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The null energy condition is considered the most fundamental of the energy conditions, on which several
key results, such as the singularity theorems, are based. The Casimir effect is one of the rare equilibrium
mechanisms by which it is breached without invoking modified gravity or nonminimal couplings to exotic
matter. In this work we propose an independent dynamical mechanism by which it is violated, with the only
ingredients being standard (but nonperturbative) quantum field theory and a minimally coupled scalar field
in a double-well potential. As for the Casimir effect, we explain why the averaged null energy condition is
not violated by this mechanism. Nevertheless, the transient behavior could have profound impacts in early
universe cosmology.
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I. INTRODUCTION

In general relativity, an energy condition consists in
assuming that matter satisfies “physical” properties,
common to all forms of known matter. The null energy
condition (NEC), defined more formally below, plays an
important role in cosmology, and for a perfect fluid in a
homogeneous and isotropic universe, it translates to the
requirement that ρþ p ≥ 0, where ρ and p are respectively
the density and pressure of the fluid in its comoving frame.
NEC violation ρþ p < 0 provides a loophole in the
singularity theorems that state that a collapsing universe
ends at a singularity [1], and allows the possibility for a
cosmological bounce [2]. More generally, a fluid which
violates the NEC would allow a whole new set of exotic
phenomena such as traversable wormholes [3].
Models violating the NEC require the introduction

of nontrivial features, such as ghost condensates or
Lagrangians with higher order derivatives, and such models
have been explored extensively (see [4] for a review).
Generating the NEC violation dynamically, without intro-
ducing specific models by hand, is more difficult, although
one known example is the Casimir effect,1 where vacuum
fluctuations generate a negative energy density between
two parallel conducting plates. The application of this
phenomenon to the early universe is studied in [6], with a

confined massless scalar field inducing a cosmological
expansion. The Casimir effect is suppressed exponentially
for a massive scalar though [7], and can be either attractive
or repulsive, depending on the space geometry/topology.
We present here an alternative dynamical mechanism to

violate the NEC, based on nonperturbative quantum effects,
arising from tunnelling between degenerate vacua in a finite
volume, for a massive scalar theory. The key ingredient here
is the finite volume in which the field is confined, which in
the early universe could be achieved by a shrinking causal
volume. Otherwise the ingredients are prosaic—a minimally
coupled scalar field with a Higgs-like potential.
The Standard Model of particle physics assumes an

infinite volume, which allows spontaneous symmetry
breaking (SSB), such that the relevant partition function
is a partial one, built on one vacuum only [8]. Infinite here
means large in comparison to the de Broglie wavelength of
particles, which is clearly the case in most systems. But if
one allows quantum fluctuations to overlap between differ-
ent vacua, which can happen in a finite volume, one should
consider instead the full partition function, involving all the
vacua and allowing tunnelling between these. In this case
the competition between different saddle points leads to a
convex effective potential [9], which restores symmetry
instead of allowing SSB. This effect is illustrated in Fig. 1:
the lowering of the ground state energy usually follows the
enrichment of a variational state, in particular the combi-
nation of the Gaussian states, localized in different potential
wells [10]. Since energy gain from tunneling is stronger for
smaller volume the NEC is expected to be violated.
The explicit calculation of the convex one-particle

irreducible (1PI) effective potential for OðNÞ-symmetric
scalar theories is done in [12], where the partition function
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1Out-of-equilibrium processes can also violate the NEC [5].
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is evaluated with a semiclassical approximation (ignoring
fluctuations above the saddle points), and where the
effective action Seff is expressed as an expansion in the
classical field (the formal large-volume limit allows
the ressumation of all the powers of the classical field for
Seff [13]). We follow a similar approach here which is
improved by considering fluctuations of the field.
The Wilsonian approach is usually based on exact

functional differential equations, which automatically take
into account all the vacua of a theory, independently of the
volume. As a consequence the infrared effective potential is
always convex, and recovers the Maxwell construction,
featuring a flat effective potential between the two bare
vacua [14]. We also note here that the equivalence between
the Wilsonian and the 1PI effective potential is valid in the
limit of infinite volume only.
It was conjectured in [11] that the above finite volume

effect implies a dynamical violation of the NEC, as a
consequence of a nontrivial volume dependence (or scale
factor dependence) of the action in the vicinity of the
ground state of the dressed theory. To summarize the
essence of the corresponding mechanism: When taking
into account several saddle points, one needs to treat the
quantization four-dimensional volume V as a parameter of
the theory, which can be thought of as the volume of a box
confining the scalar field. We find then that the effective
action has a nontrivial dependence on V, and has the form

