
 

Influence of the four-fermion interactions in a ð2 + 1ÞD massive
electron system

Luis Fernández ,1,* Van Sérgio Alves ,1,† M. Gomes ,2,‡ Leandro O. Nascimento ,3,§ and Francisco Peña 4,∥
1Faculdade de Física, Universidade Federal do Pará, 66075-110 Belém, Pará, Brazil

2Instituto de Física, Universidade de São Paulo, Caixa Postal 66318,
05315-970 São Paulo, São Paulo, Brazil

3Faculdade de Ciências Naturais, Universidade Federal do Pará, C.P. 69900-000 Breves, Pará, Brazil
4Departamento de Ciencias Físicas, Facultad de Ingeniería y Ciencias, Univesidad de La Frontera,

Avenida Francisco Salazar 01145, Casilla 54-D, Temuco, Chile

(Received 14 March 2021; accepted 23 April 2021; published 19 May 2021)

The description of the electromagnetic interaction in two-dimensional Dirac materials, such as graphene
and transition-metal dichalcogenides, in which electrons move in the plane and interact via virtual photons in
3D, leads naturally to the emergence of a projected theory, called pseudo-quantum electrodynamics (PQED),
as an effective model suitable for describing electromagnetic interaction in these systems. In this work, we
investigate the role of a complete set of four-fermion interactions in the renormalization group functions
when we coupled it with the anisotropic version of massive PQED, where we take into account the fact that
the Fermi velocity is not equal to the light velocity. We calculate the electron self-energy in the dominant
order in the 1=N expansion in the regimewherem2 ≪ p2.We show that the Fermi velocity renormalization is
insensitive to the presence of quartic fermionic interactions, whereas the renormalized mass may have two
different asymptotic behaviors at the high-density limit, which means a high-energy scale.
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I. INTRODUCTION

Four-fermion interactions have been extensively studied
in the literature, both for understanding conceptual aspects
of quantum field theory as well as for applications in
condensed matter physics. In particular, the Thirring [1]
andNambu-Jona-Lasinio [2] models show a rich connection
between the phenomenon of superconductivity and elemen-
tary particle physics. The latter has also been used for
studying quantum chromodynamics at the low-energy limit
[3,4]. Although four-fermion interactions are perturbatively
non-renormalizable in a space-time D > 2, in the sense
of general power counting rules [5], they become renorma-
lizable when we use the 1=N expansion in D ¼ 3 [6].
Indeed, the incorporation of vacuum polarization effects
provides a better behavior for the Green functions in the
ultraviolet regime. Therefore, both the Gross-Neveu [7] and

Thirring [8] interactions may be renormalizable in D ¼ 3.
Usually, in order to perform the 1=N expansion, a Hubbard-
Stratonovich transformation [9] is used through the intro-
duction of an auxiliary field, which has no dynamics at the
tree level.
It is well known that the quasiparticle excitations in two-

dimensional materials at the honeycomb lattice (such as
graphene [10], silicene [11], and transition metal dichalco-
genides [12]) behave as Dirac-like fermions (either massless
or massive). Hence, the four-fermion interactions also
become relevant, as an attempt to obtain a more complete
description of these systems, within a quantum-field-theory
approach. Indeed, this more realistic description should take
into account some of the microscopic interactions that, such
as disorder or impurity, may emerge in these materials.
Because the auxiliary fields obey the same properties as the
random disorder or impurities interactions, as discussed in
Refs. [13,14], hence, we can relate these properties of the
materials with the four-fermion interactions within the low-
energy limit. Furthermore, it is also very useful to consider
the electromagnetic interactions in the plane, which may be
effectively described by the pseudoquantum electrodynam-
ics model [15].
In a previous work, we analyzed the effect of the

electromagnetic interaction on the renormalization of the
mass gap of electrons moving in a plane subject also to
impurities simulated by a Gross-Neveu like self-interaction
[16]. Without the four-fermion interaction, we derived

*luis.aguilar@icen.ufpa.br
†vansergi@ufpa.br
‡mgomes@fma.if.usp.br
§lon@ufpa.br∥francisco.pena@ufrontera.cl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 105016 (2021)

2470-0010=2021=103(10)=105016(11) 105016-1 Published by the American Physical Society

https://orcid.org/0000-0002-0106-2989
https://orcid.org/0000-0001-8396-7089
https://orcid.org/0000-0001-8892-0749
https://orcid.org/0000-0003-2090-0420
https://orcid.org/0000-0003-3848-0356
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.105016&domain=pdf&date_stamp=2021-05-19
https://doi.org/10.1103/PhysRevD.103.105016
https://doi.org/10.1103/PhysRevD.103.105016
https://doi.org/10.1103/PhysRevD.103.105016
https://doi.org/10.1103/PhysRevD.103.105016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


results that are in excellent agreement with experimental
measurements of the band gap for WSe2 [17] and MoS2
[18]. We found also that, although the presence of the
Gross-Neveu like interaction does not alter the renormal-
ization of the Fermi velocity [19], it provides an ultraviolet
fixed point in terms of an effective fine-structure constant
so that the renormalized mass has different behaviors below
and above it.
In this paper, we extend the investigation presented in

[16] by considering the generalized four-fermion inter-
actions with Oð4Þ symmetry.
The remainder of this paper is organized as follow. In

Sec. II, we present our model, notation, and perform the
expansion 1=N through the Hubbard-Stratonovich trans-
formation, which allows us to define the Feynman rules. In
Sec. III, we calculate the propagators of the gauge and
auxiliary fields in the dominant order in 1=N in the regime
where m2 ≪ p2. In Sec. IV, we calculate the electron self-
energy due to electromagnetic and the four-fermion inter-
actions, taking into account the effect of the polarization
tensor obtained in the previous section. The derivation of
the renormalization group functions and the effect of each
four-fermion interaction on the renormalized mass are
shown in Sec. V. In Sec. VI, we review our main results
and conclusions. Some details about the derivation of the
polarization tensor, due to the four-fermion interactions, are
given in the Appendix.

