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We exploit a recent computation of one graviton loop corrections to the self-mass [D. Glavan et al.,
Single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on a de Sitter
background, Phys. Rev. D 101, 106016 (2020).] to quantum correct the field equation for a massless,
conformally coupled scalar on a de Sitter background. With the obvious choice for the finite part of the
R2ϕ2 counterterm, we find that neither plane wave mode functions nor the response to a point source
acquires large infrared logarithms. However, we do find a decaying logarithmic correction to the mode
function and a short distance logarithmic running of the potential in addition to the power-law effect
inherited from flat space.
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I. INTRODUCTION

One of the most challenging problems of inflationary
cosmology is to reliably quantify the large logarithms that
come from graviton loop corrections. This is necessary in
order to understand how quantum gravity affects matter in
inflation. For example, graviton loop corrections to the
vacuum polarization i½μΠν�ðx; x0Þ change the propagation of
dynamical photons, and electromagnetic forces, through
the quantum-corrected Maxwell equation,

∂ν½
ffiffiffiffiffiffi
−g

p
gνρgμσFρσðxÞ� þ

Z
d4x0½μΠν�ðx; x0ÞAνðx0Þ ¼ JμðxÞ;

ð1Þ

where AμðxÞ is the electromagnetic vector potential, Fρσ ≡
∂ρAσ − ∂σAρ is the field strength tensor, gμνðxÞ is the
background metric, and JμðxÞ is the current density. When
Eq. (1) is solved on a de Sitter background using the one
graviton loop correction to i½μΠν�ðx; x0Þ in the simplest
gauge [1], the electric fields of plane wave photons
experience a secular enhancement and the Coulomb force
manifests a logarithmic running [2,3],

F0iðt; x⃗Þ ¼ Ftree
0i ðt; x⃗Þ

�
1þ 2ℏGH2

π
lnðaÞ þOðℏ2G2Þ

�
;

ð2Þ

Φðt;rÞ

¼ Q
4πar

�
1þ ℏG

3πa2r2
þℏGH2

π
lnðaHrÞþOðℏ2G2Þ

�
; ð3Þ

where G is Newton’s constant, ℏ is the reduced Planck
constant,H is the de Sitter Hubble constant, and aðtÞ ¼ eHt

is the de Sitter scale factor. The ℏG=ð3πa2r2Þ correction in
(3) is thedeSitter analog of awell-known flat space result [4],
but the order ℏGH2 logarithms in (2) and (3) are new effects
due to the inflationary expansion of de Sitter. Their physical
origin seems to be the tendency of redshifting real or virtual
photons to acquire momentum as they scatter off the
continually replenished ensemble of Hubble scale gravitons
ripped out of the vacuum by inflation. Both effects grow
without bound in time, and theCoulomb enhancement grows
as well at large distances, leading to a breakdown of
perturbation theory. This raises the fascinating possibility
of significant loop corrections despite the minuscule quan-
tum gravitational loop counting parameter ℏGH2 ∼ 10−11.
Large logarithms have also been found for the field strengths
of fermions [5–7] and gravitons [8,9], and for changes to the
background geometry [10,11]. It seems inevitable that they
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occur as well in primordial perturbations, which are the
principal observables of inflation [12,13].
Worries have long been expressed that the large loga-

rithms from loops of inflationary gravitons might be
artifacts of the graviton gauge or poorly chosen observables
[14–19]. There are problems with invoking these argu-
ments to deny the possibility of large logarithmic correc-
tions [20–23], but they do highlight the importance of
correctly computing the numerical coefficients. This has
also been seen directly. Calculations of graviton loop
corrections on a de Sitter background are so difficult that
all but one of them have been made using the simplest
gauge for the graviton propagator [24,25]. However, a
heroic computation [26] at length produced a result for the
vacuum polarization in a one-parameter family of de Sitter
invariant gauges [27–29]. When this was used to solve (1)
for dynamical photons, a logarithmic correction of the same
form as (2) was obtained but with a different numerical
coefficient [30].
Gauge dependence has long been known to afflict the

effective field equations of flat space [31]. Donoghue
devised a technique for purging it from exchange potentials
on a flat space background [32,33]. One first computes the
scattering amplitude for two particles that feel the asso-
ciated force, and then solves the inverse scattering problem
to reconstruct a gauge-independent potential. Applying this
technique typically changes numerical coefficients but not
the fact of quantum gravitational corrections. For example,
Bjerrum-Bohr employed Donoghue’s formalism and found
that the simple gauge correction of 1