Seff ½ϕ0� ¼ VUeffðϕ0; VÞ; ð1Þ

where Ueff is the convex effective potential evaluated at
the constant classical field ϕ0, and also depends on V. This
nonextensive property was already mentioned in [13], and
is at the origin of a nonstandard pressure, leading to the
NEC violation. Indeed, if ρ is the energy density and p is
the pressure for the scalar field in the vicinity of the true
vacuum ϕ0 ¼ 0, one has

ρþ p ¼ Seff
V

−
∂Seff
∂V ¼ −V

∂Ueff

∂V ; ð2Þ

which, as we will see, is negative in the regime where
tunnelling occurs.
Compared to [11], this article provides an explicit proof

of the mechanism, including the following:
(i) an explicit calculation of the sum ρþ p, in both flat

spacetime and in spatially flat Friedman-Lemaître-
Robertson-Walker (FLRW) spacetime;

(ii) a quantitative justification why, in the path integral
Z, the homogeneous saddle points dominate over the
instanton;

(iii) animprovedsemiclassicalapproximation toestimateZ.
Below we start by defining the regime where tunnelling

is expected to occur, and then explain in Sec. III which
saddle points dominate the partition function Z, in order to
define the semiclassical approximation to calculate Z, and
derive the effective action. We then generalize the calcu-
lation to a FLRW spacetime in Sec. IV, where we also
discuss why the averaged NEC is not violated by the
mechanism, either in static or FLRW spacetime. Much
work remains to fully elucidate this interesting effect, and
we conclude by discussing future directions.

II. CONDITION FOR TUNNELLING

We start with intuitive arguments explaining in which
situation one can expect tunnelling to occur, instead of SSB.
Consider the bare potential

UbareðϕÞ ¼
λ

24
ðϕ2 − v2Þ2; ð3Þ

and the volume of quantization V ¼ R
d4x≡ l4.

(a)Quantummechanics point of view:The potential barrier
between the vacua is λv4=24, corresponding to the energy
δE ¼ λv4l3=24 in the box of volume l3. The energy levels in
this box are characterized by the typical gap l−1, and one can
expect tunnelling to happen if this energy gap is of the order
of the energy barrier, which leads to λv4V ∼ 24.
(b) Field theory point of view: In the path integral,

quadratic fluctuations of the field constant mode above the
bare vacua lead to a Gaussian of width 2ðVm2=2Þ−1=2,
where m2 ¼ λv2=3. Fluctuations over the two bare vacua
overlap if the latter width is of the order of half the
separation 2v of the vacua, which leads to λv4V ∼ 24.
As a consequence, tunnelling between degenerate vacua

should be taken into account when the parameters of the
model satisfy the following order of magnitude:

A≡ λv4V=24 ∼ 1: ð4Þ

If one considers the Higgs vacuum v ≃ 246 GeV and a
typical perturbative coupling constant λ ¼ 0.01, the

FIG. 1. In finite volume, symmetry is restored by tunnelling
between the two bare minima, which results in a negative energy
density in the ground state (taken from [11]).
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corresponding typical length is l ≃ 10−17 m, thus far larger
than the Planck length, justifying a classical gravity
background.
We note that the tunnelling time δt can be approximated

in two different ways, which lead to the same result for
A ∼ 1: (i) causality, which implies δt ≃ l; (ii) uncertainty
principle, which implies δt ≃ 1=δE ¼ l=A ≃ l.

