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Affine gravity is a connection-based formulation of gravity that does not involve a metric. After a review
of basic properties of affine gravity, we compute the tree-level scattering amplitude of scalar particles
interacting gravitationally via the connection in a curved spacetime. We find that, while classically
equivalent to general relativity, affine gravity differs from metric quantum gravity.
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I. INTRODUCTION

Even more than 100 years after the formulation of
general relativity (GR), and despite an enormous effort,
we still lack a consistent and experimentally verified theory
of quantum gravity. The standard approach that works
excellently for the Standard Model of particle physics,
perturbation theory, fails to provide an acceptable quanti-
zation of GR beyond the framework of effective field
theory. The reason is that every new loop order introduces
new interaction terms which are not part of the original
action [1], and with it, new coupling constants appear that
have to be fixed by some experiment. In pure gravity, this
happens for the first time at the two-loop level with the
famous Goroff-Sagnotti term [2–4], whereas, with matter,
the first occurrence is at one-loop order. One thus finds
oneself in the situation that in principle one would have to
conduct infinitely many experiments to uniquely specify
the theory, and thus any predictivity is lost. This behavior is
also expected from naïve power counting: the coupling of
GR, Newton’s constant GN , has a mass dimension of −2 in
four spacetime dimensions.
Many different ideas have been put forward to circum-

vent this problem in one way or another. The most
conservative possibility to solve this problem is that gravity
can be renormalized in a nonperturbative way. Approaches
in this direction include the asymptotic safety program
[5–9], causal dynamical triangulations (CDT) [10,11], and
loop quantum gravity [12–14]. Closely related are more
geometry-based approaches like causal sets [15], with the

disadvantage that the connection to standard quantum field
theory is less clear. An alternative is to give up on some of
the symmetries, and for example break Lorentz symmetry
at small scales [16–20]. More recently, Stelle’s higher-
derivative gravity [21,22] as a perturbative approach to
quantum gravity has received renewed interest [23–27], but
it is as of yet unclear whether the ghost modes can be
completely avoided in this theory.
A central question in all of these approaches is what the

fundamental degrees of freedom are. For example, whereas
in general asymptotic safety is agnostic about this, an
overwhelming majority of research conducted in this area is
based on the metric as the fundamental field, with the
occasional exception based, e.g., on the tetrad formalism
[28]. CDT is based on purely geometric objects, on which
the diffeomorphism group acts trivially. In loop quantum
gravity, a central role is played by holonomies. Usually all
these different choices have in common is that at the
classical level they are equivalent to GR.
A particular choice of degrees of freedom has not

received a lot of attention, even though it was first
discussed quite early—the purely affine formulation, based
only on the use of an affine connection. Originally
discussed by Eddington and Schrödinger [29–31], most
investigations involving the connection as a fundamental
degree of freedom are carried out in a formulations where
the relevant connection lives in a related gauge bundle, e.g.,
SOð3Þ [32–37], or SOð1; 3Þ [38]. On paper, the purely
affine theory has many interesting properties. First, it is
much closer in spirit to the other fundamental forces in
nature. In this picture, there is a unification of the
description: forces are mediated by a connection (be it
gravitational, strong or electroweak), whereas matter is
described by fermions and the Higgs boson. Second, the
classical theory is completely equivalent to GR with a
cosmological constant; however, the latter appears as an
integration constant similar to the case of unimodular
gravity. A key difference to the metric formulation is that
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the equation of motion for the connection is cubic instead
of nonpolynomial, once again emphasizing the similarity to
classical Yang-Mills (YM) theory. Third, while having a
metric is certainly useful, it is not necessary to describe,
e.g., geodesic motion, which solely depends on the con-
nection. Fourth, the implementation of torsion degrees of
freedom is completely straightforward. While torsion is
usually not considered (partially because in GR, torsion is
not dynamical), it is a question of experiment whether our
Universe has torsion degrees of freedom or not. Finally, and
maybe most promising from the viewpoint of quantization,
the coupling constant in the affine theory is dimensionless.
This opens up the possibility of a perturbative quantization
of gravity without making other sacrifices like assumptions
on extra fields, dimensions or breaking of symmetries.
In this paper, we take all these reasons as a motivation to