3
× ℏG=πr2, which is

evident in expression (3) for H ¼ 0, becomes 6 × ℏG=πr2

in the gauge independent potential [34].
It has recently been understood how to view Donoghue’s

technique directly as a correction to the effective field
equations, without going through the intermediate step of
constructing the S-matrix [35]. This is hugely important
because it can be applied even to cosmology for which the
S-matrix is not an observable, if it even exists. The
procedure is to write down the position space contributions
to the scattering amplitude, and then remove the source and
observer propagators by applying a series of identities that
Donoghue derived for isolating the leading infrared phe-
nomena [32,36]. These identities have the effect of shrink-
ing higher-point diagrams down to two-point functions that
can be viewed as corrections to the gauge-dependent one-
particle-irreducible (1PI) two-point functions (such as the
vacuum polarization) that appear in the linearized effective
field equation. However, extending this technique to de
Sitter will require considerable effort, and it is desirable
from both the conceptual and the practical side to simplify
the process as much as possible.
Our program consists of three parts:
(i) We first want to identify a simple system that shows

large, but possibly gauge dependent, logarithms on a
de Sitter background.

(ii) Then we will apply a de Sitter space adaptation of
the Donoghue construction in the simple graviton
gauge [24,25] to work out reliable coefficients for
the large logarithms.

(iii) To explicitly demonstrate gauge independence, we
plan to redo the entire analysis in a two-parameter
family of generalizations to the simple gauge propa-
gator [37].

One could perform the computation in a one-parameter
family of exact generally covariant gauges [29], but that
would be needlessly difficult owing to the much more
complicated structure of the propagator. The graviton
propagator in a two-parameter family of average generally
covariant gauges has also been worked out [38], but there
seems to be a topological obstacle to imposing de Sitter
invariant average gauges [39]. For a discussion on older
works on the graviton propagator see [29,38] and refer-
ences therein.
Quantum gravitational corrections to electromagnetism

are known to involve large logarithms (2) and (3) but the
intricate analysis we intend would be much simpler in a
scalar system. The massless, minimally coupled scalar
suggests itself as a natural choice, and the one graviton
loop correction to its self-mass has already been derived
[40]. However, scalar plane waves are known not to acquire
large logarithmic corrections [41], and the classical
response to a point source is so complicated [42,43] that
solving for the one-loop correction to it might be difficult.
The next most natural candidate is the massless, con-

formally coupled scalar whose one graviton loop self-mass
on a de Sitter background we have recently computed [44].
Note that even though the conformal scalar is insensitive to
the cosmological expansion of the conformally flat de Sitter
space, the gravitons running in the loops are not confor-
mally coupled, and thus mediate the effects of the expan-
sion to the scalar. Previous works studying graviton loop
corrections to conformal scalars [45–47] have reported a
correction to the scalar mode function growing faster than
the first power of the scale factor. This would constitute a
huge quantum-gravitational correction, and investigating
its gauge dependence would be of paramount importance.
However, before embarking on the task of purging gauge
dependence, we set out to check the gauge-fixed compu-
tation of [45–47] utilizing a simplified formalism, and here
we report no such power-law enhancement, and no large
logarithms, neither for the scalar mode function nor for the
scalar point source potential, suggesting this system is not
interesting for our program.
Some distinction should be drawn between the question

of how quantum gravity influences matter in inflation that
concerns us here and the closely related and equally
important question of how quantum matter influences
gravity in inflation. In the former case the issue of graviton
gauge dependence appears already at leading order as the
one-loop correction to the matter 1PI two-point function is
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built solely out of graviton propagators. On the other hand,
in the latter case this issue never appears at leading order as
the one-loop correction to the graviton self-energy is
composed solely of matter fields.1 Such corrections to
gravity from matter loops have been studied for photons
[48], as well as for minimally and conformally coupled
scalars (see [49–54] and references therein).
In this paper we solve the linearized effective field

equation to check for large logarithms in one-loop correc-
tions to scalar plane waves and to the response to a point
source. In Sec. II we briefly summarize our result for the
self-mass [44], and use it to quantum correct the effective
field equation. Sections III and IV are devoted to perturba-
tively solving these equations. In Sec. V we summarize our
results and discuss their significance.

II. EFFECTIVE EQUATIONS OF MOTION

The tree-level Lagrangian for the system we study in four
spacetime dimensions is given by

L ¼ R − 2Λ
κ2

ffiffiffiffiffiffi
−g

p
−
1

2
∂μϕ∂νϕgμν

ffiffiffiffiffiffi
−g

p
−

1

12
Rϕ2 ffiffiffiffiffiffi

−g
p

:

ð4Þ

The first of the terms is the Einstein-Hilbert one, where
κ2 ¼ 16πG is the gravitational coupling constant, Λ is the
cosmological constant, and R is the Ricci scalar; the
second is the scalar kinetic term; and the third term
represents the conformal coupling of the scalar to the
curvature. Henceforth, we work in the natural units
ℏ ¼ c ¼ 1, unless explicitly stated otherwise. The cubic
and quartic interaction vertices between the scalar and the
graviton are defined by expanding the metric around de
Sitter space,

gμν ¼ a2ðημν þ κhμνÞ; ð5Þ

where aðηÞ ¼ −1=ðHηÞ is the scale factor given in con-
formal time coordinate η, the constant Hubble expansion
rate is denoted by H, and hμν is the (conformally rescaled)
graviton field. Renormalizing one-loop corrections requires
counterterms not already contained in (4). Apart from
absorbing divergences originating from interactions [44],
they also produce a finite local contribution to the one-loop
effective action,

ΔLloc ¼ κ2
�
−
α

2

�
□ϕ −

Rϕ
6

�
2 ffiffiffiffiffiffi

−g
p

−
β

24

�
□ϕ −

Rϕ
6

�

× ϕR
ffiffiffiffiffiffi
−g

p
−

γ

24
∂iϕ∂jϕgijϕR

ffiffiffiffiffiffi
−g

p

−
δ

288
ϕ2R2 ffiffiffiffiffiffi

−g
p �

: ð6Þ

The quantum corrections to the classical behavior of the
conformal scalar in de Sitter are captured by effective field
equations, which are most conveniently written for a
conformally rescaled field, ϕ̃ ¼ aϕ, since at tree level ϕ̃
behaves as a scalar in flat space,

∂2ϕ̃ðxÞ −
Z

d4x0M̃2
Rðx; x0Þϕ̃ðx0Þ ¼ J̃ðxÞ: ð7Þ

Here ∂2 ¼ −∂2
0 þ∇2 is the flat space d’Alembertian

operator, J̃ ¼ a3J is the conformally rescaled classical
source, and M̃2

R is the conformally rescaled renormalized
self-mass-squared, M̃2

Rðx; x0Þ ¼ ðaa0Þ−1 ×M2
Rðx; x0Þ. The

retarded self-mass corresponds to the sum of the (þþ)
and (þ−) components that appear in the Schwinger-
Keldysh formalism for nonequilibrium quantum field
theory [55–62],

M̃2
Rðx; x0Þ ¼ M̃2þþðx; x0Þ þ M̃2þ−ðx; x0Þ: ð8Þ

In Ref. [44] we reported the (þþ) component of the
renormalized one-loop self-mass, which receives contribu-
tions from diagrams in Fig. 1,

−iM̃2þþðx; x0Þ ¼ κ2∂2∂ 02
��

lnðaa0Þ
96π2

− α

�
iδ4ðx − x0Þ

aa0

�
þ κ2H2∂ · ∂ 0

��
19 lnðaa0Þ

96π2
þ β

�
iδ4ðx − x0Þ

�

− κ2H2∇⃗ · ∇⃗0
��

5 lnðaa0Þ
16π2

þ γ

�
iδ4ðx − x0Þ

�
− δκ2H4a2iδ4ðx − x0Þ þ κ2∂2∂ 02

384π4

�
1

aa0
∂2

�
lnðμ2Δx2þþÞ

Δx2þþ

��

−
κ2H2ð19∂4 − 18∇2∂2Þ

384π4

�
lnðμ2Δx2þþÞ

Δx2þþ

�
þ κ2H2∂2∇2

16π4

�1
2
lnð1

4
H2Δx2þþÞ þ 1

Δx2þþ

�
; ð9Þ

where the Lorentz-invariant distance squared is

Δx2þþ ¼ kx⃗ − x⃗0k2 − ðjη − η0j − iεÞ2; ð10Þ

1Strictly speaking this is true for test matter fields, while for matter fields with a classical condensate the gauge dependence issue at
one loop is more complicated.
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and the physical significance of the coupling constants α, β,
γ, δ can be inferred from Eq. (6). The (þ−) component is
obtained from the (þþ) one by (i) dropping all the local
terms, (ii) substituting all Δxþþ’s by

Δx2þ− ¼ kx⃗ − x⃗0k2 − ðη − η0 þ iεÞ2; ð11Þ

and (iii) appending an overall minus sign,

−iM̃2þ−ðx;x0Þ ¼−
κ2∂2∂ 02

384π4

�
1

aa0
∂2

�
lnðμ2Δx2þ−Þ

Δx2þ−

��

þ κ2H2ð19∂4 − 18∇2∂2Þ
384π4

�
lnðμ2Δx2þ−Þ

Δx2þ−

�

−
κ2H2∂2∇2

16π4

�1
2
lnð1

4
H2Δx2þ−Þþ 1

Δx2þ−

�
: ð12Þ

When adding (9) and (12) we make use of the two identities
(that can be found in, e.g., [63]),

