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We discuss, on general grounds, how two subgraphs of a given Feynman graph can overlap with each
other. For this, we use the notion of connecting and returning lines that describe how any subgraph is
inserted within the original graph. This, in turn, allows us to derive “nonoverlap” theorems for one-particle-
irreducible subgraphs with 2, 3 and 4 external legs. As an application, we provide a simple justification of
the skeleton expansion for vertex functions with more than five legs, in the case of scalar field theories. We
also discuss how the skeleton expansion can be extended to other classes of graphs.
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I. INTRODUCTION

Overlapping divergences make the practical treatment of
UV divergences in a quantum field theory cumbersome. In
modern approaches, there exist various ways of tackling
this issue, all based, in one way or another, on the use of
infinitesimal or finite variations of the Feynman graphs
with respect to appropriate parameters. The best known
among these approaches is certainly the functional renorm-
alization group [1], but there exist other possibilities, such
as the one put forward in Ref. [2], see also Refs. [3,4]
for even older proposals. The benefit of these approaches
is that one does not need to worry about possible over-
lapping divergences, since they are, if any, automatically
disentangled.
There might be situations, however, where one needs to

assess the absence of overlapping divergences in a given
quantity build out of Feynman graphs. One recent example
of this situation is reported in Ref. [5] where the over-
lapping divergences that appear in the two-particle-
irreducible (2PI) formalism for the case of a scalar φ4

theory are disentangled with the help of the functional
renormalization group and classified into divergences of the
two-point function, divergences of the four-point function,
and divergences of higher derivatives δnΦ½G�=δGn (with
n ≥ 3) of the so-called Luttinger-Ward functional Φ½G�, a
functional of the propagator that enters the definition of the
2PI effective action. At first sight, there seems to be too
many independent divergences as compared to the expected
ones in scalar φ4 theory. However, a careful analysis reveals

that the divergences of δ3Φ=δG3 (and then also those of
subsequent derivatives) are nonoverlapping, which, in turn,
implies that they are entirely governed by those of the two-
and four-point functions. Here we extend and refine the
discussion of Ref. [5] to describe, on general grounds, how
two subgraphs of a given Feynman graph can overlap. This
allows us to derive a series of “nonoverlap” theorems for
one-particle-irreducible subgraphs with 2, 3 and 4 external
legs. For other interesting works that relate to overlapping
divergences, see for instance [6,7].
The absence of overlapping divergences is intimately

related to the possibility of constructing a skeleton expan-
sion for a given vertex function with high enough external
legs. By this, it is meant that, instead of computing such
vertex function by summing all the Feynman graphs it is
made of, one can first sum the so-called skeleton graphs in
this list, and then, in each skeleton, replace each line by the
full propagator, each tree-level trilinear coupling by the full
three-point function (if any), and each tree-level quartic
coupling by the full four-point function. In this way, one
can hide any reference to the bare mass and the bare
trilinear and quartic couplings. This is a well-known result
quoted for instance in Ref. [2,8], with various applications
such as for instance in the context of conformal theory
[9–13]. A proof of this result is however difficult to find in
the literature. In this paper, using the nonoverlap theorems
mentioned above, we provide a simple justification of the
skeleton expansion for vertex functions with more than five
legs, in the case of scalar field theories. We also discuss
how the skeleton expansion can be extended to other
classes of graphs, in particular to the derivatives of the
Luttinger-Ward functional.
Even though the nonoverlap theorems apply to any

theory, for convenience we consider the simpler framework
of a scalar theory. We do not restrict the type of interaction,
however, which could be any φn, with n ≥ 3. In fact, we
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could consider various of these interactions simultaneously.
In Sec. II, we introduce various definitions. In particular,
we define graphs and subgraphs and describe how a
subgraph is inserted within a given graph with the help
of connecting and returning lines. In Sec. III, this is used to
describe how two subgraphs of a given graph can overlap
with each other. In Sec. IV, we restrict to the case of one-
particle-irreducible subgraphs and derive the nonoverlap
theorems which are then used in Sec. V to justify the
skeleton expansion of vertex functions with more than five
legs. We then extend this result to other classes of functions,
including the high enough derivatives of the Luttinger-
Ward functional.