study affine gravity from a modern perspective. With the
anticipation that not many readers will be familiar with the
theory, we provide an overview of the basics in Sec. II,
systematizing some of the earlier literature. In particular,
we will discuss its action and equation of motion, the
symmetry structure of the theory, as well as the coupling
to matter. With this in place, in Sec. III we derive the
scattering amplitude of a two-scalar-to-two-scalar process
mediated by the gravitational connection and discuss the
differences to GR. This will be done on a curved spacetime
that fulfils the equations of motion. We then close with a
summary of the results and an outlook in Sec. IV.

II. BASICS OF AFFINE GRAVITY

In this section we present the foundations of affine
gravity. Since we do not have access to a metric, we will be
very careful with the index positions of all tensors in any
expression. To make matters simpler, in this work we
restrict ourselves to a symmetric connection so that the
torsion vanishes:

Γα
μν ¼ ΓαðμνÞ: ð1Þ

The brackets indicate the symmetrization of the enclosed
indices normalized to unit strength. The Riemann and
symmetrized Ricci tensors in terms of this connection are
then

Rμνρ
α ¼ Γα

νβΓβ
μρ − Γα

μβΓβ
νρ − ∂μΓα

νρ þ ∂νΓα
μρ;

Rμν ¼ RðμjαjνÞα: ð2Þ

Vertical bars indicate that the enclosed indices are not
symmetrized over. In affine gravity we will generally have
to assume that the symmetrized Ricci tensor is nondegen-
erate so that it has a multiplicative inverse, which we denote
by Я,

ЯμαRαν ¼ δν
μ: ð3Þ

Effectively, R and Я will be used to lower and raise indices,
with the difference to the metric case that in general their
covariant derivatives are not zero. In this sense, it is akin to
not using the Levi-Civita connection in the metric case.
From the invertibility requirement of the symmetrized Ricci
tensor we conclude that the limit of having a flat spacetime
will have to be implemented very carefully. Finally, we can
define the equivalent of a d’Alembertian operator, which
we will call , by

R ð4Þ

In this, D is the covariant derivative associated to the
connection Γ. Notice that, in contrast to the d’Alembertian,

has a vanishing mass dimension, so its eigenvalues are
pure numbers. We will see that this is a general property of
the affine setup: the mass dimension of an expression is
related to the number of its free indices.

A. Action and equation of motion

Let us first discuss the classical action of affine gravity.
In a general spacetime dimension d, it is given by

SEdd ¼ 1

4αg

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detRμν

q
: ð5Þ

Several remarks are in order. First, the coupling αg is
dimensionless for all d, and the nomenclature is chosen to
emphasize the closeness to YM theory. Second, it is
nonpolynomial in the Ricci curvature tensor, so even-
tually we have to carefully assess whether the theory
possesses any ghost or tachyonic modes. Finally, for
the action to be real, we have to require that the Ricci
tensor retains its signature. This is similar to the require-
ment in metric gravity that the metric has a fixed signature,
and will constrain the domain of integration of the path
integral.
To derive the equations of motion, we perform a standard

variation of the action with respect to the connection Γ.
After some algebra, and using that R is nondegenerate, one
can show that the equation of motion has the very compact
form

DμRαβ ¼ 0: ð6Þ

Recalling the dependence of the Ricci tensor on the
connection (2) this shows that the equation of motion is
a cubic second-order partial differential equation, similar to
that of YM theory. One can use the equation of motion to
show that the connection is the Levi-Civita connection with
respect to the Ricci tensor,

Γμ
αβ ¼

1

2
Яμνð∂αRνβ þ ∂βRνα − ∂νRαβÞ: ð7Þ
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The equation (6) is equivalent to GR with a cosmolo-
gical constant. It states that the Ricci tensor is covariantly
constant, so we can write suggestively

