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Strong, electromagnetic, and weak forces were unified in the Standard Model with spontaneous gauge
symmetry breaking. These forces were further conjectured to be unified in a simple Lie group gauge interaction
in the grand unification. In this work, we propose a theory beyond the StandardModel and grand unification by
adding new gapped topological phase sectors consistent with the nonperturbative global anomaly cancellation
and cobordism constraints (especially from the baryon minus lepton number B −L, the electroweak
hypercharge Y, and the mixed gauge-gravitational anomaly). Gapped topological phase sectors are constructed
via symmetry extension,whose lowenergy containsunitaryLorentz invariant topological quantum field theories
(TQFTs): either ð3þ 1ÞD noninvertible TQFT (long-range entangled gapped phase), or ð4þ 1ÞD invertible or
noninvertible TQFT (short-range or long-range entangled gapped phase). Alternatively, there could also be
right-handed neutrinos, or gapless unparticle conformal field theories, or their combinations to altogether cancel
the mixed gauge-gravitational anomaly. We propose that a new high-energy physics frontier beyond the
conventional 0D particle physics relies on the new topological force and topological matter including gapped
extended objects (gapped 1D line and 2D surface operators or defects, etc., whose open ends carry deconfined
fractionalized particle or anyonic string excitations). Physical characterizations of thesegapped extended objects
require themathematical theories of cohomology, cobordism, or category.Althoughweaker than theweak force,
topological force is infinite-range or long-range that does not decay in the distance, and mediates between the
linked world volume trajectories via fractional or categorical statistical interactions.
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I. INTRODUCTION AND SUMMARY

Unification is a central theme in theoretical physics. From
1864–1865, Maxwell [1] unified the electricity and magnet-
ism into the electrodynamics theory, where the derived
electromagnetic wave manifests the light phenomena. From
1961–1967, Glashow-Salam-Weinberg (GSW) [2–5] made
landmark contributions to the electroweak theory of the
unified electromagnetic and weak forces between elementary
particles, including the prediction of theweak neutral current.
The GSW theory together with the strong force is now known
as the Standard Model (SM), which is verified to be

theoretically and experimentally essential to describe the
subatomic high energy physics (HEP). In 1974, Georgi-
Glashow [6,7] hypothesized that at a higher energy, the three
gauge interactions of the SM would be merged into a single
electronuclear force under a simple Lie group gauge theory,
knownas thegrandunificationor grand unified theory (GUT).
In this work, follow our previous investigations based on

nonperturbative global anomalies and cobordism constraints
[8–10],1wepropose anultraunification that a new topological
force comes into a theme of unification joining with three
known fundamental forces and other hypothetical GUT
forces. (See Fig. 1.) More concretely, there is a new gapped

*
jw@cmsa.fas.harvard.edu

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this
work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

1Related global anomalies and cobordism constraints on SM, GUT, and beyond the SM are explored also in [11–14]. Freed gave a generalized cohomology
description of the suð5Þ GUT anomalies [11]. Garcia-Etxebarria-Montero [12] and Davighi-Gripaios-Lohitsiri [14] used Atiyah-Hirzebruch spectral sequence to
compute the classification of global anomalies. The author with Wen [13] and with Wan [8] used Adams spectral sequence [15], Thom-Madsen-Tillmann spectra
[16,17], and Freed-Hopkins theorem [18] to obtain the classification of all invertible quantum anomalies. In addition, there in Ref. [8], we can also fully
characterize the dD ’t Hooft anomaly [19] of global symmetry G as ðdþ 1ÞD cobordism invariants, precisely as topological terms of cohomology classes and
fermionic topological invariants. The cobordism invariants can be read from the Adams chart in Ref. [8]. Thus we focus on employing Ref. [8] result. By
classifying all the invertible quantum anomalies, we must include the following:

(i) All local anomalies (perturbative anomalies): captured by perturbative Feynman diagram loop calculations, classified by the integer Z classes (the free
classes), e.g., Adler-Bell-Jackiw anomalies [20,21], perturbative local gravitational anomalies [22]. Typically the local anomalies are detectable via
infinitesimal gauge or diffeomorphism transformations that can be continuously deformed from the identity.

(ii) All global anomalies (nonperturbative anomalies): classified by finite Abelian groups as a product of Zn (the torsion classes) for some positive integer n,
e.g., Witten SU(2) [23] and the new SU(2) anomalies [24], global gravitational anomalies [25]. Typically the global anomalies are detectable only via
large gauge or diffeomorphism transformations that cannot be continuously deformed from the identity.

More examples of dD anomalies characterized by ðdþ 1ÞD cobordism invariants can be found in [26,27].
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topological phase sector whose underlying dynamical gauge
interactionsare the topological forces. Inamodernperspective,
we should view the SM and GUTall as effective field theories
(EFTs) suitable below certain energy scales. Whenever
“elementary particles” are mentioned, they only mean to be
“elementary field quanta with respect to a given EFT.”
Likewise, ultra unification should be viewed as an effective
field theory which contains SM and GUT but also additional
gapped topological phase sectors with low energy Lorentz
invariantunitarytopologicalquantumfieldtheories(TQFTs)of
Schwarz type(whichis the4Danalogof the3DChern-Simons-
Witten theories [28–30]). Topological force and the gapped
topological phase sector here have specific physical and
mathematical meanings, which we will clarify in Sec. II F.
Before digging into topological phase sector, we should state
the assumptions and the logic that lead to the assertion of ultra
unification in Sec. II.2

II. LOGIC TO ULTRA UNIFICATION

A. Assumptions

Our logic leading to ultra unification starts with the three
Assumptions mostly given by nature and broadly con-
firmed by experiments:
(1) Standard Model gauge group GSMq

: the Standard
Model gauge theory has a local Lie algebra
suð3Þ × suð2Þ × uð1Þ, but the global structure of
Lie group GSMq

has four versions3

GSMq
≡ SUð3Þ × SUð2Þ × Uð1Þ

Zq
;

with q ¼ 1; 2; 3; 6: ð2:1Þ

All the quantum numbers of quarks and leptons are
compatible with the representations of any version of
q ¼ 1, 2, 3, 6. To confirm which version is used by
nature, it requires the experimental tests on extended
objects such as 1D line or 2D surface operators (see
recent expositions in [35–38]).
SU(5) and Spin(10) gauge group: conventionally,

people write the Georgi-Glashow model [6] as the
suð5Þ GUT and Fritzsch-Minkowski model [7] as
the soð10Þ GUT because they have the local Lie
algebra suð5Þ and soð10Þ, respectively. However,
they have the precise global Lie group SU(5) and
Spin(10), respectively. Only q ¼ 6, we are allowed
to have the embedding of SM gauge group GSM6

≡
SUð3Þ×SUð2Þ×Uð1Þ

Z6
⊂ SUð5Þ into the suð5Þ GUT [see

more discussions later in (2.12)].
(2) Observed 15 Weyl fermions per generation by

experiments: so far the HEP experiments only
confirmed the 15 Weyl fermions per generation of
SM.4 The experimentalists have not yet confirmed
the existence of 16th Weyl fermion for each gen-
eration. The 16th Weyl fermion is also known as the
right-handed neutrino νR or the sterile neutrino.
Namely, given the number of generation (or family)
Ngen ¼ 3, we have 15 × Ngen ¼ 45 Weyl fermions
confirmed in the SM. Similarly, we consider 15 ×
Ngen ¼ 45 Weyl fermions applicable to the suð5Þ
GUT.5 (The quantum numbers and representations
of the elementary particles in SM and GUT can be
found in Tables 1 and 2 of [9].) In terms of the
quantum numbers of the 15 Weyl fermions per
generation of suð3Þ × suð2Þ × uð1Þ SM and that
of suð5Þ GUT, in the left-handed (L) Weyl spinor
basis, they are in the representations:

ð3̄; 1; 1=3ÞL ⊕ ð1; 2;−1=2ÞL ⊕ ð3; 2; 1=6ÞL
⊕ ð3̄; 1;−2=3ÞL ⊕ ð1; 1; 1ÞL of suð3Þ × suð2Þ
× uð1Þ ∼ 5̄ ⊕ 10 of suð5Þ:

Adding the 16th Weyl fermion (the sterile neutrino)
as ð1; 1; 0ÞL of suð3Þ × suð2Þ × uð1Þ gives us 5̄ ⊕
10 ⊕ 1 of suð5Þ also 16þ of soð10Þ [precisely the
16-dimensional spinor representation of Spinð10Þ].

(3) A variant discrete Baryon minus Lepton number
(B −L) is preserved at high energy: we hypothesize

2Conventions: we follow the conventions of Ref. [8–10]. We
denote nD for n-dimensional spacetime. We also follow the modern
condensed matter terminology on the interacting phases of quantum
matter [31,32]. For example, a long-range entangled gapped topo-
logical phase whose low energy describes the noninvertible TQFT is
known as an intrinsic topological order, which includes examples of
fractional quantum Hall states. A short-range entangled gapped
topological phase protected by some global symmetryG whose low
energy describes the invertible TQFT is known as a symmetry-
protected topological state (SPTs), which includes examples of
topological insulators and topological superconductors [33,34].

(i) By a noninvertible TQFT, it means that the absolute value
partition function jZðMÞj ≠ 1 on a generic spacetime
manifold M with nontrivial topology (e.g., cycles or ho-
mology classes).

(ii) By an invertible TQFT (ITQFT), it means that the absolute
value partition function jZðMÞj ¼ 1 on any spacetime
manifold M with any topology. Thus ZðMÞ implies the
existence of an inverted phase Z0ðMÞ≡ ZðMÞ−1 which
defines another ITQFT Z0ðMÞ that can cancel with the
original ITQFT ZðMÞ, as the stacking of two ITQFTs
become a trivial vacuum ZðMÞ · Z0ðMÞ ¼ 1 for any M.

(iii) By a trivial gapped vacuum with no TQFT or trivial
TQFT, it means that the partition function ZðMÞ ¼ 1 on
any spacetime manifold M with any topology.

3We denote the lower-case su, so,… for the Lie algebra and the
upper-case SU, SO,… for the Lie group.

4Here Weyl fermions are spacetime Weyl spinors, which is 2L
of Spinð1; 3Þ ¼ SLð2;CÞ with a complex representation in the
Lorentz signature. On the other hand, the Weyl spinor is 2L of
Spinð4Þ ¼ SUð2ÞL × SUð2ÞR with a pseudoreal representation in
the Euclidean signature.

5However, the soð10Þ GUT requires 16 Weyl fermions per
generation due to the fermions sit at the 16 of the Spin(10). This
fact is used to argue the possibility of topological quantum phase
transition between the energy scale of the 15n Weyl-fermion
suð5Þ GUT and 16n Weyl-fermion soð10Þ GUT in Ref. [10].
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a discrete X symmetry, which is a modified version
of ðB −LÞ number up to some electroweak hyper-
charge Y [39] is preserved (preserved at least at a
higher energy):6

X ≡ 5ðB −LÞ − 4Y: ð2:2Þ

The importance of this discrete symmetry Z4;X [as a
mod 4 symmetry of Uð1ÞX], in the context of global
anomalies for SM and GUT is emphasized by
Garcia-Etxebarria-Montero [12].
It is easy to check the following (e.g., see the

Tables 1 and 2 of [9]):
(i) All the particles from 5̄ of suð5Þ GUT has a

Uð1ÞX charge −3.
(ii) All the particles from 10 of suð5Þ GUT has a

Uð1ÞX charge þ1.
(iii) The singlet right-handed neutrino (if any) is

in 1 of suð5Þ GUT with a Uð1ÞX charge þ5.
(iv) All the fermions of SM has a Z4;X charge þ1.
(v) The electroweak Higgs ϕ has a Uð1ÞX charge

−2, thus a Z4;X charge þ2.
TheZ4;X also contains the fermion parityZF

2 [whose operator
ð−1ÞF gives (−1) to all fermions] as a normal subgroup:

Uð1ÞX ⊃ Z4;X ⊃ ZF
2 : ð2:3Þ

By looking at these consistent Z4;X quantum number of SM
particles, it is natural to hypothesize the discrete X symmetry
plays an important role at a higher energy above the SM
energy scale.
In Sec. II B, we review the anomaly and cobor-
dism constraints given in [8–10]. Readers can freely
skip the technical discussions on anomalies, and directly
go to the final logic step lead to ultra unification in
Sec. II C.

