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We investigate the properties of near-conformal dynamics in a sector of large charge when
approaching the lower boundary of the conformal window from the chirally broken phase. To elucidate
our approach we use the time-honored example of the phenomenologically relevant SUð2Þ color theory
featuring Nf Dirac fermions transforming in the fundamental representation of the gauge group. In the
chirally broken phase we employ the effective pion Lagrangian featuring also a pseudodilaton to capture a
possible smooth conformal-to-nonconformal phase transition. We charge the baryon symmetry of the
Lagrangian and study its impact on the ground state and spectrum of the theory as well as the would-be
conformal dimensions of the lowest large-charge operator. We moreover study the effects of and
dependence on the fermion mass term.
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I. INTRODUCTION

The discovery of the Higgs heralds a new era in our
understanding of fundamental interactions. It crowns the
Standard Model of particle interactions as one of the most
successful theories of nature while at the same time opening
new experimental and theoretical possibilities in our quest
for a more fundamental theory of nature. It also challenges
old and new paradigms. Perhaps one of the most striking
features of the Higgs is its near-conformal nature and
behavior. This is encoded in its couplings and in the
lightness of its mass when compared to the one expected
to emerge from the infamous quadratic divergences stem-
ming from quantum corrections. It would therefore be
interesting to see the Higgs emerge as a near-conformal
mode in theories free from quadratic divergences. One such
possibility is gauge-fermion theories with a sufficiently
large number of fermions near a nonconformal-to-
conformal smooth quantum phase transition. This is a
number-of-flavors-driven quantum phase transition from an

infrared (IR) fixed point to a nonconformal phase where
chiral symmetry is broken [1].
Depending on the underlying mechanism behind the loss

of conformality one can envision several scenarios ranging
from a Berezinskii-Kosterlitz-Thouless-like phase transi-
tion discovered in two dimensions [2] and proposed for
four dimensions in Refs. [1,3–8] to a jumping (noncon-
tinuous) phase transition [9]. The subsequent suggestion
that theories with a very small number of matter fields in
higher-dimensional representations could be (near) con-
formal [10] culminated in the well-known conformal
window phase diagram of Ref. [11] that has served as a
road map for lattice studies [12].
In all scenarios, the spectrum is not symmetric on the two

sides of the quantum phase transition. In the nonconformal
phase, we have a well-defined particle spectrum with states
separated by a mass gap. Depending on whether some
residual global symmetries are spontaneously broken, the
spectrum may feature additional gapless states. In the
conformal phase, on the other hand, conformality forbids
gaps, enforcing a continuum of states.
If the quantum phase transition is smooth, such as the

one due to the annihilation of an IR and ultraviolet (UV)
fixed point (see Ref. [9] for details and a graphical
understanding), soon after the transition (annihilation of
the fixed points) it is natural to define three regions: a high-
energy region dominated by asymptotic freedom, a quasi-
conformal region in which the coupling(s) remain nearly
constant, and a low-energy one where the theory develops a
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mass scale. Two renormalization group (RG)-invariant
energy scales can be naturally defined: ΛUV, separating
the asymptotically free behavior from the quasiconformal
one, and the scale ΛIR below which conformality and,
depending on the theory, certain global symmetries are
lost. This behavior is colloquially known as walking
and it has been invoked several times in the phenomeno-
logical literature for models of dynamical electroweak
breaking in order to enhance the effect of bilinear fermion
operators [4,5]. The amount of walking is naturally
measured in terms of the RG-invariant ratio ΛUV=ΛIR.
For quantum chromodynamics (QCD)-like theories, this
ratio is of order unity while near-conformal theories of
walking type have ideally ΛUV=ΛIR ≫ 1. An equivalent
way to view walking is through the emergence of two
complex zeros of the beta function in the near-conformal
phase [13].
Lattice methods have been developed and proven useful

to explore the nonperturbative dynamics of the infrared
conformal window of gauge-fermion theories [14]. The
first lattice proof of the existence of a controllably smooth
nonperturbative conformal-to-nonconformal quantum
phase transition appeared in Ref. [15].
Continuous quantum phase transitions may lead to a

dilaton-like mode in the broken phase to account for the
approximate conformal invariance [16–22]. Its effective
action can be implemented following Coleman [23] and it
is built by saturating the underlying trace anomaly of the
theory associated to the breaking of Weyl invariance.
There has been renewed interest in effective field theories
(EFTs) in these type of actions [20–22,24–29] in
part because lattice studies of SUð3Þ gauge theories with
Nf ¼ 8 fundamental Dirac fermions [30–33], and Nf ¼ 3