III. EFFECTIVE ACTION IN THE VICINITY
OF THE TRUE VACUUM

A. Saddle points

The path integral Z of this model involves both homo-
geneous saddle points and instantons relating the two vacua.
We show here that the latter have a negligible role in the path
integral, compared to the homogeneous saddle points, if one
focuses on the true vacuum of the dressed theory.
The definition of Z requires the introduction of a source

j, which lifts the degeneracy of the bare vacua, and we
follow here the original arguments [15] describing the
construction of the instanton. We assume a configuration ξ
depending on the four-dimensional Euclidean radial coor-
dinates ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ r2

p
, and described by the action

Sinst ¼ 2π2
Z

ρ3dρ

�
1

2
ðξ0Þ2 þUbareðξÞ þ jξ

�
; ð5Þ

where the source j is constant. At the zeroth order in j, this
configuration should represent a bubble of vacuum −v
in the environment þv, with a wall thickness δ (we
choose j > 0, otherwise for energetic reasons we would
consider the creation of a bubble of vacuum þv in the
environment −v). An approximate analytical expression for
this instanton is

ξ ≃ v tanh

�
ρ − R
δ

�
with δ ¼ 2

v

ffiffiffi
3

λ

r
; ð6Þ

where R is the radius of the bubble, to be determined by the
variational approach below. The action (5) has two con-
tributions: a volume term and a surface tension. Keeping
only the lowest order in j, the former is obtained from the
potential energy

Svol ≃ Vjvþ 2 × 2π2
R4

4
jð−vÞ ¼ jvðV − π2R4Þ; ð7Þ

and the latter is obtained from the kinetic energy

Ssurf ≃ 2π2R3δv4 ¼ 2π2ðRvÞ3
ffiffiffi
3

λ

r
: ð8Þ

The total action Sinst ¼ Svol þ Ssurf is minimized for

R ¼ 3v2

2j

ffiffiffi
3

λ

r
; ð9Þ

which leads to

Sinst ¼ Vjvþ 243π2

16λ2
v9

j3
: ð10Þ

In the finite volume l4, the radius (9) is at most equal to l=2,
which leads to the following lower bound for the source,
in order to create the instanton:

j ≥
3v2

l

ffiffiffi
3

λ

r
: ð11Þ

But because tunnelling restores symmetry, the vacuum we
will focus on corresponds to a vanishing classical field,
and therefore to a vanishing source, where the action (10)
diverges and thus does not contribute to the path integral.
As a consequence in what follows we take into account
homogeneous saddle points only, which dominate the path
integral in the vicinity of the true vacuum.

B. Semiclassical approximation

The partition function of the model is estimated with a
semiclassical approximation, that we define here, and we
show how different saddle points are taken into account, as
a consequence of tunnelling.
Unlike [12], where fluctuations around saddle points are

neglected, we consider here the following improved semi-
classical approximation, defined by the path integral

Z½j� ≃
X
k

Fk exp ð−V½UbareðϕkÞ þ jϕk�Þ; ð12Þ

where the summation runs over the homogeneous saddle
points ϕk, and the factors Fk arise from the integration over
quadratic fluctuations of the field constant mode

Fk ¼
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U00
bareðϕkÞ

p : ð13Þ

The homogeneous saddle points satisfy

U0
bareðϕkÞ þ j ¼ 0; ð14Þ

and the number of solutions depends on the amplitude
of the source j. We thus introduce the critical source
jc ≡ λv3=ð9 ffiffiffi

3
p Þ to distinguish two regimes:

1. jjj ≥ jc
In this case there is only one homogeneous saddle point

ϕ0 ¼ −signðjÞ 2vffiffiffi
3

p cosh

�
1

3
cosh−1ðjj=jcjÞ

�
; ð15Þ

and we expected from the usual 1PI construction that
corrections to the bare potential should be perturbative.
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Since we work here with finite volume though, it is
interesting to check that corrections are indeed small.
For a constant source the functional derivative δ=δj is
replaced by ∂=∂ðVjÞ, and the classical field is