B. Anomaly and cobordism constraints

Based on the three mild and widely accepted assump-
tions listed in Sec. II A, we then impose the constraints
from all invertible quantum anomalies via the cobordism
calculation on SM and GUT models. The purpose is to
check the consistency of the 15n Weyl fermion SM and
GUT models:
Check: Perturbative local and nonperturbative global

anomalies classified via cobordism.
The classification of dD ’t Hooft anomalies of

global symmetries G is equivalent to the classification
of ðdþ 1ÞD invertible TQFTs with G symmetry defined
on a G-structure manifold,7 given by the cobordism

FIG. 1. Unification of forces and interactions in fundamental physics. In fact, the proposed ultra unification can still play a role of
unification even if GUT is not favored by nature or verified by experiments. Namely, based on the anomaly and cobordism constraint, we
can still propose the SMþ gapped topological phase sector þ topological force in a consistent way without GUT. The dark gray area
schematically shows the possible energy scales for various GUT scenarios, such as the suð5Þ; soð10Þ;…; soð18Þ GUT around
1016 GeV. The light gray area schematically suggests that the possible energy gap ΔTQFT for topological phase sector can range from as
low energy as the SM, to as high energy to somewhere within the GUT scales [e.g., below the soð10ÞGUT scale]. The dashed lines mean
hypothetical unifications that have not yet been confirmed by experiments. Forces are arranged from the strongest to the weakest
(horizontally from the left to the right) in the electroweak Higgs vacuum.

6Follow [8–10], we choose the convention that the Uð1ÞEM
electromagnetic charge is QEM ¼ T3 þ Y. The Uð1ÞEM is the
unbroken (not Higgsed) electromagnetic gauge symmetry and
T3 ¼ 1

2
ð1
0

0
−1Þ is a generator of SUð2Þweak.

7For the QFT setup, we only require the category of smooth,
differentiable, and triangulable manifolds.
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group data Ωd
G ≡ TPdðGÞ defined in Freed-Hopkins [18].8

The symmetry

G≡
�
Gspacetime ⋉ Ginternal

Nshared

�

≡Gspacetime ⋉Nshared
Ginternal ð2:4Þ

contains the spacetime symmetry Gspacetime and the internal
symmetry Ginternal.

9 Our perspective is that
(i) We can treat the spacetime-internal G as a global

symmetry, and we view the anomaly associated with
G as ’t Hooft anomalies [19] of G symmetry.

(ii) Then, we can ask all obstructions to dynamically
gauge theGinternal as a gaugegroup,which gives rise to
all the dynamical gauge anomaly cancellation con-
ditions that any consistent gauge theory must obey.

To proceed, we follow the results of [8,9,40], the relevant
total spacetime-internal symmetry G for the SMq is G ¼
SpinðdÞ ×ZF

2
Z4;X × GSMq

with q ¼ 1, 2, 3, 6, and for the
suð5Þ GUT is G ¼ SpinðdÞ ×ZF

2
Z4;X × SUð5Þ. Only the

q ¼ 6 case of SM6 can be embedded into the suð5Þ GUT.

1. Standard models

Reference [8] considers the classification ofG anomalies
in 4D given by the d ¼ 5 cobordism group Ωd

G ≡ TPdðGÞ
for all Standard Models of SMq with an extra discrete Z4;X

symmetry:

TPd¼5ðSpin ×ZF
2
Z4;X ×GSMq

Þ

¼
�
Z5 × Z2 × Z2

4 × Z16; q ¼ 1; 3.

Z5 × Z2
2 × Z4 × Z16; q ¼ 2; 6.

ð2:5Þ

Here we summarize the anomaly classification for the

Standard Model GSMq
≡SUð3Þ×SUð2Þ×Uð1ÞY

Zq
obtained in

[8,9,40]. Below we write the 4D anomalies in terms of
the 5D cobordism invariants or ITQFTs. For perturbative
local 4D anomalies, we can also write them customarily as
the 6D anomaly polynomials, and their cubic terms of
gauge current couplings in the one-loop triangle Feynman
diagram. Here is the list of classifications of anomalies10:

8Let us compare the cobordism group Ωd
G ≡ TPdðGÞ defined

in Freed-Hopkins [18] and the more familiar bordism group ΩG
d .

Here the cobordism group Ωd
G ≡ TPdðGÞ not only contains

HomðΩG;tors
d ;Uð1ÞÞ [the Pontryagin dual of the torsion subgroup

(= tors) of the bordism group ΩG
d ], but it also contains the integer

Z classes (the free part) descended from the free part of the
bordism group ΩG;free

dþ1 of one higher dimension. In other words,
(i) Theclassificationof ðd − 1Þdnonperturbativeglobal anoma-

lies canbe read fromthe torsionpart (the finite subgrouppart)
of cobordism group Ωd;tors

G ≡ TPtorsd ðGÞ. It can also be read
from the torsion part of the bordism group ΩG;tors

d data.
(ii) The classification of ðd − 1Þd perturbative local anoma-

lies can be read from the free part (the Z classes) of
cobordism group Ωd;free

G ≡ TPfreed ðGÞ, also from the free

part of the bordism group ΩG;free
dþ1 data.

In this work, we are concerned themost for ðd − 1Þ ¼ 4 and d ¼ 5.
9The Gspacetime is the spacetime symmetry, such as the

spacetime rotational symmetry SO≡ SOðdÞ or the fermionic
graded spacetime rotational spin group symmetry Spin≡
SpinðdÞ. The Ginternal is the internal symmetry, such as Ginternal

in the SM as GSMq
≡ SUð3Þ×SUð2Þ×Uð1Þ

Zq
with q ¼ 1, 2, 3, 6. We also

haveGinternal ¼ SUð5Þ in the SU(5) GUTandGinternal ¼ Spinð10Þ
in the Spin(10) GUT. The Nshared is the shared common
normal subgroup symmetry between Gspacetime and Ginternal.
The “semidirect product⋉” extension is due to a group extension
from Ginternal by Gspacetime. For a trivial extension, the semidirect
“⋉” becomes a direct product “×.”

10Here we follow the conventions of [8–10]:
(i) We can characterize anomalies via (perturbative) local

anomalies or (nonperturbative) global anomalies.
(ii) We can also characterize anomalies via their induced fields:

pure gauge anomalies, mixed gauge-gravity anomalies, or
gravitational anomalies (those violate the general covariance
under coordinate reparametrization; i.e. diffeomorphism).

(iii) The cjðGÞ is the jth Chern class of the associated vector
bundle of the principal G bundle.

(iv) We will use CSV2n−1 to denote the Chern-Simons (2n − 1)-
form for the Chern class (if V is a complex vector bundle)
or the Pontryagin class (if V is a real vector bundle). The
relation between the Chern-Simons form and the Chern
class is cnðVÞ ¼ dCSV2n−1 where the d is the exterior
differential and the cnðVÞ is regarded as a closed differ-
ential form in de Rham cohomology.

(v) The μ is the 3D Rokhlin invariant. If ∂M4 ¼ M3, then
μðM3Þ ¼ ðσ−F·F

8
ÞðM4Þ, thus μðPDðc1ðUð1ÞÞÞÞ is related to

c1ðUð1ÞÞðσ−F·FÞ
8

.Here · is theintersectionformofM4.TheF is the
characteristic two surface in a four-manifoldM4; it obeys the
condition F · x ¼ x · xmod 2 for all x ∈ H2ðM4;ZÞ. By the
Freedman-Kirby theorem: ðσ−F·F

8
ÞðM4Þ¼ArfðM4;FÞmod2.

(vi) The PD is defined as the Poincaré dual.
(vii) The η̃ is a mod 2 index of 1D Dirac operator as a

cobordism invariant of the bordism group ΩSpin
1 ¼ Z2.

(viii) The η0 is amod 4 indexof 1DDirac operator as a cobordism

invariant of the bordism group Ω
Spin×Z2

Z4

1 ¼ Z4.
(ix) TheArf invariant [41] is a 2D cobordism invariant ofΩSpin

2 ¼
Z2.TheArfappears tobethe lowenergyITQFTofað1þ 1ÞD
Kitaev fermionic chain [42], whose boundary hosts a single
ð0þ 1ÞD real Majorana zero mode on each of open ends.

(x) We use the notation “∼” to indicate the two sides are equal
in that dimension up to a total derivative term.

(xi) Because of the Z4;X ⊃ ZF
2 , we have

0 → ZF
2 → Z4;X →

Z4;X

ZF
2

¼ Z2 → 0: ð2:6Þ
We define the cohomology classes of background gauge
field AZ4

∈H1ðM;Z4;XÞ as the generator from the coho-
mology group H1ðBZ4;X;Z4Þ of Spin ×ZF

2
Z4;X. We also

define the background gauge field ðAZ2
Þ≡ ðAZ4

Þmod 2,
where AZ2

∈H1ðM;Z2Þ is the generator from
H1ðBðZ4;X=ZF

2 Þ;Z2Þ of Spin ×ZF
2
Z4;X.
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(1) Uð1Þ3Y : 4D Z class local pure gauge anomaly from

5D CSUð1Þ1 c1ðUð1ÞÞ2 and 6D c1ðUð1ÞÞ3.
(2) Uð1ÞY-SUð2Þ2: 4D Z class local pure

gauge anomaly from 5D CSUð1Þ1 c2ðSUð2ÞÞ and
6D c1ðUð1ÞÞc2ðSUð2ÞÞ.

(3) Uð1ÞY-SUð3Þ2: 4D Z class local pure

gauge anomaly from 5D CSUð1Þ1 c2ðSUð3ÞÞ and
6D c1ðUð1ÞÞc2ðSUð3ÞÞ.

(4) Uð1ÞY-ðgravityÞ2: 4D Z class local mixed gauge-
gravity anomaly from 5D μðPDðc1ðUð1ÞÞÞÞ and
6D c1ðUð1ÞÞðσ−F·FÞ

8
.

(5) SUð3Þ3: 4D Z class local pure gauge anomaly from

5D 1
2
CSSUð3Þ5 and 6D 1

2
c3ðSUð3ÞÞ.

(6) Witten SU(2) anomaly: 4D Z2 class global mixed
gauge-gravity anomaly from 5D c2ðSUð2ÞÞη̃≡
η̃ðPDðc2ðSUð2ÞÞÞÞ and 6D c2ðSUð2ÞÞArf ≡
ArfðPDðc2ðSUð2ÞÞÞÞ. However, the original Witten
Z2 global anomaly becomes mutated:
(i) When q ¼ 1 or 3, Witten anomaly mutated to a

4D Z4 class global mixed gauge-gravity
anomaly, given by a 5D cobordism invariant
c2ðSUð2ÞÞη0 ≡ η0ðPDðc2ðSUð2ÞÞÞÞ. There is a
short exact sequence 0 → Z2 → Z4 → Z2 → 0

where the original Witten anomaly c2ðSUð2ÞÞη̃
sits at the Z2 quotient and the ðAZ2

Þc2ðSUð2ÞÞ
sits at the Z2 normal subgroup, while the
mutated c2ðSUð2ÞÞη0 sits at the Z4 total group.

(ii) When q ¼ 2 or 6, Witten anomaly mutated to
become part of 4D Z class local mixed gauge-
gravity anomaly (first explained in [43]), given

by a 5D cobordism invariant 1
2
CSUð2Þ1 c2ðUð2ÞÞ∼

1
2
c1ðUð2ÞÞCSUð2Þ3 . There is a short exact se-

quence 0 → Z!2 Z → Z2 → 0 where the
original Witten anomaly c2ðSUð2ÞÞη̃ sits at

the Z2 quotient and the CSUð1Þ1 c2ðSUð2ÞÞ ∼
c1ðUð1ÞÞCSSUð2Þ3 sits at the Z normal sub-

group, while the mutated 1
2
CSUð2Þ1 c2ðUð2ÞÞ ∼

1
2
c1ðUð2ÞÞCSUð2Þ3 sits at the Z total group.

(7) ðAZ2
Þc2ðSUð2ÞÞ: 4D Z2 global gauge anomaly

given by a 5D cobordism invariant
ðAZ4

mod 2Þc2ðSUð2ÞÞ.
(i) When q ¼ 1 or 3, as explained earlier, it fuses

with Witten anomaly to become a Z4 global
anomaly.

(ii) When q ¼ 2 or 6, this Z2 global anomaly
occurs.

(8) ðAZ2
Þc2ðSUð3ÞÞ: 4D Z2 global gauge anomaly.

(i) When q ¼ 1 or 2, this is given by a 5D
cobordism invariant ðAZ4

mod 2Þc2ðSUð3ÞÞ.
(ii) When q ¼ 3 or 6, this is given by a 5D

cobordism invariant ðAZ4
mod 2Þc2ðUð3ÞÞ.