symmetric two-index Dirac fermions (sextet) [34–36]
(known as minimal walking technicolor [10,20,21,37])
reported evidence of the presence of a light singlet scalar
particle in the spectrum. Future studies will reveal if the
smooth quantum phase transition observed in Ref. [15]
also features a dilaton-like state.
In this work we build upon the idea of using the large-

charge limit [38,39] to gain relevant information about
quantum phase transitions [40]. We will make use of the
state-operator correspondence [41,42] by assuming it to
be approximately valid near the conformal boundary.
Working at fixed charge and using the state-operator
correspondence introduces two new scales in the problem.
A conformal field theory on R4 is equivalent to one on the
cylinder R × S3ðRÞ, where S3ðRÞ is a three-sphere of
radius R. In this (compactified) frame, a charge Q
corresponds to a charge density ρ ¼ Q=V and a character-
istic scale ΛQ ¼ Q1=3=R ≈ ρ1=3. In the limit of Q ≫ 1 we
will work in the regime

ΛIR ≪
1

R
≪ ΛQ ≪ ΛUV: ð1Þ

Keeping ΛQ ≪ ΛUV means that we will always remain
close to the IR fixed point [43]. We will describe the
system in terms of an EFT with a cutoff Λ such that

ΛIR ≪
1

R
≪ Λ ≪ ΛQ ≪ ΛUV: ð2Þ

The scale separation imposed by the condition Q ≫ 1
implies that the EFT will be naturally controlled by the
ratio ð1=RÞ=ΛQ ≈ 1=Q1=3. For a large class of strongly
coupled systems at criticality (that includes for example
the Wilson-Fisher point), the large-charge physics is
described in terms of a superfluid [39]: the state of lowest
energy at fixed charge breaks spontaneously part of the
global symmetry so that the physics at energies ≲Λ is
captured by Goldstone fields. The upshot is that we can
write an effective weakly coupled theory controlled by the
inverse charge also for the conformal region (and its
neighborhood) in terms of pions and a dilaton.
As template, we consider SUð2Þ gauge theories with Nf

Dirac fermions. These theories are both of major theoretical
and phenomenological interest as summarized in a recent
review [14]. The conformal window is reasonably well
understood and confirmed by the agreement among the
various lattice simulations. In particular, for Nf ≥ 8,
theories are inside the conformal window, while theories
with Nf ≤ 4 break chiral symmetry [44–51]. The case
Nf ¼ 6 is, however, still not settled [44,52–54]. The work
of Refs. [55,56] for example supports the existence of an IR
fixed point at large values of the gauge coupling. However,
for this case larger volumes are required to conclusively
decide on the IR fate of the theory.
In particle phenomenology these theories have been

extensively used as primary templates for the construction
of fundamental theories of dynamical electroweak sym-
metry breaking. Within the technicolor paradigm [57,58]
they were put forward and investigated in Refs. [59–61]
while within the composite Goldstone Higgs scenario
[62,63] they were employed in Refs. [59,64] as well as
in Refs. [65–69]. Additionally, these theories allow for the
construction of interesting models of minimal composite
dark matter as summarized in Ref. [14] in which the
resulting dark relic density arises either due to an asym-
metry [70] or via number-changing operators [71–75].
This paper is organized as follows. In Sec. II we

introduce the effective action near the lower boundary of
the conformal window. The latter features the spectrum of
Goldstone bosons augmented by a dilaton-like state meant
to capture the near-conformal dynamics. Here we introduce
the fixed baryon charge of the theory and investigate the
semiclassical behavior of the theory coupled to a nontrivial
gravitational background, going beyond the analysis per-
formed in Ref. [76]. Fermion masses are also added and the
ground state is determined along with its energy. In Sec. III
we determine the symmetries of the theory by carefully
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disentangling the ones that break explicitly from the ones
that break spontaneously before and after introducing the
fixed baryon charge. The spectrum of the theory and the
ground-state energy are determined in Sec. IV. At the fixed
point the state-operator correspondence [38,41,42] maps
the ground-state energy into the anomalous dimension of
the lowest-dimensional operator responsible for the fixed
charge. In our case, working in a near-conformal regime,
this gives us the corrections to the putative anomalous
dimension as functions of the dilaton and fermion mass.
These constitute our main results and can be generalized to
any other global symmetry of the theory as well as to other
gauge groups such as SUð3Þ. These results offer a new way
to explore near-conformal dynamics and its features
related, for example, to the nonperturbative dilaton proper-
ties as functions of the fermion mass operator and anoma-
lous dimension. An outlook and conclusions are in Sec. V.