Rμν ¼
2Λ
d − 2

gμν; ð8Þ

where Λ is a constant of mass dimension two, g is a
covariantly constant tensor of mass dimension zero, and the
normalization is chosen to allow a simple relation to GR.
Clearly, (8) is just Einstein’s equation with cosmological
constant Λ and metric g. With this, we can relate the
coupling αg to Newton’s constant GN and the cosmological
constant. Requiring that the classical Einstein-Hilbert
action of GR,

SGR ¼ 1

16πGN

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

q
ðR − 2ΛÞ; ð9Þ

agrees with the Eddington action (5) on the solution of the
equation of motion (8), we find

αg ¼ 2πGN

�
2Λ
d − 2

�d−2
2 ¼d¼4

2πGNΛ: ð10Þ

The observed value of αg is extremely tiny (of the order of
10−120), so that we can expect excellent convergence of any
perturbative treatment in this coupling.
Let us stress the conceptual difference of the origin of

Newton’s constant and the cosmological constant in GR
and affine gravity. In GR, both constants are part of the
action, and thus are fundamental parameters of the theory.
By contrast, in affine gravity, only the coupling αg is part of
the definition of the action. The cosmological constant
arises as a constant of integration in the solution of the
equation of motion, similar to unimodular gravity. In this
way, the tiny observed value of the cosmological constant is
just a statement about what initial condition is realized in
the Universe. Trying to explain its small value from first
principles is akin to asking for an explanation of why a
harmonic oscillator starts at the exact position where it
starts.

B. Coupling to matter

We will now discuss some aspects of the coupling to
matter in affine gravity. Since we do not have access to a
metric off shell, there are a few differences with regards to
the metric case. The first observation is that the measure is
already dimensionless in contradistinction to the metric
case. This means that

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detRμν

q
; ð11Þ

is a pure number and carries the interpretation of a volume
in units of the curvature. As a consequence, any Lagrangian

density that is included will have to be dimensionless.
This changes the mass dimension of some fields compared
to the standard case. For example, writing down a kinetic
term for a scalar field ϕ,

Sscal ¼ 1

2

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detRμν

q
ЯαβðDαϕÞðDβϕÞ; ð12Þ

it is evident that the scalar field has zero mass dimensions.
By contrast, a gauge field continues to have a mass
dimension of one, and a kinetic term for the photon reads

Sphot ¼ 1

4

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detRμν

q
ЯαγЯβδFαβFγδ; ð13Þ

where F is the field strength tensor.
For fermions, the situation is a bit more involved. A first

step in the construction of the spinor bundle would be to
define the Clifford algebra in terms of the Ricci tensor,

fγμ; γνg ¼ 2Rμν1: ð14Þ

Here, γμ are the mass dimension one gamma matrices, and
the matrix 1 is the identity in Dirac space. However, the full
construction of the spinor bundle in the absence of a Levi-
Civita connection goes beyond the scope of this work.
We will now discuss how to obtain the mass dimension

of any object. By definition, the partial derivative has
a mass dimension of one, and comes with one lower
spacetime index. To be consistent, any (gauge) connection
must have the same mass dimension so that covariant
derivatives have a uniform mass dimension. From this it
follows that any curvature tensor has a mass dimension of
two, and the inverse Ricci tensor then has a mass dimension
of minus two. With these facts, it is straightforward to
convince oneself that the mass dimension of any tensor is
given by the difference of the number of lower spacetime
indices minus the number of upper spacetime indices. In
particular, any spacetime scalar has vanishing mass dimen-
sion. The interpretation of this compared to standard
quantum field theory with a metric is that in affine gravity
the fields are measured in units of the spacetime curvature
(which is the on shell equivalent to measuring in units of
the cosmological constant).
This has two very unconventional consequences: all

conceivable coupling constants must have mass dimension
zero, so naive power counting stops to be applicable. This
might be a potential roadblock to the perturbative quanti-
zation of the theory, but more investigations are necessary.
In particular, on solutions to the equation of motion,
standard quantum field theory, including its power count-
ing, must emerge under a suitable rescaling of the fields.
Second, no ad hoc scale is introduced at any level. Every
measurement of a dimensionful quantity is relational in the
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sense that it will be expressed in units of some other
dimensionful quantity of the same physical system.

