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In this paper we discuss a nonrelativistic system at large charge in a regimewhere Schrödinger symmetry
is slightly broken by an explicit mass term for the dilaton field which nonlinearly realizes nonrelativistic
scale invariance. To get there, we first develop the large-charge formalism from the linear sigma model
perspective, including the harmonic trapping potential necessary for the nonrelativistic state-operator
correspondence. As a signature of the explicit breaking, we identify a

ffiffiffiffi
Q

p
logQ term, which depending on

the space dimension is either of the same order as the effects coming from the breakdown of the EFT at the
edge of the particle cloud, or can be distinguished from these effects over a large range of orders of
magnitude.
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I. INTRODUCTION

Working in a sector of large global charge has in recent
years proven to be a powerful tool to access strongly
coupled systems which were previously inaccessible to
analytic methods [1–5]. The large charge appears as a
controlling parameter in a perturbative expansion, allowing
the calculation of physical observables. The spontaneous
symmetry breaking due to the classical ground state at large
charge gives rise to Goldstone degrees of freedom (DOF) in
terms of which the effective action governing the low-
energy physics can be expressed.
This approach has been used mostly in the context of

conformal field theories (CFTs), where the space-time
symmetry gives rise to strong constraints on the form of
the correlators themselves and the terms appearing in the
effective action. The strength of working at large charge lies
in the fact that the Wilsonian effective action compatible
with the symmetries can be truncated after a few terms,
since further terms are suppressed by inverse powers of the
large charge. The state-operator correspondence of CFT
[6,7] moreover simplifies the calculation of the operator
dimension of the lowest operator of a given charge Q,
which corresponds to the energy of the ground state in the
sector of fixed charge Q.
A first attempt to go beyond the conformal regime was

made in [8,9], where Coleman’s dilaton dressing [10] was

used as a mechanism to explicitly break conformality in a
controlled way by giving the dilaton field a (fine-tuned)
small mass term.
It has been shown that also nonrelativistic systems with

Schrödinger symmetry (also called nonrelativistic CFTs),
realized in the lab by the unitary Fermi gas [11], lend
themselves to the treatment at large charge [12–14].1 While
the constraints on the correlators are less stringent than in
CFT, the effective action at large charge can be written
down following the same approach as for CFTs, combining
the constraints from Schrödinger symmetry and the large-
charge scaling. Also, the state-operator correspondence has
its analog in nonrelativistic systems, where the role of the
cylinder frame is played by a harmonic potential of strength
ω, which traps the particle cloud [17,18], so that the
conformal dimensions in the plane are proportional to
the energies in the trap:

Δ ¼ E
ℏω

: ð1:1Þ

In this paper, we aim to extend the large-charge approach
to systems with near-Schrödinger dynamics, following the
path marked out by Coleman. We proceed analogously to
[8], by first nonlinearly realizing Schrödinger symmetry in
a system with Galilean symmetry via a dilaton dressing.
When we consider our system on a compact space (e.g.,

on the torus) or in a trapping potential, fixing the charge
gives rise to spontaneous symmetry breaking and the low-
energy physics is encoded by the corresponding Goldstone
boson, even if the original system is strongly coupled. If we
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work on the torus (but without a trapping potential), we can
start from a Lagrangian with Galilean symmetry of the form

L ¼ −k0 þ k1

�
_χ −

ℏ
2m

ð∂ iχÞ2
�
þ � � � ; ð1:2Þ

where χ is a Goldstone boson and dress operators of
dimension k using the newly introduced dilaton field σ:

Okðt; xiÞ → e
2ðk−d−2Þ

d fσðt;xiÞOkðt; xiÞ: ð1:3Þ

This leads to the Schrödinger-invariant action

LðψÞ ¼ c0

�
i
2
ðψ�∂ tψ − ψ∂ tψ�Þ − ℏ

2m
∂ iψ�∂ iψ

�

−
ℏc1
2m

e−2fσð∂ iσÞ2 −
ℏc2
mℏ

2
d

ðψ�ψÞdþ2
d ð1:4Þ

in terms of the complex field ψ ¼ 1
f e

−fσ−iχ.
Since we want to keep working in the linear sigma

model (LSM), we rederive the large-charge results of the
Schrödinger system in the harmonic trap of [13] in this
formalism, where we also keep track of next-to-leading-
order (NLO) terms. We find for the operator dimension of
the lowest state of charge Q

Δ ¼
� 2

3
ξQ3

2 þOðQ1
2 logQÞ ðd ¼ 2Þ

3
4
ξQ4

3 þ 27
8ξ

c1
c0
· Q

2
3 þOðQ5

9Þ ðd ¼ 3Þ;
ð1:5Þ

where ξ is a constant of order 1. We additionally compute
the Casimir energy of the fluctuations over the ground state
which in d ¼ 2 is given by

Eðd¼2Þ
Cas ¼ −0.294159… × ω: ð1:6Þ

Next, we want to investigate a small departure from
Schrödinger symmetry. The mechanism we use consists in
giving the effective field theory (EFT) dilaton a small mass
mσ. We calculate the ground-state energy in presence of this
breaking term and the correction to the scaling dimension
of the lowest operator with charge Q:

Δ̃¼
� 2

3
ξQ3

2 þOðQ1
2 logQÞ ðd¼ 2Þ

3
4
ξ̃Q4

3 þ 27
8ξ̃

c1
c0
· Q

2
3 − κm2

σ
ξ̃3=2

ffiffiffiffi
Q

p
logðQÞ þOðQ5

9Þ ðd¼ 3Þ;
ð1:7Þ

where κ is an order-one coefficient.
One of the big stumbling blocks we encounter is our

ignorance of the contributions of the edge of the particle
cloud in the harmonic potential to the effective action,
forcing us to work with estimates instead. In fact, in d ¼ 2,
the signature of the dilaton mass is of the same order as the

uncertainty due to the cloud edge. The edge operators
appearing in the EFT have been addressed in [19], but alas
too late to be of use to us in this work. A discussion of our
problem based on the edge EFT should be attempted in the
future.
This note is organized as follows. In Sec. II, we discuss

the dilaton dressing to nonlinearly realize the full
Schrödinger symmetry in a system with Galilean invari-
ance. In Sec. III, we rederive the results on Schrödinger-
invariant systems at large charge from [12,13] in the LSM
to set the stage for the near-Schrödinger case. Based on the
interpretation of the radial mode as a dilaton, we then add a
small explicit mass term for the dilaton which explicitly
breaks Schrödinger symmetry and calculate the corrections
arising from this breaking to the large-charge results
(Sec. IV). In Sec. V, we discuss our results and further
research directions.

II. NONLINEAR REALIZATION OF
SCHRÖDINGER SYMMETRY

We consider a Schrödinger-symmetric system with a
complex scalar field in dþ 1 dimensions and a global U(1)
symmetry that we interpret as the particle number. We
know that in a sector of fixed charge, the ground state
spontaneously breaks the global symmetry, giving rise to a
Goldstone field χ in terms of which we want to write down
an effective action.
We proceed in analogy to Coleman [10], starting with a

quadratic, Galilean-invariant action for the Goldstone χ. We
then nonlinearly realize the full Schrödinger symmetry by
introducing a dilaton field and dressing appropriately all the
operators in the Lagrangian. To our knowledge, the closest
attempt in this direction was made in [15]. More recently,
also [16] suggested the same idea.
The Galilean algebra is generated by (time and space)

translations, rotations and Galilean boosts (uniform motion
with velocity v⃗). It can be centrally extended by the particle
number generator. Together with the nonrelativistic scale
translation,

ðt; xiÞ → ðt0; x0iÞ ¼ ðe2τt; eτxiÞ; ð2:1Þ

where τ is a real parameter, and nonrelativistic special
conformal transformation (SCT),