II. PSEUDOQUANTUM ELECTRODYNAMICS
WITH FOUR-FERMIONS INTERACTION

We consider the PQEDmodel [15] with a complete set of
independent four-fermion interactions in ð2þ 1ÞD [20].
The Euclidean action reads

L ¼ 1

2

FμνFμνffiffiffiffiffiffiffiffi
−□

p þ ψ̄aðiγμDμ −mÞψa − ξ
ð∂μAμÞ2ffiffiffiffiffiffiffiffi

−□
p

−
X8
l¼1

Gl

2
ðψ̄aΓlψaÞ2; ð1Þ

whereFμν ¼ ∂μAν − ∂νAμ is the field intensity tensor of the
gauge field Aμ, □ is the d’Alembertian operator, ψa is the
Dirac field, and a ¼ 1;…; N is the flavor index. For
electrons in the honeycomb lattice, we may use the repre-
sentation for matter field as ψ†

a ¼ ðψ�
A↑;ψ

�
A↓;ψ

�
B↑;ψ

�
B↓Þa,

where ðA;BÞ and ð↑;↓Þ are the sublattices and spins,
respectively. Therefore, one finds a ¼ K;K0 and N ¼ 2,
which describes the valley degeneracy. Here, we perform all
of the calculations for an arbitrary value of N [21,22].
Furthermore,m is theDiracmass, e is the electric charge, ξ is
the gauge-fixing parameter, Gl ¼ fG1;…; G8g are the
coupling constants of the four-fermion interactions where
l ¼ 1;…; 8 is an index describing each self-interaction,
Γl ¼ f1; γμ; γ3; γ5; γμγ3; γμγ5; γ3γ5; γμγ3γ5g are their

corresponding matrices, γμ are the Dirac matrices in the
4 × 4 representation, whose algebra is given by fγμ; γνg ¼
−2δμν, and γμDμ ¼ γ0∂0 þ vFγi∂i þ eγμAμ is the Dirac
operator after we perform the minimal coupling with Aμ.
Our matrix representation follows the definition given in
Ref. [23]. Thus, our Dirac matrices are anti-Hermitian:
ðγ0; γ1; γ2Þ ¼ ðiσ3; iσ1; iσ2Þ ⊗; σ3Þ; γ3 ¼ I ⊗ σ1, and γ5 ≡
I ⊗ σ2 so that ðγμÞ2 ¼ −1, and γ5 is Hermitian.
Furthermore, we shall use the natural system of units, where
ℏ ¼ c ¼ 1. Because ½Gl� ¼ −1, the model in Eq. (1) is not
renormalizable in the perturbative expansion, but it is in the
large-N expansion. Hence, we shall consider the large-N
expansion from now on.
The first step is to introduce the N parameter into the

action through a scaling of the coupling constants, given by
e → e=

ffiffiffiffi
N

p
and Gl → Gl=N for a fixed e and Gl, respec-

tively. Thereafter, we use a Hubbard-Stratonovich trans-
form in the four-fermion interactions, given by

Gl

2N
ðψ̄aΓlψaÞ2 →

Gl

2N
ðψ̄aΓlψaÞ2

−
N
2G1

�
φ1 −

G1

N
ψ̄aΓ1ψa

�
2

− � � �

−
N
2G8

�
φ8 −

G8

N
ψ̄aΓ8ψa

�
2

; ð2Þ

where

φl ¼ fφ1;φγμ ;φγ3 ;φγ5 ;φγμγ3 ;φγμγ5 ;φγ3γ5 ;φγμγ3γ5g

is a set of auxiliary fields for each kind of interaction. Note
that, for the sake of simplicity, we applied the notation
φl ¼ fφ1;…;φ8g in Eq. (2). Using Eq. (2) in Eq. (1), one
finds the motion equation for the auxiliary fields, namely
φl ¼ Glψ̄aΓlψa=N at the classical level for each l ¼
1;…; 8 (there is no sum over l in the rhs of this equation).
Furthermore, we also obtain the action,

L ¼ 1

2

FμνFμνffiffiffiffiffiffiffiffi
−□

p þ ψ̄ðiγ0∂0 þ ivFγi∂i −mÞψ

þ effiffiffiffi
N

p ψ̄γμψAμ − ξ
ð∂μAμÞ2ffiffiffiffiffiffiffiffi

−□
p

þ
X8
l¼1

�
N
2Gl

φ2
l − φlψ̄Γlψ

�
: ð3Þ

Next, we realize a simple shift in the auxiliary field, namely
φl → σ0;l þ φl=

ffiffiffiffi
N

p
, such that σ0;l ¼ hφli is the vacuum

expectation value of φl. Using this transform in Eq. (3), we
have
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L ¼ 1

2

FμνFμνffiffiffiffiffiffiffiffi
−□

p þ ψ̄ðiγ0∂0 þ ivFγi∂i −m − σ0;lΓlÞψ

þ effiffiffiffi
N

p ψ̄γμψAμ − ξ
ð∂μAμÞ2ffiffiffiffiffiffiffiffi

−□
p þ

X8
l¼1

�
N
2Gl

σ20;l

�

þ
X8
l¼1

�
1

2Gl
φ2
l −

ffiffiffiffi
N

p

Gl
σ0;lφl −

1ffiffiffiffi
N

p φlψ̄Γlψ

�
: ð4Þ

One advantage of Eq. (4) is that for m ¼ 0, it clearly
separates the analysis into phases, i.e., one with no
spontaneous symmetry breaking where σ0;l ¼ 0 and other
phases with some broken symmetry σ0;l ≠ 0. In particular, a
phase with chiral symmetry breaking, i.e., σ0;1 ≠ 0, has
been discussed in Ref. [16]. Next, let us define the
Feynman rules. The gauge-field propagator in Eq. (3) reads

Δ0
μνðpÞ ¼

1

2
ffiffiffiffi
p

p
�
δμν −

�
1 −

1

ξ

�
pμpν

p2

�
; ð5Þ

while the fermion propagator is given by

SFðpÞ ¼ −
1

γ0p0 þ vFγipi −m
; ð6Þ

and, in the tree approximation, the propagator for the
auxiliary-field φl is

ðΔ0
φl
Þ ¼

�
1

Gl

�
−1
: ð7Þ

The electromagnetic and trilinear vertices interactions are
given by e=

ffiffiffiffi
N

p
and 1=

ffiffiffiffi
N

p
, respectively. Next, we shall

calculate the quantum corrections, within the large-N
approximation, for the field propagators.