C. Symmetry structure

We proceed our discussion of affine gravity by inves-
tigating its symmetry properties. Naturally, any action for
affine gravity that we propose should be diffeomorphism
invariant. Infinitesimally, this is made explicit by the
condition

SEddðΓþ LϵΓÞ ¼ SEddðΓÞ; ð15Þ

where Lϵ denotes the Lie derivative with respect to the
vector field ϵ that generates a diffeomorphism. The Lie
derivative acting on the connection Γ is given by

ðLϵΓÞαμν ¼ DμDνϵ
α þ Rμβν

αϵβ: ð16Þ

In order to compute the connection propagator in affine
gravity, it is necessary to gauge-fix the diffeomorphism
symmetry. For this, we employ the background field
method. Here, the connection is split into a background
connection Γ̄ and a fluctuation δΓ,

Γ ¼ Γ̄þ δΓ: ð17Þ

The first step in the gauge-fixing procedure is to define a
DeWitt inner product on the space of fluctuations. This is
constructed in complete analogy to its metric counterpart,
introduced in [39]. For the affine case, we employ the
symmetrized Ricci tensor with respect to the background
connection. The most general ultralocal inner product reads

hδΓ; δΓi ¼
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det R̄κλ

q
δΓα

μνGα
μν

β
ρσδΓβ

ρσ; ð18Þ

where the tensor G is given by

Gα
μν

β
ρσ ¼ R̄αβЯ̄μðρЯ̄σÞν

þ β1
2
ðδαμδβðρЯ̄σÞν þ δα

νδβ
ðρЯ̄σÞμÞ

þ β2R̄αβЯ̄μνЯ̄ρσ

þ β3
2
ðЯ̄μνδα

ðρδβσÞ þ Я̄ρσδα
ðμδβνÞÞ

þ β4δα
ðρЯ̄σÞðμδβνÞ: ð19Þ

The parameters fβig are gauge parameters. The DeWitt
metric is invertible for most choices of fβig, except for a
few isolated cases.
The gauge fixing action is now constructed via

Sgf ¼ 1

2α

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det R̄μν

q
Я̄γδFγ½δΓ; Γ̄�Fδ½δΓ; Γ̄�; ð20Þ

where the gauge fixing condition is implemented by the
functional F using the deWitt metric,

Fγ½δΓ; Γ̄� ¼ Gα
μν

β
ρσðδγβD̄σD̄ρ þ R̄ργσ

βÞδΓα
μν: ð21Þ

D. Connection to metric theory

In this section we explain how to recover standard metric
theory from affine gravity in cases where we can define a
metric, e.g., via the equation of motion (8). As we have
observed earlier, mass dimensions of fields and couplings
in the theory are different from the standard case, so all
fields and couplings have to be rescaled by appropriate
powers of the only scale available, the cosmological
constant, introduced by the equation of motion. For
example, a scalar field in the affine theory is dimensionless,

½ϕ� ¼ 0; ð22Þ

whereas in a standard metric theory, it has a mass
dimension

½ϕg� ¼
d − 2

2
: ð23Þ

Here the subscript g indicates that the quantity belongs to a
metric theory. Accordingly, up to constant rescalings by
numbers, the two fields are related by

ϕ ¼ Λ2−d
2 ϕg: ð24Þ

From this, we can derive the scaling of any coupling
constant. For example, consider an term in the action of the
structural form

ð25Þ

where it is understood that the derivatives are distributed in
some way among the fields, and κ is a coupling constant.
Replacing the curvatures via (8) and the scalar fields by
(24) while dropping overall constants, this term becomes

κΛd−mþ2−d
2
n

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

q
Δmϕn

g : ð26Þ

Once again, the standard Laplacian Δ ¼ −gμνDμDν is
understood to be distributed among the scalar fields in
the same way as above. From this, we can read off the
necessary rescaling of the dimensionless coupling κ to
define its dimensionful metric counterpart κg,

κ ¼ Λ−dþm−2−d
2
nκg: ð27Þ

The same algorithm applies to relate other matter fields to
their metric counterparts. This emphasizes again the
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interpretation that all quantities in affine gravity are
measured in units relative to the only scale spacetime itself
gives us in the theory, the cosmological constant.