(9) c1ðUð1ÞÞ2η0: 4D Z4 global mixed gauge-gravity
anomaly.
(i) When q ¼ 1, this is given by a 5D cobordism

invariant c1ðUð1ÞÞ2η0 ≡ η0ðPDðc1ðUð1ÞÞ2ÞÞ.
(ii) When q ¼ 2, this is given by a 5D cobordism

invariant c1ðUð2ÞÞ2η0 ≡ η0ðPDðc1ðUð2ÞÞ2ÞÞ.
(iii) When q ¼ 3, this is given by a 5D cobordism

invariant c1ðUð3ÞÞ2η0 ≡ η0ðPDðc1ðUð3ÞÞ2ÞÞ.
(iv) When q ¼ 6, this is given by a 5D cobordism

invariant c1ðUð2ÞÞ2η0 ∼ c1ðUð3ÞÞ2η0.
(10) ηðPDðAZ2

ÞÞ: 4D Z16 global mixed gauge-gravity
anomaly is given by a 5D cobordism invariant
ηðPDðAZ4

mod 2ÞÞ. The ηðPDðAZ2
ÞÞ is the value

of Atiyah-Patodi-Singer (APS [44]) eta invariant
η ∈ Z16 on the Poincaré dual (PD) submanifold of
AZ2

. It descends from the bordism group calculation

of ΩSpin×Z2
Z4

5 ¼ ΩPinþ
4 ¼ Z16. Many previous works

had also explored these 5D Z16 fermionic invariants
[45–47]. The relation between 5D ηðPDðAZ2

ÞÞ and
4D η is given by the Smith homomorphism [48,49].

2. Georgi-Glashow suð5Þ grand unification

References [8,40] consider the classification of G
anomalies in 4D given by the d ¼ 5 cobordism group
Ωd

G ≡ TPdðGÞ for the suð5Þ GUT with an extra discrete
Z4;X symmetry:

TPd¼5ðSpin ×ZF
2
Z4;X × SUð5ÞÞ ¼ Z × Z2 × Z16: ð2:7Þ

Below we also write down the 4D anomalies in terms of the
5D cobordism invariants or ITQFTs, or the 6D anomaly
polynomials:
(1) SUð5Þ3: 4D Z class local gauge anomaly. It is given

by a 5D cobordism invariant 1
2
CSSUð5Þ5 , or more

precisely 1
2
ððAZ2

Þ2CSSUð5Þ3 þ CSSUð5Þ5 Þ including the
Spin ×ZF

2
Z4;X contribution.

(2) ðAZ2
Þc2ðSUð5ÞÞ: 4DZ2 class global gauge anomaly.

It is given by a 5D cobordism invariant
ðAZ4

mod 2Þc2ðSUð5ÞÞ.
(3) ηðPDðAZ2

ÞÞ: 4D Z16 global mixed gauge-gravity
anomaly is given by a 5D cobordism invariant
ηðPDðAZ4

mod 2ÞÞ. This is again the same Z16

global anomaly from Ω
Spin×Z2

Z4

5 ¼ ΩPinþ
4 ¼ Z16.

C. Consequences lead to ultra unification

References [9,10] checked all the above local and global
anomalies enlisted in Sec. II B vanished for the SMq
with q ¼ 1, 2, 3, 6 and for the suð5Þ GUT with 15
Weyl fermions per generation, except the 4D Z16 class
global anomaly [the mixed gauge-gravitational anomaly
probed by the discrete Z4;X symmetry and fermionic
spacetime rotational symmetry SpinðdÞ background fields]
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may not be completely matched.11 The cobordism invariant
for any ν ∈ Z16 corresponds to a 5D ITQFT partition
function

ZðνÞ
5D-ITQFT ≡ exp

�
2πi
16

· ν · ηðPDðAZ2
ÞÞjM5

�
;

with η≡ ηPinþ ∈ Z16; ν ∈ Z16: ð2:8Þ
Given a G ⊇ Spin ×ZF

2
Z4;X structure, the cohomo-

logy class AZ2
∈ H1ðM;Z2Þ is the generator from

H1ðBðZ4;X=ZF
2 Þ;Z2Þ. So ðAZ2

Þ≡ ðAZ4
Þmod 2 is the

quotient for the Z4;X gauge field AZ4
, which is the

background field for the symmetry Z4;X ⊂ Uð1ÞX.
The ηðPDðAZ2

ÞÞ is the value of η ∈ Z16 on the Poincaré
dual (PD) submanifold of the cohomology class AZ2

.
This PD takes ∩ AZ2

from 5D to 4D. The APS eta
invariant η≡ ηPinþ ∈ Z16 is the cobordism invariant of
the bordism group ΩPinþ

4 ¼ Z16. The notation “jM5” means
the evaluation on this invariant on a 5-manifold M5.

We summarize the consequences and implications of this
Z16 anomaly non-vanishing for 15n Weyl fermions in
Sec. II C.

(i) Reference [12] used the existence of Z16 global
cancellation to verify the conventional lore: the 16
Weyl fermions per generation scenario, by introduc-
ing a right-handed neutrino per generation.

(ii) References [9,10] take the Z16 anomaly as a secrete
entrance to find hidden new sectors beyond the
Standard Model, given the fact the HEP experiments
only have detected 15 Weyl fermions per generation
thus far.

1. Consequences

Given the assumptions in Sec. II A, the Z16 anomaly
index for the SMq (q ¼ 1, 2, 3, 6) and the suð5Þ GUT both
have the ðNgen ¼ 3Þ and the ð15 ¼ −1mod 16Þ per gen-
eration. So we have the following anomaly cancellation
condition to match the Z16 anomaly:

ð−ðNgen ¼ 3Þ þ nνe;R þ nνμ;R þ nντ;R þ newhidden sectorsÞ ¼ 0 mod 16: ð2:9Þ

The question is this: how to match the Z16 anomaly? We
enlist as many Scenarios ways as possible below.
(1) Standard lore: we can introduce the right-handed

neutrino (the 16th Weyl fermion) number nνR ¼ 1
for each generation (so nνe;R ¼ nνμ;R ¼ nντ;R ¼ 1 for

electron, muon, and tau neutrinos). In this case, there
is no new hidden sector.

(1a) Massless: Z4;X can be preserved if fermions are
gapless.

(1b) Diracmass:Z4;X isalsopreservedbytheYukawa-Higgs-
Dirac Lagrangian, but Z4;X is spontaneously broken
by the Higgs condensate to give a Dirac mass gap.

(1c) Majorana mass: Z4;X is broken explicitly by Major-
ana mass term.

(2) Proposals in Refs. [9,10]: Refs. [9,10] proposed
other novel ways to match the Z16 anomaly. Con-
sequently, we can introduce new hidden sectors
beyond the SM and the suð5Þ GUT:

(2a) Z4;X-symmetry-preserving anomalous gapped 4D
TQFT.12 We also call the finite energy gap

ΔTQFT ≡ Eexcited − Eground states ð2:10Þ
for the first excitation(s) above the ground state
sectors of this 4D TQFT as topological mass gap.
The underlying quantum system has a 4D intrinsic
topological order. We name the anomaly index ν4D
for this anomalous 4D TQFT.

(2b) Z4;X-symmetry-preserving 5D ITQFTgiven by the 5D
cobordism invariant in (2.8). The underlying quantum

11We should briefly compare the perspectives of Garcia-
Etxebarria-Montero [12], Davighi-Gripaios-Lohitsiri [14], and
our previous result [9,10], and those with Wen [13] or with Wan
[8]. In terms of the relevancy to the 4D anomalies of SM and
suð5Þ GUT given the spacetime-internal symmetry G

(i) Garcia-Etxebarria-Montero [12] checked
G¼Spin×Z2

Z4, Spin × SUðnÞ, Spin × SpinðnÞ.
(ii) Wang-Wen [13] checked G ¼ Spin×SpinðnÞ

ZF
2

, Spin×Spinð10Þ
ZF

2

,
Spin × SUð5Þ.

(iii) Davighi-Gripaios-Lohitsiri [14] checked G ¼ Spin ×
GSMq

, Spin × SpinðnÞ, and other GUTs.

(iv) Wan-Wang [8,40] checked G ¼ Spin × GSMq
,

Spin×Z2
Z4×GSMq

, Spin×SUð5Þ, Spin×Z2
Z4×SUð5Þ,

Spin×SpinðnÞ, Spin×SpinðnÞZF
2

, e.g.,n¼10, 18, and otherGUTs.

Thus, given by the starting assumption in Sec. II A, only Wan-
Wang [8,40] contains the complete anomaly classification data
for G ¼ Spin ×Z2

Z4 × GSMq
and Spin ×Z2

Z4 × SUð5Þ that we
need for completing the argument. So we have to employ the
results of Ref. [8]. Although Refs. [12,14] checked several global
anomalies, they do not exhaust checking all anomalies that we
need for G ¼ Spin ×Z2

Z4 ×GSMq
and Spin ×Z2

Z4 × SUð5Þ.
Indeed, specifically for G ¼ Spin ×Z2

Z4 ×GSMq
and

Spin ×Z2
Z4 × SUð5Þ, only Refs. [8,40] exhausted the cobordism

classifications for all their possible anomalies, and only
Refs. [9,10] completed the anomaly cancellation checks.

12In the context of 3D boundary and 4D bulk, a novel surface
topological order was firstly pointed out by Vishwanath-Senthil
in an insightful work [50]. Later on many people follow up on
developing the surface topological order constructions (see
overviews in [31,32,51]). Reference [9] generalizes this con-
densed matter idea to find an anomalous symmetric 4D TQFT
living on the boundary of 5D fermionic SPTs (2.8).
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systemhasa5DSPTswithanextrabulk fifthdimension
whose 4D boundary can live the 4D Standard Model
world. We name the anomaly index ν5D to specify the
boundary 4D anomaly of this 5D ITQFT.

(2c) ZF
2 -symmetry-preseving 5D bulk ½Z4;X

ZF
2

�-gauged
TQFT and 4D boundary ½Z4;X�-gauged TQFT. Over-
all the spacetime rotational symmetry is the fer-
mionic Spin group SpinðdÞ graded the bosonic
rotation special orthogonal group SOðdÞ by the
fermion parity ZF

2 .
(2d) 5D bulk ½ZF

2 × Z4;X

ZF
2

�-gauged TQFT and 4D boundary
½ZF

2 × Z4;X�-gauged TQFT. Overall the spacetime
rotational symmetry is the bosonic special orthogo-
nal group SOðdÞ.

(2e) Z4;X-symmetry-breaking gapped phase (e.g., Ginz-
burg-Landau paradigm phase or 4D TQFT).

(2f) Z4;X-symmetry-preserving orZ4;X-symmetry-break-
ing gapless phase, e.g., extra massless theories, free
or interacting conformal field theories (CFTs). The
interacting CFT with scale invariant gapless energy
spectrum is also related to unparticle physics [52] in
the high-energy phenomenology community.

Scenarios (2a) and (2b), and their linear combinations,
are the root phases, for new hidden gapped topological
phase sector. For example, breaking part of the global
symmetries in the linear combined (2a) and (2b) would give
rise to Scenario (2e). For another example, gauging part of
the global symmetries in the linear combined (2a) and (2b)
would give rise to other Scenarios:

(i) Gauging ½Z4;X

ZF
2

� in 5D and gauging ½Z4;X� in 4D gives
rise to scenario (2c).

(ii) Gauging ½ZF
2 × Z4;X

ZF
2

� in 5D and gauging ½ZF
2 × Z4;X�

in 4D gives rise to scenario (2d).
The underlying quantum systems in scenarios (2a) and (2b)
have the symmetry-enriched topologically ordered state in
a condensed matter terminology.
We name the combination of the above anomaly cancella-

tion scenarios, including the standard lore (right-handed
neutrinos in Scenario 1) and the new proposals (all enlisted
in Scenario 2) beyond the SM and the GUT, as the ultra
unification. Although introducing additional conformal field
theories [scenario (2f)] to match the anomaly is equally
fascinating,we insteadmostly focuson introducing thegapped
topological phase sector due to high-energy physics phenom-
enology (HEP-PH) constraints (see a summary in [9]). A
central theme of ultra unification suggesting a new HEP
frontier is that HEP-PH provides gapped extended objects
beyond particle physics. Here are some more comments:

(i) Thesegappedextended objects (of 1D, 2D, 3D,…) are
formulated mathematically in terms of gapped TQFT
extended operators (1D line, 2D surface, 3D brane,
etc., topological operators), beyond the 0D particles.

(ii) These extended operators are heavy in the sense that
they sit at the energy scale above the TQFTenergy gap
ΔTQFT [so at or above the scale of Eexcited in (2.10)].