III. FULL PROPAGATORS

A. Gauge-field propagator

The full gauge-field propagator, in the dominant order of
1=N, is written as [16]

ΔμνðpÞ ¼ Δ0
μνðpÞ þ Δ0

μαðpÞΠαβðpÞΔ0
βνðpÞ þ � � � ; ð8Þ

where ΠμνðpÞ is the vacuum polarization tensor, namely

ΠμνðpÞ ¼ −
e2

N
Tr
Z

d3k
ð2πÞ3 γ

μSFðpþ kÞγνSFðkÞ: ð9Þ

In the static limit, we only need the component Π00ðpÞ
given by

Π00ðp2Þ ¼ −
e2

8

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ v2Fp

2
p ð10Þ

in the small-mass limitm2 ≪ p2. Using Eq. (10) in Eq. (8),
we find

Δ00ðp2Þ ¼
�
2

ffiffiffiffiffi
p2

q
þ e2

8

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ v2Fp

2
p �−1

: ð11Þ

This agrees with the result in Ref. [16].

B. Auxiliary-field propagators

The quantum corrections for the auxiliary fields φl may
be obtained through the effective action Seff . This is
accomplished from Eq. (4) by integrating out the matter
field. After expanding Seff for large-N, we find

Seff ½φl� ¼
ffiffiffiffi
N

p
S1½φl� þ S2½φl� þ � � � ; ð12Þ

where

S1 ¼ Tr

�
ðiγ0∂0 þ ivFγi∂i −m − σo;lΓlÞ−1

×

�X
l

φlΓl

��
þ
X
l

1

Gl
σ0;lφl; ð13Þ

and

S2 ¼
1

2
Tr

��
ðiγ0∂0 þ ivFγi∂i −m − σo;lΓlÞ−1

×

�X
l
φlΓl

��
2
�
þ
Z

d3x
X
l

1

2Gl
φ2
l : ð14Þ

Note that S1 in Eq. (13) may be written as S1 ¼P
l φlSl½σ0;l; Gl�. On the other hand, we have that

S1 ¼ 0, which implies a convergent effective action in
Eq. (12). This yields a set of gap equations Sl½σ0;l; Gl� ¼ 0

for each l, giving a nontrivial relation between the values of
σ0;l and the coupling constants Gl. However, for σ0;l ¼ 0

and m ¼ 0, these gap equations are automatically satisfied.
Next, it is convenient to write Eq. (14) as

S2 ¼
1

2

Z
d3xd3yφlðxÞΓll0 ðx − yÞφl0 ðyÞ; ð15Þ

providing the auxiliary-field propagator Γll0 ðx − yÞ−1. This,
in the momentum space, is schematically written as

½Δll0
fφlgðpÞ�−1 ¼ Γll0

fφlgðpÞ ¼
1

Gfφlg
δll

0 − Πll0
fφlgðpÞ: ð16Þ

At this point, we must be careful with our notation in order
to avoid any misunderstanding. Indeed, the kind of indexes
ðll0Þ we have in Eq. (16) depends on the kind of auxiliary
field fφlg we want to consider. For instance, φ1 ¼ φ1 → σ
is a scalar field; hence, δll

0
only means an unity.
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Nevertheless, we may consider the second auxiliary field,
which is actually φ2 ¼ φγμ → Aμ, a vector field. In this

case, we must consider that δll
0
→ δμν, where we replace

ðll0Þ by two Lorentz indexes, i.e., ðll0Þ → ðμνÞ, such that we
find a propagator Δμν

fφμgðpÞ, as expected. The main rule is

that for a generic auxiliary field fφlg, one must have a
scalar quantity S2 ∝ φlΓll0φl0, which, therefore, fixes the
tensorial structure of Γll0 . We represent the full propagator
of the auxiliary fields in Fig. 1.
The different self-energies for each auxiliary field read

Πll0
fφlgðpÞ ¼ −Tr

Z
d3k
ð2πÞ3 Γ

lSFðpþ kÞΓl0SFðkÞ: ð17Þ

We consider the 4 × 4 representation of the Dirac matrices,
whose trace operations are detailed in the Appendix.
Because of the Lorentz symmetry in the Dirac matrices,
we perform a redefinition of the external momentum as
vFpi → p̄i, such that p̄μ ¼ ðp0; p̄iÞ. Furthermore, for the
sake of consistency, we also change the spatial variable
of the loop integral as vFki → ki, which implies that
d3k → d3k=v2F. Therefore,

Πll0
fφlgðp̄Þ ¼ −

1

v2F
Tr
Z

d3k
ð2πÞ3 Γ

lSFðp̄þ kÞΓl0SFðkÞ: ð18Þ

It is clear that the only difference, between the different
four-fermion interactions, is the vertex structure Γl (and Γl0 )
in Eq. (18).

IV. THE ELECTRON SELF-ENERGY

We assume the symmetric phase, where σ0;l ¼ 0. This
phase is promptly obtained from Eq. (4) by using σ0;l ¼ 0.
Using the Feynman parametrization and the dimensional
regularization (see the Appendix), we obtain the self-
energies for all of the auxiliary fields φl, which for higher
momenta, is given by