ðt; xiÞ → ðt0; x0iÞ ¼
�

t
1þ λt

;
xi

1þ λt

�
; ð2:2Þ

with λ a real parameter, it forms the Schrödinger algebra
(for more details see e.g., the Appendix of [12]).
As explained in the Introduction, the physics at fixed

charge is described by a Goldstone boson χ. We start out
with the most general nonrelativistic action for χ invariant
under Galilean symmetry expressed as function of the
quantity
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U ¼ ∂ tχ −
ℏ
2m

∂ iχ∂ iχ; ð2:3Þ

where m is a mass parameter. This function FðUÞ can be
expanded in a Taylor series. The first terms read

FðUÞ¼−k0þk1Uþk2U2þ�� �

¼−k0þk1

�
_χ−

ℏ
2m

ð∂ iχÞ2
�

þk2

�
_χ2−

ℏ
m
_χð∂ iχÞ2þ

ℏ2

4m2
ð∂ iχÞ4

�
þ�� � : ð2:4Þ

As discussed in [12,13] (see also [20]), in the large-charge
limit we can limit ourselves to the k0- and k1-terms, since
the higher-order terms are parametrically smaller. Note that
the coefficients are dimensionful:

½ki� ¼ ML2−dTi−2: ð2:5Þ
In order to promote this Lagrangian to a scale-invariant one,
we introduce (in parallel to the construction of Coleman in
the relativistic case [10]) a new field σ—the dilaton—
which transforms nonlinearly under nonrelativistic scale
transformations (2.1) as

σðt; xiÞ → σðt; xiÞ þ
d
2f

τ; ð2:6Þ

where f is a constant with units ½f−1� ¼ ½σ� ¼ M
1
2L

2−d
2 T−1

2.
Any operator Ok of dimension k can be dressed with an
appropriate power of σ to become scale invariant:

Okðt; xiÞ → e
2ðk−d−2Þ

d fσðt;xiÞOkðt; xiÞ: ð2:7Þ
In particular, the constant operator should be dressed as

k0 → k0e−
2ðdþ2Þ

d fσ. The k1-term has engineering dimension 2.
Hence, a fully Schrödinger-invariant Lagrangian has the
structure

L¼−
ℏκ
2m

e−2fσð∂ iσÞ2þ e−
2ðdþ2Þ

d fσFðe4dfσUÞ

¼−
ℏκ
2m

e−2fσð∂ iσÞ2−k0e−
2ðdþ2Þ

d fσþk1e−2fσUþ�� � ð2:8Þ

Note that we have included a kinetic term for the dilaton
(together with a new coefficient κ with ½κ� ¼ ½k1�) that
respects Schrödinger invariance. We do not include time
derivatives of σ as they would break boost invariance [15].
It is convenient to combine the fields σ and χ into a
complex field2

ψ ¼ 1

f
e−fσ−iχ: ð2:9Þ

In terms of ψ the Lagrangian becomes

LðψÞ ¼ c0

�
i
2
ðψ�∂ tψ − ψ∂ tψ�Þ − ℏ

2m
∂ iψ�∂ iψ

�

−
ℏc1
2m

e−2fσð∂ iσÞ2 −
ℏc2
mℏ

2
d

ðψ�ψÞ2dþ1; ð2:10Þ

where the dimensionless (Wilsonian) coefficients ci depend
on the previous coefficients through

c0¼ f2k1; c1 ¼ κ− f2k1; c2 ¼
m
ℏ2

ðℏf2Þ2dþ1k0: ð2:11Þ

Higher-derivative terms would correspond to allowing
higher-order terms in Eq. (2.4). This Lagrangian is fully
symmetric under the Schrödinger group, including special
conformal transformations Eq. (2.2), provided that the
fields transform as [12,15]

8<
:

σðt; xiÞ →
SCT

σðt; xiÞ − d
2f lnð1þ λtÞ

χðt; xiÞ →
SCT

χðt; xiÞ þ m
2ℏ

λx⃗2
1þλt :

ð2:12Þ

This yields the usual transformation law for ψ in the
Schrödinger model [12,21]. Hence, L coincides with the
Schrödinger Lagrangian together with a kinetic term for
the dilaton. Note that invariance of the c0-term is ensured
by the fact that the time derivative transforms nontrivially
under Eq. (2.2): ∂ t → ð1þ λtÞ2∂ t þ λð1þ λtÞxi∂ i. Indeed,
it decomposes into

i
2
ðψ� _ψ − ψ _ψ�Þ

→ ð1þ λtÞdþ2

�
i
2
ðψ� _ψ − ψ _ψ�Þ þ m

2ℏ
λ2x⃗2

ð1þ λtÞ2 ψ
�ψ

þ iλxi
2ð1þ λtÞ ðψ

�∂ iψ − ψ∂ iψ�Þ
�

ð2:13Þ

and

ℏ
2m

j∂ iψj2 → ð1þ λtÞdþ2

�
ℏ
2m

j∂ iψj2 þ
m
2ℏ

λ2x⃗2

ð1þ λtÞ2 ψ
�ψ

þ iλxi
2ð1þ λtÞ ðψ

�∂ iψ − ψ∂ iψ�Þ
�
: ð2:14Þ

Subtracting the second line from the first shows the
invariance of this term under SCT. The last two terms of
Eq. (2.10) are readily seen to be invariant as they do not
contain time derivatives. For instance, invariance of the
c1-term is shown as follows:

2Note that this definition excludes ψ ¼ 0, which is not an issue
when the field ψ is considered a small fluctuation around a
nonzero vacuum expectation value (VEV). This scenario, in turn,
corresponds to turning on a nonzero charge density, which is what
we are interested in.
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e−2fσð∂ iσÞ2 → e−2fσþd lnð1þλtÞ½ð1þ λtÞ∂ iσ�2
¼ ð1þ λtÞdþ2 · e−2fσð∂ iσÞ2: ð2:15Þ

Without the kinetic term of the dilaton, integrating out
the radial mode would lead to a leading-order nonlinear
sigma model (NLSM) Lagrangian of the form U

dþ2
2 . We

expect the kinetic term of the dilaton to have the effect of
giving an NLO correction. Once we turn on a harmonic
trapping potential, we will have to distinguish the semi-
classical (bulk) contributions from the effects coming from
the boundary of the particle cloud and have to verify that
this term is indeed subleading.

III. THE SCHRÖDINGER PARTICLE
AT LARGE CHARGE

Despite the fact that time and space scale differently in
the nonrelativistic scale transformation Eq. (2.1), a number
of analogies between the relativistic and nonrelativistic
cases persist. The relativistic O(2) vector model with its
global U(1) symmetry is the simplest model one can study
at large charge [1,5], and our treatment of the nonrelativistic
Schrödinger system follows along the same lines [12,13].
Let us first recall some well-known results.
We are interested in the conformal dimension of the

lowest operator with fixed charge Q ≫ 1 corresponding to
the U(1) generator of the particle number and will compute
it using the state-operator correspondence.
In the relativistic case, this correspondence is based on

the fact thatRdþ1 (flat space) andR × SdðR0Þ (cylinder) are
related by a Weyl transformation and therefore conformally
equivalent. The conformal dimensions of operators inserted
in flat space are identified with the energies of states on the
sphere Sd via

Δ ¼ R0ESd : ð3:1Þ

The radius of the sphere R0 sets an infrared (IR) cutoff. In
the Oð2Þ model at fixed charge, the global symmetry is
spontaneously broken and the radial mode becomes mas-
sive and decouples for energies smaller than Q

1
d=R0. The

EFT is thus valid for energy scales Λ in the range

1

R0

≪ Λ ≪
Q

1
d

R0

; ð3:2Þ

which in turn requires Q ≫ 1. The natural expansion
parameter is therefore Q−1

d.
In Schrödinger systems, one can access the conformal

dimension of an operator in a similar fashion. In this case,
the corresponding IR cutoff is realized by trapping the
system in a spherical harmonic potential [17,18],

