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The Unruh effect is the prediction that particle detectors accelerated through the vacuum get excited by
the apparent presence of radiation quanta—a fundamental quantum phenomenon in the presence of
acceleration. Prior treatments of the Unruh effect, that presume a classically prescribed trajectory, do not
account for the quantum dynamics of the center of mass. Here, we study more realistic detectors whose
center of mass is a quantized degree of freedom being accelerated by an external classical field. We
investigate the detector’s recoil due to the emission of Unruh quanta. Vice versa, we also study the recoil’s
impact on the emission of Unruh quanta and the excitation of the detector. We find that the recoil due to the
emission of Unruh quanta may be a relevant experimental signature of the Unruh effect.
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I. INTRODUCTION

An idealized particle detector—a two-level system—
accelerated through the vacuum of a quantum field can
become excited [1–6]. In the case of uniform acceleration,
the state of the detector assumes a thermal form with an
apparent temperature proportional to the acceleration. This
is the Unruh effect, and the particle detector is epony-
mously referred to as the Unruh–DeWitt (UDW) detector
[1,2]. In conventional lore, the energy and momentum
required to excite the detector, along with the subsequent
emission of a photon, come from an unspecified external
agent which enforces a prescribed classical uniformly
accelerated trajectory for the detector. These idealized
treatments of the Unruh effect neither describe the accel-
erating agent nor the recoil of the detector due to photon
emission. Both are important, however, to the question of
the viability of an experimental observation of the Unruh
effect. For example, real experiments cannot sustain
uniform acceleration indefinitely, while detector recoil
makes it unrealistic to consider uniform acceleration. In
fact, the recoil could itself be an avenue towards the
detection of the Unruh effect. Importantly, in this case the
sensitivities required to experimentally resolve the recoil
are likely to be comparable to the quantum fluctuations of
the detector’s center-of-mass motion. This means that the
recoil needs to be calculated within a full quantum

mechanical treatment of the detector’s center-of-mass
degree of freedom. From this perspective, the handful
of works studying detector recoil from the Unruh effect
[7–10] remain incomplete.
Here, we dynamically account for the acceleration of the

detector, and self-consistently treat the recoil of the detector
center of mass. To this end, the detector’s acceleration is
described by coupling the detector to an external classical
accelerating field [7], and its center-of-mass degree of
freedom is treated quantum mechanically [11]. Within this
framework, we study the vacuum excitation process for the
internal and center-of-mass degrees of freedom of the
detector—a process we term the massive Unruh effect,
in reference to the detector mass being assumed finite. By
letting the detector mass go to infinity, the behavior of
classical detector trajectories can be recovered. We also
compute the recoil pattern and its relationship to the pattern
of the emission of Unruh quanta. Both patterns assume
characteristic anisotropic forms. The peak emission prob-
ability is proportional to the acceleration, which allows us
to informally talk of a “temperature” for the massive Unruh
effect, in analogy with the conventional Unruh effect.

II. UNRUH EFFECT WITH INFINITE
MASS DETECTOR

We briefly recall the Unruh effect for a detector
accelerated on a prescribed trajectory through a scalar
quantum field. The detector-field system is described by the
free Hamiltonian (ℏ ¼ 1 henceforth),*vivishek@mit.edu
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Ĥ0 ¼ Ωjeihej þ
Z

d3kckâ†kâk; ð1Þ

where Ω denotes the energy gap of the detector’s ground
(jgi) and excited (jei) states, and â†k (âk) is the creation
(annihilation) operator of the scalar quantum field mode of
momentum k. Following Unruh and DeWitt [1,2], and in
analogy with realistic models of light-matter interaction
in electrodynamics [12], we assume that the detector’s
internal state couples to the field through the interaction
Hamiltonian,