(iii) These extended operators are heavy in the sense that
they have topological mass and they can interact
with dynamical gravity. So these gapped extended
objects may be the dark matter candidate.

(iv) There are fractionalized anyonic excitations at the
open ends of 1D line, 2D surface, 3D brane, etc.,
topological operators. In other words, the particle 1D
worldline is the 1D line topological operator. The
anyonic string 2D worldsheet is the 2D surface
topological operator.13

In summary, based on the anomaly cancellation and
cobordism constraints, we propose that the SM and
Georgi-Glashow SU(5) GUT (with 15 Weyl fermions per
generation, and with a discrete baryon minus lepton number
Z4;X preserved) contains a new hidden sector that can be a
linear combination of above scenarios [9,10]. In particular
we can focus on the new hidden sectors given by a 4DTQFT
(with the anomaly index ν4D) and a 5D ITQFT (with the 4D
boundary’s anomaly index ν5D), so (2.9) becomes

ð−ðNgen¼3Þþnνe;Rþnνμ;Rþnντ;Rþν4D−ν5DÞ¼0 mod16:

ð2:11Þ
D. Symmetry breaking vs symmetry extension:
Dirac or Majorana masses vs topological mass

The distinctions between Dirac mass, Majorana mass,
and topological mass are already explored in Ref. [9]. They
represent the scenarios (1b), (1c), and (2a), respectively in
Sec. II C. Here we summarize their essences:

(i) Symmetry breaking: Dirac mass and Majorana mass
are induced by symmetry breaking—either global
symmetry breaking or gauge symmetry breaking, for
example via the Anderson-Higgs mechanism or
through Yukawa-Higgs term. More precisely, we
start from a symmetry group (specifically here an
internal symmetry, global or gauged)G, andwe break
G down to an appropriate subgroup Gsub ⊆ G to
induce quadratic mass term for matter fields. Math-
ematically we write an injective homomorphism ι:

Gsub→
ι
G:

For example, in Anderson-Higgs mechanism, for a
Bardeen-Cooper-Schrieffer type Z2-gauged super-
conductor, we have Gsub ¼ Z2 and G ¼ Uð1Þ
electromagnetic gauge group. For the SM electro-
weak Higgs mechanism, we have Gsub ¼ SUð3Þ×Uð1ÞY

Zgcdðq;3Þ

13Of course we know that in above 3D spacetime (such as 4D
and 5D that we concern), a 0D particle by itself can only have
bosonic or fermionic statistics. A 0D particle does not have
fractional or anyonic statistics [53] in above 3D spacetime.
However, 1D worldline and 2D world sheet can be linked in
4D. Triple and quadruple 2D world sheets can be linked in 4D,
etc. (see [54–56] and [57–60]). These give rise to “anyonic
statistics” to multiexcitations of gapped particles or gapped
strings in a 4D spacetime and above.
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and G¼GSMq
≡SUð3Þ×SUð2Þ×Uð1ÞEM

Zq
with q ¼ 1; 2; 3; 6

and the appropriate greatest common divisor (gcd).
(ii) Symmetry extension: topological mass as the energy

gap above a TQFT with ’t Hooft anomaly (of a
spacetime-internal symmetry G) can be induced by
symmetry extension [51]. The symmetry extension
mechanism extended the original Hilbert space (with
nonperturbativeglobal anomalies) toanenlargedHilbert
space by adding extra degrees of freedom to the original
quantum system (see [61,62] for explicit quantum
Hamiltonian lattice constructions). The enlargedHilbert
space is meant to trivialize the ’t Hooft anomaly inG in
an extended G̃. The pullback r� of the map

G̃!r G

can be understood as part of the group extension in an
exact sequence [51], while in general this can be
generalized as the fibrations of their classifying spaces
and higher classifying spaces [63–65]. In many
simplified cases, we have a surjective homomorphism
r in a short-exact sequence of group extension:

1 ⟶ Nnormal ⟶ G̃⟶
r

G ⟶ 1;

where G ¼ G̃
Nnormal

becomes a quotient group of G̃
whose normal subgroup is Nnormal. The G-anomaly
becoming anomaly-free in the extended G̃ requires the
essential use of algebraic topology criteria, such as the
Lydon-Hochschild-Serre spectral sequence method
[51]. We will explain further details in 3.2.1.

E. Gauging a discrete baryon B, lepton L, and
electroweak hypercharge Y

We provide some more logical motivations why we
should preserve Z4;X and dynamically gauge Z4;X with
X ≡ 5ðB −LÞ − 4Y, at a higher energy [scenarios (2c) and
(2d) in Sec. II C]:
(1) First, as stated before, the Z4;X is a good global

symmetry read from the quantum numbers of SM
particles and SM path integral kinematically. It is a
global symmetry that has not yet been dynamically
gauged in theGSMq

nor in the SU(5) of the suð5ÞGUT.
(2) The Z4;X ¼ ZðSpinð10ÞÞ sits at the center subgroup

Z4 of the Spin(10) for the soð10Þ GUT [12]. Thus
the Z4;X must be dynamically gauged, if the soð10Þ
GUT is the correct path to unification at a higher
energy. It is natural to consider the following group
embedding from the GUT to the SM [8–10]:
SpinðdÞ × Spinð10Þ

ZF
2

⊃ SpinðdÞ ×ZF
2
Z4;X × SUð5Þ

⊃ SpinðdÞ ×ZF
2
Z4;X ×

SUð3Þ × SUð2Þ × Uð1Þ
Z6

:

ð2:12Þ

(i) It is worthwhile mentioning that the Z16

global anomaly (occurred in the cobordism
group for the G ¼ SpinðdÞ ×ZF

2
Z4;X × SUð5Þ

and SpinðdÞ ×ZF
2
Z4;X ×GSMq

) disappears in

the case of G ¼ SpinðdÞ×Spinð10Þ
ZF

2

.

So theZ4;X can be an anomalous symmetry in
the SMq and the suð5Þ GUT, but the Z4;X is an
anomaly-free symmetry in the soð10Þ GUT.14

(ii) The 15n Weyl fermion SMq or the 15n Weyl
fermion suð5Þ GUT alone may have a Z16

global anomaly, while they can become
anomaly free at a higher-energy 16n Weyl
fermion soð10Þ GUT [13]. This fact motivates
Ref. [10] to propose an analogous concept of
topological quantum phase transition happens
between two energy scales: (1) above the
energy scale of the SMq or the suð5Þ GUT,
(2) below the energy scale of the soð10Þ GUT.

(iii) Global symmetry must be gauged or broken in
quantum gravity. If for the above reasons, we
ask the Z4;X symmetry to be preserved, then the
Z4;X must be dynamically gauged at a higher
energy for the sake of quantum gravity.15

F. Topological phase sector and topological force

Topological force and the gapped topological phase
sector have specific physical and mathematical meanings

14The anomalous symmetry means a non-on-site symmetry in
the condensed matter terminology that cannot be realized acting
only locally on a 0 simplex (a point). The anomaly-free symmetry
means an on site symmetry in the condensed matter terminology
that acts only locally on a 0 simplex (a 0D point), which can be
easily gauged by coupling to dynamical variables living on 1
simplices (1D line segments).

15String theory landscape and swampland develop the similar
concepts of the use of cobordism for quantum gravity, see [66] and
references therein. This can be understood as the deformation
classes of quantum gravity. The deformation classes of quantum
field theory is also proposed by Seiberg in [67]. In our context, we
propose that the whole quantum system including the low energy
SM plus additional hidden sectors, must correspond to the trivial
group element 0 class in TPd¼5ðSpin ×ZF

2
Z4;X ×GSMq

Þ. Sim-
ilarly, the whole quantum system including the su(5) GUT plus
additional hidden sectors, must correspond to the trivial group
element 0 class in TPd¼5ðSpin ×ZF

2
Z4;X × suð5Þ Þ. Anomaly

matching: To take a step back, for a usual quantum field theory,
one can try to match the index ν of 0t Hooft anomaly of ultraviolet
high energy (UV) with infrared low energy (IR). The index ? is a
renormalization group (RG) flow invariant but possibly can be
nonzero. This is the anomaly matching of the index ? between UV
and IR theories. Anomaly cancellation: Here in contrast, in our
case, we consider the whole quantum system (low energy and high
energy) into account, due to our assumption that the Z4;X is
preserved thus gauged at the quantum gravity scale, we must have
the system anomaly matched to a trivial group element with the
total index ν ¼ 0 in the cobordism class (similar to [69]). We may
also quote this cancellation as the anomaly matching to zero.
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in our context. We should clarify what they are, and then
what they are not:
(1) Topological phase sector: in Sec. II C and (2.11), we

propose a topological phase sector beyond the Stan-
dard Model includes an appropriate linear combina-
tion of the following theories (selecting the best
scenario to fit into the HEP phenomenology):
(a) 4D long-range entangled gapped topological

phase with an energy gap (named the gap
ΔTQFT) whose low energy physics is character-
ized by a 4D noninvertible topological quantum
field theories. This 4D TQFT is a Schwarz-type
unitary TQFT (which is the 4D analog of the 3D
Chern-Simons-Witten theories [29,30]).
(i) This 4D TQFT has a ’t Hooft anomaly [19] of

a global symmetryG. We named the anomaly
index ν4D for this 4D TQFT.

(ii) Proper mathematical tools to study this 4D
TQFT requires the category or higher cat-
egory theories.

(b) 5D short-range entangled gapped topological
phase with an energy gap whose low energy
physics is characterized by a 5D ITQFT. This 5D
ITQFT is also a unitary TQFT. But the ITQFT is
nontrivial and distinct from a trivial gapped
vacuum only in the presence of a global sym-
metry G, see footnote 2. A G-symmetric ITQFT
is mathematically given by a G-cobordism
invariant, classified by an appropriate cobordism
group Ωd

G ≡ TPdðGÞ, defined in the Freed-Hop-
kins classification of invertible topological
phases (TP) [18].
(i) The boundary of this 5D ITQFT has a 4D

’t Hooft anomaly of a global symmetry G.
We named the anomaly index ν5D for this
5D ITQFT.

(ii) Proper mathematical tools to study this 4D
TQFT requires characteristic classes, coho-
mology, and cobordism theories.

(c) 5D long-range entangled gapped topological
phase with an energy gap whose low energy
physics is characterized by a 5D TQFT. This is
the case when the discrete X symmetry is
dynamically gauged, stated in scenarios (2c)
and (2d) in Sec. II C.

(2) Topological force: in the context of Sec. II C,
topological force is a discrete gauge force mediated
between the linked world volume trajectories (1D
worldlines, 2D world sheets from gapped extended
operators) via fractional or categorical statistical
interactions (see Secs. 5 and 6 of [9]).
(a) Bosonic finite group gauge theory: the conven-

tional discrete gauge theories are bosonic types
of finite group gauge theories [68,69]. Bosonic
types mean that their UV completion only
requires a local tensor product Hilbert space

of local (gauge-invariant) bosonic operators; the
UV completion does not require local (gauge-
invariant) fermionic operators. The underlying
TQFT does not require the spin structures and
can be defined on non-spin manifolds (such as
the oriented SO structures). The TQFTs are
known as bosonic or nonspin TQFTs.

(b) Fermionic finite group gauge theory: the discrete
gauge theories for our gapped topological phase
sectors for the beyond SM hidden sector are
fermionic types of finite group gauge theories
[47,64]. Fermionic types mean that their UV
completion must require local (gauge-invariant)
fermionic operators. The underlying TQFT re-
quires the additional spin structures defined on
spin manifolds. The TQFTs are known as spin
TQFTs. In fact the 4D TQFT in Sec. II C requires
the Spin ×ZF

2
Z4;X structure and can be defined on

the Spin ×ZF
2
Z4;X manifolds (including both spin

manifolds and some nonspin manifolds).
We should emphasize that our topological phase

sector and topological force are not the kinds of
Chern class topological terms which are already
summed over in the continuous Lie group gauge
theory. Namely, our topological phase sector and
topological force are not the following:

(i) The θ term with or without a dynamical θ axion
[70,71], well known as θF ∧ F or θFF̃ in the
particle physics, is in fact related to the second
Chern class c2ðVGÞ and the square of the first
Chern class c1ðVGÞ of the associated vector
bundle of the gauge group G:

θ

8π2
TrðF∧FÞ¼ θ

2
c1ðVGÞ2−θc2ðVGÞ: ð2:13Þ

In particular, here we considerG as the UðNÞ or
SUðNÞ gauge group, so we can define the
Chern characteristic classes associated with
complex vector bundles. The VG is the asso-
ciated vector bundle of the principal G bundle.
This θ term is a topological term, but it is
summed over as a weighted factor to define a
Yang-Mills gauge theory partition function
[35,72,73]. This θ term does not define a
quantum system or a quantum phase of matter
by itself, distinct from our 4D TQFT (with
intrinsic topological order) and 5D ITQFT
(with SPTs) as certain unitary quantum phases
of matter by themselves.