A0ðx⃗Þ ¼
mω2

2ℏ
r2; ð3:3Þ

where r ¼ jx⃗j and ω > 0 defines the strength of the
potential. The energy spectrum of the trapped system is
isomorphic to the set of conformal dimensions of operators
inserted in flat space without the trap, i.e.,

Δ ¼ 1

ℏω
Eharm: ð3:4Þ

The harmonic potential confines the particles in a spherical
cloud at the edge of which the charge density falls rapidly
to zero. The bulk EFT description is thus limited by our
ignorance of what happens in this region where quantum
effects become important in the form of IR divergences that
need to be regularized. This naturally sets an IR length-
scale cutoff called the cloud radius,

Rcl ¼
ffiffiffiffiffiffiffiffiffi
2ℏμ
mω2

r
; ð3:5Þ

which measures the distance from the center of the cloud to
where the semiclassical number density vanishes. μ is a
parameter that will appear in the ground-state solution at
fixed charge and is interpreted as a charge-dependent
chemical potential μ ≈ Q1=d. The fixed-charge EFT also
has an ultraviolet (UV) cutoff associated with the breaking
of the Schrödinger symmetry. This sets the scale beyond
which the gapped radial mode decouples, namely

Rμ ¼
ffiffiffiffiffiffiffi
2ℏ
mμ

s
: ð3:6Þ

The EFT is therefore valid in a regime where

Rcl ≫ r ≫ Rμ ¼
ω
μ
Rcl; ð3:7Þ

which requires μ ≫ ω. Hence, the natural expansion
parameter is ϵ ¼ ω

μ and this will turn out to be ∼Q−1
d (to

leading order), just as before. Remarkably, this leads to the
same leading-order dependence on Q for the conformal
dimension of the lowest operator at large charge as in the
relativistic case:

Δ ∼ Q
dþ1
d : ð3:8Þ

One of the main differences to the relativistic case, though,
is the explicit space-dependence of the ground-state sol-
ution due to the harmonic trap. Crucially, the bulk EFT
description breaks down near the edge of the cloud, where
the density of the particle cloud falls off. This effect should
be compensated by a boundary EFT which captures
contributions from the edge states [19]. In absence of an
effective boundary Lagrangian, we have to rely on esti-
mates of the contribution of the droplet edge, follow-
ing [20].
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A. Semiclassical results

Let us now turn to explicit computations. In view of
adding a mass term for the dilaton later on, we work in the
LSM which explicitly contains the massive mode. We thus
consider the Lagrangian (2.10) coupled to the harmonic
potential,

LðψÞ ¼ c0

�
i
2
ðψ�ðDtψÞ − ψðDtψÞ�Þ −

ℏ
2m

j∂ iψj2
�

−
ℏc1
2m

e−2fσð∂ iσÞ2 −
ℏc2
mℏ

2
d

ðψ�ψÞ2dþ1; ð3:9Þ

where the harmonic potential appears through the covariant
time-derivative Dt ¼ ∂ t − iA0ðx⃗Þ. The charge density cor-
responding to the global U(1) of the particle number
generator is given by

ρ ¼ c0
ℏ
ψ�ψ ð3:10Þ

and has units of L−d. This makes the total charge dimen-
sionless as it should be.
As already mentioned, the radial mode aðt;xÞ ¼

jψðt;xÞj ¼ 1
f e

−fσðt;xÞ decouples when the Schrödinger sym-
metry is broken in presence of a fixed charge density, as the
last term in Eq. (3.9) gives a mass term (that in our
conventions has dimension T−1=2) for the fluctuations. This
will be developed in detail in the next section, but we can
already think in terms of the corresponding cutoff Rμ. As it
turns out, working in the regime Eq. (3.7), the dynamics of
the massless mode χ corresponds to the description of a
nonrelativistic superfluid in a harmonic trap [13,20]. It is
most convenient to decompose the field into a radial and an
angular mode, ψðt;xÞ ¼ aðt;xÞe−iχðt;xÞ. In this notation,

Lðχ; aÞ ¼ c0a2U −
c1ℏ
2m

ð∂ iaÞ2 −
ℏc2
mℏ

2
d

a
4
dþ2; ð3:11Þ

where the time derivative in U was also promoted to a
covariant derivative Dtχ ¼ ∂ tχ − A0ðx⃗Þ so that

Uðt;xÞ ¼ Dtχ −
ℏ
2m

ð∂ iχÞ2: ð3:12Þ

For later convenience, we replace from now on the
dimensionless coupling c2 by g≡ ð4d þ 2Þ · c2, so that the
equations of motion (EOM) read

(
aðt;xÞ4dþ1 ¼ c0ℏ

2
d

g

h
2m
ℏ aðt;xÞUðt;xÞþ c1

c0
∇2aðt;xÞ

i
;

0¼ ∂ tρðt;xÞþ∂ ijiðt;xÞ;
ð3:13Þ

where

ρðt;xÞ ¼ c0
ℏ
a2; jiðt;xÞ ¼ −

ℏ
m
ρ · ∂ iχ: ð3:14Þ

The second line is the equivalent of the continuity equation
for the superfluid. Finally, the Hamiltonian density is
given by

E ¼ ℏ
2m

�
c0a2ð∂ iχÞ2 þ

2mc0
ℏ

A0ðx⃗Þa2 þ c1ð∂ iaÞ2

þ dg

ðdþ 2Þℏ2
d

a
4
dþ2

�
: ð3:15Þ

1. Ground-state solution and scales

Since the only DOF of our system are those of a complex
scalar, we do not have enough of them to also account for
Goldstone bosons arising from breaking further spatial
symmetries beyond the global U(1).3 The ground-state
solution must thus be spherically symmetric. The simplest
solution to the EOM has the form

�
aðt;xÞ ¼ vðrÞ
χðt;xÞ ¼ μt;

ð3:16Þ

where v and μ satisfy

(
vðrÞ4dþ1 ¼ c0ℏ

2
d

g

h
2m
ℏ vðrÞ · U0ðrÞþ c1

c0
· ð∂2

r vðrÞþ d−1
r ∂rvðrÞÞ

i
;

Q¼ R
ddxρ0ðrÞ ¼ c0

ℏ

R
ddxvðrÞ2;

ð3:17Þ

and U0ðrÞ is the VEV of U given in Eq. (3.12), namely

U0ðrÞ ¼ μ −
mω2

2ℏ
r2: ð3:18Þ

As explained above, the charge density ρ0ðrÞ has a non-
trivial dependence on the distance from the origin due to the
harmonic potential. However, the part of the EOM that
includes the Laplacian is a subleading contribution, which
means that at leading order, the charge density ρ0ðrÞ
vanishes when U0ðrÞ ¼ 0, as dictated by Eq. (3.17). The
distance where this occurs is called the cloud radius Rcl:

U0ðRclÞ ¼ 0 ⇒ ρ0ðRclÞ ¼ 0 ⇒ Rcl ¼
ffiffiffiffiffiffiffiffiffi
2ℏμ
mω2

r
: ð3:19Þ

It is convenient to rescale the distances with respect to Rcl
and define the adimensional quantity

3This explains the richer zoology of ground states in model
with non-Abelian symmetry, as discussed e.g., in [4,22,23].
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s ¼ r2

R2
cl

: ð3:20Þ

The boundary of the cloud corresponds to s ¼ 1. In these
terms, the measure for spherically invariant functions
becomes

Ωdrd−1dr ¼
πd
2Rd

cl

Γðd
2
Þ · s

d
2
−1ds; ð3:21Þ

where Ωd ¼ 2π
d
2

Γðd
2
Þ is the surface of a unit d-sphere.