Ĥint ¼ qμ̂ðtÞ ⊗ ϕ̂ðxðtÞÞ: ð2Þ

Here, q is the coupling strength, μ̂ ¼ jeihgj þ jgihej is the
detector’s “monopole” moment, and ϕ̂ðxðτÞÞ is the scalar
field operator along the detector’s trajectory. We limit
ourselves to the regime of nonrelativistic detector velocity,
which allows us to identify the detector’s proper time τwith
the coordinate time t.
The crux of the Unruh effect is that the detector can

be excited by accelerating it through the quantum vacuum
of the scalar field. Given the structure of the interaction,
the detector can be excited only if the quantum field is
simultaneously excited to (at least) the single particle
quantum state, â†kj0i. That is, contrary to resonance effects
such as absorption, the Unruh effect is the result of
counterrotating wave terms in Ĥint [13]. To elucidate this,
we compute the probability that the initial state,
jψ ii ¼ jgi ⊗ j0i—the joint ground state of the system—
transitions to the final state, jψ fi ¼ jei ⊗ â†kj0i, where
both the detector and the field are excited. Working in the
interaction picture defined by the free Hamiltonian, in
which,

μ̂ðtÞ ¼ eiΩtjeihgj þ H:c:

ϕ̂ðx; tÞ ¼
Z

d3k

ð2πÞ3=2
ffiffiffiffiffi
c2

2k

r
½e−icktþik·xâk þ H:c:�;

the probability amplitude (to first order in perturbation
theory) for the aforementioned excitation process is

AUðkÞ ¼ hψ f j
Z

∞

−∞
dtĤintðtÞjψ ii ¼

qc

2π
ffiffiffiffiffiffiffiffi
4πk

p I ;

where

I ¼
Z

∞

−∞
dteitðckþΩÞ−ik·xðtÞ: ð3Þ

We now define the probabilities for the detector to get
excited and a field quantum of momentum k to be emitted,

PUðkÞ ¼ jAUðkÞj2;

and the excitation of the detector, irrespective of the
momentum of the emitted photon,

PU ¼
Z

d3kjAUðkÞj2:

When the detector is in inertial motion, xðtÞ ¼ x0 þ vt,
the excitation amplitude is zero:

AU ¼ qc

2π
ffiffiffiffiffiffiffiffi
4πk

p
Z

∞

−∞
dteitðckþΩ−k·vÞ−ik·x0

¼ qcffiffiffiffiffiffiffiffi
4πk

p e−ik·x0δðΩþ ck − k · vÞ

¼ 0;

essentially because Ωþ ck − k · v ≠ 0, owing to the fact
the energy gap is positive (Ω > 0), the photon momentum
is positive (k > 0), and the detector speed is less than that
of light (jvj < c). That is, in inertial motion through the
vacuum, the detector does not get excited.
In contrast, consider the detector in noninertial motion

with a uniform acceleration a for time T along the z
direction, i.e.,

aðtÞ ¼ aΘðtÞΘðT − tÞez;

where Θ is the Heaviside step function. Assuming that the
detector’s initial position coincides with the origin of the
coordinate system, its trajectory is

xðtÞ ¼
�
at2

2
ΘðtÞΘðT − tÞ þ aT

2
ð2t − TÞΘðt − TÞ

�
ez: ð4Þ

In the following, we restrict the time duration T so that
the velocity developed in that time with an acceleration
a is well within the nonrelativistic regime; in particular,
we will always take jvðTÞj ¼ aT ≲ 0.01c. Within this
nonrelativistic regime, and for the spatial trajectory in
Eq. (4), we obtain for the time integral given in Eq. (3)
[here we define ω ¼ Ωþ ck, ω0 ¼ ω − akzT, and, kz
the z component of the momentum of the emitted Unruh
photon, k¼ ðkx;ky;kzÞ ¼ ðk sinðθÞcosðϕÞ;k sinðθÞ sinðϕÞ;
kcosðθÞÞ],

I ¼ 1

iω
þ πδðωÞ þ eiTðω0þakzT=2Þ

�
i
ω0 þ πδðω0Þ

�

þ

ffiffiffiffiffiffiffiffiffiffiffi
πe

iω2
akz

2iakz

vuut "
Erf

 
iωffiffiffiffiffiffiffiffiffiffiffi
2iakz

p
!