(ii) The instantons [74,75] or the sphalerons [76]
are also not the topological phase sector and
topological force in our context. Instantons and
sphalerons are again the objects with nontrivial
Chern class integrated over the spacetime mani-
fold. Those objects are already defined as part

UNIFIED MODEL BEYOND GRAND UNIFICATION PHYS. REV. D 103, 105024 (2021)

105024-9



of the SM and GUT continuous group gauge
theories.

As we will mention in Sec. III A, we can
also include (1) the θ term with or without a
dynamical θ axion, (2) instantons, and (3) spha-
lerons into the Standard Model and the suð5Þ
GUT path integral. These objects are already
in the old paradigm of the SM and GUTmodels.
These objects do not affect the anomaly cancel-
lation and cobordism constraints (especially the
Z16 global anomaly) discussed in Sec. II B.16

These objects belong to the Standard Model and
the suð5Þ GUT path integral (Sec. III A), not to
the topological phase sector (TQFT) path integral
(Sec. III C), but they all can be included as part of
the ultra unification path integral (Sec. III).

III. ULTRA UNIFICATION PATH INTEGRAL

In this section, we provide the functional path integral
(i.e., partition function) ZUU of ultra unification, which
includes the standard paradigm of the Standard Model path
integral ZSM or the Georgi-Glashow suð5Þ GUT path
integral ZGUT in Sec. III A. Then we provide the topologi-
cal phase sector TQFT path integral ZTQFT ≡ Z5D-ITQFT ·
Z4D-TQFT in Sec. III C

A. Standard Model and the suð5Þ GUT path integral
coupled to X ≡ 5ðB−LÞ− 4Y

1. Standard Model path integral coupled to X

Now we describe the SM path integral in the Minkowski
(or Lorentz) signature:

ZSM½AZ4
�≡

Z
½Dψ �½Dψ̄ �½DA�½Dϕ�… expðiSSM½ψ ; ψ̄ ; A;ϕ;…;AZ4

�jM4Þ: ð3:1Þ

The… depends on the details of which variant versions of SM that we look at (e.g., adding axions or not). In the schematic
way, we have the action:

SSM ¼
Z
M4

X
I¼1;2;3

�
þTrðFI ∧ ⋆FIÞ − θI

8π2
g2ITrðFI ∧ FIÞ

�
þ
Z
M4

ðψ̄ðiDA;AZ4
Þψ

þ jDμ;A;AZ4
ϕj2 − UðϕÞ − ðψ†

LϕψR þ H:c:ÞÞd4x: ð3:2Þ
But more precisely we really need more details in the Lagrangian L with Weyl fermions, with S≡ R

Ld4x:

LSM ¼ LYM þ Lθ-Chern þ LWeyl þ LHiggs þ LYukawa-Higgs

¼
X

I¼1;2;3

−
1

4
Fa
I;μνF

aμν
I − θI

8π2
g2I ϵ

μνμ0ν0Fa
I;μνF

a
I;μ0ν0 þ ψ†

Lðiσ̄μDμ;A;AZ4
ÞψL þ ψ†

RðiσμDμ;A;AZ4
ÞψR

þ jDμ;A;AZ4
ϕj2 − UðϕÞ − ðψ†

LϕψR þ H:c:Þ: ð3:3Þ

Here come some remarks:
1 Yang-Mills gauge theory [77] has the action SYM ¼R

TrðF ∧ ⋆FÞ and Lagrangian LYM ¼ − 1
4
Fa
μνFaμν.

The F is the Lie algebra valued field strength
curvature two form F ¼ dA − igA ∧ A, with its
Hodge dual ⋆F, all written in differential forms.
In the trace “Tr” we pick up a Lie algebra repre-
sentationR whose Lie algebra generators Ta labeled
by “a.” We have also the subindex I ¼ 1; 2; 3 to
specify the SM Lie algebra sectors uð1Þ, suð2Þ, or
suð3Þ.
More precisely F ¼ 1

2
Fμνðdxμ ∧ dxνÞ ¼

1
2
Fa
μνTaðdxμ ∧ dxνÞ, and we define the commutator

½Tb;Tc� ¼ ifbcdTd with a structure constant fbcd,

then Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfbcaAb

μAc
ν. Notet that

TrðTaTbÞ ¼ CðRÞδab for some constant of
representation R. Here for the fundamental repre-
sentation R, we take TrðTaTaÞ ¼ 1

2
. Then

we have TrðF ∧ �FÞ ¼ ð−1Þs 1
2
TrðFμνFμνÞd4x ¼

ð−1Þsð1
4
ÞFa

μνðFaÞμνd4x with the ð−1Þs as the sign
of the determinant of the spacetime metric.
The θ term and dynamical θ axion: we can also

introduce theChern class topological θ termSθ-Chern ¼
− R

θ
8π2

g2TrðF ∧ FÞ and Lθ-Chern ¼ − θ
8π2

g2ϵμνμ
0ν0×

Fa
μνFa

μ0ν0 . Given a UðNÞ or SU(N) bundle VG and its

field strength F̂, the first and second Chern classes are
givenbyc1ðVGÞ¼TrF

2π andc2ðVGÞ¼− 1
8π2

TrðF∧FÞþ
1
8π2

ðTrFÞ∧ ðTrFÞ, so that θ
8π2

TrðF ∧ FÞ ¼
θ
2
c1ðVGÞ2 − θc2ðVGÞ. If a dynamical θ axion

[70,71] is introduced, it requires a summation of the
compact θ in the path integral measure

R ½Dθ�.

16However, those θ terms in Yang-Mills gauge theory may
affect the higher anomalies involving higher generalized global
symmetries, see for example [72,73].
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There is anoverall constant that canbe absorbed into
the field A and coupling g redefinition.17

The path integral
R ½DA� for continuous Lie group

gauge field theory [here U(1), SUðNÞ, UðNÞ for the
SM and suð5Þ GUT] really means (1) the summation
of all inequivalent principal gauge bundles PA,
and then (2) the summation of all inequivalent
gauge connections Ã (under a given specific principal
gauge bundles PA), where Ã is a (hopefully globally
defined physically) one-formgauge connection. Sowe
physically define:Z

½DA�…≡ X
gauge bundlePA

Z
½DÃ�…:

2 Dirac fermion theory has SDirac ¼
R
ψ̄ðiDAÞψd4x

and LDirac ¼ ψ̄ðiDÞψ with the Dirac spinor ψ
defined as a section of the spinor bundles. The
ψ̄ðiDÞψ is an inner product in the complex vector
space with the Dirac operator DA as a natural linear
operator in the vector space. The path integralR ½Dψ �½Dψ̄ � is (1) the summation of all inequivalent
spinor bundles, and then (2) the summation of
all inequivalent sections (as spinors) of spinor
bundles (under a given specific spinor bundle).
We requires spin geometry and spin manifold, in
particular we require the Spin ×Z2

Z4 ¼ Spin ×ZF
2

Z4;X structure.
In fact preferably we present not in the Dirac

spinor basis, but we present all of (3.3) in the Weyl
spinor basis (below).

3 Weyl fermion theory has SWeyl ¼
R
LWeyld4x ¼R

ψ†
Lðiσ̄μDμ;A;AZ4

ÞψLd4x. Weyl spinor bundle splits
the representation of the Dirac spinor bundle. Weyl
spinor again is defined as the section of Weyl spinor
bundle. The Weyl spacetime spinor is in 2L of
Spinð1; 3Þ ¼ SLð2;CÞ with a complex representa-
tion in the Lorentz signature, or 2L of Spinð4Þ ¼
SUð2ÞL × SUð2ÞR with a pseudoreal representation
in the Euclidean signature. We also write the
analogous right-handed Weyl fermion theory. The
σμ and σ̄μ are the standard spacetime spinor rota-
tional suð2Þ Lie algebra generators. We will empha-
size and illuminate the meanings of covariant
derivative Dμ;A;AZ4

altogether in remark 5.
4 Higgs theory has SHiggs ¼

R
LHiggsd4x ¼R ðjDμ;A;AZ4

ϕj2 − UðϕÞÞd4x. The Higgs field bundle

is typically a trivial complex line bundle.18 The
Higgs scalar field is the section of a field bundle. The
electroweak Higgs is in complex value C and also in
2 of SU(2) gauge field. Again by doing summationR ½Dϕ� we (1) sum over the field bundles, and
(2) sum over the section of each field bundle. We
illuminate the meanings of covariant derivative
Dμ;A;AZ4

altogether in remark 5.
5 Covariant derivative operator Dμ;A;AZ4

in (3.3) is
defined as

Dμ;A;AZ4
≡∇μ − igqRAμ − iqXAZ4;μ: ð3:4Þ

Placed on a curved spacetime (with a nondynamical
metric, only with background gravity) requires a
covariant derivative ∇μ, and a spin connection for
the spinors.
Comments about the term gqRA in a differential

form (e.g., quantumnumbers read fromTable 1 in [9]):

gqRA≡
�
qeAuð1Þ;μ þ gsuð2Þ

X3
a¼1

ςa

2
Aa
suð2Þ;μ

þ gsuð3Þ
X8
a¼1

τa

2
Aa
suð3Þ;μ

�
dxμ: ð3:5Þ

The ςa and τa are the rank-2 and rank-3 Lie algebra
generator matrix representations for suð2Þ and
suð3Þ, respectively. The Dμ;A;AZ4

acting on ψL

contains the suð2Þ gauge field. The Dμ;A;AZ4
acting

on ψR does not contain the suð2Þ gauge field,
because the suð2Þ weak interaction is a maximally
parity violating chiral gauge theory. The Dμ;A;AZ4

acting only on quarks (both ψL and ψR) contains the
suð3Þ gauge field. The Dμ;A;AZ4

acting on ϕ contains
the suð2Þ gauge field.
Here are some comments about the term qXAZ4

(e.g., quantum numbers read from Tables 1 and 2
in [9]):
(i) The Dμ;A;AZ4

acts on all left-handed SM Weyl
fermion ψL via its AZ4

charge qX ¼ 1.
(ii) The Dμ;A;AZ4

acts on all right-handed SM Weyl
fermion ψR via its AZ4

charge qX ¼ −1.
(iii) The Dμ;A;AZ4

acts on the electroweak Higgs ϕ
via its AZ4

charge qX ¼ 2.
The subtle part is that AZ4

should be treated as a
cohomology class, such as a cohomology or cochain
gauge field. The AZ4

∈ H1ðM;Z4Þ is the generator from
H1ðBZ4;X;Z4Þ. In physics, for the continuum QFT
theorists who prefer to think Z4;X ⊂ Uð1ÞX as a continuum

17For example, by redefining A → A0 ¼ 1
g A and F → F0 ¼ 1

g F,
then F0 ¼ dA0 − iA0 ∧ A0 and F0a

μν ¼ ∂μA0a
ν − ∂νA0a

μþ
fbcaA0b

μA0c
ν. Then we can also write SYM þ Sθ-Chern ¼

1
g2
R
TrðF0 ∧ ⋆F0Þ − R

θ
8π2

TrðF0 ∧ F0Þ; and LYM þ Lθ-Chern ¼
− 1

4g2 F
0a
μνF0aμν − θ

8π2
εμνμ

0ν0F0a
μνF0a

μ0ν0 :

18In Higgs theory, people in general do not consider nontrivial
complex line bundles for Higgs field. But it may be amusing to
consider the alternative.
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gauge field breaking down to a discrete Z4;X, we can
introduce an extra Z4 charge new Higgs field φ and its
potential VðφÞ:

ψ†
Lðiσ̄μDμ;AZ4

ÞψLþψ†
RðiσμDμ;AZ4

ÞψRþjð∂μ− i2AZ4;μÞϕj2

þjð∂μ− i4AZ4;μÞφj2þVðφÞþ…: ð3:6Þ

These extra superconductivity-like terms ϕ2φ† þ ðϕ†Þ2φ
do not break the Z4. Their Z4 or U(1) transformations are

ψL →ψLei
2π
4 ; ψR→ψRe−i

2π
4 ; ϕ→ϕei2

2π
4 ; φ→φ:

ψL →ψLeiΘ; ψR→ψRe−iΘ; ϕ→ϕei2Θ; φ→φei4Θ:

In the hφi ≠ 0 condensed Higgs phase as a discrete Z4

gauge theory, we can dualize the theory as a level-four BF
theory [78]. The formulation starts from adding