The existence of the EFT depends on the presence of a
charge density. Clearly, it will be only valid within the
cloud r < Rcl. Near the edge of the cloud, there is however
a region where the density is so low that it cannot be used
anymore as the dominating scale. In absence of the
harmonic potential, the parameter μ (or, equivalently its
associated length scale Rμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ=ðmμÞp

) is the controlling
parameter. One possible physical interpretation for μ is as a
chemical potential or, equivalently, the result of the gauging
with a flat connection. This suggests defining an effective,
position-dependent chemical potential in terms of the
covariant derivative of χ which, on-shell, coincides with
U0ðrÞ:

μeffðrÞ ¼ Dtχ ¼ U0ðrÞ: ð3:22Þ

The EFT is valid as long as we probe length scales that are
much bigger than the associated scale [13,20]

ReffðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ℏ
mμeffðrÞ

s
: ð3:23Þ

Observing that the effective chemical potential at distances
δ ≪ Rcl from the boundary is given by

μeffðRcl − δÞ ∼mω2

ℏ
Rclδ; ð3:24Þ

we can estimate the boundary of validity of the EFT as the
distance from the origin such that Reff ≈ δ:

ReffðRcl−δÞ≈δ⇒ δ≈
ffiffiffiffi
ℏ
m

r
1

μ1=6ω1=3≈R1=3
cl R2=3

μ : ð3:25Þ

Equivalently, in terms of dimensionless quantities, the EFT
is well-defined for 0 < s < 1 − δs, where

1 − δs ¼
ðRcl − δÞ2

R2
cl

≈ 1 − 2
δ
Rcl

⇒ δs ≈
�
Rμ

Rcl

�
2=3

¼
�
ω
μ

�
2=3

¼ ϵ2=3: ð3:26Þ

As expected, the validity of the EFT depends on the scale
separation measured by the ratio

ϵ ¼ Rμ

Rcl
≪ 1: ð3:27Þ

In the next section we will see that this is precisely the
large-charge condition. The different scales introduced
above are represented in Fig. 1.
In the following we will use the ratio ϵ as the controlling

parameter in the perturbative expansion. In particular, the
EOM for v now reads

�
v
vLO

�4
d ¼ ð1 − sÞ þ ϵ2

c1
c0

sv00 þ d
2
v0

v
; ð3:28Þ

where primes correspond to derivatives with respect to s,
and

vLO ¼
ffiffiffi
ℏ

p �
4c0
gR2

μ

�d
4 ð3:29Þ

is the VEV of the system without the harmonic potential
(i.e., ω → 0, Rcl → ∞ and s → 0). The NLO ground-state
configuration that solves this equation is given by

v¼vLOð1−sÞd4
�
1−ϵ2

c1
c0

d2

64

�
4−d

ð1−sÞ3þ
3d−4

ð1−sÞ2
�
þOðϵ4Þ

�
:

ð3:30Þ

FIG. 1. Scales Rcl and δ. The blue line represents the charge
density as a function of r, the orange line represents the effective
length Reff that bounds the validity of the EFT description. The
distance δ marks the point where the scale that we want to probe
becomes of the same order as Reff and the EFT cannot be trusted
anymore.
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As expected, the term ∝ c1 gives a semiclassical suble-
ading correction. However, it diverges at the cloud edge
1 − s ≈ δs because

ϵ2

ð1 − sÞ3 ≈
ϵ2

δ3s
≈ 1 ð3:31Þ

which shows explicitly that the perturbative expansion
breaks, since the putative first-order term is comparable
to the zeroth-order one. The breakdown of the bulk SC
means that one can only estimate any divergent behavior
occurring in this region by regularizing the integrals upon
removing the δs-layer.
Physical quantities will have in general the same type of

expansion in ϵ. In the case of extensive quantities, obtained
as integrals of densities, such as the charge or the energy,
the dependence on ϵ will come both from the perturbative
expansion and from the ϵ-dependence of the boundary of
integration in the radial direction.

2. The charge and the ground-state energy density

Our goal is to express the physical quantities of our
problem as perturbative expansions in terms of the inverse
charge, which we consider fixed and small. For ease of
computation, it is however convenient to use a fixed
chemical potential μ and then express μ as function of Q
at the end.
The ground-state charge density is related to the chemi-

cal potential μ through ρ0 ¼ c0
ℏ v

2, i.e.,

ρ0 ¼ ρLO · ð1 − sÞd2
�
1 − ϵ2

c1
c0

d2

32

�
4 − d

ð1 − sÞ3 þ
3d − 4

ð1 − sÞ2
�

þOðϵ4Þ
�
; ð3:32Þ

where the leading-order term

ρLO ¼ c0

�
4c0m
2ℏg

μ
�d

2 ð3:33Þ

is the ground-state charge density without the harmonic
trap. Integrating the charge density over the volume will tell
us how the chemical potential is related to the charge
Q ≫ 1, although nonphysical divergences appear on the
way and would need to be regulated. More explicitly,
we get

Q¼ c0Ωd

ℏ

Z
Rcl

0

drrd−1vðrÞ2¼QLO½1− IdivþOðϵ4Þ�; ð3:34Þ

where the leading term QLO is defined through4

QLO ¼ 1

ðξ · ϵÞd ¼
1

ξd
·

�
μ
ω

�
d
; ð3:35Þ

and ξ ¼
ffiffiffiffiffiffiffi
g

4πc0

q
½2ΓðdÞ
c0Γðd2Þ

�1d is a constant of order one. The

divergent part Idiv that needs to be regularized is given by

Idiv ¼ ϵ2
c1
c0

d2ΓðdÞ
16Γ2ðd

2
Þ
Z

1

0

ds s
d
2
−1
�

4 − d

ð1 − sÞ3−d
2

þ 3d − 4

ð1 − sÞ2−d
2

�
:

ð3:36Þ

One has to bear in mind that Q is our physical control
parameter and the above divergence has to be understood as
a divergence in the expression of the chemical potential as a
function of the charge. Conveniently, the leading-order
terms are not sensitive to IR physics, which allows us to
write a self-consistent EFT, dominated by a semiclassical
configuration. We can therefore conclude that

ϵ ¼ ω
μ
∼ Q−1

d: ð3:37Þ

This implies that the condition ϵ ¼ Rμ=Rcl ¼ ω=μ ≪ 1 is
indeed equivalent to the large-charge condition Q ≫ 1.
The parameter ω defining the strength of the harmonic
potential can be regarded as fixing the units, so we should
therefore think of μ ∼ Q

1
d itself as a large parameter, just as

in the relativistic case.
Finally, while the divergences can be cured by the

addition of counterterms [19], here we will content our-
selves with a qualitative description by merely removing
the small δs-layer [Eq. (3.26)] at the edge of the cloud from
the domain of integration and estimate the Q-behavior of
the contribution of the cutoff region. The divergent integral
Eq. (3.36) thus behaves like

Idiv ∼
�
OðQ−2

3Þ d ¼ 2;

OðQ−5
9Þ d ¼ 3:

ð3:38Þ

Similarly, we can compute the ground-state energy
density. Because the VEV of the angular mode is space-
independent, the expression Eq. (3.15) of the energy
density can be expressed as

E0 ¼
d

dþ 2

2c0ℏ
mR2

μ
v2
��

1þ ϵ2
c1
c0

�
v0

v

�
2
��

1þ 2

d

�
· s

þ
�

v
vLO

�4
d
�
; ð3:39Þ

into which we can now plug the expression Eq. (3.30) of v
to get

4The constant ξ is introduced here in analogy with the notation
of [13].
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E0 ¼ ELOð1 − sÞd2
�
1þ 2s

d
− ϵ2

c1
c0

dðdþ 2Þ
32

×

�
4 − d

ð1 − sÞ3 þ
3d − 4 − 2s
ð1 − sÞ2

�
þOðϵ4Þ

�
; ð3:40Þ

where the leading-order term is given by

ELO ¼ d
dþ 2

gℏ2

2m

�
4c0
gR2

μ

�d
2
þ1

: ð3:41Þ

Here again, we stress that the leading-order term is not
sensitive to the IR behavior, which means the results can be
trusted. Integrating over the volume, we will obtain the
conformal dimension of the lowest operator at large charge
in the next section.

