely related to some other
emergent symmetry that we have failed to identify.
In summary, once the symmetries are factored out, it

seems that even for k ¼ 1, there remains some degree of
level repulsion in the bulk of the spectrum that may indicate
some remaining quantum chaotic features though devia-
tions from the RMT prediction are very strong. By contrast,
in the tail of the spectrum, the results are consistent with
Poisson statistics. The latter suggests that the system may
have a mobility edge at finite energy. It would be interesting
to further characterize the exact nature of the transition
though our main motivation here is only to determine the
maximum sparseness for which quantum chaos is observed.

VII. CONCLUSIONS AND OUTLOOK

We have investigated the spectral density and spectral
correlations of a sparse SYK model as a function of the
degree of sparseness. We have identified the maximum
sparseness strength consistent with a Schwarzian spectral
density, once collective fluctuations are factored out, and
quantum chaotic level statistics. These are features of a field
theory with a quantum gravity dual. We have carried out
explicit analytical calculations of the spectral density
moments that have revealed a striking relation between
the leading correction due to the sparsity of the SYK
Hamiltonian, ∼1=ðkNÞ, and the leading large d correction
of the Parisi model, a U(1) gauge theory on a d-dimensional
hypercubic lattice. As the critical sparseness for quantum
chaos is approached,we have noticed the emergence of novel
global symmetries that not only induce spectral degeneracies
but result in an ensemble that, for a singlevalueofN, contains
disorder realizations with level statistics well described by
any of the three Wigner-Dyson symmetry classes and the
three chiral random matrix ensembles.
Our results raise some interesting questions: effectively,

the sparse SYK Hamiltonian is represented by a sparse
random matrix. Can the matrix defined in this way be
relevant for matrix models describing quantum JT gravity?
Is the critical sparseness to observe quantum chaos of
relevance in the description of realistic interacting quantum
dots [37]? Is there some explicit relation between Fock-
space geometry and space-time so that these sparse SYK
models have a natural gravity dual? Is it possible to
characterize more generally the connectivity and regularity
of a hypergraph so that we can establish the condition for
quantum chaos and the existence of a gravity dual in terms
of these parameters? About this last point, it would be
interesting to study how the sparsity of the random

hypergraph affects the early time diagnostics of quantum
chaos: the OTOCs and the related diagnostics of operator
growth. In particular, it would be interesting to clarify
whether the high degree of sparsity has sharp effects on the
growth of local operators built out of products of Majorana
fermions [85]. It would also be interesting to push further
the relation between the sparse SYK model and the Parisi
model to, among other things, to identify the role of the
latter in the context of holography. We expect to address
some of these problems and questions in the near future.
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APPENDIX A: DETAILS ON THE ALGORITHM
TO BUILD REGULAR HYPERGRAPHS

In this appendix we provide some additional details on
the algorithm we used to implement the kq-regularity
condition on the sparse SYK Hamiltonians.
For us, the kq-regularity condition simply means that

each fermion γi must be included in exactly kq non-
vanishing independent couplings, and not just on average.
So let us see how we can implement this requirement in
practice.
The fact that each fermion must appear in exactly kq

nonvanishing couplings implies that in total the nonvanish-
ing couplings must be extracted from a list, which we call
L, including each fermionic indices kq times. For example,
for k ¼ 1 and q ¼ 4, we have the list of indices
L≡ ð1; 1; 1; 1;…; N; N; N;NÞ.
Hence, to construct a kq-regular hypergraph, what we

have to do is just to sample from this list of indices
subgroups of exactly q indices, such that the following two
conditions are met:
(a) each group does not include repeated indices, and
(b) there are no repeated groups.
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If we group L into subgroups of q indices such that both
conditions (a) and (b) are met, we have a regular hyper-
graph. In this case, the nonvanishing components of the x
couplings, i.e., the values for which we have xijkl ¼ 1, are
then given by the groups of four indices just created.
In practice, we found that the following algorithm,

inspired by the so-called pairing model for regular graphs
[86], is efficient in building random regular hypergraphs.
(1) We create the list, made of two sublists

xtry ≡ ðfg; LÞ; ðA1Þ
where the first sublist is empty and the second sublist
is the full list L already introduced.