II. EFFECTIVE ACTION AND
SEMICLASSICAL DESCRIPTION

Our starting point is the action for a field Uðt; xÞ
transforming in the two-index antisymmetric representation
of SUð2NfÞ, with a mass term that preserves a Spð2NfÞ

subgroup of SUð2NfÞ. The reason for picking this repre-
sentation will become apparent in Sec. III. For ease of
notation we will consider only Nf even; in our conventions
the symplectic group is such that spð2Þ ¼ slð2Þ. The
Lagrangian takes the form

L½U� ¼ v2h∂μU∂μU†i þ v2m2
πhMU þM†U†i − Λ4

0; ð3Þ

where v accounts for the value of the condensate in the
underlying microscopic theory, mπ gives the degenerate
masses of the pseudo-Goldstones, and Λ0 is a cosmological
constant term that will become important when coupling
the theory to a dilaton.
The field Uðt; xÞ transforms linearly under a chiral

rotation as

U ↦ uUut; u ∈ SUð2NfÞ: ð4Þ

and we chose M to be the matrix

M ¼ −iσ2 ⊗ 1Nf
¼
�
0 −1
1 0

�
⊗ 1Nf

; ð5Þ

that preserves the transformations u ∈ Spð2NfÞ ⊂
SUð2NfÞ such that utMu ¼ M. This action realizes, at
the effective description level, chiral symmetry breaking
when the underlying fermions transform according to the
fundamental representation of a Spð2NÞ group which for
N ¼ 1 is SUð2Þ, i.e., two-color QCD. It has been developed
and extended over the years [59,60,64].

We are interested in the physics around the lower
boundary of the conformal window [for the SUð2Þ gauge
group, the bound is around Nf ≈ 6].
As has been shown in recent years [38,77–87], working

in sectors of fixed and large charge leads to important
simplifications and to an EFT description of strongly
coupled systems. It allows us to write an expansion in
the inverse of the fixed large charge, giving perturbative
control independently of the value of the couplings at
cutoff. The massive theory preserves a Uð1Þ baryonic
symmetry generated by

B ¼ 1

2
σ3 ⊗ 1Nf

¼ 1

2

�
1 0

0 −1
�

⊗ 1Nf
; ð6Þ

whose corresponding current is

JBμ ¼ 4iv2hBU∂μU†i: ð7Þ

We choose to describe the behavior of the system in a sector
of large charge Q ¼ R dVJB0 . This introduces a scale ΛQ ∝
Q1=3 consistent with the expectation that in this sector, the
transition between the region of broken chiral symmetry
and the conformal region can be described as a continuous
crossover.
Assuming this behavior, we promote the Lagrangian to

be scale invariant by introducing a dilaton dressing [23].
Every operator Ok of dimension k is dressed as

Ok ↦ eðk−4ÞσfOk; ð8Þ

where the dilaton σ is a field that transforms nonlinearly
under scale transformations x ↦ eαx as

σ ↦ σ −
α

f
: ð9Þ

f is a dimensionful constant that marks the scale of the
breaking of conformal invariance. In the vicinity of the
conformal point we expect the dilaton to have a parametri-
cally small mass mσ . In the following we want to explore
how the masses mπ and mσ influence the physics near
criticality. Our EFT is valid in the regime where ΛQ

dominates over any other scales of the problem.
In view of the state/operator correspondence, it is

convenient to put the system on a manifold M with
volume V and curvature R, so

ΛQ ¼
�
Q
V

�
1=3

; ð10Þ

and we add the corresponding conformal coupling for σ.
All in all, the action is
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L½σ;U� ¼ v2h∂μU∂μU†ie−2σfþv2m2
πhMUþM†U†ie−yσf

−Λ4
0e

−4σfþ1

2

�
∂μσ∂μσ−

R
6f2

�
e−2σf

−
m2

σ

16f2
ðe−4σfþ4σf−1ÞþOðR2Þ; ð11Þ

where we have also added terms quadratic in the curvature
that do not depend explicitly on the fields [88]. We are not
adding the Weyl-anomaly term because we will be mainly
interested in the cylindrical geometry, where it vanishes. In
the following, we will neglect the kinetic term kdσk2 since
its only contribution is to add a heavy mode (of order ≈ΛQ)
to the final spectrum [40,89].
The coefficient y deserves some extra comments. We are

interested in the effect of the insertion of an operator Oy of
dimension y that breaks explicitly the conformal symmetry.
In general, if we add a perturbation of the type δL ¼ λOy,
this will induce a nonderivative interaction for the dilaton of
the type [24,90]