II. GRAPHS AND SUBGRAPHS

In perturbative calculations, quantities are computed by
summing Feynman graphs made of two basic elements: free
propagators that are represented graphically as lines, and
vertices that are represented by points with a certain number
of legs.1 We stress that vertex legs are not to be seen as lines,
but rather as little anchors on which lines can be attached
(or not). In what follows, we introduce more precisely the
notion of graph together with some related concepts. In
particular, we describe how a subgraph of a graph is inserted
within that graph by means of both connecting lines and
returning lines. This will then allow us to describe all
possible overlaps between subgraphs of a given graph.

A. Graphs

We define a graph G as any collection of vertices and
lines with the property that the two ends of any line of G are
attached to vertices of G. We can distinguish two types of
vertices within the graph: those whose legs are all con-
nected to lines of G are called internal vertices, while the
others are called external (or boundary) vertices. The legs
of external vertices are of two types: legs attached to lines
of G and legs attached to no line. We call the latter the
external legs of the graph G and denote them as nextðGÞ in
the following.
We stress that our definition of graph excludes the

possibility of lines with one end not attached to a vertex.
This is just a convenient choice for the subsequent
discussion, and, if needed, we can always attach such free
lines to the external legs of a graph. Reciprocally, any graph
including such free lines is associated to a unique graph that
has no external lines. We also exclude lines which are not
connected to any vertex. These are just trivial elements
(disconnected from the rest) that can again be added at will
when needed. There are no other restrictions for the
moment, so the graphs could be one-particle-reducible,
unamputated or even disconnected. Restrictions will be
considered when appropriate.

In Fig. 1, we draw one example of graph in φ4 theory.
We shall use it recurrently to illustrate the various notions to
be introduced below.

B. Subgraphs

A subgraph Ḡ of a graph G is any collection of vertices
and lines of G that forms a graph in the sense defined above.
We write this as Ḡ ⊂ G.2 We mention that any internal
vertex of Ḡ is necessarily an internal vertex of G. In contrast,
an external vertex of Ḡ can be either an external vertex of G
or an internal vertex of G.
Let us also mention that, when seen as a part of G, the

legs of the external vertices of Ḡ are now of three different
types: legs attached to lines of Ḡ, legs attached to lines of G
that are not in Ḡ and legs attached to no line (and thus
corresponding to external legs of the original graph G).
Among these three types of legs attached to the external
vertices, we refer to the last two as the external legs of the
subgraph Ḡ. It is clear that the subgraph can be made a
separate entity, disconnected from the original graph, by
cutting all lines that are attached to its external legs. Indeed,
these are the only lines that connect a vertex of the
subgraph to a vertex in the rest of the graph.3
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FIG. 1. An example of graph with six external legs e1;…; e6 in
φ4 theory. The thick lines highlight one particular subgraph with
six external legs as well, e1, e2 and e03;…; e06. We have chosen a
one-particle-irreducible graph for illustration but the discussion in
Secs. II and III applies to any type of graph as defined in Sec. II.
The leg labels e01 and e02 have been introduced for later purpose,
see Sec. III.

1For instance, the φn interaction vertex has n legs.

2In this paper, we use a set theory notation (which differs
slightly however from its use in set theory), similar to the one
used in [6].

3Moreover, once separated from the rest, the external legs of
the subgraph Ḡ coincide with the external legs of the graph Ḡ seen
as a separated entity, as defined in the previous section.
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An example of subgraph is shown in Fig. 1. We see
clearly what are the external vertices, and thus the external
lines that need to be cut to make the subgraph disconnected
from the original graph (these are the lines connected to the
legs e03;…; e06).

C. Connecting lines and returning lines

The subgraph Ḡ is said to be densewithin G if its vertices
exhaust all vertices of G. In the opposite case, we can define
a new subgraph, known as the complementary graph of Ḡ
within G, denoted G=Ḡ and formed by all the remaining
vertices and all the lines that connect them. Together with
the vertices of Ḡ, the vertices of G=Ḡ exhaust all the vertices
of G. This is not so, however, for the lines. Indeed, there
might be lines that connect one vertex of Ḡ and one vertex
of G=Ḡ and which, therefore, do not belong neither to Ḡ
nor to G=Ḡ. We call these lines the connecting lines of Ḡ
within G. Obviously, these can also be seen as the
connecting lines of G=Ḡ within G.
There might also be certain lines that connect