1

Δx2þþ
−

1

Δx2þ−
¼ iπ

2
∂2θðΔη − kΔx⃗kÞ; ð13Þ

lnðμ2Δx2þþÞ
Δx2þþ

−
lnðμ2Δx2þ−Þ

Δx2þ−

¼ iπ
2
∂2fθðΔη − kΔx⃗kÞðln½μ2ðΔη2 − kΔx⃗k2Þ� − 1Þg;

ð14Þ

where Δx⃗ ¼ x⃗ − x⃗0 and Δη ¼ η − η0 to form the
retarded self-energy appearing in the effective field
equations,

M̃2
Rðx; x0Þ ¼ −κ2∂2∂ 02

��
lnðaa0Þ
96π2

− α

�
δ4ðx − x0Þ

aa0

�
− κ2H2∂ · ∂ 0

��
19 lnðaa0Þ

96π2
þ β

�
δ4ðx − x0Þ

�

þ κ2H2∇⃗ · ∇⃗0
��

5 lnðaa0Þ
16π2

þ γ

�
δ4ðx − x0Þ

�
þ δκ2H4a2δ4ðx − x0Þ

−
κ2∂2∂ 02

768π3

�
1

aa0
∂4½θðΔη − kΔx⃗kÞðln½μ2ðΔη2 − kΔx⃗k2Þ� − 1Þ�

�

þ κ2H2ð19∂2 − 18∇2Þ∂4

768π3
fθðΔη − kΔx⃗kÞðln½μ2ðΔη2 − kΔx⃗k2Þ� − 1Þg

−
κ2H2∂4∇2

64π3

�
θðΔη − kΔx⃗kÞ

�
ln

�
1

4
H2ðΔη2 − kΔx⃗k2Þ

�
þ 1

��
: ð15Þ

The first four terms containing a delta function we refer to
as local terms, while the remaining three terms have
support away from coincidence, and we refer to them as
nonlocal terms.
The two physical systems we are interested in are the

dynamical scalar where J̃ðxÞ ¼ 0, and the point source
J̃ðxÞ ¼ δ3ðx⃗Þ. Quantum effects will modify the classical
behavior. We have the self-mass-squared computed at one
loop, so it only makes sense to compute the first correction
to the scalar mode function,

J̃ðη; x⃗Þ ¼ 0 ⇒ ϕ̃ðη; x⃗Þ ¼ ½u0ðη; kÞ þ κ2u1ðη; kÞ
þOðκ4Þ�eik⃗·x⃗; ð16Þ

J̃ðη; x⃗Þ ¼ δ3ðx⃗Þ ⇒ ϕ̃ðη; x⃗Þ

¼ −1
4πkx⃗k ½1þ κ2Φ1ðη; kx⃗kÞ þOðκ4Þ�; ð17Þ

where u0ðη; kÞ ¼ e−ikη is the tree-level mode function of
the monochromatic conformally rescaled field. Solving for
the quantum corrections amounts to solving

−κ2ð∂2
0 þ k2Þu1ðη; kÞ ¼ e−ik⃗·x⃗

Z
d4x0M̃2

Rðx; x0Þe−ikη0þik⃗·x⃗0 ;

ð18Þ

FIG. 1. One-particle-irreducible diagrams contributing to the scalar self-mass-squared at the one-loop order. The solid lines stand for
the scalar and wavy ones for the graviton. The rightmost diagram stands for the counterterms.
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κ2∂2

�
Φ1ðη; kx⃗kÞ

kx⃗k
�
¼
Z

d4x0M̃2
Rðx; x0Þ

1

kx⃗0k : ð19Þ

We solve these two equations in the two following sections,
using the one-loop retarded self-mass from Eq. (15).

III. DYNAMICAL SCALAR

In this section we solve Eq. (18) to determine the one-
loop graviton correction to the conformal scalar mode

function at late times for which a → ∞. It is convenient to
split the source on the right-hand side into seven pieces,

−ð∂2
0 þ k2Þu1ðη; kÞ ¼

X7
n¼1

Inðη; kÞ; ð20Þ

where each of them corresponds to one term in the retarded
one-loop self-mass (15),