E. Synopsis of previous results

In this section, we collect results on affine gravity that
have been previously obtained. We will first consider
classical aspects of the theory. Next, we will briefly review
known quantum aspects.
We start our discussion by noting that the affine

formulation, the metric formulation, and metric-affine
formulations such as the Palatini formalism can all be
shown to be classically equivalent [40,41]. For a discussion
on quantum equivalence see [42]. The proof of the classical
equivalence shows that the metric degree of freedom arises
in the affine formulation as the canonical conjugate of the
symmetric part of the Ricci tensor. The canonical structure
of the affine theory was discussed in [43]. The Newtonian
limit of affine gravity was studied in [44].
Cosmological implications of affine gravity, for example

in the context of inflation, as well as the impact of
nonminimal couplings, were studied in [45–51].
The identification of the metric as the symmetric part of

the Ricci tensor can be generalized to unify gravity and
Uð1Þ gauge fields [40,52–54]. Here, the electromagnetic
field strength tensor Fμν is identified with the antisym-
metric part of the Ricci tensor. Variation of the action (13)
with respect to the connection then gives both the Einstein
equations with cosmological constant, and the Maxwell
equations.
An initial study of the quantum properties of affine

gravity was performed in [55]. In this work, the one-loop
renormalization group (RG) running of the coupling αg was
computed. This beta function exhibits an infrared-attractive
fixed point at αg ¼ 0, similar to the electromagnetic fine-
structure constant in QED. Since αg is related to the
cosmological constant, such a fixed point is particularly
favored by the small observed value of Λ. We note that [55]
first recasts the Eddington action (5) into an on shell
equivalent, polynomial action. While the quantum proper-
ties of this theory are certainly appealing, it is presently
unknown whether the beta function of the original theory
(5) agrees with these findings.

III. SCATTERING AMPLITUDE

While affine gravity agrees with GR when it comes to the
equation of motion, the off shell degrees of freedom are
expected to differ, so that their respective quantized
versions potentially give rise to different results. A straight-
forward way to probe this is the calculation of a tree-level
scattering amplitude. Since pure gravitational scattering is
technically challenging, we will discuss a gravity-mediated
scalar scattering of a single minimally coupled massless
scalar field.

A. Setup

Our ansatz for the action is

S ¼
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detRμν

q �
1

4αg
þ 1

2
ЯαβðDαϕÞðDβϕÞ

�
: ð28Þ

For the calculation of the amplitude of the scattering
process ϕϕ → ϕϕ, we need the connection propagator.
Due to the underlying diffeomorphism symmetry, we have
to employ a gauge fixing as discussed in Sec. II C. To
further simplify the calculation, we will use a covariantly
constant background,

D̄μR̄αβ ¼ 0; ð29Þ

and specify the Riemann tensor to be maximally symmet-
ric,

R̄μνρ
σ ¼ 1

d − 1
ðR̄μρδν

σ − R̄νρδμ
σÞ: ð30Þ

This is similar to, but clearly more general than, standard
calculations of gravitationally mediated scattering ampli-
tudes in a flat spacetime, and consistent since we do not
discuss external gravitational legs. In order to ease the
notation, we omit the bar to denote background quantities.
As a consequence of this choice of background, the on

shell condition for the scalar field ϕ simply reads

ð31Þ

Additionally, we assume that we can actually define
asymptotic states on the given background. We expect that
the technical progress of calculating scattering amplitudes
in curved spacetimes that we put forward in the following
will also be useful for metric-based calculations.