Γφ1
ðp̄Þ ¼ 1

Gφ1

þ
ffiffiffiffiffi
p̄2

p
4v2F

; ð19Þ

Γμν
φμðp̄Þ ¼

�
1

Gφμ

þ
ffiffiffiffiffi
p̄2

p
8v2F

�
P̄μν þ 1

Gφμ

p̄μp̄ν

p̄2
; ð20Þ

Γφ3ð5Þ ðp̄Þ ¼
1

Gφ3ð5Þ
−

ffiffiffiffiffi
p̄2

p
4v2F

; ð21Þ

Γμν
φμ3ð5Þ ðp̄Þ ¼

�
1

Gφμ3ð5Þ
þ

ffiffiffiffiffi
p̄2

p
8v2F

�
P̄μν þ 1

Gφμ3ð5Þ

p̄μp̄ν

p̄2
; ð22Þ

Γφ35
ðp̄Þ ¼ 1

Gφ35

þ
ffiffiffiffiffi
p̄2

p
4v2F

; ð23Þ

and

Γμν
φμ35ðp̄Þ ¼

�
1

Gφμ35

−
ffiffiffiffiffi
p̄2

p
8v2F

�
P̄μν þ 1

Gφμ35

p̄μp̄ν

p̄2
: ð24Þ

The subscription 3(5) means that the result holds for both
φ3 and φ5 fields, for example. Furthermore, the standard
projection tensor P̄μν reads

P̄μν ¼ δμν −
p̄μp̄ν

p̄2
: ð25Þ

It should be noticed the bad ultraviolet behavior of the
longitudinal part of the two point proper function involving
a vectorial field, namely the longitudinal parts in Eqs. (20),
(22), and (24). Of course, these bad behaviors are innocu-
ous if the corresponding currents are conserved. In any
case, this fact is only relevant for calculating the correction
in order 1=N2. If we consider only the transversal part of
these propagators, the generalized model (3) is power
counting renormalizable with divergences being eliminated
by reparametrizations of the fields and of the mass of the
fermion field. In what follows, we will discuss in detail the
divergences in the fermion self-energy.

A. The fermion self-energy

Having the gauge and auxiliary-field propagators, we
may calculate the fermion self-energy. This also may be
decomposed into two terms, one due to the gauge field and
the other due to the auxiliary fields.

1. Self-energy due to the gauge field

The fermion self-energy due to the gauge field is shown
in Fig 2(a), and its analytical expression is given by

ΣAμ
ðpÞ ¼ e2

N

Z
d3k
ð2πÞ3 γ

μSFðp − kÞγνΔμνðkÞ: ð26Þ

The first step is to use Eq. (6) and Eq. (11) in Eq. (26). On
the other hand, the self-energy in the small-momentum
limit, which is the relevant term in order to extract the form
of the divergences, is written as [16,24]

= −( ) ( )
−1 −1

p+k

k

l l’Γ Γl l’ l l’

FIG. 1. The large-N approximation for the full auxiliary-field
propagators. The full propagators of the auxiliary fields are
represented by the double-dashed line with the subscripts ðl; l0Þ,
which are meant to describe their different tensorial structure.
The continuum line is the propagator of the fermion field.
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ΣAμ
ðpÞ ¼ ΣAμ

ðpÞjp¼0 þ γ0p0

∂ΣAμ
ðp0Þ

∂p0

				
p0¼0

þ vFγipi

∂ΣAμ
ðpiÞ

∂pi

				
pi¼0

þ � � � : ð27Þ

After some calculations (see Appendix A of Ref. [16]), it is
possible to show that the fermion self-energy, in the small-
mass limit, is

ΣAμ
ðpÞ ¼ −

2λ

π2N
½γ0p0f1ðλÞ − vFγipif2ðλÞ

þmf0ðλÞ� ln
�
Λ
Λ0

�
þ FT; ð28Þ

where FT stands for finite terms, λ ¼ e2=ð16vFÞ ¼ πα=4,
where α is the fine-structure constant,

f0ðλÞ ¼
2cos−1ðλÞffiffiffiffiffiffiffiffiffiffi

1 − λ
p ; ð29Þ

f1ðλÞ ¼ −
2

λ2

�
π − 2λþ ðλ2 − 2Þffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p cos−1ðλÞ

�
; ð30Þ

and

f2ðλÞ ¼
1

λ2
½π − 2λ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
cos−1ðλÞ�: ð31Þ

2. Self-energy due to the auxiliary fields

The fermion self-energy due to the auxiliary fields is
shown in Fig. 2(b), and its analytical expression is given by

ΣfφlgðpÞ ¼
Z

d3k
ð2πÞ3 Γ

lSFðp − kÞΓl0Δfφlg
ll0 ðkÞ: ð32Þ

Here, we use Eq. (6) and Eq. (16) in Eq. (32). Thereafter,
we make the same reassignement of the momentum

variables as before; i.e., we redefine the external momen-
tum as pμ → p̄μ, where p̄μ ¼ ðp0; p̄iÞ, and change the
loop-integral variable as vFki → ki. Therefore, the self-
energy is written as

Σfφlgðp̄Þ¼
1

v2F

Z
d3k
ð2πÞ3Γ

l γ
αðp̄−kÞαþm
ðp̄−kÞ2þm2

Γl0Δfφlg
ll0 ðkÞ: ð33Þ

Similarly to the previous case, we expand the self-energy as

Σfφlgðp̄Þ ¼ Σfφlgðp̄Þjp̄¼0 þ p̄μ

∂Σfφlgðp̄Þ
∂p̄μ

				
p̄¼0

þ � � � : ð34Þ

Note that the lowest-order term in Eq. (34) is

Σfφlgðp̄Þjp̄¼0 ¼
m
v2F

Z
d3k
ð2πÞ3

ΓlΓl0

k2 þm2
Δfφlg

ll0 ðkÞ; ð35Þ

and the first-order term in p̄μ reads

p̄μ

∂Σfφlgðp̄Þ
∂p̄μ

				
p̄¼0

¼ 1

v2F

Z
d3k
ð2πÞ3 Γ

l

�
γμp̄μ

k2 þm2

−2
γαkαkμp̄μ

½k2 þm2�2
�
Γl0Δfφlg

ll0 ðkÞ: ð36Þ

For analyzing the divergent parts of these expressions,
we may neglect the 1=Gφl

terms in the propagators of the
auxiliary fields as they only give finite contributions. We
assume that 1=Gφl

≪
ffiffiffiffiffi
p̄2

p
as an approximation in the

auxiliary-field propagators for calculating the fermion self-
energy. Let us take the Thirring interaction as a concrete
example; hence, fφlg → φ2 ¼ φγμ . In this case, the zero-
order term reads