I1 ¼ −
Z

d4x0∂2∂ 02
��

lnðaa0Þ
96π2

− α

�
δ4ðx − x0Þ

aa0

�
e−ikη

0−ik⃗·ðx⃗−x⃗0Þ; ð21Þ

I2 ¼ −
Z

d4x0H2∂ · ∂ 0
��

19 lnðaa0Þ
96π2

þ β

�
δ4ðx − x0Þ

�
e−ikη

0−ik⃗·ðx⃗−x⃗0Þ; ð22Þ

I3 ¼
Z

d4x0H2∇⃗ · ∇⃗0
��

5 lnðaa0Þ
16π2

þ γ

�
δ4ðx − x0Þ

�
e−ikη

0−ik⃗·ðx⃗−x⃗0Þ; ð23Þ

I4 ¼
Z

d4x0δH4a2δ4ðx − x0Þe−ikη0−ik⃗·ðx⃗−x⃗0Þ; ð24Þ

I5 ¼ −
1

768π3

Z
d4x0∂2∂ 02

�
1

aa0
∂4½θðΔη − kΔx⃗kÞ × ðln½μ2ðΔη2 − kΔx⃗k2Þ� − 1Þ�

�
e−ikη

0−ik⃗·ðx⃗−x⃗0Þ; ð25Þ

I6 ¼
1

768π3

Z
d4x0H2ð19∂2 − 18∇2Þ∂2∂ 02fθðΔη − kΔx⃗kÞ × ðln½μ2ðΔη2 − kΔx⃗k2Þ� − 1Þge−ikη0−ik⃗·ðx⃗−x⃗0Þ; ð26Þ

I7 ¼ −
1

64π3

Z
d4x0H2∇2∂2∂ 02

�
θðΔη − kΔx⃗kÞ ×

�
ln

�
1

4
H2ðΔη2 − kΔx⃗k2Þ

�
þ 1

��
e−ikη

0−ik⃗·ðx⃗−x⃗0Þ: ð27Þ

Note that in the last two sources for convenience we have
turned one ∂2 into ∂ 02, as it acts on a function of relative
coordinates only. The first four sources, descending from
the local terms in the self-mass, are straightforward to
evaluate:

I1 ¼ 0; ð28Þ

I2 ¼
19

48π2
ðikH3aÞ × u0ðη; kÞ; ð29Þ

I3 ¼
�
5 lnðaÞ
8π2

þ γ

�
H2k2 × u0ðη; kÞ; ð30Þ

I4 ¼ δH4a2 × u0ðη; kÞ: ð31Þ

The remaining three sources, corresponding to nonlocal
terms in the self-mass, can only produce terms of the form
of initial state corrections that decay in time. This is seen by
integrating by parts ∂ 02 onto the classical mode function,
which annihilates it. The only contributions then come
from the surface terms evaluated at the initial time surface,
which decay at late times,

I5 ¼ I6 ¼ I7 ¼ 0: ð32Þ

The contributions from the initial time surface that we have
dropped one should be able to absorb into initial state
corrections, in a manner analogous to what was done in
Ref. [64], and are thus not dynamical effects we are
interested in. They can be evaluated as was done in,
e.g., [63].
The three nonvanishing sources (29)–(31) are all propor-

tional to u0, so it makes sense to look for the late time
solution for u1 in the form

u1ðη; kÞ ¼ H2fðη; kÞ × u0ðη; kÞ; ð33Þ

so that fðη; kÞ satisfies

∂0ð∂0 − 2ikÞfðη; kÞ ¼ −δH2a2 −
19ikH
48π2

a

−
5k2

8π2
lnðaÞ − γk2: ð34Þ

Integrating once produces
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ð∂0 − 2ikÞfðη; kÞ ¼ −δHa −
19ik
48π2

lnðaÞ þ 5k2 lnðaÞ
8π2Ha

þ
�

5

8π2
þ γ

�
k2

Ha
þ CðkÞ; ð35Þ

where CðkÞ is an integration constant dependent on initial
conditions. Inverting this first order differential equation is
now straightforward,

fðη; kÞ⟶a→∞
− δ lnðaÞ þ C̄ðkÞ

þ ik
H

�
19

48π2
þ 2δ

�
lnðaÞ
a

þOð1=aÞ; ð36Þ

where

uðη; kÞ ¼ u0ðη; kÞ × ½1þ ðκHÞ2fðη; kÞ�: ð37Þ

The first and the third terms in (36) contain logarithms and
represent unambiguous dynamical effects from graviton
loops in de Sitter, and these are the corrections we are
interested in. The second term in (36), on the other hand,
does not represent a dynamical correction, but rather can be
absorbed into perturbative non-Gaussian corrections of the
initial state, much as in Ref. [64].