R ½Dφ� in
the path integral measure, and it ends with a two form B and
one-form gauge field AZ4

Z
½DB�½DAZ4

� exp
�
i
4

2π

Z
M4

B ∧ dAZ4
þ…

�
: ð3:7Þ

But more precisely, we really should formulate in terms of a
cohomology/cochain TQFT and taking care of the
Spin ×ZF

2
Z4;X structure, which we will do in Sec. III C

(also in Sec. 5 of [9]).
6 Yukawa-Higgs-Dirac term has SYukawa-Higgs-Dirac ¼R

LYukawa-Higgs-Diracd4x ¼ R ðψ†
LϕψR þ H:c:Þd4x. In

this case, we pair the ψ†
Ls 2̄ of SU(2) with the ϕs

2 of SU(2), and vice versa pair ψL with ϕ† to get an
SU(2) singlet. The right-handed ψR here is (meant to
be) an SU(2) singlet. This Yukawa-Higgs-Dirac term
at the kinetic level also preserves the Z4;X, although
the Higgs vacuum expectation value breaks the Z4;X

dynamically.
7 Yukawa-Higgs-Majorana term with Weyl fermion:

we can add Yukawa-Higgs-Majorana term for Weyl
fermions. For example, for the left-handed ψL, we
can add a dimension-five operator:

SYukawa-Higgs-Majorana

¼
Z

−ðψ†
Lϕðϕiσ2ψ�

LÞ þ H:c:Þd4x

¼
Z

−ðψ†
Lϕðϕiσ2ψ�

LÞ þ ð−ψT
Liσ

2ϕ�Þϕ†ψLÞd4x:

Again the σ2 is from the σμ of the spacetime spinor
rotational suð2Þ Lie algebra generators. Renormaliz-
ability is not an issue because we are concerned the
effective field theory. For the right-handed ψR, we
can add a dimension-three operator for some Ma-
jorana mass coupling M:

SYukawa-Higgs-Majorana

¼
Z

−MðψR
Tðiσ2ÞψR þ H:c:Þd4x

¼
Z

−MðψR
Tðiσ2ÞψR þ ψ†

Rð−iσ2Þψ�
RÞd4x;

which breaks the lepton number conservation. How-
ever, in either cases, both Yukawa-Higgs-Majorana
terms above break theZ4;X explicitly. So they are not
strongly favored if we pursue the Z4;X-preserving
theory at least at higher energy.

We have presented above the Standard Model coupled to
a discrete X gauge field in the path integral (3.1), the action
(3.2), and the Lagrangian (3.3). Below we can quickly
modify a few terms to obtain the suð5Þ grand unification
coupled to a discrete X gauge field.

2. The suð5Þ grand unification path integral
coupled to X

We have the suð5Þ GUT path integral coupled to X:

ZGUT½AZ4
�≡

Z
½Dψ �½Dψ̄ �½DA�½Dϕ�…

× expðiSGUT½ψ ; ψ̄ ; A;ϕ;…;AZ4
�jM4Þ: ð3:8Þ

We should write all 5̄ and 10 of the SU(5) as the left-handed
Weyl fermions ψL, so there are 15 Weyl fermions ψL per
generation. In Sec. II C, we may or may not introduce the
right-handed neutrinos here denoted as χR. In the schematic
way, we have the action:

SGUT ¼
Z
M4

TrðF ∧ ⋆FÞ − θ

8π2
g2TrðF ∧ FÞ

þ
Z
M4

ðψ†
Lðiσ̄μDμ;A;AZ4

ÞψL þ χ†RðiσμDμ;A;AZ4
ÞχR

þ jDμ;A;AZ4
ϕj2 − UðϕÞ − ðψ†

Lϕðσ2ψ 0
L
�Þ

þ H:c:Þ þ…Þd4x: ð3:9Þ
We are left now only with a SU(5) gauge field whose one-
form connection is written as

gqRA ¼
�
gsuð5Þ

X24
a¼1

TaAa
suð5Þ;μ

�
dxμ: ð3:10Þ

We require the Ta as the rank-5 and rank-10 Lie algebra
generator matrix representations for suð5Þ to couple to 5̄
and 10 of SU(5), respectively. Yukawa-Higgs pairs the
appropriate ψL and ψ 0

L Weyl fermions. We may or may not
introduce the Majorana mass terms to χR in the …, while
the consequences are already discussed (which break the
Z4;X explicitly) in remark 7. The discussions about this path
integral (3.8) directly follow the above remarks 1–7, so we
should not repeat.
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B. Topological phase sector and TQFT path integral coupled to X ≡ 5ðB−LÞ− 4Y
The 15n Weyl fermion SM and suð5Þ GUT path integrals, (3.1) and (3.8), are not gauge invariant under the Z4;X gauge

transformation only when the gravitational background is turned on to probe the Spin ×ZF
2
Z4;X-structure.

(i) If the Z4;X is only coupled to a background gauge field, this only means the system has ’t Hooft anomaly under the
Z4;X anomalous symmetry and the spacetime (Spin group) coordinate reparametrization transformations (e.g., the
Euclidean rotation or Lorentz boost part of diffeomorphism).

(ii) If theZ4;X is dynamically gauged and preserved at high energy, then we must append a new sector to make the whole
theory well defined.

In any case, following Sec. II C, we now provide a path integral including TQFTs to make thewhole theory free from theZ16

global anomaly (2.11):

ð−ðNgen ¼ 3Þ þ nνe;R þ nνμ;R þ nντ;R þ ν4D − ν5DÞ ¼ 0 mod 16:

(1) The 5D ITQFT partition function is given by (2.8):

Zðν5DÞ
5D-iTQFT½AZ4

�≡ exp

�
2πi
16

· ν5D · ηðPDðAZ2
ÞÞ
���
M5

�
; with ν ∈ Z16; AZ2

≡ ðAZ4
mod 2Þ: ð3:11Þ

(2) We propose the full gauge invariant path integral, invariant under the mixed gauge-gravity transformation (i.e.,
gauge-diffeomorphism) of Spin ×ZF

2
Z4;X structure and free from its Z16 global anomaly as follows: The SM version

employs (3.1) into

ZUU½AZ4
�≡ Z 5D-ITQFT=

4D-SMþTQFT
½AZ4

�≡ Zð−ν5DÞ
5D-ITQFT½AZ4

� · Zðν4DÞ
4D-TQFT½AZ4

� · Zðnνe;R ;nνμ;R ;nντ;R Þ
SM ½AZ4

�: ð3:12Þ
The GUT version employs (3.8) into

ZUU½AZ4
�≡ Z 5D-ITQFT=

4D-GUTþTQFT
½AZ4

�≡ Zð−ν5DÞ
5D-ITQFT½AZ4

� · Zðν4DÞ
4D-TQFT½AZ4

� · Zðnνe;R ;nνμ;R ;nντ;R Þ
GUT ½AZ4

�: ð3:13Þ

1. Symmetry extension ½Z2� → Spin × Z4;X → Spin ×ZF
2
Z4;X and a 4D fermionic discrete gauge theory

Below we ask whether we can construct a fully gauge-diffeomorphism invariant 5D-4D coupled partition function
preserving the Spin ×Z2

Z4 structure:

Z5D-ITQFT½AZ4
� · Z4D-TQFT½AZ4

�: ð3:14Þ
Preserving the Spin ×Z2

Z4 structure means that under the spacetime coordinate background transformation (i.e.,
diffeomorphism) and the AZ4

background gauge transformation, the 5D-4D coupled partition function is still gauge-
diffeomorphism invariant.
First, we can rewrite the 5D ITQFT partition function (3.11) on a 5D manifold M5 into

ZðνÞ
5D-ITQFT½AZ4

� ¼ exp

�
2πi
16

· ν · ηðPDðAZ2
ÞÞ
����
M5

�

¼ exp

�
2πi
16

· ν ·

�
8 ·

p1ðTMÞ
48

ðPDðAZ2
ÞÞ þ 4 · ArfðPDððAZ2

Þ3ÞÞ þ 2 · η̃ðPDððAZ2
Þ4ÞÞ þ ðAZ2

Þ5Þ
����
M5

�
;

¼ exp

�
2πi
16

· ν ·

�
8 ·

σ

16
ðPDðAZ2

ÞÞ þ 4 · ArfðPDððAZ2
Þ3ÞÞ þ 2 · η̃ðPDððAZ2

Þ4ÞÞ þ ðAZ2
Þ5Þ

����
M5

�
; ð3:15Þ

for a generic ν ¼ −Ngeneration ∈ Z16.
(i) Thep1ðTMÞ is the first Pontryagin class of spacetime tangent bundleTM of themanifoldM. Via theHirzebruch signature

theorem,we have 1
3

R
Σ4 p1ðTMÞ ¼ σðΣ4Þ ¼ σ ¼ 1

8π2

R
TrðRðωÞ ∧ RðωÞÞ on a 4-manifoldΣ4, where σ is the signature of

Σ4whileω is the 1-connection of tangent bundle andRðωÞ is theRiemann curvature 2-formofω. So in (3.15),we evaluate
the 1

3

R
Σ4 p1ðTMÞ ¼ σ on the Poincaré dual (PD) of Σ4 manifold of the ðAZ2

Þ cohomology class within the M5.19

19Here is a caveat: We know that p1ðTMÞ
48

¼ σ
16
∈ Z for 4d spin manifolds which makes (3.15) computable. But we leave the precise

analogous revised expression of p1ðTMÞ
48

¼ σ
16
on unoriented manifolds (such as Pinþ manifolds) as a mod 2 class [79–81] in the parallel

work [82].
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(ii) The η̃ is a mod 2 index of 1D Dirac operator as a
cobordism invariant of the bordismgroupΩSpin

1 ¼ Z2.
The 1d manifold generator of η̃ is a circle S1 with a
periodic boundary condition (i.e., Ramond) for the
fermion.

(iii) TheArf invariant [41] is amod 2 cobordism invariant
of the bordism group ΩSpin

2 ¼ Z2, whose realization
is the ð1þ 1ÞD Kitaev fermionic chain [42] whose
open end hosts a 0þ 1d Majorana zero mode.

(iv) The ðAZ2
Þ5 is a mod 2 class purely bosonic topo-

logical invariant, which corresponds to a 5D bosonic
SPT phase given by the group cohomology class data
H5ðBZ2;Uð1ÞÞ ¼ Z2, which is also one of the Z2

generators in ΩSO
5 ðBZ2Þ.

(a) When ν is odd, such as ν ¼ 1; 3; 5; 7;… ∈ Z16,
Ref. [46] suggested that the symmetry-extension
method [51] cannot construct a symmetry-gapped
TQFT. Furthermore, Cordova-Ohmori [83] proves
that a symmetry-preserving gappedTQFTphase is
impossible for this odd ν ∈ Z16 anomaly from

Ω
Spin×Z2

Z4

5 ¼ Z16. The general statement in [83] is

that given an anomaly index ν ∈ ΩSpin×Z2
Z4

5 ¼
Z16, we can at most construct a fully symmetric
gapped TQFT if and only if 4j2ν. Namely, 4 has to
be a divisor of 2ν. Apparently, the 4j2ν is true only
when ν is even.
Since ν ¼ −Ngeneration, the case of ν ¼ 1 (for a

single generation) and ν ¼ 3 (for three generations)
are particularly important for the high energy
physics phenomenology. This means that we are
not able to directly construct any 4D symmetric
gapped TQFT that explicitly matches the sameZ16

anomaly for one right-handed neutrino (ν ¼ 1) or
three right-handed neutrinos (ν ¼ 3).