B. Calculation

We will now outline the calculation of the curved space
scattering amplitude. Since we do not have access to
momentum space, we will work in position space through-
out the calculation.
The gravity-mediated amplitude consists of the contrac-

tion of two three-point vertices with a single connection
propagator. In position space, a two-to-two amplitude is
then an operator which acts on four different arguments.
With this in mind, it is in practice easier to not take the
derivatives with respect to the external fields; that is, we
formulate the amplitude in terms of its action on test fields.
In that way, what we actually have to calculate is the
contraction of the connection propagator G sandwiched
between two connection-energy-momentum tensors:

AðfϕigÞ ¼
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detRμν

q
Tϕ1ϕ2

GTϕ3ϕ4
: ð32Þ
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We will call this object the amplitude functional, and the
actual amplitude is the fourth functional derivative of it.
The amplitude (32) corresponds to the s channel, and the
labels 1,2 indicate the incoming scalars whereas the labels
3,4 indicate the outgoing scalars. The t and u channels
follow by crossing symmetry.
With this general approach settled, the central object that

we have to compute is the propagator, which is the inverse of
the two-point function.Structurally, thepropagator is a linear
combination of functions of and tensor structures in such a
way that the complete object is self-adjoint.We can choose a
specific ordering of propagator functions and tensor struc-
tures to simplify the calculation. The choice that we imple-
mented is to sort all propagator functions to the right of the
respective tensor structure, so that the propagator reads

ð33Þ

Here, the T l are 32 independent tensor structures that span a
basis, and theGl are the propagator functions that have to be
computed.
To compute the propagator functions fGlg, we demand

that

δ2SEdd

δΓρ
τωδΓν

κλ
Gν

κλ
μ
αβ ¼ iδρμδαðτδβωÞ: ð34Þ

To do this in practice, we act with this equation onto a test
tensor Γμ

αβ with an index structure opposite to the con-
nection but with the same symmetry. Next, all occurrences
of are sorted to the right, so they act first on Γ. Finally, we
symmetrize all remaining covariant derivatives to arrive at
an expression in canonical form, where all tensor structures
are independent. The propagator functions can then be
read off.
With the propagator at hand, it remains to contract it with

two first connection derivatives of the matter action
to derive the scattering amplitude functional. Partial inte-
gration can be used to simplify the expression—these are
nothing else than the curved space equivalent of momen-
tum conservation. Furthermore, the external test fields are
assumed to be on shell, so that any acting on an
individual field vanishes. The full calculation is rather
cumbersome, and we carried it out with the tensor algebra
package xAct [56–59]. For the convenience of the reader,
the complete Mathematica notebook detailing the calcu-
lation is provided as an ancillary file [60].

C. Result

To obtain a manifestly gauge-invariant result, the scat-
tering amplitude has to be brought into a canonical form.
Due to the structure of the action, we know that the
amplitude functional can be written as

ð35Þ

The reason for this form of the functional is that each of the
vertices carries at most three uncontracted derivatives. All
other uncontracted derivatives that come from the propa-
gator must be contracted in some way to form a acting
either on a single ϕ which is eliminated using the equation
of motion, or is absorbed in the one of the functions ai. To
arrive at the form (35), one has to use the commutator rules
derived in the Appendix together with partial integrations.
With some effort, one arrives at the result

ð36Þ

The calculation of the functions ai is the main result of this
work. We have checked that the result does not depend on
the gauge fixing parameters α; fβig.
To make contact to standard quantum field theory

notions of scattering in momentum space, it is useful
to introduce curved-spacetime generalizations of the
Mandelstam variables,

ð37Þ

It should be noted that these operators do not commute in
curved spacetime. Our convention is that all t operators
are sorted to the right. All other contractions of derivatives
can be eliminated by partial integration, the equation of
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motion and by using the commutator rules derived in the
Appendix.
With these operators, we define the amplitude operatorA,

which is the operator equivalent of an amplitude in momen-
tum space. It is related to the amplitude functional via