IV. POINT SOURCE

This section is devoted to solving Eq. (19) for the
one-loop graviton correction to the scalar point source
potential. We are interested in obtaining the solution at
late times for which a → ∞, after releasing the point source
to interact with inflationary gravitons at the initial time
η0 ¼ −1=H. We are interested in dynamical corrections,
which propagate within the future light cone of the
source which—from the point of view of a late time local
observer—encompasses both sub-Hubble, and super-
Hubble distances away from the point source, as illustrated
in Fig. 2.
First, the source on the right-hand side of (19) needs to

be computed, and we split it into seven parts,

∂2

�
Φ1ðη; kx⃗kÞ

kx⃗k
�
¼

X7
n¼1

Kn; ð38Þ

according to the seven terms in the retarded self-mass (15),

K1 ¼ −
Z

d4x0∂2∂ 02
��

lnðaa0Þ
96π2

− α

�
δ4ðx − x0Þ

aa0

�
1

kx⃗0k ;

ð39Þ

K2 ¼−
Z

d4x0H2∂ · ∂ 0
��

19 lnðaa0Þ
96π2

þ β

�
δ4ðx− x0Þ

�
1

kx⃗0k ;

ð40Þ

K3 ¼
Z

d4x0H2∇⃗ · ∇⃗0
��

5 lnðaa0Þ
16π2

þ γ

�
δ4ðx − x0Þ

�
1

kx⃗0k ;

ð41Þ

K4 ¼
Z

d4x0δH4ða0Þ2δ4ðx − x0Þ 1

kx⃗0k ; ð42Þ

K5 ¼
−1

768π3

Z
d4x0∂2∂ 02

�
1

aa0
∂4½θðΔη − kΔx⃗kÞ

× ðln½μ2ðΔη2 − kΔx⃗k2Þ� − 1Þ�
�

1

kx⃗0k ; ð43Þ

K6 ¼
1

768π3

Z
d4x0H2∂4ð19∂ 02 − 18∇02ÞfθðΔη − kΔx⃗kÞ

× ðln½μ2ðΔη2 − kΔx⃗k2Þ� − 1Þg 1

kx⃗0k ; ð44Þ

K7 ¼
−1
64π3

Z
d4x0H2∂4∇02

�
θðΔη − kΔx⃗kÞ

×

�
ln

�
1

4
H2ðΔη2 − kΔx⃗k2Þ

�
þ 1

��
1

kx⃗0k : ð45Þ

In the last two integrals we have used that the deri-
vatives act on a function of relative coordinates only
to change some of them into primed ones for later
convenience. Evaluating the first four source integrals is
straightforward,

FIG. 2. Conformal diagram of the cosmological patch of de
Sitter space. The system is released at time η0 ¼ −1=H, with a
scalar point source at the origin x⃗ ¼ 0. The asymptotic future
corresponds to the η ¼ 0 slice. The red line denotes the light cone
of the point source given by ðη − η0Þ − kx⃗k ¼ 0, while the blue
line denotes the Hubble distance from the source given by
aHkx⃗k ¼ 1, which coincides with the past particle horizon of
a distant future observer at the origin. We are interested in the
effects within the light cone (nonshaded region) which capture
the dynamical effects of graviton loops.
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K1 ¼ 4π∂2

�
δ3ðx⃗Þ
a2

�
lnðaÞ
48π2

− α

��
; ð46Þ

K2 ¼ −4πδ3ðx⃗ÞH2

�
19 lnðaÞ
48π2

þ β

�
; ð47Þ

K3 ¼ 4πδ3ðx⃗ÞH2

�
5 lnðaÞ
8π2

þ γ

�
; ð48Þ

K4 ¼
δH4a2

kx⃗k : ð49Þ

For the remaining three sources it proves best to first take
all the unprimed derivatives out of the integral, then to
integrate by parts the remaining primed derivatives onto the

classical point source potential, and to use the classical
equation of motion

∇2
1

kx⃗k ¼ ∂2
1

kx⃗k ¼ −4πδ3ðx⃗Þ: ð50Þ

This procedure is exact for integrating ∇2 by parts, while
for ∂ 02 we drop the surface terms from the initial time
surface, which decay at late times and can be absorbed into
non-Gaussian corrections of the initial state [64] (the
integrals corresponding to the terms we drop were com-
puted in, e.g., [3]). The delta function allows us to integrate
over the spatial coordinates, leaving single temporal
integrals,