(b) When ν is even, such as ν ¼ 2; 4; 6; 8;… ∈ Z16,
Refs. [38,46,61,82] suggested that the sym-
metry-extension method [51] can trivialize the
’t Hooft anomaly. Furthermore, Cordova-Oh-
mori [83] shows that there is no obstruction to
construct a symmetry-preserving gapped TQFT
phase for any even νeven ∈ Z16. We can verify
the claim by rewriting (3.15) in terms of the
ðνeven

2
Þ ∈ Z8 index:

Zðνeven¼2Þ
5D-ITQFT ¼ exp

�
2πi
16

· νeven · ηðPDðAZ2
ÞÞ
����
M5

�

¼ exp

�
2πi
8

·

�
νeven
2

�
· ðABKðPDððAZ2

Þ3ÞÞÞjM5Þ

¼ exp

�
2πi
8

·

�
νeven
2

�
· ð4 · ArfðPDððAZ2

Þ3ÞÞ þ 2 · η̃ðPDððAZ2
Þ4ÞÞ þ ðAZ2

Þ5ÞjM5Þ; ð3:16Þ

with a 2D Arf-Brown-Kervaire (ABK) invariant.
which is also known as the Pin−-structure Z8-
class of iTQFT of the 1þ 1d Fidkowski-Kitaev
fermionic chain [84,85] with a time reversal
T2 ¼ þ 1 symmetry. Notice that (3.16) can
become trivialized if we can trivialize the ðAZ2

Þ3
factor. In fact, the ðAZ2

Þ3 can be trivialized by
the symmetry extension [51], written in terms of
the group extension of a short exact sequence:

0 → Z2 → Z4;X →
Z4;X

ZF
2

→ 0:

Namely, the two-cocycle topological term
ðAZ2

Þ3 in H2ðBðZ4;X

ZF
2

Þ;Uð1ÞÞ becomes a coboun-

dary once we lifting the Z4;X

ZF
2

-gauge field AZ2
to a

Z4;X gauge field in H3ðBZ4;X;Uð1ÞÞ. So this
suggests that the following symmetry extension
for the spacetime-internal symmetry, written in
terms of the group extension of a short exact
sequence,20

1 → ½Z2� → Spin × Z4;X → Spin ×ZF
2
Z4;X → 1;

ð3:17Þ

can fully trivialize any even νeven ∈ Z16 cobord-
ism invariant given in (3.16). The ½Z2�
means that we can gauge the anomaly-free
normal subgroup ½Z2� in the total group
Spin × Z4;X. This symmetry extension (3.17)
also means that a 4D ½Z2� gauge theory pre-
serves the Spin ×ZF

2
Z4;X symmetry while also

saturates the even νeven ∈ Z16 anomaly. This 4D
½Z2� gauge theory is the anomalous symmetric
gapped noninvertible TQFT (with ’t Hooft
anomaly of Spin ×ZF

2
Z4;X symmetry) desired

in scenario (2a).
Since a symmetric anomalous 4D TQFTonly

exists with even νeven ∈ Z16, below we formu-

late the path integral Zðν4D¼2Þ
4D-TQFT½AZ4

� of the root
phase ν4D ¼ 2. We generalize the boundary
TQFT construction in the Sec. 8 of [47]. With
νeven ¼ 2 ∈ Z16, we have (3.14) with the input
of 5D bulk ITQFT (3.16), then we can explicitly20See more discussion in Sec. 5 of [9] and in [82].
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construct the partition function on a 5Dmanifold
M5 with a 4D boundary M4 ≡ ∂M5 as21

Z5D-ITQFT½AZ4
� ·Z4D-TQFT½AZ4

�
¼

X
c∈∂ 0−1ð∂½PDðA3Þ�Þ

e
2πi
8
ABKðc∪PDðA3ÞÞ

·
1

2jπ0ðM4Þj
X

a∈C1ðM4 ;Z2Þ;
b∈C2ðM4 ;Z2Þ

ð−1Þ
R
M4 aðδbþA3Þ

·e
2πi
8
ABKðc∪PD0ðbÞÞ: ð3:18Þ

Wewrite the mod 2 cohomology class Z2 gauge
field as A≡AZ2

≡ ðAZ4
mod 2Þ∈H1ðM5;Z2Þ.

Here come some remarks about this 5D
bulk ITQFT-4D boundary TQFT partition
function (3.18):

(1) The ðPDðA3ÞÞ is a 2D manifold taking the Poincaré
dual (PD) of three-cocycle A3 in the M5; but the 2D
manifold ðPDðA3ÞÞ may touch the the 4D boundary
∂M5 ¼ M4. The 1D boundary ∂ðPDðA3ÞÞ can be
regarded as the 1D intersection between the 2D
ðPDðA3ÞÞ and the M4.

(2) More precisely, for a Spin ×Z2
Z4 manifoldM5 with

a boundary, we have used the Poincaré-Lefschetz
duality for a manifold with boundaries:

A3 ∈ H3ðM5;Z2Þ!≅ H2ðM5;M4;Z2Þ ∋ PDðA3Þ:
ð3:19Þ

(3) For any pair ðS; S0Þ, where S0 is a subspace of S, the
short exact sequence of chain complexes

0 → C�ðS0Þ → C�ðSÞ → C�ðS; S0Þ → 0; ð3:20Þ

with CnðS;S0Þ≡ CnðSÞ=CnðS0Þ, induces a long
exact sequence of homology groups

� � � → HnðS0Þ → HnðSÞ → HnðS; S0Þ
!∂ Hn−1ðS0Þ → � � � : ð3:21Þ

HereHnðS; S0Þ is the relative homology group, and ∂
is the boundary map.

(i) Take ðS; S0Þ ¼ ðPDðA3Þ; ∂PDðA3ÞÞ, we denote
the boundary map by ∂:

H2ðPDðA3Þ; ∂PDðA3ÞÞ!∂ H1ð∂PDðA3ÞÞ:
ð3:22Þ

Here PDðA3Þ is not a closed two manifold, but it
has a boundary closed one-manifold ∂PDðA3Þ.

(ii) Take ðS; S0Þ ¼ ðM4 ¼ ∂M5; ∂PDðA3ÞÞ, we de-
note another boundary map by ∂1:

H2ðM4; ∂PDðA3ÞÞ!∂1 H1ð∂PDðA3ÞÞ: ð3:23Þ

Both M4 ¼ ∂M5 and ∂PDðA3Þ are closed mani-
folds, of 4D and 1D, respectively.

(4) Now, the c is defined as a 2D surface living on the
boundary M4. The ∂1c uses the boundary map
(3.23)’s ∂1 of c on the M4. We can compensate the
two-surface PDðA3Þ potentially with a one boun-
dary, by gluing it with c to make a closed two
surface. To do so, we require both PDðA3Þ and c
share the same 1D boundary.

(5) The c ∈ ∂1
−1ð∂½PDðA3Þ�Þ also means

∂1c ¼ ∂½PDðA3Þ� ¼ ½∂PDðA3Þ�: ð3:24Þ

(i) The ½PDðA3Þ� means the fundamental class and
the relative homology class of the 2D mani-
fold PDðA3Þ.

(ii) The ∂½PDðA3Þ� ¼ ½∂PDðA3Þ� means the boun-
dary of the fundamental class (via the boundary
∂ map in (3.22)) is equivalent to the fundamental
class of the boundary ∂ of PDðA3Þ. Beware that
the two ∂ operations in ∂½PDðA3Þ� ¼ ½∂PDðA3Þ�
have different meanings.

(iii) Equation (3.24) exactly matches the requirement
that the bulk two-surface PDðA3Þ (living in M5)
and the boundary two-surface c (living on M4)
share the same 1D boundary.

(6) Note that when M5 is a closed manifold with
no boundary M4 ¼ ∂M5 ¼ ∅ thus c ¼ ∅, then
the term

X
c∈∂1−1ð∂½PDðA3Þ�Þ

e
2πi
8
ABKðc∪PDðA3ÞÞ is equivalently reduced to e

2πi
8
ABKðPDðA3ÞÞ ¼ Zðνeven¼2Þ

5D-ITQFT:

21We use the ⌣ notation for the cup product between cohomology classes, or between a cohomology class and a fermionic
topological invariant (paired via a Poincaré dual PD). We use the ∪ notation for the surgery gluing the boundaries of two manifolds
within relative homology classes. So theM1 ∪ M2 means gluing the boundary ∂M1 ¼ ∂M2 such that the common orientation of ∂M2 is
the reverse of ∂M2.
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This is a satisfactory consistent check, consistent
with the 5D bulk-only ITQFT at νeven ¼ 2 in
(3.16).

(7) The a ∈ C1ðM4;Z2Þ means that a is a one-
cochain, and the b ∈ C2ðM4;Z2Þ means that b

is a two-cochain. The factor ð−1Þ
R
M4 aðδbþA3Þ ¼

expðiπRM4 aðδbþA3ÞÞ gives the weight of the 4D
Z2 gauge theory. The aδb term is the level-two BF
theory written in the mod 2 class.22 The path integral
sums over these distinct cochain classes.
The variation of a gives the equation of motion

ðδbþA3Þ ¼ 0 mod 2. In the path integral, we can
integrate out a to give the same constraint
ðδbþA3Þ ¼ 0mod 2. This is precisely the trivializa-
tion of the second cohomology class,

A3 ¼ ðAZ2
Þ3 ¼ δb mod 2; ð3:25Þ

so thethree-cocycle becomes a three-coboundary that
splits to a two-cochain b. This exactly matches the
condition imposed by the symmetry extension (3.17):
1 → ½Z2� → Spin × Z4;X → Spin ×ZF

2
Z4;X → 1,

where the A3 term in Spin ×ZF
2
Z4;X becomes trivial-

ized as a coboundaryA3 ¼ δb (soA3 ¼ 0 in termsof a
cohomology or cocycle class) in Spin × Z4;X.

(8) The 1

2jπ0ðM4Þj factor mod out the gauge redundancy
for the boundary 4D Z2 gauge theory. The π0ðM4Þ
is the zeroth homotopy group ofM4, namely the set of
all path components of M4. Thus, we only sum
over the gauge equivalent classes in the path integral.

(9) The ABKðc ∪ PDðA3ÞÞ is defined on a 2D
manifold with Pin− structure. Recall the M5 has
the Spin ×Z2

Z4 structure. IfM5 is closed, then there
is a natural Smith map to induce the 2D Pin−

structure on the closed surface via PDðA3Þ.
However, the M5 has a boundary M4, so PDðA3Þ
may not be closed—the previously constructed
closed two surface ðc ∪ PDðA3ÞÞ is meant to induce
a 2D Pin− structure.23 Then we compute the ABK
on this closed two surface ðc ∪ PDðA3ÞÞ.

(10) Let us explain the other term ABKðc ∪ PD0ðAaÞÞ of
the 4D boundary TQFT in (3.18). The PD0 is the
Poincaré dual onM4 ¼ ∂M5. Since the fundamental
classes of M5 and M4 ¼ ∂M5 are related by

½M5� ∈ H5ðM5;M4;Z2Þ
!∂ H4ðM4;Z2Þ ∋ ½M4�≡ ½∂M5�: ð3:26Þ

Here we have the following relations:24

PD ¼ ½M5� ∩;
PD0 ¼ ½M4� ∩ ¼½∂M5� ∩ ¼∂½M5� ∩; ð3:27Þ

∂ 0PD0ðbÞ ¼ PD0ðδbÞ ¼ PD0ðA3Þ
¼ ∂½PDðA3Þ� ¼ ∂1c: ð3:28Þ

(i) The cap product ∩ here is to define PD
homology class, such that PDðAÞ ¼ ½M5� ∩ A.

(ii) Here we use ½M4� ¼ ½∂M5� ¼ ∂½M5�: the fun-
damental class of boundary of M5 gives the
boundary of fundamental class.

(iii) Equation (3.27)’s first equality ∂ 0PD0ðbÞ ¼
PD0ðδbÞ uses the coboundary operator δ on
the cohomology class b.

(iv) Equation (3.27)’s second equality PD0ðδbÞ ¼
PD0ðA3Þ uses the condition δA ¼ 0 and the
trivialization condition (3.25): δb ¼ A3.

(v) Equation (3.27)’s third equality PD0ðA3Þ¼
∂½PDðA3Þ�, we use “the naturality of the cap
product.” There are natural pushforward and
pullback maps on homology and cohomology,

22The continuum QFT version of this Z2 gauge theory is
expðiRM4

2
2π adbþ 1

π3
aA3ÞÞ, where the b integration over a closed

two cycle, ∯ b, can be nπ with some integer n ∈ Z. The a and A
integration over a closed one cycle,

H
a and

H
A, can be nπ with

some integer n ∈ Z. Another alternative possibility of 4D TQFT

of (3.18) can be 1

2jπ0ðM4Þj
P

a∈C1ðM4;Z2Þ;b∈C2ðM4;Z2Þð−1Þ
R
M4 bðδaþA2Þ·

e
2πi
8
ABKðc∪PD0ðAaÞÞ. The continuum version of this Z2 gauge theory

has a different expression as expðiRM4
2
2π bdaþ 1

π2
bA2ÞÞ. Either

4D Z2 gauge theory sits at the normal subgroup ½Z2� of the group
extension (3.17). Although the ½Z2� is abelian, this 4D TQFT
actually exhibits non-abelian topological order due to the
fermionic nature of Spin ×ZF

2
Z4;X and the fermionic invariant

ABK. The non-abelian nature of this 4d TQFT is similar to the
non-abelian nature of 3d Z2 gauge theory obtained from gauging
the Z2-onsite symmetry of the odd class of 2+1d fermionic
topological superconductor from theΩSpin×Z2

3 ¼ Z8 classification
(e.g., Section 8 of [58], and [47]). The braiding and fusions
statistics of vortices of these TQFTs are non-abelian. Moreover,
we may require additional symmetry extension beyond (3.17) to
construct 4D TQFTs.