VOðσÞ ¼ e−4σf
X∞
n¼1

cnðOyÞe−nðy−4Þσf; ð12Þ

where the coefficients cn depend on the details of the
perturbation and describe the running of the coupling λ.
In the limit of large charge, the higher-order terms are
suppressed by inverse powers ofQ andwe can keep only the
first term in the series. We are interested in the effect of a
mass term that results from the condensation of the fermions
in the underlying theory. It follows that the dimension of
the operator is y ¼ 3 − γ�, where γ� is the anomalous
dimension of the condensate. This is an input parameter
in our story and can be estimated for example perturbatively
or on the lattice.
For working at large charge, it is convenient to rewrite

Uðt; xÞ as

Uðt; xÞ ¼ eiμBtΣðt; xÞeiμBtt; ð13Þ

where we have introduced the variable μ dual to the
baryonic charge. If we rewrite the action in terms of
Σðt; xÞ (and use the fact that it is unitary and antisym-
metric), we find

L½σ;Σ� ¼ v2h∂μΣ∂μΣ†ie−2σf þ 4iμv2hBΣ∂0Σ†ie−2σf
þ 2v2μ2ðhBΣBtΣ†i þ hB2iÞe−2σf
þ v2m2

πhMΣþM†Σ†ie−yσf

− Λ4
0e

−4σf −
R

12f2
e−2σf

−
m2

σ

16f2
ðe−4σf þ 4σf − 1Þ þOðR2Þ: ð14Þ

This action describes the field Σ in a system with a
chemical potential (or equivalently, coupled to a back-
ground flat connection). Our independent variable is the
baryonic charge Q which, at the saddle, is obtained as the
Legendre transform

Q ¼ ∂L
∂μ : ð15Þ

Since we are only fixing one charge, we expect the
minimum to be homogeneous [77], sowe look for a solution
where both σ and Σ are constant and make the ansatz

Σðt; xÞ ¼ Σ0 ¼ E cosðφÞ þD sinðφÞ; ð16Þ

where

E ¼ iσ2 ⊗ 1Nf
; D ¼ 12 ⊗ σ2 ⊗ 1Nf=2 ð17Þ

where we are assuming for simplicity thatNf is even, and φ
is an optimization parameter that will be fixed by the
equations of motion (EOM).
The action evaluated at ðΣ0; σ0Þ [where σ0 is the vacuum

expectation value of the dilaton σðt; xÞ] is given by

L½Σ0;σ0� ¼ 2Nfv2μ2sin2ðφÞe−2σ0fþ4Nfv2m2
π cosðφÞe−yσ0f

−Λ4
0e

−4σ0f−
R

12f2
e−2σ0f

−
m2

σ

16f2
ðe−4σ0fþ4σ0f−1ÞþOðR2Þ; ð18Þ

and the corresponding EOM take the form

∂L
∂φ ¼ ∂L

∂σ0 ¼ 0;
∂L
∂μ ¼ Q: ð19Þ

Explicitly,

cosðφÞ ¼ m2
π

μ2
eð2−yÞfσ0 ; ð20Þ

Re−2fσ0

6f
− 4fm2

πNfv2y cosðφÞe−fσ0y þ 4fΛ4e−4fσ0 −
m2

σ

4f

− 4fμ2Nfv2e−2fσ0sin2ðφÞ ¼ 0; ð21Þ

4μNfv2e−2fσ0
�
1 −

m4
πe−2fσ0ðy−2Þ

μ4

�
¼ Q; ð22Þ

where Λ4 ¼ Λ4
0 þ m2

σ

16f2. The solution for generic values of y

is complicated. We will instead concentrate on the two
extrema of y ¼ 3 − γ�, i.e., γ� ≪ 1 and 1 − γ� ≪ 1.
(1) For γ� ≪ 1, the ground-state energy is
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E ¼ k4=3
Ṽ1=3Q

4=3 þ k2=3R̃Ṽ1=3Q2=3 þ k0ðMÞ − 1

Nfk44=3

�
9m2

π

32v

�
2 Ṽ1=3

4π2

�
1 − γ�

�
2

3
logðQÞ − log

�
32Nfv2Ṽ2=3π2k4=3

3

���
Q2=3

−
�
16π2

9
Nfk2=3k4=3v2m2

σ − γ�
N2

f

3π2k54=3

�
9m2

π

32v

�
2
�

5

8π2
N2

f

k44=3

�
9m2

π

32v

�
2

− k2=3R̃

��
Ṽ logðQÞ: ð23Þ

(2) At ð1 − γ�Þ ≪ 1 we find

E ¼ k4=3
Ṽ1=3Q

4=3 þ k2=3R̃Ṽ1=3Q2=3 þ k0ðMÞ

−
�
16π2

9
Nfk2=3k4=3v2m2

σ þ ð1 − γ�Þ 9m4
π

64k34=3

�

× Ṽ logðQÞ: ð24Þ

Here we have introduced the reduced volume and curvature
Ṽ ¼ V=ð2π2Þ, R̃ ¼ R=6 and eliminated f and Λ in favor of
the ki:

k4=3¼
3

8

�
Λ2

πNfv2

�
2=3

; k2=3¼
1

4f2

�
π2

Nfv2Λ4

�
1=3

: ð25Þ

As expected, at the conformal point the spectrum
depends only on dimensionless combinations of the
original parameters. The coefficient k0 depends on the
curvature of M and, for example, vanishes on the torus
k0ðT3Þ ¼ 0 [91].
A few remarks are in order. At the conformal point

mπ ¼ mσ ¼ 0, the energy depends only on the dimension-
less constants k4=3, k2=3 and k0 while the nonconformal
corrections depend on the background geometry. To give
them a physical interpretation we can consider the system
on a three-sphere of radius r0,M ¼ S3ðr0Þ: using the state/
operator correspondence, the energy of the ground state is
mapped to the conformal dimension of the lowest operator
of charge Q,

ΔðQÞ ¼ r0EðS3Þ ¼ k4=3Q4=3 þ k2=3Q2=3 þ k0ðS3Þ ¼ Δ�:

ð26Þ

In this sense we can think of the ki as Wilsonian
parameters that encode the details of the theory (they
do, for example, depend on Nf). It is a very nontrivial
result of the large-charge expansion that the spectrum on a
generic manifold M is directly related to the conformal
dimension of the lowest operators. By construction the ki
are to be evaluated independently of the EFT, for example
on the lattice [see Refs. [92,93] for an analogous study of
the OðNÞ vector model]. Unsurprisingly, at this point
all the dimensionful parameters are subsumed into

dimensionless quantities (since we are describing a
conformal field theory that cannot have intrinsic scales).
Note that the result (26) is purely classical as no quantum
corrections to the energy of the classical ground state have
been computed. Their first contribution will appear at
next-to-next-to-leading order (NNLO) where it can be
subsumed in k0.
Away from the conformal point, the typical signature of

the breaking of conformal invariance is the presence of
terms that scale logarithmically with the charge [40]. The
couplings of the parameters mσ , mπ and y have different
scalings with respect to charge, volume and number of
flavors. This can be used effectively to identify and separate
the single contributions in an independent study of the
model (e.g. perturbative or on the lattice).

III. SYMMETRIES

Although we have in mind two-color QCD with Nf
flavors in the confining phase, the pattern of chiral
symmetry breaking that we will outline below is valid
for any gauge-fermion theory in which the fermions
transform in a pseudoreal representation of the underlying
gauge group [94,95]. The expected SUðNfÞ × SUðNfÞ ×
Uð1Þ symmetry is enhanced to SUð2NfÞ × Uð1ÞA, where
the Uð1ÞA is anomalous. In the standard scenario, a quark-
quark condensate forms and breaks the symmetry sponta-
neously to the maximal diagonal subgroup Spð2NfÞ.
The condensate describes a pair of quarks in the micro-

scopic theory, so it must have the form

Uff0 ¼ Qcf
α Qc0f0

α0 ϵαα
0
ϵcc0 ð27Þ

where α, α0 are Lorentz (spin) indices, c, c0 are color
indices and f, f0 are flavor indices. It follows that U
transforms in the representation that we have used in the
previous section. The condensate breaks the symmetry
spontaneously:

SUð2NfÞ ⇝ Spð2NfÞ ð28Þ

(here and in the following we use the notation⇝ to indicate
a spontaneous breaking of the symmetry). By Goldstone’s
theorem, the low-energy spectrum is described by
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dim

�
SUð2NfÞ
Spð2NfÞ

�
¼ 2N2

f − Nf − 1 ð29Þ

Goldstone degrees of freedom (d.o.f.) that sit in the
representation ð0; 1; 0;…; 0Þ of the unbroken Spð2NfÞ,
which we will indicate again with a slight abuse of
notation as .
We are interested in the behavior of the theory at the

boundary of the conformal window. Since we generically
expect the system to be strongly coupled, we use the large-
charge approach and study it in sectors of fixed baryonic
charge. As discussed in the previous section, this gives an
effective chemical potential μ [see the Lagrangian in
Eq. (14)] that:
(1) breaks explicitly the global symmetry as

SUð2NfÞ → SðUðNfÞ ×UðNfÞÞ
¼ SUðNfÞL × SUðNfÞR ⋊ Uð1ÞB; ð30Þ

since it only preserves transformations of Σ that
commute with B,

hBΣ∂0Σ†i ¼ hBðuΣutÞ∂0ðuΣutÞ†i
¼ hu†BuΣ∂0Σ†i ⇒ ½u; B� ¼ 0; ð31Þ

and have the form

u¼
�
A 0

0 B

�
; A;B∈UðNfÞ; detðAÞdetðBÞ¼1;

ð32Þ

(2) breaks explicitly the conformal symmetry to the
rotation group times time translation.