Σφμ
ðp̄Þjp̄¼0 ¼

8

N
m
Z

d3k
ð2πÞ3

�
γμγμ

ðk2 þm2Þ

−
γμγνkμkν

ðk2 þm2Þk2
�

1ffiffiffiffiffi
k2

p : ð37Þ

Next, we use γμγμ ¼ −3 and, given the Lorentz invariance
on the integral, we change kμkν → gμνk2=3. Using these
conditions, Eq. (37) yields

Σφμ
ðp̄Þjp̄¼0 ¼ −

16

N
m
Z

d3k
ð2πÞ3

1

k2 þm2

1ffiffiffiffiffi
k2

p : ð38Þ

After applying the Feynman parametrization and cut-off
regularization, within the small-mass limit, we find the
zero-order term, namely

= +

+

p p

k

p p−k p

p p−k p

k

γ μ γ ν

Γ l Γ l’

(a)

(b)

FIG. 2. The full fermion propagator up to the dominant order
1=N. The full fermion propagator is represented by the double
continuous lines. (a) The self-energy due to the interaction
between the gauge and fermion fields. (b) The general structure
of the self-energies due to each auxiliary-field propagator and the
fermion field.
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Σφμ
ðp̄Þjp̄¼0 ¼ −

8

π2N
m ln

�
Λ
Λ0

�
: ð39Þ

Next, let us calculate the first-order term. From the
expansion given by Eq. (36), we find

p̄β

Σφμ
ðp̄Þ

∂p̄β

				
p̄¼0

¼ 8

N

Z
d3k
ð2πÞ3 γ

μ

�
γβp̄β

k2 þm2

−2
γαkαkβp̄β

ðk2 þm2Þ2
�
γν

Kμνffiffiffiffiffi
k2

p : ð40Þ

We shall follow the same steps as before. Here,
however, for the second integral in rhs of Eq. (40), we
use kαkβkμkν → ðδβαδμν þ δαμδ

β
ν þ δανδ

β
μÞk4=15, because of

the Lorentz invariance in the loop integral. Therefore, we
obtain

p̄β

∂Σφμ
ðp̄Þ

∂p̄β

				
p̄¼0

¼ −
8

3π2N
γβp̄β ln

�
Λ
Λ0

�
þ FT; ð41Þ

with being FT the finite terms. From Eq. (39) and Eq. (41),
we find the whole contribution of the Thirring interaction to
the fermion self-energy, given by

Σφμ
ðp̄Þ ¼ −

8

3π2N
fγμp̄μ þ 3mg ln

�
Λ
Λ0

�
þ FT: ð42Þ

After doing the same procedure for the other inter-
actions, we find

Σφ1
ðp̄Þ ¼ 2

3π2N
fγμp̄μ þ 3mg ln

�
Λ
Λ0

�
þ FT;

Σφ3ð5Þ ðp̄Þ ¼
2

3π2N
fγμp̄μ − 3mg ln

�
Λ
Λ0

�
þ FT;

Σφμ3ð5Þ ðp̄Þ ¼ −
8

3π2N
fγμp̄μ − 3mg ln

�
Λ
Λ0

�
þ FT;

Σφ35
ðp̄Þ ¼ −

2

3π2N
fγμp̄μ þ 3mg ln

�
Λ
Λ0

�
þ FT; ð43Þ

and

Σφμ35
ðp̄Þ ¼ −

8

3π2N
fγμp̄μ þ 3mg ln

�
Λ
Λ0

�
þ FT: ð44Þ

V. RENORMALIZATION GROUP

In general grounds, the renormalization group equation
has so many anomalous dimensions as fields in the
lagrangian. However, because the vacuum polarization
tensors ΠμνðpÞ and Πll0

φl
ðpÞ are finite in the dimensional

regularization scheme, we conclude that γAμ
, βe, and γφl

vanish. Furthermore, the beta functions for the coupling

constants βG do not appear in our renormalization group
equation due to the approximation 1=Gl ≪

ffiffiffiffiffi
p2

p
we have

considered before. Having these assumptions in mind, our
renormalization group equation is written as

�
Λ

∂
∂Λþ βvF

∂
∂vF þ βm

∂
∂m − NFγF

�
ΓðNF;…Þ ¼ 0; ð45Þ

where ΓNF;… ¼ ΓðNF;NA;Nφl
Þðp1;…; pNÞ are the renormal-

ized vertex functions, and (NF;NA; Nφl
) are the number of

external lines of fermion, gauge, and auxiliary fields,
respectively. The beta functions of vF and m parameters
are βvF ¼ Λ ∂vF∂Λ and βm ¼ Λ ∂m

∂Λ, respectively. The anoma-
lous dimension of the fermion field is γF ¼ Λ ∂

∂Λ ðlnZψ Þ,
where Zψ is the wave function renormalization.
The two-point function for the fermion field is

Γð2Þ ¼ ðγ0p0 þ vFγipi −mÞ þ ΣAμ
ðpÞ þ Σfφlg

l ðpÞ; ð46Þ

where the contribution of the gauge field ΣAμ
ðpÞ is

ΣAμ
ðpÞ ¼ ½a1γ0p0 þ a2vFγipi þ a3m� ln

�
Λ
Λ0

�
; ð47Þ

and the coefficients a1;2;3 are easily obtained from Eq. (28).
After recovering p̄ → p ¼ p0 þ vFpi, we find the contri-
bution of the auxiliary fields; i.e.,

Σfφlg
l ðpÞ ¼ ½bfφlg

1 γ0p0 þ bfφlg
1 vFγipi þ bfφlg

2 m� ln
�
Λ
Λ0

�
;

ð48Þ

where the coefficients b1;2 are obtained from Eq. (42), (43),
and (44). In the large-N expansion, we may write the beta

functions as βa ¼ βð1Þa þ 1
N β

ð2Þ
a þ � � �, with a ¼ vF;m, and

the anomalous dimension as γF ¼ γð1ÞF þ 1
N γ

ð2Þ
F þ � � �.