K5 ¼
∂2

192π2
1

a
∂4

Z
η

−1=H
dη0

1

a0
θðΔη − kx⃗kÞfln½μ2ðΔη2 − kx⃗k2Þ� − 1g; ð51Þ

K6 ¼ −
H2∂4

192π2

Z
η

−1=H
dη0θðΔη − kx⃗kÞfln½μ2ðΔη2 − kx⃗k2Þ� − 1g; ð52Þ

K7 ¼
H2∂4

16π2

Z
η

−1=H
dη0θðΔη − kx⃗kÞ

�
ln

�
1

4
H2ðΔη2 − kx⃗k2Þ

�
þ 1

�
; ð53Þ

which are all elementary, and evaluate to

K5 ¼
∂2

192π2
1

a
∂4

�
θðΔη0 − kx⃗kÞ

�
HðΔη20 − kx⃗k2Þ

�
1

2
ln½μ2ðΔη20 − kx⃗k2Þ� − 1

�

þ 1

a
ð−2kx⃗k lnð2μkx⃗kÞ − 3ðΔη0 − kx⃗kÞ þ ðΔη0 − kx⃗kÞ ln½μðΔη0 − kx⃗kÞ�

þ ðΔη0 þ kx⃗kÞ ln½μðΔη0 þ kx⃗kÞ�Þ
��

; ð54Þ

K6 ¼ −
H2∂4

192π2
fθðΔη0 − kx⃗kÞ½−2kx⃗k lnð2μkx⃗kÞ − 3ðΔη0 − kx⃗kÞ

þ ðΔη0 − kx⃗kÞ ln½μðΔη0 − kx⃗kÞ� þ ðΔη0 þ kx⃗kÞ ln½μðΔη0 þ kx⃗kÞ��g; ð55Þ

K7 ¼
H2∂4

16π2

�
θðΔη0 − kx⃗kÞ

�
−2kx⃗k lnðHkx⃗kÞ − ðΔη0 − kx⃗kÞ

þ ðΔη0 − kx⃗kÞ ln
�
1

2
HðΔη0 − kx⃗kÞ

�
þ ðΔη0 þ kx⃗kÞ ln

�
1

2
HðΔη0 þ kx⃗kÞ

���
: ð56Þ

The final step in evaluating these is to act with all the
external derivatives, except for the one ∂2, which is useful
to keep as is, since it allows us to invert the equation of
motion (38) by simply dropping it. However, we must not
forget that this ∂2 still acts on a function, and it annihilates
its homogeneous solutions, which yields rather simple
results,

K5 ¼
∂2

48π2

�
θðΔη0 − kx⃗kÞ

kx⃗k ×
1

ðakx⃗kÞ2
�
; ð57Þ

K6 ¼
H2∂2

48π2

�
θðΔη0 − kx⃗kÞ

kx⃗k × lnð2μkx⃗kÞ
�
; ð58Þ
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K7 ¼
H2∂2

4π2

�
θðΔη0 − kx⃗kÞ

kx⃗k × ð− lnðHkx⃗kÞ − 1Þ
�
: ð59Þ

In the expression above we did not bother to keep the
terms with support only on the light cone, or outside of it, as
in the late time limit the entire region of physical interest is
within the light cone of the point source released to interact
at η0 ¼ −1=H, as depicted in Fig. 2. In what follows we
drop the theta function from the three sources above and
explicitly focus on corrections inside the light cone.
Inverting Eq. (38) for sources (46)–(49) and (57)–(59)

we just computed yields the correction to the point source
potential we are after. This is trivial for sources K1 and
K5–K7, as it simply involves dropping the overall ∂2 from
the sources. Inverting sources K2–K4 is only slightly more
involved. It is facilitated by noting the following two
identities for d’Alembertian operators acting on spherically
symmetric functions:

∂2

�
fðη ∓ kx⃗kÞ

kx⃗k
�
¼ −4πδ3ðx⃗ÞfðηÞ; ð60Þ

∂2

�
fðηÞ
kx⃗k

�
¼ −4πδ3ðx⃗ÞfðηÞ − ∂2

0fðηÞ
kx⃗k : ð61Þ

These are easily proven by specializing the d’Alembertian
operator to functions of just η and kx⃗k and then
factorizing it,

∂2 ¼ −
1

kx⃗k
�
∂0 −

∂
∂kx⃗k

��
∂0 þ

∂
∂kx⃗k

�
kx⃗k: ð62Þ

The inversion for sources K2–K4 involves two particular
identities,

∂2

�
1

kx⃗k ln½Hðkx⃗k − ηÞ�
�

¼ 4πδ3ðx⃗Þ lnðaÞ; ð63Þ

∂2

�
lnðaÞ
kx⃗k þ 1

kx⃗k ln½Hðkx⃗k − ηÞ�
�

¼ −
H2a2

kx⃗k : ð64Þ

This determines the graviton one-loop correction to the
point-source potential at late times,

Φ1ðη; kx⃗kÞ

¼ 4π

�
lnðaÞ
48π2

− α

�
ðakx⃗kÞδ3ðax⃗Þ þ 1

48π2ðakx⃗kÞ2

þ H2

48π2

�
−48π2δ lnð1þ aHkx⃗kÞ þ 11 ln

�
1

a
þHkx⃗k

�

þ lnð2μkx⃗kÞ − 12 lnðHkx⃗kÞ − 12þ 48π2ðβ − γÞ
�
:

ð65Þ

We have determined this one-loop graviton correction to
the point source potential up to homogeneous terms.
However, these necessarily take the form of surface terms
from the initial time surface, and thus can be absorbed into
perturbative non-Gaussian initial state corrections [64]. Our
result captures the dynamical effects generated by inter-
actions that do not depend on the choice of the initial state.