− Erf

 
iω0ffiffiffiffiffiffiffiffiffiffiffi
2iakz

p
!#

:

Since both the energy gap of the detector and the absolute
value of the momentum of the emitted photon are strictly
positive (Ω > 0 and k > 0), the delta distribution δðωÞ can
be omitted. Similarly, since the detector’s velocity is strictly
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smaller than the speed of light, we findω0 > 0, and so δðω0Þ
can also be omitted. Thus,

I ¼ 1

iω
−
eiTðω0þakzT=2Þ

iω0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πeiω

2=akz

2iakz

s
Erf

�
iωffiffiffiffiffiffiffiffiffiffiffi
2iakz

p �

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πeiω

2=akz

2iakz

s
Erf

�
iω0ffiffiffiffiffiffiffiffiffiffiffi
2iakz

p �
; ð5Þ

which is in general nonzero in contrast to the case of
inertial motion. Therefore, the total excitation probability,
defined by

PU ¼ q2c2

8π2

Z
1

−1
dz
Z

∞

0

dkkjI j2;

where z ¼ cosðθÞ ∈ ½−1; 1� can be nonzero. Similarly, the
excitation probability density for the detector to be excited
while emitting a photon of momentum k irrespective of
direction becomes

PUðkÞ ¼
q2c2k
8π2

Z
1

−1
dzjI j2:

The symmetry of the problem along the z axis means that
the photon emission is azimuthally symmetric, so that it is
useful to consider the probability density,

PUðk; zÞ ¼
q2c2k
8π2

jI j2;

corresponding to a photon of momentum k emitted along
the polar angle, θ ¼ cos−1 z.
Figure 1(a) shows the probability PUðkÞ for the excita-

tion of the UDW detector by the emission of an Unruh
quantum of momentum k; by momentum conservation, this
is equivalent to the angle-integrated probability of finding
an Unruh quantum of momentum k. Note that for the case
we consider here, where the detector is not eternally
accelerated, the emission is not isotropic [see Fig. 1(b)],
precluding complete analogy with blackbody radiation. In
fact, radiation is preferentially emitted along/against the
direction of acceleration. (For realistic scenarios involving
charges or atoms as UDW detectors, the correct vacuum
would not be that of the scalar quantum field—which is
what we consider here—but the vacuum of the full vector
electromagnetic field; the vectorial character of the latter is
expected to produce radiation transverse to the acceleration,
in analogy with classical synchrotron radiation [14].)
However there is one aspect of blackbody radiation that
is reflected in Fig. 1(a): as the energy gap gets smaller
the peak of the emission shifts to lower momenta, an
observation that can be put in correspondence with
Wien’s displacement law for blackbody radiation (i.e.,
kpeak ∝ temperature) if we associate a temperature

proportional to the energy gap of the detector. (Note that
one can always assign a temperature for a two-level system
whenever its density matrix is diagonal: the ratio of the
diagonal elements can be compared to that of the canonical
thermal state, and so an effective temperature can be
defined.) In this sense, we may formally associate a
temperature to the Unruh process, even in the case where
the detector is accelerated only for a finite time interval.
Finally, in the nonrelativistic regime, when the emitted
photon momentum is “small,” we have that ω − ω0 ¼
aTkz ≪ 1 (clearly, small means kz ≪ 1, which, in the
dimensioned units of Fig. 1(a) reads kz ≪ ðcTÞ−1); explic-
itly expanding the amplitude integral in Eq. (5) in the small

FIG. 1. Emission probability for an accelerated UDW detector.
(a) The total (i.e., angle-integrated) probability PUðkÞ for the
emission of an Unruh quantum with momentum k, for various
values of the energy gap Ω. (b) Angle-resolved emission
probability PUðk; θÞ (in units of 10−6cTq2), for energy gap
Ω ¼ 0.2=T. Both plots are for acceleration, a ¼ 8 × 10−3ðc=TÞ.
Note that the oscillations in (a) arise from accelerating the
detector for a time interval that is compact.
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parameter ω − ω0 ∝ a, one can also show that PU ∝ a.
Thus we are able to formally establish that the temperature
is proportional to the acceleration even in the case
where the detector is accelerated only for a finite duration.
(For uniform acceleration, the emitted Planckian radiation
satisfies Wien’s displacement law [15].)