(2) We randomly select a group of q indices from the
second sublist and we check whether the first sublist
continues to meet criteria (a) and (b) if the new group
of q indices is added to the first sublist. In the
affirmative case, we move the selected indices from
the second to the first sublist. Otherwise, we do
nothing.

(3) We iterate the procedure for 2N times (or more). In
the end we check if the second sublist in xtry is empty
or not. In the affirmative case, the first sublist in xtry
defines a kq-regular hypergraph (and, correspond-
ingly, the x couplings xijkl). In the negative case, we
start again from the first point of the iteration.

APPENDIX B: EXAMPLES OF GOE AND GSE
FOR N = 26

In Sec. VI Awe discussed how emergent symmetries can
make some of the realizations of the N ¼ 26, q ¼ 4 very
sparse SYK (with or without regularity condition) fall into
the GOE and GSE classes. In this appendix we show some
explicit examples for k ¼ 1 with the regularity condition.

1. GOE

We choose the Dirac matrices with the following sub-
scripts to appear in the Hamiltonian:

ff4; 7; 10; 17g; f8; 11; 13; 20g; f4; 5; 9; 22g; f11; 14; 18; 25g; f7; 11; 19; 22g; f1; 5; 16; 20g;
f2; 7; 8; 26g; f3; 15; 21; 22g; f5; 6; 16; 19g; f1; 3; 7; 17g; f6; 19; 23; 26g; f2; 9; 12; 19g; f2; 16; 24; 26g;
f3; 12; 15; 23g; f2; 8; 10; 14g; f9; 10; 11; 12g; f6; 13; 15; 21g; f10; 22; 23; 25g; f13; 14; 18; 20g;
f1; 9; 13; 17g; f3; 8; 14; 21g; f15; 18; 23; 24g; f4; 6; 12; 24g; f1; 5; 17; 24g; f20; 21; 25; 26g; f4; 16; 18; 25gg: ðB1Þ

That is, the Hamiltonian is

H ¼ J1γ4γ7γ10γ17 þ J2γ8γ11γ13γ20 þ � � � þ J26γ4γ16γ18γ25; ðB2Þ
where fJ1;…; J26g are the random couplings. This Hamiltonian has an emergent nine-body symmetry

A ¼ γ5γ6γ9γ11γ13γ16γ18γ19γ24: ðB3Þ
This emergent symmetry A makes the Hamiltonian belong to GOE through the mechanism described in Sec. VI A.

2. GSE

We choose the Dirac matrices with the following subscripts to appear in the Hamiltonian:

ff4; 15; 20; 22g; f10; 17; 18; 20g; f5; 10; 19; 21g; f2; 12; 19; 22g; f1; 5; 16; 25g; f4; 17; 25; 26g;
f3; 11; 18; 22g; f8; 18; 20; 21g; f4; 15; 23; 24g; f3; 7; 8; 14g; f12; 17; 23; 25g; f6; 7; 9; 15g; f2; 5; 16; 24g;
f1; 10; 11; 26g; f8; 15; 18; 25g; f7; 13; 14; 19g; f2; 5; 17; 24g; f2; 3; 11; 16g; f6; 7; 16; 21g; f6; 8; 11; 14g;
f1; 12; 13; 21g; f9; 13; 19; 23g; f9; 20; 24; 26g; f4; 10; 13; 14g; f9; 12; 22; 23g; f1; 3; 6; 26gg: ðB4Þ

That is, the Hamiltonian is

H ¼ J1γ4γ15γ20γ22 þ J2γ10γ17γ18γ20 þ � � � þ J26γ1γ3γ6γ26; ðB5Þ
where fJ1;…; J26g are the random couplings. This Hamiltonian has an emergent seven-body symmetry

A ¼ iγ1γ12γ18γ20γ22γ25γ26: ðB6Þ

This emergent symmetry A makes the Hamiltonian belong to GSE through the mechanism described in Sec. VI A.
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