3. Operator dimensions

By virtue of the state-operator correspondence, the
conformal dimension of the lowest operator at fixed charge
is related to the total energy of the ground state with the
harmonic trap by:

Δ ¼ E0

ℏω
¼ m

2ℏ2
RclRμ · E0; ð3:42Þ

where E0 is the integral over the cloud of the ground-state
energy density Eq. (3.40), and this yields the leading term
of Δ to be of order ϵ−ðdþ1Þ ∼ Q

dþ1
d :

Δ¼ d
dþ1

ξQdþ1
d þQ

d−1
d ·

c1
ξc0

·
d2ΓðdÞ
8Γ2ðd

2
Þ
Z

1

0

ds
s
d
2

ð1−sÞ2−d
2

: ð3:43Þ

The leading-order dependence of the conformal dimension
on Q is thus exactly as in the relativistic case. The second
term is divergent in d ¼ 2 and turns into an OðQ1

2 logQÞ
contribution when regulated, while the d ¼ 3 case is well
behaved. It should be noted, though, that our derivation
does not allow for an explicit estimation of higher-order
corrections because powers and/or logarithms of Q can
a priori arise when regularizing the diverging integrals, but
it is known that the next contributions are of order Q

5
9 in

d ¼ 3 [20]. We therefore conclude that

Δ ¼
� 2

3
ξQ3

2 þOðQ1
2 logQÞ ðd ¼ 2Þ

3
4
ξQ4

3 þ 27
8ξ

c1
c0
· Q

2
3 þOðQ5

9Þ ðd ¼ 3Þ:
ð3:44Þ

The above results were first derived in [13], but using the
NLSM which was obtained via the coset construction. We
on the other hand have worked exclusively with the LSM.
The explicit appearance of the dilaton field in our formal-
ism allows us to move away from the conformal point by
introducing a small dilaton mass (see Sec. IV). This would

have been less transparent in a NLSM were the massive
radial mode is integrated out.

B. The Goldstone field

1. The fluctuation spectrum

Now that we have computed the semiclassical contribu-
tion to the conformal dimensions, we can discuss the
effect of the quantum fluctuations. In order to derive the
dispersion relations, let us consider small (normalized)
fluctuations σ̂ and χ̂ around the ground-state:

8<
:

χðt;xÞ ¼ μ · tþ χ̂ðt;xÞffiffiffi
c0

p
vLO

;

fσðt;xÞ ¼ fσ0ðsÞ − σ̂ðt;xÞffiffiffi
c0

p
vLO

;
ð3:45Þ

where fσ0ðsÞ ¼ − logðfvðsÞÞ. In particular, the radial mode

now reads aðt;xÞ ¼ vðsÞe
σ̂ðt;xÞffiffiffi
c0

p
vLO . By plugging these expres-

sions into the Lagrangian (3.11), we first get the constant
measuring the leading effect, plus some terms linear in the
fluctuations that are canceled on shell. Next, we get the
Lagrangian quadratic in the fluctuations, which is given (up
to a boundary term) by

Lð2Þ ¼
�
vðsÞ
vLO

�
2
�
2σ̂ _̂χ−

ℏ
2m

�
ð∂ iχ̂Þ2þ

c1
c0
ð∂ iσ̂Þ2

�
−
1

2
m2

σðsÞσ̂2
�
:

ð3:46Þ

Due to the breaking of the Uð1Þ, there is a space-dependent
effective mass term m2

σðsÞ for the dilaton, which is given by

m2
σðsÞ¼m2

LOð1− sÞ
�
1− ϵ2

c1
c0

dðdþ1Þ
16

�
4−d

ð1− sÞ3þ
3d−4

ð1− sÞ2
�

þOðϵ4Þ
�
; ð3:47Þ

where m2
LO ¼ 16ℏ

dmR2
μ
was obtained in [12] without the

harmonic trap. This shows explicitly that the scale at which
the radial mode decouples is set by Rμ. The EOM are
given by

8<
:

_̂χ ¼ 1
2
m2

σðsÞσ̂ − ℏ
2m

c1
c0

h
∇2σ̂þ 2∂ iv

v ∂ iσ̂
i
;

_̂σ ¼ ℏ
2m

h
∇2χ̂þ 2∂ iv

v ∂ iχ̂
i
:

ð3:48Þ

Since the system is linear and spherically invariant, we can
look for a basis of solutions separating the variables as
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χ̂ ¼ eðΛþϵ2c1c0λÞiωt
�
FðsÞ þ ϵ2

c1
c0
fðsÞ

�
Yl;

σ̂ ¼ eðΛþϵ2c1c0λÞiωtϵ
�
HðsÞ þ ϵ2

c1
c0
hðsÞ

�
Yl; ð3:49Þ

where Yl is the spherical harmonic in (d − 1)-dimensions,
and Λ and λ have the interpretation of energies and are
constants. Note that the leading behavior is captured by the
parameter Λ and the functions FðsÞ and HðsÞ, while
subleading corrections are described by λ, fðsÞ and hðsÞ.
The linearized EOM Eq. (3.48) can thus be separated into
two parts. To order Oð1Þ, we get

� iΛFðsÞ ¼ 4ð1−sÞ
d HðsÞ

iΛHðsÞ ¼ sF00ðsÞ þ dð1−2sÞ
2ð1−sÞ F

0ðsÞ − lðlþd−2Þ
4s FðsÞ;

ð3:50Þ

while the Oðϵ2Þ-pieces of the EOM is given by

8>>>>>>>><
>>>>>>>>:

iλFðsÞ þ iΛfðsÞ ¼ 4ð1−sÞ
d hðsÞ − sH00ðsÞ − dð1−2sÞ

2ð1−sÞ H
0ðsÞ

þ
h
lðlþd−2Þ

4s − dþ1
4

	
4−d

ð1−sÞ2 þ 3d−4
1−s


i
HðsÞ;

iλHðsÞ þ iΛhðsÞ ¼ sf 00ðsÞ þ dð1−2sÞ
2ð1−sÞ f

0ðsÞ − lðlþd−2Þ
4s fðsÞ

− d2
32

	
12−3d
ð1−sÞ4 þ 6d−8

ð1−sÞ3


sF0ðsÞ:

ð3:51Þ

The two leading-order equations can be combined into

0 ¼ EΛðFÞ

≡ F00ðsÞ þ dð1 − 2sÞ
2sð1 − sÞ F

0ðsÞ

þ
�

dΛ2

4sð1 − sÞ −
lðlþ d − 2Þ

4s2

�
FðsÞ: ð3:52Þ

This is a hypergeometric equation with a well-known
solution.5 Imposing regularity at the singular points s¼0
and s ¼ 1 constrains the spectrum Λ to take the form

Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n
d
ðnþ l − 1Þ þ 4nþ l

r
; ð3:53Þ

where n ¼ 0; 1;…;∞, and l ∈ Z for d ¼ 2 and l ∈ N0 for
d > 2. Considering the equations for the NLO, one finds

EΛðfÞ¼−λ
dΛ

2sð1− sÞFðsÞþ
d2

32

�
12−3d
ð1− sÞ4þ

6d−8

ð1− sÞ3
�
F0ðsÞ

þ idΛ
4ð1− sÞ

�
H00ðsÞþdð1−2sÞ

2sð1− sÞH
0ðsÞ

þ
�
dþ1

4s

�
4−d

ð1− sÞ2þ
3d−4

1− s

�
−
lðlþd−2Þ

4s2

�
HðsÞ

�
:

ð3:54Þ

This equation admits regular solutions if and only if the
right-hand side has poles of order at most one in s ¼ 0, 1.
However, around s ¼ 1 we find

EΛðfÞ ¼
dðFð1Þðd3 þ d2 − 4d − 16ÞΛ2 − 6dðd − 4ÞF0ð1ÞÞ

64ðs − 1Þ4

þO
�

1

ðs − 1Þ3
�
; ð3:55Þ

and since F and F0 are regular and nonvanishing at the edge,
we see that there is a pole of order four in s ¼ 1. This is
again a manifestation of the edge singularity which needs to
be renormalized. Without the explicit form of the counter-
term we can only say that the spectrum will receive a
correction at Oðϵ2Þ.