III. UNRUH EFFECT WITH FINITE
MASS DETECTOR

Experimentally producing the large accelerations required
to observe theUnruh effect call for lowmassUDWdetectors.
Any such detector will experience significant recoil once an
Unruh quantum is emitted. Once the possibility of recoil is
admitted, it becomes unphysical to consider an externally
prescribed acceleration, even for a finite time interval
(especially if we are interested in measuring the random
recoil over an ensembleofmultiple emission events).We also
envision the possibility of inferring the Unruh effect through
a direct experimental measurement of the recoil; the required
measurement sensitivities are expected to be comparable to
the quantum fluctuations of the detector center-of-mass
degree of freedom. For these reasons, we must treat the
detector’s center of mass in a full quantum framework, and,
self-consistently incorporate the external agency that accel-
erates the system.
To this end, we consider a massive detector with a

quantized center-of-mass degree of freedom which couples
to a quantum scalar field ϕ̂ [4,11]. The detector’s center of
mass is coupled to a classical “electric” field E, which
allows us to dynamically model the acceleration of the
detector. This scenario is modeled by the Hamiltonian,

Ĥ ¼ p̂2

2M
− qE · x̂þΩjeihej þ

Z
d3kckâ†kâk

þ q
Z

d3xP̂ðxÞ ⊗ μ̂ ⊗ ϕ̂ðxÞ;

with M the mass of the detector, and P̂ðxÞ ¼ jxihxj is the
projector onto the center-of-mass position eigenstates. In
the interaction picture, the Hamiltonian reads

HintðtÞ ¼ q
Z

d3xP̂ðx; tÞ ⊗ μ̂ðtÞ ⊗ ϕ̂ðx; tÞ; ð6Þ

with P̂ðx; tÞ ¼ jxðtÞihxðtÞj. In order to model a scenario
comparable to the situation considered in the previous
section, we assume an electric field,

EðtÞ ¼ EΘðtÞΘðT − tÞez;

with a nonzero strength E in the time interval t ∈ ½0; T�, and
zero elsewhere. It models the detector’s center of mass
being uniformly accelerated in that interval, while it
evolves freely for t ∉ ½0; T�. Note that this is different

from the theoretical contrivance of switching the coupling
between the detector and the quantum vacuum (i.e.,
effectively a time-varying coupling q), which can produce
excitation of the detector due to the time-energy uncertainty
principle [16].
Before we can study the vacuum excitation process

for the massive detector, we need the time evolved
operator P̂ðx; tÞ ¼ jxðtÞihxðtÞj. To this end, we write the
Heisenberg equation for the detector’s position and
momentum,

_̂xðtÞ ¼ p̂ðtÞ
M

; _̂pðtÞ ¼ qEðtÞez;

which produces the time-dependent position operator,

x̂ðtÞ ¼ x̂ð0Þ þ p̂ð0Þt=M þ fðtÞez;
where

fðtÞ ¼ a
2
½t2ΘðtÞΘðT − tÞ þ Tð2t − TÞΘðt − TÞ�;

with a ¼ qE=M being the uniform acceleration due to
the electric field. We note that fðtÞ is of the same form as
the z component of the classical trajectory which we
prescribed in Eq. (4) for the UDW detector with classical
center of mass. Since the position and momentum oper-
ators coincide at time t ¼ 0 between the Heisenberg and
Schrödinger pictures, we have that x̂ð0ÞψðxÞ ¼ xψðxÞ
and p̂ð0ÞψðxÞ ¼ −i∇ψðxÞ. Next, to find the time-depen-
dent position eigenfunction ψξðx; tÞ ¼ hxjψξðtÞi for a
given position eigenvalue ξ, we solve the Schrödinger
equation,�

xþ fðtÞez −
it
M

∇
�
ψξðx; tÞ ¼ ξψξðx; tÞ;

with the initial condition jψξð0Þi ¼ jξi, and enforcing the
normalization condition,Z

d3xψ�
ξðx; tÞψξ0 ðx; tÞ ¼ δð3Þðξ − ξ0Þ:

The required wave function is

jψξðtÞi ¼
Z

d3p

ð2πÞ3=2 exp
�
it

p2

2M
− ip · ξþ ipzfðtÞ

�
jpi:

Putting all this together, we obtain the time evolved
projection operator,

P̂ðx; tÞ ¼
Z

d3pd3q
ð2πÞ3 exp

�
it
q2 − p2

2M
− iðq − pÞ · x

þ iðqz − pzÞfðtÞ
�
jqihpj;

that fully determines the interactionHamiltonian in Eq. (6).
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A. Transition amplitude, probability
and probability densities

We are now equipped to study what we refer to as the
massive Unruh effect, that is, the excitation process both of
a UDW detector with a finite mass, initially in the ground
state of its internal degree of freedom coupled to a scalar
quantum field initially in its vacuum state, and accelerated
by an external electric field. That is, we consider initial and
final states of the form,

jψ ii ¼ jφi ⊗ jgi ⊗ j0i;
jψ fi ¼ jri ⊗ jei ⊗ â†kj0i;

where jφi ¼ R d3pφ̃ðpÞjpi is the initial center-of-mass
state, jpi the center-of-mass momentum eigenstates,
φ̃ðpÞ the initial center-of-mass wave function in the
momentum representation, and r the detector’s recoil
momentum.
The transition amplitude for the process where the

detector gets excited, its center-of-mass recoils with
momentum r, and emits an Unruh quantum of momentum
k, is (up to a phase factor)

AM ¼ qc

2π
ffiffiffiffiffiffiffiffi
4πk

p φ̃ðrþ kÞJ ðrÞ;

where we define

J ðrÞ ¼
Z

∞

−∞
dt exp

�
it

�
k2

2M
−
r · k
M

þ ckþΩ
�
− ikzfðtÞ

�
:

The corresponding transition probability density is

PMðk; rÞ ¼ jAMj2 ¼
q2c2

ð2πÞ24πk jφ̃ðrþ kÞJ ðrÞj2:

To study the recoil of the detector, we consider the
excitation probability density as a function of the recoil
momentum r (and irrespective of the momentum of the
emitted photon),

PMðrÞ ¼
Z

d3k
q2c2

ð2πÞ24πk jφ̃ðrþ kÞJ ðrÞj2;

and the total excitation probability for the massive Unruh
process,

PM ¼
Z

d3k
Z

d3p
q2c2

ð2πÞ24πk jφ̃ðpÞJ ðp − kÞj2:

To resolve the angular dependence of the emission
and recoil, we write k ¼ ðkx; ky; kzÞ ¼ ðk sinðθÞ cosðϕÞ;
k sinðθÞ sinðϕÞ; k cosðθÞÞ, with ϕ the azimuthal angle and
with θ the polar angle, that is, the angle between the

momentum of the emitted photon and the direction of the
electric field lines (and therefore, of the acceleration); as
before, we also define z ¼ cosðθÞ (in the following we will
refer to both z and θ as the polar angle of the emitted
photon). The excitation probability density for the process
to happen while emitting an Unruh quantum of momentum
k in magnitude, irrespective of direction, is

PMðkÞ ¼
Z

1

−1
dz
Z

2π

0

dϕ
Z

d3k
Z

d3p
q2c2k
ð2πÞ24π

× jφ̃ðpÞJ ðp − kÞj2: ð7Þ

Similarly, we define the excitation probability density as a
function of both the magnitude k and polar angle z of the
emitted photon:

PMðk; zÞ ¼
Z

2π

0

dϕ
Z

d3p
q2c2k
ð2πÞ24π jφ̃ðpÞJ ðp − kÞj2:

ð8Þ

All the above expressions depend on the time integral J ,
which can be explicitly evaluated,

J ðp − kÞ ¼ 1

iωM
−
eiTðω0

MþakzT=2Þ

iω0
M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πeiω

2
M=akz

2iakz

s
Erf

 
iωMffiffiffiffiffiffiffiffiffiffiffi
2iakz

p
!