A ¼
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detRαβ

q
Aϕ1ϕ2ϕ3ϕ4: ð38Þ

It reads

A ¼ 4αg

�
sþ 2

d − 1

�
−1

× ða01tþ a11stþ a21s2tþ a02t2 þ a12st2Þ; ð39Þ

where the coefficients aij are given by

a01 ¼
2dþ 1

1 − d
; a11 ¼

1

1 − d
−
3

2
;

a21 ¼ −
1

2
; a02 ¼

d
1 − d

;

a12 ¼ −
1

2
: ð40Þ

D. Discussion

The amplitude computed in Sec. III C possesses several
striking features. First, the amplitude is gauge-invariant, as
it must be since it is directly related to an observable, the
cross section.
Second, we note that the interpretation of (35) as a

scattering amplitude is to be carefully considered. Due to
the difficulty of defining asymptotic states in a constantly
curved background, we focus on the S matrix in the flat
limit. Using the equation of motion (8), we find that the
Mandelstam operators are related to the usual Mandelstam
variables by s ∝ s=Λ, t ∝ t=Λ. The amplitude A, in the
limit Λ → 0, has the leading order behavior

A ∝ αg

�ðsþ tÞt
Λ2

þOðΛ−1Þ
�

∝ GN ½ðsþ tÞtΛd−6
2 þOðΛd−4

2 Þ�: ð41Þ

Subleading contributions of OðΛd−4
2 Þ depend on the order-

ing of the operators, and are therefore nonuniversal.
The momentum scaling, and correspondingly the scaling

withΛ, in the flat limit can also be derivedbypower counting
of derivatives in the action. We observe that the propagator
scales like ∝ E−2, where E denotes the center-of-mass
energy. The vertices each contribute a factor of E3, yielding
an amplitude ∝ E4. Since the amplitude is dimensionless,
this has to be compensated by the only dimensionful quantity
that we have at our disposal, namelyΛ. This is in contrast to
metric gravity, where the vertex scales as E2.

Specializing to d ¼ 4, we find that the amplitude (41)

resembles the amplitude obtained in GR, AGR ∝ ðsþtÞt
s ,

except that the factor 1=s is replaced by 1=Λ. The similarity
is affirmed by performing a partial-wave analysis of (41).
The resulting spectrum contains contributions with spin 0
and spin 2, in agreement with GR.
Since the amplitude diverges as Λ−1, the flat space limit

in d ¼ 4 is formally ill defined. Inserting the observed
values of Λ and GN , we observe that the amplitude
becomes of order unity around the meV scale. This implies
that quantum gravitational effects would become relevant at
this scale. Taking the scaling with energy at face value, this
would rule out the theory experimentally.
Nevertheless, there are at least two reasonswhy this result

might still be modified. First, using dimensional analysis, it
is straightforward to deduce that loop diagrams of any order
contribute to the flat limit. It is therefore conceivable that a
resummation of loop diagrams will ameliorate the divergent
behavior. Second, the amplitude can be modified by
introducing nonminimal interactions [61,62]. While this
may not cancel the divergence in general, this could be
achieved by a fine-tuning of the couplings, or be imposed
automatically by a fixed point of the theory’s RG.

IV. SUMMARY AND OUTLOOK

In this paper,wehavegivenamodernperspectiveonaffine
gravity. This theory is classically equivalent to GR, but its
dynamical degrees of freedom are based on the connection
rather than the metric. In affine gravity, the cosmological
constantΛhas the role of an integration constant, providing a
possible explanation for its small observed value.
The main result of this work comprises the tree-level

amplitude functional (35) of a two-scalar-to-two-scalar
process in a curved background, giving insight into the
quantum degrees of freedom of the theory. Taking the flat-
space limit, we find that, in four dimensions, the amplitude
scales like Λ−1. While this is worrying at first sight, we
propose that the introduction of nonminimal interactions
and loop corrections may ameliorate this behavior. The
computation of these modifications is left for future work.
The calculation also shows that in the flat space limit, the
off shell gauge-invariant degrees of freedom of the theory
have a spin two and a spin zero contribution, in agreement
with metric gravity. At finite curvature, this structure
appears to be more intricate.
A systematic search of nonminimal interactions can be