ϕc ¼ −
1

ZV
∂Z
∂j ¼ ϕ0 þ

3ϕ0

Vð3ϕ2
0 − v2Þ

∂ϕ0

∂j ; ð16Þ

where the term proportional to ∂ϕ0=∂j arises from the
fluctuation factor F0. An expansion around jc gives

ϕc ¼ −signðjÞ 2vffiffiffi
3

p
�
1 −

1

12A

�
þOðj − jcÞ; ð17Þ

whereas the tree-level approximation (with F0 ¼ 1) would
give

ϕtree
c ¼ −signðjÞ 2vffiffiffi

3
p þOðj − jcÞ: ð18Þ

Thus one can see that the correction ð12AÞ−1 is small
compared to 1 in the regime A ∼ 1 we are interested in, and
we neglect corrections to the bare theory for jj=jcj ≥ 1, or
equivalently jϕcj ≥ 2v=

ffiffiffi
3

p
.

2. jjj ≤ jc
There are two homogeneous saddle points

ϕ1 ¼
2vffiffiffi
3

p cos

�
π

3
−
1

3
cos−1ðj=jcÞ

�

ϕ2 ¼
2vffiffiffi
3

p cos

�
π −

1

3
cos−1ðj=jcÞ

�
; ð19Þ

and the partition function (12), normalized so that
Zð0Þ ¼ 1, is expanded in the source

Z ¼ 1þ 12j2

v6λ2
ð117=32 − 6Aþ 24A2Þ þ � � � ð20Þ

where dots represent higher orders in j. The classical field
is then

ϕc ¼ −
117=32 − 6Aþ 24A2

λv2A
jþ � � � ð21Þ

and we note that there is a one-to-one mapping between the
source and the classical field. Hence this important feature
of the 1PI quantization is not modified in the presence of
several saddle points, as long as one keeps a finite volume.
Note that we keep only the lowest order in j since, as
explained above, the instanton saddle point should in
principle be taken into account for large source.

C. Effective action and NEC violation

As we explain here, the effective potential is drastically
different from the bare potential for jj=jcj ≤ 1, or equiv-
alently for jϕcj ≤ 2v=

ffiffiffi
3

p
, as a result of the competition of

two saddle points.
Based on the expansion (21), we express the source j as a

function of ϕc, and the effective potential satisfies, for
jϕcj ≤ 2v=

ffiffiffi
3

p
,

∂
∂ϕc

UeffðϕcÞ ¼ −j ≃
λv2Aϕc

117=32 − 6Aþ 24A2
: ð22Þ

We integrate the above expression by matching the poten-
tials at the boundaries of the two regimes defined above

Ueffð�2v=
ffiffiffi
3

p
Þ ¼ Ubareð�2v=

ffiffiffi
3

p
Þ ¼ λv4

216
; ð23Þ

such that, up to higher orders in ϕc,

UeffðϕcÞ ¼
λv4

216
þ λv4A½ðϕc=vÞ2 − 4=3�
117=16 − 12Aþ 48A2

þ � � � : ð24Þ

Hence the effective theory is indeed described by a convex
potential, its ground state is ϕc ¼ 0, and its action for a
homogeneous field is

SeffðϕcÞ ¼ VUeffðϕcÞ

¼ A
9
þ 24A2½ðϕc=vÞ2 − 4=3�
117=16 − 12Aþ 48A2

þ � � � : ð25Þ

The sum of the energy density ρ and pressure p in the
ground state is therefore

ρþ p ¼ Seffð0Þ
V

−
∂Seffð0Þ
∂V

¼ 64λv4Að39 − 256A2Þ
9ð39 − 64Aþ 256A2Þ2 ; ð26Þ

which is negative in the regime of interest A ∼ 1 (note that
the denominator never vanishes). The NEC is violated in
the ground state because of the nontrivial volume depend-
ence of the effective action, which is not extensive for
jϕcj ≤ 2v=

ffiffiffi
3

p
. We finally note that, although the regime

where tunnelling occurs is A ∼ 1, the formal limit A → ∞
leads to a flat effective potential (24), which corresponds to
the so-called Maxwell construction.