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πeiω

2
M=akz

2iakz

s
Erf

 
iω0

Mffiffiffiffiffiffiffiffiffiffiffi
2iakz

p
!

ð9Þ

in terms of ωM ¼ ωþ k2
2M − p·k

M and ω0
M ¼ ωM − akzT.

In writing the above expression, we have omitted two
terms each involving delta distributions δðωMÞ and δðω0

MÞ,
which is justified for the following reasons. First, let us
write p · k ¼ pk cosðκÞ, with κ the angle between p and k,
and define ω0 ¼ ωþ k2

2M for brevity. The delta distribution
δðωMÞ then peaks only for cosðκÞ ¼ Mω0

pk . Furthermore,
the delta distribution δðω0

MÞ peaks only for cosðκÞ ¼
M
pk ðω0 − aTkzÞ. But since cosðκÞ ∈ ½−1; 1�, a necessary
condition for δðωMÞ to peak is p ≥ Mc, which translates to
saying that the initial virtual center-of-mass velocities
would have to be superluminal, which is ruled out.
Similarly, a necessary condition for δðω0

MÞ to peak is
pþMaT ≥ Mc, which would require the virtual center-
of-mass velocities to be superluminal by the end of the
accelerated phase. Physically, the delta distributions δðωMÞ
and δðω0

MÞ have their origin in the virtual inertial motion of
the detector, respectively for the times t < 0 and t > T
during which the electric field is switched off. Inertial
virtual motion (just like inertial real motion) should not
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cause excitation of the detector and the field, which is
reflected in the vanishing of these delta distributions.

B. The Unruh effect as a limiting case
of the massive Unruh effect

Before proceeding further, let us see how to recover the
conventional Unruh effect (of Sec. II)—i.e., a UDW
detector with a prescribed classical trajectory—from the
“massive Unruh effect” studied above.
In order to recover the traditional Unruh effect for a

detector experiencing a uniform acceleration a, let us
consider the limit of infinite detector mass—so that the
center-of-mass wave function delocalizes infinitely slowly
and so it effectively behave classically. A classical particle
of charge q and mass M in a constant electric field E
experiences an acceleration a ¼ qE=M. Defining M ¼ mγ
and E ¼ εγ and letting γ → ∞ allows us to keep the
acceleration a experienced by the detector constant, while
considering the infinite mass limit:

lim
γ→∞

PM ¼ PU:

The above equation holds true for all the probabilities
defined above; in this sense, the massive Unruh effect
subsumes the conventional (infinite mass) Unruh effect.

C. Example of a Gaussian center-of-mass
wave packet

In order to apply the formalism developed in Sec. III A
for the massive Unruh effect, we need to specify an initial
wave function, φ̃ðpÞ, for the detector’s center of mass. We
consider a Gaussian initial center-of-mass (momentum)
wave packet of the form

φ̃ðpÞ ¼
�
L2

2π

�
3=4

e−p
2L2=4;

assumed to exist at time t ¼ 0, so that when the electric
field is switched on, the detector’s center of mass in
position space is localized at the origin with width L.
Since we work in the nonrelativistic regime, it is

necessary to choose the parameters L, M, T and a in a
way that ensures that the detector’s virtual center-of-
mass velocities are much less than the speed of light. The
initial momentum of the detector in the z direction, i.e.,
parallel to the electric field, is Gaussian distributed around
pz ¼ 0, with a standard deviation of

ffiffiffi
2

p
=L. Initial

momenta which are σ standard deviations away from
the mean then correspond to initial virtual center-of-mass
speed, jvzð0Þj ¼ 2σ ·

ffiffiffi
2

p
=ðLMÞ. If we require that these

tails of the wavepacket, after having the accelerating field
E turned on for a time T, be still less than 1% the speed of
light, then we need to maintain an electric field that
satisfies vzðTÞ ¼ jvzð0Þj þ aT ≲ 0.01c. In the following,
we choose electric field strengths weak enough that

this is satisfied for virtual velocities that are σ ¼ 3.5
standard deviations from the mean velocity. This means
that the center-of-mass velocity is a small fraction of the
speed of light, i.e., v=c ¼ p=ðMcÞ ≪ 1; thus jJ ðp − kÞj2
[from Eq. (9)] can be approximated around p=ðMcÞ ¼ 0
by using only its first few Taylor coefficients (for
n ¼ 0; 1; 2;…):

Jn ¼
1

n!