Thereafter, we replace Eq. (46) in Eq. (45) and, after some
algebra, we obtain

γF ¼ 1

2

�
a1 þ

X
l

bfφlg
1

�
; ð49Þ

βvF ¼ vFða1 − a2Þ; ð50Þ

and

βm ¼ m

�
a1 þ a3 þ

X
l

ðbfφlg
1 þ bfφlg

2 Þ
�
: ð51Þ

Using the coefficients a1;2;3 and b1;2, we obtain
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γF ¼ −
2

π2N

�
2þ 2 − λ2

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p cos−1ðλÞ − π

λ

�
−

28

3π2N
; ð52Þ

βvF ¼ −
4

π2N
vF

�
1þ cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p −
π

2λ

�
; ð53Þ

and

βm ¼ −
2m
π2N

�
4þ 4cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p −
2π

λ

�
þ
X
fb4Fg

mb4F; ð54Þ

where b4F ≡ bfφlg
1 þ bfφlg

2 is the contribution, due to the
four-fermion interactions, for the beta function of the mass.
These are, in principle, different for each ψ̄Γlψ term.
Notice, however, that they do not depend on the couplings
1=Gl. In fact, by considering the high momenta expansions
for the auxiliary field propagators, we may verify that terms
containing these parameters are actually finite. In Table I,
we summarize all of the possible values of b4F generated by
each individual interaction.

A. Mass renormalization

We obtain the renormalized mass through the beta
function as

Λ
∂m
∂Λ ¼ βm; ð55Þ

with Eq. (54), where the renormalized mass depends on the
energy scale Λ. After solving Eq. (55) for mðΛÞ, it follows
that

mðΛÞ ¼ mðΛ0Þ
�
Λ
Λ0

�
gðλÞ

; ð56Þ

where

gðλÞ ¼ −
2

π2N

�
4þ 4cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
�
þ
X
fb4Fg

b4F: ð57Þ

From Eq. (56) and Eq. (57), we conclude that the
contribution of the b4F terms, generated by the four-
fermion interactions, modifies the behavior of the renor-
malized mass, because they may change the sign of the
function gðλÞ, as shown in Fig. 3. In Fig. 4, we plot the
function mðΛÞ. In general, there are three possible cases,
namely (A) gðλÞ < 0 for any λ, (B) gðλÞ > 0 for any λ, and
(C), where either gðλÞ > 0 for λ > λc or gðλÞ < 0 for
λ < λc. The critical point λc is obtained from gðλcÞ ¼ 0.
Obviously, only the case (C) allow us to control the
renormalized mass by tuning the value of λ.
Next, let us consider the case (A). This is the regime

where the renormalized mass is fully controlled by the
electromagnetic interactions. Therefore, the sum over the
b4F term vanishes. In Fig. 5, we show a plot for such
possibility. From Table I, we conclude that there are six
different combinations that fulfil this criteria. These are
(A1) ðψ̄ψÞ2 þ ðψ̄γ3γ5ψÞ2, (A2) ðψ̄ψÞ2 þ ðψ̄γ3ψÞ2 þ
ðψ̄γ5ψÞ2, (A3) ðψ̄γμψÞ2 þ ðψ̄γμγ3ψÞ2 þ ðψ̄γμγ5ψÞ2 [where
ðψ̄γμψÞ2 can be replaced by ðψ̄γμγ3γ5ψÞ2], and (A4)
ðψ̄γμγ3ψÞ2 þ ðψ̄γ3γ5ψÞ2 þ ðψ̄γ3ψÞ2 þ ðψ̄γ5ψÞ2 [where
ðψ̄γμγ3ψÞ2 can be replaced by ðψ̄γμγ5ψÞ2]. In case (A),
we conclude that mðΛÞ → 0 as Λ → ∞.
In case (B), we need combinations that always provide

gðλÞ positive. In this regime, the influence of the four-
fermion interactions is dominant over the contribution of

TABLE I. The b4F term of each four-fermion interaction. This
table gives the contribution of each four-fermion interaction to the

beta function of the mass, given in Eq. (51) by bfφlg
1 þ bfφlg

2 .
These contributions are calculated in the small-mass limit, where
m2 ≪ p2 and for 1=Gl ≪ p.

The four-fermion interactions The contribution b4F

ðψ̄ψÞ2 8=ð3π2NÞ
ðψ̄γμψÞ2 −32=ð3π2NÞ
ðψ̄γ3ψÞ2 −4=ð3π2NÞ
ðψ̄γ5ψÞ2 −4=ð3π2NÞ
ðψ̄γ3γ5ψÞ2 −8=ð3π2NÞ
ðψ̄γμγ3ψÞ2 16=ð3π2NÞ
ðψ̄γμγ5ψÞ2 16=ð3π2NÞ
ðψ̄γμγ3γ5ψÞ2 −32=ð3π2NÞ

FIG. 3. The function gðλÞ in the interval λ ∈ ½0.1; 1� with
N ¼ 4. We plot Eq. (57) for four different combinations of
the four-fermion interactions. The continuous line is obtained
from the ðψ̄ψÞ2 and ðψ̄γ3ψÞ2 interactions, which providesP

fb4Fg b4F ¼ 1=3π2. In this case, we find λmin
c ¼ 0.26. The

dashed line is the combination of ðψ̄ψÞ2 and ðψ̄γ3γ5ψÞ2 inter-
actions, where

P
fb4Fg b4f ¼ 0. The dotted line is obtained from

the ðψ̄γμψÞ2 interaction, where b4F ¼ −8=3π2. The dashed-
dotted line is obtained from the ðψ̄ψÞ2 and ðψ̄γμγ3ψÞ2 inter-
actions, where