23We do not yet know whether it is always possible to induce
a unique 2D Pin− structure on ðc ∪ PDðA3ÞÞ for any possible
pair of data ðM5;M4 ¼ ∂M5Þ given any M5 with Spin ×Z2

Z4

structure. However, we claim that it is possible to find some suitable
M4 so that the2D ðc ∪ PDðA3ÞÞ hasPin− induced, thus in this sense
the ABKðc ∪ PDðA3ÞÞ is defined. For physics purposes, it is
enough that we can firstly focus on studying the theory on these
types of ðM5;M4 ¼ ∂M5Þ.

24Let us clarify the notations: ∂, ∂ 0, and ∂1. The boundary
notation ∂ may mean as (1) taking the boundary, or (2) in the
boundary map of relative homology class in (3.22). It should be
also clear to the readers that the ∂ is associated with the
operations on objects living in the bulk M5 or ending on the
boundary M4 and while ∂ 0 is associated with the operations on
objects living on the boundary M4 alone. The ∂1 is defined as
another boundary map in (3.23).
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related by the projection formula, also known as
“the naturality of the cap product.”

(vi) Equation (3.27)’s last equality ∂½PDðA3Þ� ¼
∂1c is based on (3.24). Importantly, as a
satisfactory consistency check, this also shows
that the two-surface c obeys the following:

the c inABKðc ∪ PDðA3ÞÞ is the same c in

ABKðc ∪ PD0ðbÞÞ: ð3:29Þ

(vii) As before, the union ðc ∪ PD0ðbÞÞ is a closed
two-surface and we induce a Pin− structure on
this two surface. So we can compute the ABK
on this closed two surface ðc ∪ PD0ðbÞÞ on
the M4.25

In summary, we have constructed the 4D Z2-gauge
theory in (3.18) preserving the ðSpin ×ZF

2
Z4;XÞ structure,

namely it is a ðSpin ×ZF
2
Z4;XÞ-symmetric TQFT but with

νeven ¼ 2 ∈ Z16 anomaly. This can be used to compensate
the anomaly ν ¼ −Ngeneration mod 16 with Ngeneration ¼ 2,
two generations of missing right-handed neutrinos. We
could not however directly construct the symmetric gapped
TQFT for ν is odd (thus symmetric TQFTs not possible
for Ngeneration ¼ 1 or 3), due to the obstruction found
in [46,83].

C. General principle

The discussion in Sec. III C 1 says that only for the even
integer ν4D;even ∈ Z16 does the ðSpin ×ZF

2
Z4;XÞ-symmetry-

preserving TQFT exist. This prompts us to improve the SM
version (3.12) into

ZUU½AZ4
�≡ Z 5D-ITQFT=

4D-SMþTQFT
½AZ4

�

≡ Zð−ν5DÞ
5D-ITQFT½AZ4

� · Zðν4D;evenÞ
4D-TQFT½AZ4

�

· Z
ðnνe;R ;nνμ;R ;nντ;R Þ
SM ½AZ4

�: ð3:30Þ

The GUT version (3.13) should be adjusted into

ZUU½AZ4
�≡ Z 5D-ITQFT=

4D-GUTþTQFT
½AZ4

�

≡ Zð−ν5DÞ
5D-ITQFT½AZ4

� · Zðν4D;evenÞ
4D-TQFT½AZ4

�

· Z
ðnνe;R ;nνμ;R ;nντ;R Þ
GUT ½AZ4

�: ð3:31Þ

Also the anomaly constraint (2.11) becomes

ð−ðNgen ¼ 3Þ þ nνe;R þ nνμ;R þ nντ;R þ ν4D;even − ν5DÞ
¼ 0 mod 16: ð3:32Þ

This implies that the existence of symmetry-preserving 4D
TQFT sector requires the following26:

ðnνe;R þ nνμ;R þ nντ;R − ν5DÞmust be an odd integer:

Now we have derived an ultra unification path integral in
(3.30) and (3.31), including 4D SM (3.1), 4D GUT (3.8),
5D ITQFT (3.15), and 4D TQFT (3.18), comprising many
scenarios and their linear combinations enlisted in
Sec. II C: (1a), (1b), (1c), (2a), and (2b). Then we can
dynamically gauge the appropriate bulk-boundary global
symmetries, promoting the theory to a bulk gauge theory in
scenarios (2c) and (2d), or break some of the (global or
gauge) symmetries to (2e).
In summary, we propose a general principle behind the

ultra unification:
(1) We start with a QFT in general as an EFT given some

full spacetime-internal symmetry G, say in a D-
dimensional spacetime.

(2) We check the anomaly and cobordism constraint
given by G via computing ΩDþ1

G ≡ TPDþ1ðGÞ.
(3) We check the anomaly index of the D-

dimensional QFT/EFT constrained by cobordism
ΩDþ1

G ≡ TPDþ1ðGÞ.
(4) If all anomalies are cancelled, then we do not require

any new hidden sector to define D-dimensional
QFT/EFT.

(5) If some anomalies are not cancelled, then either
(i) We need to break some symmetry out of G, or

25Similar to footnote 24, we can find some suitable M4 so that
the 2D Pin− is induced, thus in this sense the ABKðc ∪ PD0ðbÞÞ is
defined.

26The nonperturbative global anomaly cancellation constraint
ð−ðNgen ¼ 3Þ þ nνe;R þ nνμ;R þ nντ;R þ ν4D;even − ν5DÞ ¼ 0mod 16
provides the capacity for many kinds of the ultra unification
model building. For example, the 4D Z4;X-symmetry preserving
TQFT sector can take the index ν4D;even ¼ 0; 2; 4;… for any even
integer. There are many (perhaps, infinite) types of TQFTs for
each index ν4D;even. But to be more economic, we can ask for the
minimum degrees of freedom required by a TQFT for any given
index ν4D;even. Also for HEP phenomenological purposes, by
taking account of the experimentally observed neutrino mass
eigenstates splitting, one may propose to have at least two
generations of right-handed neutrinos, which means that a
possible phenomenological input nνe;R þ nνμ;R þ nντ;R ≥ 2. In
summary, a viable ultra unification candidate can be, for example,
nνe;R þ nνμ;R þ nντ;R ¼ 2, ν4D;even ¼ 2, and ν5D ¼ 1, which satu-
rate the anomaly cancellation and some phenomenological
constraints. So far, we mainly use the cobordism theory to study
the invertible anomalies and invertible topological field theories,
and we also use the cohomology data to construct noninvertible
topological quantum field theories. However, once the discrete
symmetries (such as Z4;X) are dynamically gauged, it is more
natural to use the mathematical category or higher category
theories to characterize the topological phase sectors.
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(ii) We extend the symmetry G to an appropriate G̃ to trivialize nonperturbative global anomalies in
ΩDþ1

G̃
≡ TPDþ1ðG̃Þ, or

(iii) We propose new hidden sectors appending to Dd QFT/EFT, with a schematic path integral (say if we add Dd-TQFT
or CFT and (Dþ 1)-dimensional ITQFT onto the original theory):

Z ðDþ1ÞD-ITQFT=
Dd -QFT=EFTþTQFTor CFT

½A�≡ ZðDþ1ÞD-ITQFT½A� · ZDd -TQFTor CFT½A� · ZDdQFT=EFT½A�: ð3:33Þ

D. Detect topological phase sectors and the essence

1. Detect Topological Forces

By looking at Fig. 1, in the Higgs vacuum where our
SM EFT resides in, we have only detected the strong,
electromagnetic, and weak in the subatomic physics. The
GUT forces are weaker than the weak force, and the
topological force is further weaker than the GUT and
weak forces. So how could we experimentally detect
topological forces?
Notice that the gravity is further weaker than all other

forces. (So how could we experimentally detect gravity?)
But the gravity has accumulative effects that only have the
gravitational attractions. Without doubt, the gravity has
been detected by everyone and by all astrophysics and
cosmology observations. The gravity had been detected
first in the human history among all the forces!
Similarly, although topological force is also weak (but

stronger than the gravity), topological force is infinite range
or long range that does not decay in the long distance, and it
mediates between the linked worldline/world sheet/world
volume trajectories of the charged (pointlike or extended)
objects via fractional or categorical anyonic statistical
interactions. So, in principle, we may have already expe-
rienced topological force in our daily life in a previously
scientifically unnoticed way.27

2. Neutrino oscillations and dark matter

In fact, Ref. [9] had proposed that the topological
force may cause (thus be detected by) the phenomena of
neutrino oscillations. We can consider the Majorana
zero modes of the vortices in the 4D TQFT defects. The
left-handed neutrinos (confirmed by experiments) are

nearly gapless/ massless. When the left-handed neutrinos
traveling through the 4D TQFT defects, we may observe
nearly gapless neutrino flavor oscillations interfering with
the Majorana zero modes trapped by the vortices in the 4D
TQFT defects.
On the other hand, the gapped heavy excitations (point or

extended objects) of topological phase sector may be a
significant contribution to dark matter [86].

3. The essence of ultra unification

Finally, we come to the essence of ultra unification.
What is unified after all? We have united the strong,
electromagnetic, weak, GUT forces, and topological forces
into the same theory in the ultra unification QFT/TQFT
path integral (that this theory can also be coupled to the
curved spacetime geometry and gravity and at least well
defined in a background nondynamical way).
However, the grand unification [6,7] united the three

gauge interactions of the SM into a single electro-
nuclear force under a simple Lie group gauge theory. Do
we have any equivalent statement to also unite strong,
electromagnetic, weak, GUT forces, and topological forces
into a single force at a high enough energy? We believe that
the definite answer relies on studying the details of
analogous topological quantum phase transitions [10,86]
and the parent effective field theory that describes the phase
transition and neighborhood phases, such as those explored
in 4d [65,87–90]. The underlying mathematical structure
suggests a 4d version of particle-vortex duality, S-duality,
T-duality, or mirror symmetry.

E. Summary of ultra unification and quantum matter

Let us summarize what we have done in this work in a
Quantum Matter perspective:

(i) We have started from the Nature given Standard
Model (SM) quarks and leptons, and their quantum
numbers, in three generations.

(ii) We have included gauge forces and (various) Higgs
for SM and Grand Unification (GUT).

(iii) After the essential check of the anomaly matching
and cobordism constraints, the detection of the Z16

global anomaly for 15n Weyl fermion SM and
GUT implies that we can choose (as one of many
options) to realize our 4d world living on an
extra dimensional 5D invertible TQFT (a 5D

27For example, if the Z4;X is dynamically gauged, there is a
dynamical discrete gaugeWilson line connecting all SM fermions
living in 4d SM or GUT (e.g., quarks and electrons in our body).
Namely, the SM fermions can live at the open ends of the Z4;X
gauged Wilson line. Thus there could be long-distance topologi-
cal interactions and communications between the Z4;X-gauge
charged objects. Moreover, the Z4;X gauged Wilson line as aAZ4

gauge field on the 4d theory can be leaked into the 5d bulk theory
as a AZ2

gauge field. In the 5d bulk, a nontrivial link configu-
ration can be charged under the other end ofAZ2

[9]. In any case,
every phenomenon and every law of Nature should be explained
by mathematics and physics principles.
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topological superconductor, mathematically a 5D
cobordism invariant). It may be understood as a
one-brane 4D world with an extra large fifth
dimension.

(iv) Ultra Unification incorporates the SM, GUT, and
Topological forces into the same theory (that this
theory can also be coupled to curved spacetime
geometry and gravity in a background non-dynami-
cal way). It may also be understood as a multi-branes
or two-brane 4D world with an extra fifth dimension.
The issues of mirror fermion doubling [91] on the
mirror world, depending on the precise anomaly
index on the mirror sector, may be fully trivially
gapped (if anomaly-free), may contain a mirror
chiral gauge theory or unparticle conformal field
theory, or may be topological order gapped with a
low energy TQFT. These issues are tackled in many
recent works [13,92–102].

(v) In Quantum Matter terminology, we show that SM
and GUT belong to a framework of a continuous
gauge field theory, Anderson-Higgs (global or gauge)

symmetry-breaking mass, and Ginzburg-Landau
paradigm. In contrast, the new sectors that we
introduce are beyond Ginzburg-Landau paradigm.
The new sectors include a fermionic discrete gauge
theory, symmetry-extension topological mass, and
modern issues on symmetry, topology, nonperturba-
tive interactions, and short/long-range entanglements.
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