� ∂n

∂ωn
M
jJ ðp − kÞj2

�
ωM¼ω

.

FIG. 2. Emission and recoil probability for a massive UDW
detector. (a) Plot shows the difference of the emission proba-
bilities between the cases where the detector center of mass is
infinitely heavy [i.e., PUðkÞ] and the case where the detector
center of mass has a finite mass [i.e., PMðkÞ]. (b) Recoil
probability density PMðr; ζÞ [in units of 10−6ðcTq2Þ−1] as a
function of recoil momentum angle ζ, for a few values of the
magnitude of the recoil momentum magnitude r. The detector
mass is M ¼ 10=ðc2TÞ, while in both panels, its internal energy
gap is Ω ¼ 0.2=T, acceleration a ¼ 8 × 10−3ðc=TÞ, and the
center-of-mass wavepacket has an initial width, L ¼ 100ðcTÞ.
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Expressing Jn in terms of the variables k and z, we then
obtain for the basic excitation probability densities intro-
duced above [valid to OððLMcÞ−4Þ]:

PMðk; zÞ ≈
q2c2k
8π2

�
J0ðk; zÞ þ

k2J2ðk; zÞ
ðMLÞ2

�
;

PMðr; ζÞ ≈
L3q2c2

2ð2πÞ5=2
Z

∞

0

dk
Z

1

−1
dzke−ðr2þk2þ2rkζÞL2=2

×

�
J0ðk; zÞ þ

ðrkζ þ k2Þ2
M2

J2ðk; zÞ
�
:

Here, r is the magnitude of the recoil momentum and
ζ ¼ r · k=ðrkÞ is the cosine of the angle between the recoil
momentum (r) and Unruh photon momentum (k).
Figure 2(a) depicts the difference, PUðkÞ − PMðkÞ,

between the angle-integrated emission probabilities of the
conventional infinite mass UDW detector and a UDW
detector of finite mass, as a function of the momentum k
of the Unruh quantum. As themass increases, the finite mass
case approaches the standard case (i.e., PU − PM → 0) as
expected.
Although the total emission probability, and hence

the emitted flux of Unruh quanta, is seen to decrease with
mass, each individual emission causes greater recoil of
the detector center of mass for a lower mass detector.
This is shown in Fig. 2(b), where the angular recoil
probability is plotted as a function of the magnitude of
the recoil momentum. Recoil with larger momenta happen

in the direction opposite to the acceleration (0° in the polar
plot)—a consequence of momentum conservation.

IV. CONCLUSION

We analyzed the behavior of UDW detectors which
possess a quantum mechanical center of mass and that are
finitely accelerated through the vacuum of a scalar quantum
field. We found a characteristic interplay between the
acceleration-induced excitation of the UDW detector, the
anisotropic patterns of the flux of the emitted Unruh quanta
and the corresponding quantum recoil. This makes the
quantum recoil a potentially experimentally relevant sig-
nature of the Unruh effect.
In practice, trapped and accelerated (sub)atomic particles

with internal states can act as UDW detectors. The ability to
precisely measure forces that act on them may then provide
a route to a direct detection of the Unruh effect on a single
particle. Indeed, electron bunches in storage rings have
long been suspected of being probes of the Unruh effect
[17,18]. However, space charge effects and other system-
atics have prevented a decisive measurement of the Unruh
effect; nor does the accelerator environment offer an ideal
venue to study more fundamental predictions of the Unruh
effect [19,20].
Although any realistic experiment along these lines will

have to consider the coupling of the internal degree of
freedom to the electromagnetic vacuum, the scalar field
scenario considered here allows a first glimpse of what to
expect. Further studies along these directions are in progress.
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