P
fb4Fg b4F ¼ 2=π2. Note that only for the

continuous line, we have a critical point.
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the electromagnetic interactions. Therefore, the sum over
the b4F term must be larger than the first term in the rhs of
Eq. (57) for any λ. In Fig. 5, we show a plot for such
possibility. From Table I, we conclude that there are seven
different combinations that fulfil this criteria. These are
(B1) ðψ̄γμγ3ψÞ2 þ ðψ̄γμγ5ψÞ2, (B2) ðψ̄ψÞ2 þ ðψ̄γμγ3ψÞ2
[where ðψ̄γμγ3ψÞ2 can be replaced by ðψ̄γμγ5ψÞ2], (B3)
ðψ̄γμγ3ψÞ2 þ ðψ̄γ3ψÞ2, and (B4) ðψ̄γμγ5ψÞ2 þ ðψ̄γ3ψÞ2 [in
the last two combinations, ðψ̄γ3ψÞ2 can replaced by
ðψ̄γ5ψÞ2]. In case (B), we conclude that mðΛÞ → ∞ as
Λ → ∞.
In case (C), the sign of gðλÞ changes after crossing

the point λc. In this regime, the renormalized mass is
described by the competition of electromagnetic and four-
fermion interactions, where both of them are relevant. We
find two possible values for the critical coupling constant,

namely λmax
c ¼ 0.66 and λmin

c ¼ 0.26. From Table I, we find
seven combinations that provide λmax

c , given by (C1A)
ðψ̄ψÞ2, (C2A) ðψ̄γμγ3ψÞ2þðψ̄γ3γ5ψÞ2, (C3A) ðψ̄ψÞ2þ
ðψ̄γμγ3ψÞ2þðψ̄γ3γ5ψÞ2þðψ̄γ3ψÞ2þðψ̄γ5ψÞ2, and (C4A)
ðψ̄γμγ3ψÞ2 þ ðψ̄γ3ψÞ2 þ ðψ̄γ5ψÞ2 [in each of the previous
combinations, we can change ðψ̄γμγ3ψÞ2 by ðψ̄γμγ5ψÞ2].
On the other hand, for finding λmin

c , there are six
possibilities, namely (C1B) ðψ̄ψÞ2 þ ðψ̄γ3ψÞ2 and (C2B)
ðψ̄ψÞ2 þ ðψ̄γ5ψÞ2, (C3B) ðψ̄γμγ3ψÞ2 þ ðψ̄γ3γ5ψÞ2 þ
ðψ̄γ3ψÞ2, (C4B) ðψ̄γμγ3ψÞ2 þ ðψ̄γ3γ5ψÞ2 þ ðψ̄γ5ψÞ2,
(C5B) ðψ̄γμγ5ψÞ2 þ ðψ̄γ3γ5ψÞ2 þ ðψ̄γ3ψÞ2, and (C6B)
ðψ̄γμγ5ψÞ2 þ ðψ̄γ3γ5ψÞ2 þ ðψ̄γ5ψÞ2. Case (C) clearly pro-
vides two possible asymptotic behaviors for mðΛÞ;
see Fig. 5.
In Ref. [16], it has been shown that the combination

of electromagnetic and Gross-Neveu interactions yields
λmax
c ¼ 0.66, which is our case (C1A). We believe that
combinations with a minimal critical coupling constant
λmin
c ¼ 0.26 (see Fig. 4) are likely to provide an easier
controlling of the renormalized mass. Indeed, because of
screening effects, due to the substrates, the value of λ
decreases; hence, the phase when λ > λc becomes harder to
achieve experimentally. From the experimental point of
view, it is possible to relate the energy scale Λ with the
electronic density n (the number of electrons by unit of
surface area) by using the scaling law Λ → n1=2 [25]. The
value of n is controlled by a gate voltage [16]. We believe
that our results may be relevant for describing a more
realistic process of mass renormalization. Obviously, the
four-fermion interactions should be related with micro-
scopic interactions, such as mechanical vibrations, impu-
rities, and disorder in the honeycomb lattice.

VI. SUMMARY AND OUTLOOK

The experimental realization of two-dimensional mate-
rials, where the quasiparticles obey a Dirac-like equation,
allow us to consider a quantum-electrodynamical approach
in order to describe electronic interactions in these systems.
In particular, the experimental observation [26] of the
Fermi velocity renormalization [19] in graphene confirms
that electronic interactions are indeed relevant. Recently,
the description of the band gap renormalization [16] in
WSe2 [17] and MoS2 [18] increases this window of
possible applications, using standard renormalization group
equations, as in Ref. [27]. Within a nonperturbative regime,
one can also consider the description of excitonic spectrum
[28], dynamical mass generation [29], and the realization of
parity anomaly [30] through a quantum valley Hall effect.
Beyond these regimes, one can consider the microscopic
interactions by taking models that simultaneously describe
both electromagnetic and four-fermion interactions. These
cases, however, have been less discussed in literature [31].
In this work, we gave a step forward in this picture by

considering an effective low-energy model that is suitable

FIG. 4. The behavior ofmðΛÞ. We plot Eq. (56) considering the
ðψ̄ψÞ2 and ðψ̄γ3ψÞ2 interactions, which provides λmin

c ¼ 0.26. For
the line, we use λ ¼ 0.1, while for the dashed line, we use
λ ¼ 0.5. We consider N ¼ 4 for both curves.

FIG. 5. The behavior ofmðΛÞ. We plot Eq. (56) withN ¼ 4 and
λ ¼ 0.4. The continuous line is obtained from the ðψ̄ψÞ2 and
ðψ̄γ3γ5ψÞ2 interactions (the same curve holds when we replace γ3
by γ5). The dashed line is obtained from the Thirring interaction
ðψ̄γμψÞ2. The dotted line is obtained from ðψ̄ψÞ2 and ðψ̄γμγ3ψÞ2
interactions.
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for calculating the effects of both electromagnetic and the
generalized four-fermion interactions with Oð4Þ symmetry.
As a concrete application, we calculated the renormalized
mass mðΛÞ within the large-N approximation. This may be
measured by looking at the energy gap between the valence
(negative energy) and conduction (positive energy) bands at
the valleys of the honeycomb lattice [17,18]. For the sake of
comparison with the experimental data, we may replace the
energy scale Λ by the electron density n, through the
transform Λ → n1=2, which is true for two-dimensional
electrons [16,19]. Our result shows that an ultraviolet fixed
point λc is generated, implying that mðΛÞ does not renorm-
alize at λ ¼ λc. Thereafter, we find that there exist two
possible values for λc, namely the maximal value λmax

c ¼
0.66 and the minimal value λmin

c ¼ 0.26 (this does not
depends on the constant N). The kind of value we find
depends on the combinations of four-fermion interactions
we are considering in the initial model. This provides a
possible tuning mechanism for the renormalized mass,
because the behavior of mðΛÞ changes when λ ¼ πα=4 is
either larger or less than λc.
The model presented here is also suitable for investigat-

ing the ultrarelativistic limit of Dirac-like materials, where
vFðnÞ → c as n → 0, where c is the light velocity. Because
our current results only describe the regime where
vFðnÞ ≪ c (the static limit), it would be interesting to
understand the behavior of the renormalized mass in the
dynamical limit. We shall consider this generalization
elsewhere.
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APPENDIX: VACUUM POLARIZATION TENSOR
OF FOUR-FERMION INTERACTIONS