IV. SPATIALLY FLAT FLRW SPACETIME

A. Dynamical NEC violation

The previous results are generalized here to an expand-
ing spacetime, and we explain how to take into account the
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time-dependent scale factor in the derivation of the
effective potential.
In a curved space time, one needs to define the concept of

volume consistently, which can be done by considering
periodic space coordinates, with cell-volume l3. The comov-
ing space volume is then a3ðtÞl3 and the 4-d volume is

Z
d4x

ffiffiffi
g

p ¼ l3
Z

t1

t0

dt0a3ðt0Þ; ð27Þ

where t1 − t0 ≃ l. We then define the time t such that

la3ðtÞ≡
Z

t1

t0

dt0a3ðt0Þ; ð28Þ

where aðtÞ corresponds to an average of aðt0Þ for
t0 ≤ t0 ≤ t1. For each comoving time t, quantization is
therefore done in the time interval ½t0; t1�, where we assume
that the scale factor remains approximately constant,
allowing the use of equilibrium field theory. This
approximation is even more justified in the vicinity of a
cosmological bounce, where _a ¼ 0, which is the regime
motivating [11].
For a field minimally coupled to the metric, the

Euclidean bare action for the saddle points is

SbareðϕkÞ ¼ l3
Z

t1

t0

dt0a3ðt0ÞUbareðϕkÞ

¼ l4a3ðtÞUbareðϕkÞ; ð29Þ

and the tunnelling condition is

ÃðtÞ≡ λðvlÞ4a3ðtÞ=24 ≃ 1: ð30Þ

We then follow the same steps as those in flat space time,
but the effective potential is now a function of the scale
factor aðtÞ, through the replacement V → l4a3ðtÞ. The
energy density in the vacuum is then

ρðtÞ ¼ 2ffiffiffi
g

p δ

δg00ðtÞ
Z

d3xdt0
ffiffiffi
g

p
Ueffðt0; 0Þ

¼ λv4ð39 − 1600Ãþ 256Ã2Þ
216ð39 − 64Ãþ 256Ã2Þ ; ð31Þ

and the sum ρþ p can be found from the continuity
equation

ρþ p ¼ −
_ρ

3H
¼ −Ã

∂ρ
∂Ã

¼ 64λv4Ãð39 − 256Ã2Þ
9ð39 − 64Ãþ 256Ã2Þ2 ; ð32Þ

where H ≡ _a=a. As expected, the expression for ρþ p is
similar to the one obtained in flat spacetime (26), and the

NEC is violated as a consequence of the nontrivial
dependence of the effective potential on the scale factor.

B. Relevance in the early universe

The effect of tunnelling could be of interest for the early
universe, mainly in the situation where the latter starts to
collapse. In this case _a < 0 and the comoving space volume
decreases, until the regime where Ã ∼ 1 is reached, and
tunnelling switches on. From Eq. (32) we have then

ρþ p ≃ −0.03λv4; ð33Þ

and the scalar field ground state acts as a fluid with
equation of state w≡ p=ρ ≃ 0.1. This justifies the approxi-
mation used in [11], where p is neglected compared to ρ.
Assuming the coexistence of this fluid and a cosmological
constant with energy density ρ0 and pressure p0 ¼ −ρ0, the
Friedmann equations read

H2 ¼ κ

3
ðρ0 þ ρÞ;

_H þH2 ¼ −
κ

6
ðρ0 þ ρþ 3p0 þ 3pÞ; ð34Þ

where κ ≡ 8πG. The expression for H2 is consistent only if
ρ0 ≥ jρj, which is assumed here. The evolution equation for
the scale factor is then

_H ¼ −
κ

2
ðρþ pÞ ≃ 0.015κλv4 > 0; ð35Þ

such that the NEC-violating fluid induces a cosmological
bounce, in the situation of an initial contraction. The
following expansion will eventually suppress the tunnelling
effect: the scalar field will then be subjected to SSB and
play the role of a usual matter component.