V. DISCUSSION AND CONCLUSIONS

In this work we have investigated graviton loop correc-
tions to a massless, conformally coupled scalar on a de
Sitter background, with a particular emphasis on large
logarithms whose gauge dependence could be the object of
further study. Our main results are the plane wave scalar
mode function (36) and the exchange potential (65). We
discuss each in turn.
Dynamical scalar corrections. The late-time limit of a

plane wave is

ϕðη; x⃗Þ ¼ ϕ0ðη; x⃗Þ
�
1þ ℏGH2

�
−16πδ lnðaÞ

þ ik
H

�
32πδþ 19

3π

�
lnðaÞ
a

þ const

��
; ð66Þ

where ϕ0ðη; x⃗Þ ¼ e−ikηþik⃗·x⃗=a is the tree-level contribution,
G is Newton’s constant, and we have restored the reduced
Planck constant ℏ. The large logarithm in (66) vanishes if
we choose the R2ϕ2 counterterm δ ¼ 0. The decaying
logarithm lnðaÞ=a comes from the local part of the retarded
self-mass-squared (15), while the constant contribution
originates from both the local and the nonlocal parts.
The constant contribution also depends on the choice of
the initial state and for that reason cannot be fixed. The
decaying logarithm does cause the time derivative of the
conformally rescaled field to grow relative to its classical
value, and that might be significant [65].
We should also comment on the work of Boran, Kahya,

and Park who studied the same system [45–47]. Their result
for the self-mass was given in Refs. [45,46], while their
solution for scalar plane waves appears in Eqs. (44) and
(56) of Ref. [47]. Their leading one-loop corrections are of
order a lnðaÞ and a, and are claimed to originate from the
nonlocal contributions. In contrast, the only nonlocal
contributions we find come from the lower limits of
temporal integrations and fall off at late time. They also
claim a lnðaÞ enhancement from the local part of the self-
mass (6) as we do, but they get it from the coupling constant
γ (their −Δc4), whereas ours comes from δ (related to their
Δc3). We are unable to account for these discrepancies but
it might be relevant to note that they employed a cumber-
some de Sitter invariant representation in which surface
terms must be handled with great care [66]. Fröb also
reported a problem with the flat space correspondence limit
of their result [67].
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Point source corrections. At late times the one-loop
corrected exchange potential is given by Eqs. (17) and (65),

ϕðη; x⃗Þ

¼ −1
4πar

�
1þ ℏG

3πðarÞ2 þ
4ℏG
3

ðlnðaÞ − 48π2αÞðarÞδ3ðax⃗Þ

þ ℏGH2

3π

�
−48π2δ lnð1þ aHrÞ þ 11 ln

�
1þ aHr
aHr

�

− ln

�
ℏH
2μ

�
− 12þ 48π2ðβ − γÞ

��
; ð67Þ

where r≡ kx⃗k. This result captures corrections from
graviton loops inside the light cone of the point source,
as depicted by the white region in Fig. 2. Note that the
constant terms in the last line of the result above contain a
part that is logarithmically dependent on the arbitrary
renormalization scale μ. This term can be reinterpreted
as a logarithmic running of the coupling constants β − γ
from Eq. (3), and could be used to cancel all the constant
terms.2

There are two interesting regimes of (67)—the sub-
Hubble regime of ar ≪ 1=H and the super-Hubble regime
of ar ≫ 1=H. In the sub-Hubble regime the potential
reduces to

ϕðt; x⃗Þ ⟶
aHr≪1

16πℏG

�
α −

lnðaÞ
48π2

�
δ3ðax⃗Þ

−
1

4πar

�
1þ ℏG

3πa2r2

þ ℏGH2

3π
½−11 lnðaHrÞ þ irrelevant�

�
: ð68Þ

The delta function contribution arises from the first
term in (6), and the secular correction ∝ lnðaÞ acts
as a dynamical screening of α. The flat space limit a →
1 and H → 0 is captured by the terms in the first
line of (68), which contains only conformally rescaled flat
space corrections. The second line in (68) is of a purely de
Sitter origin and contains a large logarithm and a constant
term. The logarithm can be seen as a logarithmic anti-
screening of the source. However, its effect is small
compared with the conformally rescaled flat space
correction.
In the super-Hubble regime the potential (67)

reduces to

ϕðη; x⃗Þ

⟶
aHr≫1 −1

4πar
f1þ 16πℏGH2½−δ lnðaHrÞ þ irrelevant�g:

ð69Þ
The large logarithm can be eliminated by choos-
ing δ ¼ 0, which also eliminates the large logarithm in
the scalar plain wave. It therefore seems that the mass-
less, conformal scalar is not a good venue for studying the
gauge dependence of large logarithms from inflationary
gravitons.
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