Equation (18) represents the general form of the one-
loop quantum correction to the auxiliary-field propagators.
Here, we provide a few details of the computation of this
term for the case of the Thirring interaction where the
vertex is φμψ̄γ

μψ . In this case, we have

Πμν
φμðp̄Þ ¼ −

1

Nv2F
Tr
Z

d3k
ð2πÞ3 γ

μSFðp̄þ kÞγνSFðkÞ: ðA1Þ

Next, we use Eq. (6) and the following trace operations
over the Dirac matrices, namely

Tr½γμγν� ¼ −4δμν; ðA2Þ

Tr½γμγαγνγβ� ¼ 4ðδμαδνβ − δμνδαβ þ δμβδναÞ; ðA3Þ

which are useful properties to expand the numerator
of Eq. (A1). After calculating the trace over the Dirac
matrices, this numerator reads

ðp̄þ kÞμkν þ ðp̄þ kÞνkμ − δμν½ðp̄þ kÞ · kþm2�: ðA4Þ

On the other hand, we use the Feynman parametrization in
the denominator, which becomes equal to

½ðkþ xp̄Þ2 þ xð1þ xÞp̄2 þm2�2: ðA5Þ

Thereafter, in order to eliminate symmetric-loop integrals,
we made a variable change k → k − xp̄ and, by using
Lorentz invariance, we finally find a simplified equation for
Πμν

φμðp̄Þ, namely

Πμν
φμðp̄Þ ¼ −

4

v2F

Z
1

0

dx

�Z
d3k
ð2πÞ3

ð2
3
− 1Þδμνk2

½k2 þ Δ1�2

×
Z

d3k
ð2πÞ3

ðδμν − 2 p̄μp̄ν

p̄2 Þxð1 − xÞp̄2 − δμνm2

½k2 þ Δ1�2
�
;

ðA6Þ

with Δ1 ¼ xð1 − xÞp̄2 þm2. After solving the integrals,
using the dimensional regularization scheme, we find

Πμν
φμðp̄Þ ¼ −

p̄2

πv2F

� ffiffiffiffiffiffi
m2

p

2p̄2
þ p̄2 − 4m2

4p̄2
ffiffiffiffiffi
p̄2

p
×arcsin

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2

p̄2 þ 4m2

s #)
P̄μν: ðA7Þ

In the cases of other auxiliary fields, we use that γ3 and γ5

anticommute with γμ and between them; furthermore,
ðγ3Þ2 ¼ ðγ5Þ2 ¼ 1. Hence, it follows some useful proper-
ties, given by

Tr½γ3ð5Þγ3ð5Þ� ¼ 4; ðA8Þ

Tr½γ3ð5Þγαγ3ð5Þγβ� ¼ 4δαβ; ðA9Þ

Tr½γ3γ5γ3γ5� ¼ −4; ðA10Þ

Tr½γμγ3ð5Þγαγνγ3ð5Þγβ� ¼ Tr½γμγαγνγβ�; ðA11Þ

Tr½γ3γ5γαγ3γ5γβ� ¼ 4δαβ ðA12Þ

Tr½γμγ3γ5γαγνγ3γ5γβ� ¼ −Tr½γμγαγνγβ�: ðA13Þ
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We obtain Πφ3
ðp̄Þ and Πφ5

ðp̄Þ using Γl ¼ γ3 or γ5,
respectively, in Eq. (18). Then, we implement the same
procedure for solve Eq. (A1) together with Eqs. (A8) and
(A9), of form that

Πφ3
ðp̄Þ¼

ffiffiffiffiffi
p̄2

p
πv2F

" ffiffiffiffiffiffi
m2

p̄2

s
þ1

2
arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2

p̄2þ4m2

s !#
; ðA14Þ

and for Πφ5
ðp̄Þ we have the same previous result. Using

Γl ¼ γμγ3 (or γμγ5) in Eq. (18) and Eqs. (A9) and (A11), we
find Πφμ3

ðp̄Þ [or Πφμ5
ðp̄Þ], namely

Πμν
φμ3ðp̄Þ¼−

ffiffiffiffiffi
p̄2

p
2πv2F

(" ffiffiffiffiffiffi
m2

p̄2

s
þp̄2þ4m2

2p̄2

×arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2

p̄2þ4m2

s !#
P̄μνþ2

m2

p̄2
δμν

)
; ðA15Þ

using Γl ¼ γ3γ5 in Eq. (18) together with Eqs. (A10) and
(A12), we obtain

Π35ðp̄Þ ¼ −
ffiffiffiffiffi
p̄2

p
πv2F

" ffiffiffiffiffiffi
m2

p̄2

s
þ p̄2 þ 4m2

2p̄2

×arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2

p̄2 þ 4m2

s !#
; ðA16Þ

and last, we may obtain Πμν
φμ35ðp̄Þ by replacing Γl by γμγ3γ5

in Eq. (18) and using the trace operation given by
Eqs. (A12) and (A13), so

Πμν
φμ35ðp̄Þ ¼

p̄2

πv2F

" ffiffiffiffiffiffi
m2

p

2p̄2
þ p̄2 − 4m2

4p̄2
ffiffiffiffiffi
p̄2

p
×arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2

p̄2 þ 4m2

s !#
P̄μν: ðA17Þ
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