There is an equivalent description of this effect in terms of
massive pseudo-Goldstone bosons that nonlinearly realize
the full symmetry. In particular, the dilaton in Eq. (8) is the
pseudo-Goldstone field that realizes the conformal sym-
metry. Since all these fields have a mass of order μ fixed by
the group structure, they do not contribute to the low-
energy spectrum.
Moreover, we are interested in the effect of a mass term

that preserves the Spð2NfÞ symmetry and gives a mass mπ

to all the pions in the confining phase. The mass term
breaks explicitly the symmetry preserved by μ as
SðUðNfÞ ×UðNfÞÞ→mUðNfÞ. To see this, we need to
impose the invariance of the coupling hMUi in the action.
In terms of the matrices A and B in Eq. (32) we have

hMUi¼ hMuUuti; whereM¼
�
0 −1
1 0

�
⊗ 1Nf

: ð33Þ

Using the cyclicity of the trace this implies

AtB ¼ 1; ð34Þ

and since A and B are both unitary, we find that the mass
term preserves transformations of the type

u ¼
�
A 0

0 A�

�
∈ UðNfÞ; ð35Þ

which transform in the representation of UðNfÞ.
[Note that the baryonic Uð1Þ operator eiμB has precisely
this form]. It is also convenient to write u in terms of the
algebra as u ¼ eiv and the corresponding pushforward of
the representation is

v ¼
�
π 0

0 −πt

�
; π ∈ uðNfÞ: ð36Þ

The action in Eq. (14) then describes a system with the
following explicit symmetry breaking:

SUð2NfÞ→
μ
SðUðNfÞ ×UðNfÞÞ→

m
UðNfÞ: ð37Þ

Now we need to describe the effect of the spontaneous
breaking for the system around the ground state in Eq. (16).
The physical expectation is that a condensate will still
develop, but this time the standard condensate in Eq. (32)
will be broken by the chemical potential into a left and a right

diquarkUff0
L andUff0

R , so that each of the SUðNfÞ factors in
SUðNfÞL × SUðNfÞR ⋊ Uð1ÞB is broken spontaneously to
SpðNfÞ. The condensate will also break the Uð1ÞB sym-
metry, since it has a nonzero baryonic charge [96].
Formπ ≠ 0, only a linear combination of the left and right

diquarks survives, so that the global UðNfÞ symmetry is
broken spontaneously to SpðNfÞ. All in all the symmetry-
breaking pattern is

SUð2NfÞ→
μ
SðUðNfÞ ×UðNfÞÞ→

m
UðNfÞ

⇝ SpðNfÞ; ð38Þ

and as a result we expect

dim

�
UðNfÞ
SpðNfÞ

�
¼ N2

f − Nf

2
ð39Þ

Goldstone d.o.f. that transform in the representation
of the unbroken SpðNfÞ. In terms of π, the broken
generators are the baryonic uð1ÞB and the generators that
satisfy πI − Iπt ¼ 0.
Fixing the charge breaks Lorentz invariance, which

means that the spectrum of the Goldstone fields is richer
than in a standard Lorentz-invariant theory. In general, we
expect the presence of type-I Goldstones with a linear
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dispersion relation and type-II Goldstones with quadratic
dispersion. However, in the case at hand we can exclude the
presence of the latter with a simple counting argument.
Each type-II Goldstone field is made of two canonically
conjugate degrees of freedom [97]. This means that in order
to have type-II Goldstones, the dimension of the coset
(which counts the number of d.o.f.) must be strictly greater
than the number of fields. In our case, we have

dimðUðNfÞ
SpðNfÞÞ ¼ ðN2

f − NfÞ=2 d.o.f. On the other hand, the

dimension of the representation in which the pions trans-
form is precisely .
There is precisely one field per d.o.f., so each field must be
of type I and have a linear dispersion relation. At the
conformal point mπ ¼ mσ ¼ 0, the SpðNfÞ-invariant field
is the conformal Goldstone that has velocity c1 ¼ 1=

ffiffiffi
3

p
.

Causality imposes a bound on the velocity of the other
multiplet of Goldstones, , but the precise value is
not a priori fixed by the symmetries and depends on the
details of the model. To discuss them, we have to expand
the EFT at quadratic order around the ground state, which
we will do in the following section.