C. Averaged NEC

We have shown that tunnelling leads to the NEC
violation in two cases: static spacetime and FLRW space-
time, by calculating the sum ρþ p. A more general
inequality for the NEC is

Tμνnμnν ≥ 0; ð36Þ

at every point of spacetime and for any null vector nμ,
where Tμν is the energy momentum tensor for matter. A
weaker energy condition corresponds to the averaged NEC
(ANEC), which consists in the inequality

Z
dλTμνnμnν ≥ 0; ð37Þ

where the integral runs along a null geodesic with tangent
nμ. In order to discuss the ANEC, we consider here the two
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situations mentioned in this article: the static case and the
FLRW metric.

1. Static case

Here we consider a fixed box which confines the scalar
field. This assumes that an external environment should be
present, in order to maintain the box structure. In this
situation, it is argued in studies involving the Casimir
effect, that the material from which the mirrors are made
give a positive contribution to the integral (37), which
compensates the negative energy density of the scalar field
between the mirrors, in such a way that the ANEC is
satisfied [16]. This is also true in the case where one of the
mirrors has a hole [17]. A similar situation is obtained with
an external potential, which also confines the scalar field
[18]: the energy associated to the potential is expected to
compensate the negative energy of the scalar field within
the confined space. These works do not consider self-
interacting fields though, whereas tunnelling on which the
present article is based necessitates self-interactions. As a
consequence, although one might expect a similar behav-
iour for self-interacting fields, the conclusion regarding the
ANEC in our case requires more studies, which we leave
for further works.
We note that [19] does consider self-interactions, and

shows that the ANEC should be satisfied, provided the
model is Lorentz symmetric, unitary and renormalizable.
The argument is based on the short distance properties of
the dynamics; however the finite volume violates Lorentz
symmetry at finite scale. Therefore here again, the effect
described in the present article does not fit in a known
context.

2. FLRW metric

In this situation the conclusion regarding the ANEC is
more straightforward. Here we consider instead periodic
boundary conditions, for which is has been shown that the
ANEC can be violated [20]. In our case though, because
the scale factor will change dynamically in response to the
fluid, the NEC-violating effect is only temporary, and the
ANEC is not violated. Indeed, we can see from Eq. (35)
that the effect acts to provide a bias towards expansion,
which would eventually invalidate the finite volume con-
dition Ã ∼ 1.

V. CONCLUSION

We have described how NEC violation arises naturally
from tunnelling between different local minima in a finite

volume, stressing the nonperturbative nature of this phe-
nomenon. More specifically, the essential reason for NEC
violation is the nonextensive feature of the effective action,
as a result of several saddle points competing in the path
integral.
Our work motivates the study of a number of challenging

technical questions. Firstly, the work should be extended
to the study of tunnelling in real time [21]. The naive
extension of the semiclassical approximation to Minkowski
spacetime leads to a complex effective action, which should
lead, among other features, to the tunnelling rate in this
model. Both the finiteness of the volume and the special
role of time, played in the tunneling process, suggest that if
there are dominant configurations to the path integral then
they are not Oð4Þ invariant. The appropriate instanton
configurations allow us to explore the double limit where
the spatial size tends to infinite and the symmetry breaking
external source is removed, a necessary ingredient of
describing a phase transition.
A different direction to explore is the potential relation

between the Casimir effect and the present nonperturbative
effect. Both involve finite volume and quantum fluctua-
tions, and so it is natural to consider if a mapping between
both effects can be determined. However, the mechanisms
are clearly different, since the one presented here requires
nonperturbative effects for a self-interacting field.
We also note that, in addition to Wilsonian approach,

stochastic quantization might also shed light on the
mechanism described here. The latter approach has been
used to show that curved space time has a nontrivial effect
on the two-point correlation function for a scalar field in a
double-well potential [22].
Finally, this novel mechanism for violating the NEC has

the potential to open up a range of exciting research
avenues. Beyond the early universe cosmology application
that motivated this work, one could consider whether such
an effect would have an experimental signature in certain
condensed matter systems. It was already suggested that
phase transitions in the early universe could have analogs in
the lab [23], in experiments involving 4He. Similar experi-
ments involving 3He are also discussed [24], and one might
be able to reproduce the NEC-violation effect presented
here in a physical laboratory volume.
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