done in terms of form factors, which can be success-
fully used to parametrize metric actions [61–63]. In affine
gravity, the occurrence of the inverse symmetric Ricci
tensor Яμν prohibits an expansion in powers of the
curvature tensor. A first step in investigating interactions
can be done in d ¼ 3 dimensions, where the Riemann
tensor is fully determined by Rμν only.
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Due to the treatment of the affine connection as a
standard gauge field, the affine formalism lends itself to
making a relation to other approaches. First, affine gravity
is straightforwardly generalized to include torsion. Second,
treating the affine connection and gauge fields on equal
footing, one could speculate about grand unification
scenarios of gravity. Finally, affine gravity may allow for
a lattice formulation, opening up new computational
toolkits to investigate the quantum properties of this theory.
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APPENDIX: COMMUTATORS

To sort the scattering amplitude into a canonical form,
we need to know how we can commute functions of the
operator with covariant derivatives. In alignment with the
assumptions of the main text, we will consider a covariantly
constant Ricci tensor,

DμRαβ ¼ 0; ðA1Þ
together with a maximally symmetric Riemann tensor of
the form

Rμνρ
σ ¼ 1

d − 1
ðRμρδν

σ − Rνρδμ
σÞ: ðA2Þ

As a direct consequence, we find that

ЯμρRμνρ
σ ¼ δν

σ: ðA3Þ
This equality indeed follows directly from a covariantly
constant Ricci tensor without invoking (A2), since

0 ¼ ЯμκЯλτ½Dμ; Dν�Rκλ ¼ δν
τ − ЯκλRκνλ

τ: ðA4Þ

The basic commutators are

½Dμ; Dν�Xρ ¼ Rμνρ
αXα ¼

1

d − 1
ðRμρXν − RνρXμÞ; ðA5Þ

and

½Dμ; Dν�Yρ ¼ −Rμνα
ρYα;

¼ −
1

d − 1
ðRμαδν

ρYα − Rναδμ
ρYαÞ: ðA6Þ

By the assumption that the Ricci tensor is covariantly
constant, we have

½Dμ; Dν�Yρ ¼ ½Dμ; Dν�ЯραRαβYβ;

¼ Яρα½Dμ; Dν�ðRYÞα; ðA7Þ
thus it is enough to derive formulas for tensors with only
lower indices.
We want to derive a formula of the form

ðA8Þ

where f is some arbitrary function andX is a tensor of rank
ð0; nÞ,

X ¼ Xμ1���μn : ðA9Þ
To derive this equation, we employ a standard trick and
write the function f as an inverse Laplace transform, so that
we can use the Baker-Campbell-Hausdorff formula,

ðA10Þ

Here, we used the multicommutator, which is defined
recursively by

½A; B�n ¼ ½A; ½A;B�n−1�; ½A;B�0 ¼ B: ðA11Þ
To make progress, let us first calculate the standard
commutator. Using the standard rules for commutators
and our assumptions of covariant constancy and maximal
symmetry, we find

ðA12Þ
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Here, we made the observation that the commutator is in
fact a multiplication with a covariantly constant tensor C,
so that structurally we find,

ðA13Þ

Plugging this into the original equation (A10), we find

ðA14Þ

Here, Texp is the tensor exponential, defined in terms of its
power series.
While the calculation of this exponential for an arbitrary

rank tensor seems difficult, we can easily calculate it for
tensors of low rank, and, in practice, this is all that is
needed. We will illustrate this for scalars and vectors. For a
scalar,

ðA15Þ

so that

Cα
β ¼ −δαβ: ðA16Þ

Correspondingly, we have

ðA17Þ

This emphasizes again a structural difference to standard
metric-based calculations—since is dimensionless, such
commutator formulas involve shifts by constants instead of
shifts by curvatures. In complete analogy, for a vector, we
have

Cμν
αβ ¼ −δμαδνβ −

2

d − 1
δμ

βδν
α þ 2

d − 1
RμνЯαβ; ðA18Þ

which gives

ðA19Þ

We shall not give the formula for a rank two tensor, since it is rather lengthy. The formula can be found in theMathematica
notebook attached to this work.
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