IV. EXPLICIT SECOND-ORDER EXPANSION

In the previous section we have made a prediction for the
low-energy spectrum over the ground state in Eq. (16).
Here we will verify it with an explicit computation of the
dispersion relations at quadratic order in the fluctuations.
First we expand the field at quadratic order around the

vacuum Σ0:

Σðt; xÞ ¼ eivðt;xÞΣ0eivðt;xÞ
t
; ð40Þ

where

vðt; xÞ ¼
�
πðt; xÞ 0

0 −πðt; xÞt
�
; ð41Þ

and the fields πðt; xÞ satisfy πðt; xÞI − Iπðt; xÞt ¼ 0. These
are the generators of the broken global symmetries,
encoding the coset UðNfÞ=SpðNfÞ.
Let us consider the terms in the action in Eq. (14)

separately.
(1) The kinetic term gives

h∂μΣ∂μΣi ¼ 8sin2ðφÞh∂μπ∂μπi: ð42Þ

It is convenient to decompose πðt; xÞ on an ortho-
normal basis,

ð43Þ

where the generators TA are normalized as

hTATBi ¼ 1

2
δAB; ð44Þ

and in particular T0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
2NF

p
1Nf

[remember that we are
only summing over the broken generators in uðNfÞ that
correspond to the coset UðNfÞ=SpðNfÞ]. Then we find

ð45Þ

(2) The term linear in μ gives

hBΣ∂0Σ†i ¼ −2isin2ðφÞh∂0πi; ð46Þ

where we have used the fact that eiv commutes with
the baryonic charge. If we decompose π on our basis
of the TA, we see that only the zeroth component
survives:

hBΣ∂0Σ†i ¼ −2isin2ðφÞh∂0πi
¼ −2i

ffiffiffiffiffiffiffiffiffi
2Nf

p
sin2ðφÞ∂0π0: ð47Þ

This term is coupled to the fluctuations of the
dilaton, which we expand as σðt; xÞ ¼ σ0 þ σ̂ðt; xÞ.

(3) The other terms do not depend on the derivatives of
Σ and by definition do not contribute to the action for
the pions. There is nonetheless a mass term for the
fluctuations of the dilaton, which is a massive
pseudo-Goldstone field, given by

hBΣ0BΣ†
0i þ hB2i ¼ Nfsin2ðφÞ; ð48Þ

hMΣ0i ¼ 2Nf cosðφÞ: ð49Þ

The final result is that the action at quadratic order in the
fluctuations is

ð50Þ

where
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M2
σ ¼ Nff2μ2 þ

f2μ2ð−16k34=3μ2v2e2fσy þm4
πNfðy2 − 4Þe6fσ þ 4μ4Nfe2fσðyþ1ÞÞ

2μ4e2fσðyþ1Þ − 2m4
πe6fσ

: ð51Þ

This is the effective mass of the dilaton, which is
dominated by the fixed charge (via the parameter μ)
and remains large also for mσ ¼ 0. This is the behavior
expected for a theory with an isolated fixed point [40],
as opposed to a supersymmetric system with a moduli
space [98,99].
The massless fields πa, decouple

from the rest of the system and have a linear dispersion
relation with velocity . The analysis of the
symmetries had not been enough to predict this
number. The key observation is that the fields πa do
not enter the expansion of the linear term hBΣ∂0Σ†i.
Geometrically speaking, this is the term that leads to the
presymplectic form required to have type-II Goldstone
fields [100].
The mode π0 is coupled to σ̂ and their inverse propagator

reads

D−1jπ0;σ̂ ¼
 
ω2 − k2 iωμf

ffiffiffiffiffiffiffiffiffi
2Nf

p
−iωμf

ffiffiffiffiffiffiffiffiffi
2Nf

p
−M2

σ

!
: ð52Þ

At the conformal point, where mπ ¼ mσ ¼ 0, we have
M2

σ ¼ Nff2μ2 and the propagator describes the expected
conformal Goldstone mode, with dispersion relation
ω ¼ k=

ffiffiffi
3

p
. In the general case we can still write the

dispersion as an expansion in the inverse baryonic charge.
Once more it is convenient to consider the boundary values
γ� ¼ 0 and γ� ¼ 1 separately:

γ� ¼ 0∶ ω ¼ 1ffiffiffi
3

p
�
1 −

N7=3
f

8k54=3

m4
π

v2

�
V
Q

�
2=3

þ…

�
k; ð53Þ

γ� ¼ 1∶

ω¼ 1ffiffiffi
3

p
�
1−

N2=3
f

3k4=3

�
m2

σ

2f2
þ 2N2

f

k34=3
m4

π

��
V
Q

�
4=3

þ…

�
k:

ð54Þ

The leading quantum contribution to the energy is given
by the Casimir energy of the Goldstones. On a general
manifold we can evaluate it using for example a zeta-
function regularization:

ð55Þ

The zeta function has a pole in s ¼ −1=2, which needs to
be regulated, leading to a scheme-dependent result. In fact,
since the value of ECasimir is Q independent, it will simply
be absorbed by the Wilsonian parameter k̃0 in the energy of
the ground state and the final result remains incalculable
within the EFT. It has been recently observed that the
regularization leads to a universal logðQÞ contribution to
the Casimir energy [101].
As promised in Sec. II, the quantum corrections only

enter at NNLO. Our main results in Eq. (23) and Eq. (24)
are protected against corrections in 1=Q. Again, the semi-
classical approach proves to be very effective in computing
the operator dimensions close to the fixed point.

V. CONCLUSIONS AND OUTLOOK

We have analyzed the large-charge limit of SpðNÞ gauge
theories with Nf Dirac fermions transforming in the
fundamental representation of the gauge group near the
lower boundary of the conformal window [14]. The latter
has been modeled by an EFT featuring the Goldstones of
the theory augmented by a dilaton-like state. The large-
charge approach provides a controlled way to analyze
strongly coupled near-conformal dynamics via a semi-
classical expansion within the EFT. Having another tool at
our disposal is invaluable given that unraveling the near-
conformal dynamics has proven a formidable task, both
numerically and analytically.
After having introduced the fixed baryon charge of the

theory and put the theory on a nontrivial background
geometry we have determined the spectrum and its sym-
metries, disentangling themexplicitly from the spontaneously
broken symmetries. Using the state-operator correspondence
we have computed the corrections to the large-charge quasi-
anomalous dimension Δ as a function of the dilaton and
fermion mass as well as the background geometry:
(1) for small anomalous dimension of the fermion-mass

operator γ� ≪ 1, we have
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Δ
Δ� ¼ 1 −

1

Nfk54=3

�
9m2

π

64πv

�
2
�
1 − γ� log

�
3ρ2=3

32Nfv2π2k4=3

���
2π2

ρ

�
2=3

−
�
16π2

9
Nfk2=3v2m2

σ − γ�
4N2

f

3k64=3

�
9m2

π

64πv

�
2
�
5N2

f

2k44=3

�
9m2

π

64πv

�
2

− k2=3

���
2π2

ρ

�
4=3

logðQÞ; ð56Þ

(2) for large anomalous dimensions ð1 − γ�Þ ≪ 1 we
find

Δ
Δ� ¼ 1 −

�
16π2

9
Nfk2=3v2m2

σ þ ð1 − γ�Þ 9m4
π

64k44=3

�

×

�
2π2

ρ

�
4=3

logðQÞ; ð57Þ

where Δ� is the conformal dimension at the fixed
point and ρ the charge density.

The background geometry only enters via the charge density
and at very large charge the effect of the deformations from
conformality is suppressed. For mπ ¼ 0 we reproduce
the results in Ref. [40]. These results allow novel ways to
explore near-conformal dynamics by offering, for example,
independent tests for the existence of the dilaton and its
impact.
We can envision a number of interesting further direc-

tions ranging from formal to phenomenological. On the
formal side one can extend the analysis to the QCD [SUð3Þ]
near-conformal window by replacing the baryon charge
with the isospin charge [76,102]. Generalizations to the
conformal window of generic SUðNÞ gauge theories
with different matter representations are also highly rel-
evant [10,11]; one such example is gauged Nambu–Jona-
Lasinio near-conformal theories [15]. Another interesting
avenue is the study of the effects of the topological sector

of the underlying gauge theories encoded in the theta
angle [103–105] of the theory whose effective description
at the effective Lagrangian level [106–109] (including a
scalar isosinglet) was summarized in Ref. [110]. In order to
further prepare for lattice investigations it would also be
relevant to extend our study to take advantage of finite-
volume computations [111–113] recently adapted to
include the dilaton state in Ref. [114].
Additionally, our studies naturally fit into the radial

quantization program; see Refs. [115–119] for recent
attempts.
At the same time the large- and small-charge limits

investigated here have relevant phenomenological applica-
tions [85] for bright and dark extensions of the Standard
Model featuring composite dynamics. One application is the
physics of compact objects made by composite dark particles
[120–123] as also summarized inRefs. [124,125]. Inprinciple
one can also use our EFT to investigate QCD in extreme
matter conditions augmented by a sigma-like state [126].
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