2. Casimir energy

The first quantum correction to the semiclassical result
comes from the Casimir energy of the fluctuations over the
fixed-charge ground state. Using the Coleman–Weinberg
formula and the spectrum in Eq. (3.53) we find

ECas ¼
ω
2

X
n;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n
d
ðnþ l − 1Þ þ 4nþ l

r
: ð3:56Þ

This series is clearly divergent and needs to be regularized.
One can use for example the zeta-function regularization
and write (for d ¼ 2):

Eðd¼2Þ
Cas ¼ ωE2ðsÞ

���
s¼−1

2

¼ ω
2

X∞
n¼0;l¼−∞
ðn;lÞ≠ð0;0Þ

�
2

�
nþ 1

2

��
nþ jlj þ 1

2

�
−
1

2

�
−s
����
s¼−1

2

:

ð3:57Þ
The idea is to rewrite this expression in terms of a
multivariate zeta function [24]

ζðs1; s2Þ ¼
X

n1>n2≥1

1

ns11 n
s2
2

ð3:58Þ

that can be analytically continued to a meromorphic
function on C2 [25].5See e.g., [13].
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First we use the binomial expansion

E2ðsÞ ¼
1

2sþ1

X
n;l

X∞
k¼0

�−s
k

��
−
1

4

�
k
�
nþ 1

2

�
−s−k

×

�
nþ lþ 1

2

�
−s−k

¼
X
n;l;k

en;l;kðsÞ ð3:59Þ

and separate the summing region into three parts (see
Fig. 2):

I ¼ fðn; lÞjn ¼ 0; l ∈ Ng ð3:60Þ

II ¼ fðn; lÞjn ∈ N; l ∈ Ng ð3:61Þ

III ¼ fðn; lÞjn ∈ N; l ¼ 0g: ð3:62Þ

The sum becomes

E2ðsÞ ¼ 2EI
2ðsÞ þ 2EII

2 ðsÞ þ EIII
2 ðsÞ; ð3:63Þ

where

EI
2ðsÞ ¼

X∞
l¼1

X∞
k¼0

en;l;kðsÞ

¼ 1

2sþ1

X∞
k¼0

�−s
k

�
ð−1Þk2s−kζH

�
sþ k

���� 32
�
; ð3:64Þ

EIII
2 ðsÞ ¼

X∞
n¼1

X∞
k¼0

en;l;kðsÞ

¼ 1

2sþ1

X∞
k¼0

�−s
k

��
−
1

4

�
k
ζH

�
2sþ 2k

���� 32
�

ð3:65Þ

and ζHðsjxÞ is the Hurwitz zeta function

ζHðsjxÞ ¼
X∞
n¼0

1

ðsþ xÞs

¼
X∞
k¼0

�−s
k

�
ðx − 1Þkζðsþ kÞ: ð3:66Þ

In the region II ¼ fn > 1; l > 1g we can write the sum in
terms of the multivariate Hurwitz zeta function [26]

ζHðs1; s2jx1; x2Þ ¼
X

n1>n2≥1

1

ðn1 þ x1Þs1ðn2 þ x2Þs2
ð3:67Þ

as

EII
2 ðsÞ ¼

1

2sþ1

X∞
k¼0

�−s
k

��
−
1

4

�
k
ζH

�
sþ k; sþ k

���� 12 ; 12
�

ð3:68Þ

or then apply the binomial expansion twice and write

EII
2 ðsÞ ¼

1

2sþ1

X∞
k;j1;j2¼0

�−s
k

��
−
1

4

�
k
�−s − k

j1

��−s − k

j2

�

×

�
1

2

�
j1þj2

ζðsþ kþ j2; sþ kþ j1Þ: ð3:69Þ

The factor in front of the zeta function in the sum is
symmetric under the exchange j1 ↔ j2, so we can use the
reflection identity [24]

ζðs1; s2Þ þ ζðs2; s1Þ ¼ ζðs1Þζðs2Þ − ζðs1 þ s2Þ ð3:70Þ

and rewrite EII
2 ðsÞ as

EII
2 ðsÞ¼

1

2sþ2

X∞
k¼0

�−s
k

��
−
1

4

�
k
�
ζH

�
sþk

����32
�

2

−
X∞
j1;j2¼0

�−s−k

j1

��−s−k

j2

�
1

2j1þj2
ζð2sþ2kþ j1þ j2Þ

�
:

ð3:71Þ

The sums in EII
2 ðsÞ and EIII

2 ðsÞ have poles in s ¼ −1=2,
respectively with residue

ffiffiffi
2

p
=16 and −

ffiffiffi
2

p
=8, because they

both include ζð1Þ. The fact that the two poles cancel in
E2ðsÞ is a nice confirmation of our chosen regularization.

FIG. 2. Decomposition of the summing region. The summand
is symmetric under the exchange l → −l.
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The final series can be evaluated numerically, since it
converges very rapidly, to find

Eðd¼2Þ
Cas ¼ ωE2

�
−
1

2

�
¼ −0.294159… × ω: ð3:72Þ

Note that this contribution, which is Q-independent, is
parametrically smaller than the estimated behavior of the
boundary term in Eq. (3.44). The same approach can be
used in higher dimensions, however, generically the zeta
function has a pole at s ¼ −1=2 which would need to be
regularized with appropriate counterterms.

IV. NEAR-SCHRÖDINGER DYNAMICS
AT LARGE CHARGE

After carefully developing the large-charge results for
the Schrödinger particle in the harmonic trap, we now
extend our treatment to the near-Schrödinger regime by
giving a small mass to the dilaton which explicitly breaks
Schrödinger invariance.

A. Explicit breaking of Schrödinger invariance

We first present the general construction of a potential
for the dilaton that explicitly breaks scale invariance as first
proposed by Coleman [10]. In a relativistic (z ¼ 1) or
nonrelativistic (z ≠ 1) theory in (dþ 1)-dimensions, the
dilaton transforms nonlinearly under scale transforma-
tions as

σðt; xiÞ → σðe2τt; eτxiÞ −
dþ z − 2

2f
τ; ð4:1Þ

where f is a constant of dimension ½f−1� ¼ ½σ� ¼ ½a�, and
a ∼ 1

f e
−fσ corresponds to the radial mode and is canonically

normalized. As discussed in Sec. II, any local operator can
be made scale-invariant by dressing it with an appropriate
power of the dilaton. In particular, a constant operator is
dressed as c → ce−2ηfσ, where

η ¼ dþ z
dþ z − 2

: ð4:2Þ

This gives a scale-invariant potential for the dilaton (or,
equivalently, for the radial mode). Coleman’s potential
consists of such a term whose constant c is small (in a sense
that is explained below) and an additional scale-symmetry
breaking piece which gives rise to a mass term for σ,
namely

UC ¼ m2
σ

4η2f2
½e−2ηfσ þ 2ηfσ − 1�

¼ m2
σ

4η2f2
½ðfaÞ2η − 2η logðfaÞ − 1�: ð4:3Þ

mσ is a small parameter that we will refer to as the dilaton
mass, although ½m2

σ� ¼ T−1 in the nonrelativistic case. In
fact, to quadratic order,

UC ≈
1

2
m2

σσ2: ð4:4Þ

The linear piece inσ is needed to eliminate the tadpole hidden
in the exponential, and ends up giving the most important
contribution. This will play an important role in Sec. IV C.
In order to understand in what sense mσ needs to be

small, consider an effective theory that originally contains a
scale-invariant potential of the form λua2η, where λ ∼Oð1Þ
is a Wilsonian coefficient and u keeps track of factors of ℏ
and others, if needed. The addition of Coleman’s potential
UC should be a small deviation from the original theory,
which means we should fine tune

f2ðη−1Þ

u
m2

σ ≪ 1: ð4:5Þ

Finally, let us comment on the trace of the stress tensor.
Although the breaking of scale invariance is very explicit due
to the last two terms in Coleman’s potential, we can actually
quantify how muchwe break it. Indeed, classically, the trace
of the stress tensor does no longer vanish but equals6

T ¼ dþ z − 2

2

m2
σ

f
σ: ð4:6Þ

B. Semiclassical analysis

We now specialize to z ¼ 2 and η ¼ dþ2
d , and we couple

the Lagrangian (3.11) to Coleman’s potential,

L̃ ¼ L − c0UC: ð4:7Þ

Let us study the scales involved in our problem. First, we
are still looking for the NLO contributions of the large-
charge expansions of the observables. Typically, we want to
write the ground-state solution up to Oðϵ4Þ and compute
the corresponding energy. Next, we associate length scales
to the parameters f and mσ, respectively:

Rf ¼ ðℏf2Þ1d and Rσ ¼
ffiffiffiffiffiffiffiffiffiffi
2ℏ
mm2

σ

s
: ð4:8Þ

In terms of those, the condition for mσ being small simply
reads Rσ ≫ Rf, and we thus define a new small expansion
parameter

6For more details on the tracelessness of the stress tensor in
nonrelativistic theories, we refer the reader to [21].

NEAR-SCHRÖDINGER DYNAMICS AT LARGE CHARGE PHYS. REV. D 103, 105018 (2021)

105018-11



ϵ̃ ¼ Rf

Rσ
∝ mσ ð4:9Þ

Inwhat follows,we shall bemerely interested in the signature
linear in the small dilaton mass in the observables. This, in
turn, means that wewill only keep track of terms of order ϵ̃2.
Note that such corrections may affect the leading and
subleading terms of the large-charge expansion.
Going back to Eq. (4.7), we can now investigate how the

new potential modifies our previous results. We first note
that the charge density is still given by ρ ¼ c0

ℏ a
2 and the

continuity equation is unaffected, but the radial mode now
has to satisfy the new EOM

�
1þ ϵ̃2

dc0
ðdþ 2Þg

�
a
4
dþ2 ¼ 2mc0ℏ

2
d

gℏ

�
a2Uþ c1

c0

ℏ
2m

a∇2a

�

þ dℏ
2
dþ1

ðdþ 2Þg
c0ϵ̃2

Rdþ2
f

: ð4:10Þ

Moreover, the energy density is simply given by

Ẽ ¼ E þ c0UC: ð4:11Þ

1. The ground-state solution

The identification of the ground-state solution ðṽ; χ0Þ for
the radial and the angular modes respectively follows along
the same line as before. Again, the limited number of DOF
prevents spherical invariance from being broken on top of
dilatations and Uð1Þ, and a minimal-energy solution
to the EOM is still given by χ0 ¼ μt and a time-independent
VEV ṽ for the radial mode. The latter, however, receives
corrections in order to solve the modified EOM Eq. (4.10)
that can be written here as

�
ṽ
ṽLO

�4
d ¼ ð1− sÞþ ϵ2

c1
c0

sṽ00 þ d
2
ṽ0

ṽ

þ
�
ϵ
α

�d
2
þ1 c0ϵ̃2

g
d

dþ 2

�
ṽLO
ṽ

�
2

þOðϵ̃4Þ; ð4:12Þ

where we have defined the constant α ¼ 2mωc0R2
f

gℏ . Moreover,
the leading-order coefficient is redefined as

ṽLO ¼ vLO

�
1 −

c0ϵ̃2

g
d2

4ðdþ 2Þ
�
: ð4:13Þ

The truncated solution reads

ṽ ¼ ṽLOð1 − sÞd4
�
1 − ϵ2

c1
c0

d2

64

�
4 − d

ð1 − sÞ3 þ
3d − 4

ð1 − sÞ2
�

þ
�

ϵ
αð1 − sÞ

�d
2
þ1 c0ϵ̃2

g
d2

4ðdþ 2Þ þOðϵ4Þ
�
; ð4:14Þ

where Oðϵ4Þ is a shorthand notation for higher-order
contributions of both ϵ and ϵ̃. The last term is well-behaved
under the δs-regularization that we introduced earlier, so
that no modification is needed when investigating the
boundary behavior of the theory. It is important to note
that the qualitative description of the breaking of Uð1Þ is
unaffected as the VEV scales like μd=4.

2. The charge and the ground-state energy density

Now that we have the correction to the ground state due
to the presence of Coleman’s potential, let us investigate
how the chemical potential μ is related to the total charge
Q ¼ c0

ℏ

R
ddxṽ2. We find that

Q ¼ Q̃LO½1 − Idiv þ Ĩdiv�; ð4:15Þ

where the leading order is given by QLO ¼ ðξ̃ϵÞ−d, similarly
to before, except for the modified parameter

ξ̃ ¼ ξ
�
1þ c0ϵ̃2

g
d

2ðdþ 2Þ
�
: ð4:16Þ

Moreover, there is yet another divergent part that, after
reguralization of the δs-layer, is given by

Ĩdiv ¼
�
ϵ
α

�d
2
þ1 c0ϵ̃2

g
d2ΓðdÞ

ðdþ 2ÞΓ2ðd
2
Þ
Z

1−δs

0

ds
s
d
2
−1

ð1 − sÞ
∼OðQ−dþ2

2d logðQÞÞ: ð4:17Þ

We can now turn to the computation of the ground-state
energy density in order to, then, express the conformal
dimension in terms of the charge. We have

Ẽ0¼ ẼLO

��
1þ2s

d

�
ð1− sÞd2

− ϵ2
c1
c0

dðdþ2Þ
32

�
4−d

ð1− sÞ3−d
2

þ3d−4−2s

ð1− sÞ2−d
2

�

þ
�
ϵ
α

�d
2
þ1 c0ϵ̃2

g
d
2

�
1

1− s
þ logϵ− log½αð1− sÞ�− 2

dþ2

�

þOðϵ4Þ
�
: ð4:18Þ

Note that the leading coefficient is now given by ẼLO ¼
ELOð1 − c0 ϵ̃2

g
d2

2ðdþ2ÞÞ. The presence of a log ϵ term that will

eventually constitute the most important contribution of
Coleman’s potential to the conformal dimension.

3. Operator dimensions

As usual, the physical observable of interest is the
scaling dimension Δ̃ of the lowest operator in the near-
Schrödinger framework. Note that, strictly speaking, the
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scaling dimension is not defined for broken Schrödinger
symmetry, but since we assume the breaking to small, we
still assume that the two-point function has a power-law
behavior and that we can estimate the putative conformal
dimensions using the state-operator correspondence:

Δ̃ ¼ m
2ℏ2

RclRμẼ0; ð4:19Þ

where the lowest energy level Ẽ0 is found integrating the
ground-state energy density over the cloud. As anticipated,
Eq. (4.18) indicates the presence of a logarithmic contri-
bution of the charge to the conformal dimension. One major
difference to the relativistic case, though, is the explicit
dependence of the domain of integration on the charge: the
volume of the cloud scales like

ffiffiffiffi
Q

p
, indicating that the

bigger the charge (particle number), the larger the cloud.
The remaining terms in the energy are just constants
multiplying the volume

ffiffiffiffi
Q

p
, and we cannot see these

contributions neither in d ¼ 2 nor in d ¼ 3. In the end,
we have

Δ̃ ¼ d
dþ 1

ξ̃Qdþ1
d þ Q

d−1
d
c1
ξ̃c0

d2ΓðdÞ
8Γ2ðd

2
Þ
Z

1

0

ds
s
d
2

ð1 − sÞ2−d
2

−
ffiffiffiffi
Q

p
logQ

ϵ̃2

αd
2
þ1

c0
gξ̃d2

2ΓðdÞ
ðdþ 2ÞΓ2ðd

2
Þ ; ð4:20Þ

which translates into

Δ̃ ¼
� 2

3
ξQ3

2 þOðQ1
2 logQÞ ðd ¼ 2Þ;

3
4
ξ̃Q4

3 þ 27
8ξ̃

c1
c0
Q

2
3 − κm2

σ
ξ̃3=2

ffiffiffiffi
Q

p
logðQÞ þOðQ5

9Þ ðd ¼ 3Þ;
ð4:21Þ

where κ ¼ ϵ̃2

α
5
2

c0
gm2

σ

16
5π. This is a purely semiclassical result.

The divergence is due only to the NLO term while the
dilaton mass contribution does not need to be regularized.
We will see that once we consider also the quantum effects,
this is no longer the case.
In d ¼ 2, the leading effect of the breaking of

Schrödinger invariance is precisely of the same order as
the expected contribution of the edge singularity and is in
this sense undetectable within the limits of this analysis. In
d ¼ 3 the situation is more involved. Assuming that all the
coefficients are of order one or smaller, there is a large
interval of values of the charge where the Q logðQÞ
associated to the dilaton mass dominates over the edge

effects that scale like Q5=9 (numerically, Q logðQÞ > Q5=9

over 34 orders of magnitude). This suggests that it might
still be possible to measure the effect of the breaking of the
Schrödinger symmetry from an independent computation
of ΔðQÞ e.g., on the lattice.

C. The Goldstone field

In order to determine how the Goldstone dynamics is
influenced by the presence of the small dilaton mass,
let us repeat the steps of Sec. III B. Normalizing the
fluctuations as

� χðt;xÞ ¼ μtþ χ̂ðt;xÞffiffiffi
c0

p
ṽLO

;

fσðt;xÞ ¼ fσ̃0ðsÞ − σ̂ðt;xÞffiffiffi
c0

p
ṽLO

;
ð4:22Þ

where fσ̃0ðsÞ ¼ − logðfṽðsÞÞ is the deformed VEV of the
dilaton, we get the Lagrangian quadratic in the fluctuations:

Lð2Þ ¼
�
ṽðsÞ
ṽLO

�
2
�
2σ̂ _̂χ−

ℏ
2m

�
ð∂ iχ̂Þ2 þ

c1
c0
ð∂ iσ̂Þ2

�

−
1

2
m̃2

σðsÞσ̂2
�
: ð4:23Þ

This is almost completely the same as before, except for the
important modification of the mass term:

m2
σðsÞ¼m2

LOð1− sÞ
�
1− ϵ2

c1
c0

dðdþ1Þ
16

�
4−d

ð1− sÞ3þ
3d−4

ð1− sÞ2
�

þ
�

ϵ
αð1− sÞ

�d
2
þ1 c0ϵ̃2

g
d
2
þOðϵ4Þ

�
: ð4:24Þ

The last term comes directly from Coleman’s potential. The
EOM are exactly the same as before with vðsÞ replaced by
the deformed VEV ṽðsÞ, and the correction due to the
dilaton mass can be captured expanding the fluctuations as

χ̂¼eðΛþðϵαÞ
d
2
þ1c0 ϵ̃

2

g λ̃Þiωt
�
FðsÞþ

�
ϵ
α

�d
2
þ1c0ϵ̃2

g
f̃ðsÞ

�
Yl;

σ̂¼eðΛþðϵαÞ
d
2
þ1c0 ϵ̃

2

g λ̃Þiωtϵ
�
HðsÞþ

�
ϵ
α

�d
2
þ1c0ϵ̃2

g
h̃ðsÞ

�
Yl; ð4:25Þ

where λ̃ encodes the correction to the leading-order
spectrum found in Sec. III B. This spectrum is constrained
by the Oðϵd2þ1Þ-pieces of the EOM, which read

8<
:

iλ̃FðsÞ þ iΛf̃ðsÞ ¼ 4ð1−sÞ
d h̃ðsÞ þ 2

ð1−sÞd2
HðsÞ

iλ̃HðsÞ þ iΛh̃ðsÞ ¼ sf̃ 00ðsÞ þ dð1−2sÞ
2ð1−sÞ f̃

0ðsÞ − lðlþd−2Þ
4s f̃ðsÞ þ d2

4
s

ð1−sÞd2þ2
F0ðsÞ:

ð4:26Þ
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They can be combined into

EΛðf̃Þ ¼
dΛ

2sð1 − sÞ
�

dΛ
4ð1 − sÞd2þ1

− λ̃
�
FðsÞ

−
d2

4

1

ð1 − sÞd2þ2
F0ðsÞ: ð4:27Þ

Substituting the explicit solution (which is regular and
nonvanishing at s ¼ 1), we find that the right-hand side has
a pole of order 2þ d=2 at s ¼ 1 and there are no regular
solutions. This means that we need to regularize also the
contribution from the dilaton mass to the spectrum to
account for the edge singularity.

V. CONCLUSIONS AND OUTLOOK

Nonrelativistic systems with Schrödinger symmetry
have many parallels to relativistic CFTs. In both cases,
the symmetry gives rise to constraints on correlation
functions and there is a precise notion of a state-operator
correspondence.
In this paper, we have shown first, that it is possible to

construct a fully scale-invariant theory from a Galilean-
invariant one by introducing a dilaton field and dressing all
operators with appropriate powers of it. This procedure is
an exact parallel of Coleman’s dilaton dressing for the
relativistic case.
The large-charge approach is useful for treating strongly

coupled theories which have otherwise no small parame-
ters. While in principle, the approach is not tied to any
particular space-time symmetry, working at the conformal
point has many practical advantages. Schrödinger sym-
metry has proven to be a suitable setting for working at
large charge as well, even though the need to work with a
harmonic potential in order to use the state-operator
correspondence introduces considerable complications
due to the breakdown of the bulk EFT near the edge of
the particle cloud, which has only recently been addressed
in [19].
We have reproduced results for the Schrödinger system

at large charge in the harmonic potential, but in the LSM in
order to then move away slightly from the case of full

Schrödinger symmetry, further expanding the scope of
applicability of the large-charge approach to more general
systems.
Using the description of the radial mode in terms of the

dilaton, we introduced a small explicit breaking of
Schrödinger symmetry by including a potential for the
dilaton mimicking Coleman’s mass term. This allowed us
to compute the corrections to the system at large charge
with near-Schrödinger dynamics. We moreover gave the
result for the Casimir energy of the fluctuations over
the ground state which had not been computed for the
Schrödinger system to date.
This explicit breaking of Schrödinger symmetry results

in a correction to the scaling dimension with a signature
term that scales as

ffiffiffiffi
Q

p
logQ. While in d ¼ 2, it is of the

same order as the contribution of the edge effects, in d ¼ 3,
it dominates the edge effects over a range of 34 orders of
magnitude and should be discernible in lattice simulations.
There are a number of open questions for future study.

Since the unitary Fermi gas can be realized in the lab by
tuning Feshbach resonances, it would be interesting to
understand if the breaking via the dilaton mass discussed
here is related to a real-life tuning process that can happen
in the lab. In this spirit, near-unitarity of the Fermi gas was
for example discussed in [27].
A constant obstacle to our analysis here were the

unknown contributions from the cloud edge, forcing us
to employ estimates which often appear to mask the
contributions we are interested in. The near-Schrödinger
case discussed here should thus be revisited employing the
edge EFT of [19] which would allow us to sharpen the
signal of the Schrödinger-symmetry breaking term.
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