vertices of Ḡ but which do not belong to Ḡ. We call these
returning lines of Ḡwithin G. Such lines can exist because,
when selecting the subgraph Ḡ, we choose lines and
vertices of G but our choice does not necessarily include
all lines that connect the selected vertices with each other.
On the other hand, our definition of the complementary
subgraph G=Ḡ is such that all the lines connecting the
vertices of G=Ḡ are elements of G=Ḡ. In other words, G=Ḡ
does not have any returning lines within G. Of course, we
could redefine the subgraph Ḡ such that it includes the
returning lines as well, and therefore such that Ḡ and G=Ḡ
are treated in a more symmetrical way. However, we shall
not do this here for a precise reason: in the following
discussion, the subgraph Ḡ will be imposed on us by the
context, while we will always be free to choose G=Ḡ
such that it does not have any returning lines. Note finally
that, in the case of a dense subgraph, there are only
returning lines, no connecting lines. On the other hand, the
absence of connecting lines does not necessarily imply
that the subgraph Ḡ is dense within G since the comple-
mentary subgraph G=Ḡ could be disconnected from Ḡ.
The equivalence works in the case of a connected
graph G though.
The notions of connecting and returning lines provide a

graphical representation of how a given subgraph Ḡ is
inserted within a graph G, see Fig. 2. This structure will be
central in the following developments. If we take the
example of Fig. 1, we see that the considered subgraph
has one returning line (the thin line connected to the legs e05
and e06) and two connecting lines (the two thin lines
attached respectively to the legs e03 and e04). The remaining
lines and vertices (in the bottom right of the figure) form the
complementary graph.

III. OVERLAPPING SUBGRAPHS

We are now ready to discuss how two subgraphs Ḡ1 and
Ḡ2 of a given graph G can overlap with each other. In fact,
for the moment, the original graph G will play no role
and we can equally think in terms of the overlap of two
original graphs.
By overlapping subgraphs or graphs, we mean that Ḡ1

and Ḡ2 have certain vertices and lines in common. We shall
in fact consider the collection of all common vertices and
lines between Ḡ1 and Ḡ2. It is quite obvious that, if a line is
common to Ḡ1 and Ḡ2, then the two vertices attached to its
ends are also common to Ḡ1 and Ḡ2. It follows that this
common collection of lines and vertices forms a graph,
referred to as the overlap graph between Ḡ1 and Ḡ2, which
we denote Ḡ1 ∩ Ḡ2 in what follows.

A. Overlap pattern

This common graph Ḡ1 ∩ Ḡ2 is in fact a subgraph of both
Ḡ1 and Ḡ2. We can then apply the results of the previous
section twice and introduce two sets of connecting lines,
nc1 and nc2 in number, as well as two sets of returning lines,
nr1 and nr2 in number. This leads to the graphical
representation shown in Fig. 3, where, for later use, we
have also introduced the numbers of external legs of
Ḡ1 ∩ Ḡ2, Ḡ1=ðḠ1 ∩ Ḡ2Þ and Ḡ2=ðḠ1 ∩ Ḡ2Þ attached neither
to connecting lines nor to returning lines, and denoted
respectively as x, x1 and x2. It is important to stress that no
connecting line of Ḡ1 ∩ Ḡ2 within Ḡ1 can be a connecting
line of Ḡ1 ∩ Ḡ2 within Ḡ2, or vice versa. Otherwise, this line
would be a line of both Ḡ1 and Ḡ2 and then an element of
Ḡ1 ∩ Ḡ2, that is not a connecting line. The same remark
applies to the returning lines.

G

G

G

nc

n r

FIG. 2. A subgraph Ḡ is inserted in a graph G by means of nc
connecting lines and nr returning lines. By definition, the
complementary graph G=Ḡ has no returning lines. In contrast,
we cannot hide the returning lines of Ḡ via a redefinition of Ḡ
because, in general, Ḡ will be forced upon us by the context.
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B. Counting external legs

The external legs of Ḡ1 are those labeled x1, x as well
as the nt2 ≡ nc2 þ 2nr2 legs attached to the connecting
and returning lines of C̄ within Ḡ2. Reciprocally, the
external legs of Ḡ2 are those labeled x2, x as well as the
nt1 ≡ nc1 þ 2nr1 legs attached to the connecting and
returning lines of C̄ within Ḡ1. We can then write

nextðḠ1Þ ¼ x1 þ xþ nt2 ; ð1Þ

nextðḠ2Þ ¼ x2 þ xþ nt1 : ð2Þ

On the other hand, the number of external legs of Ḡ1 ∩ Ḡ2 is

nextðḠ1 ∩ Ḡ2Þ ¼ xþ nt1 þ nt2 : ð3Þ

Finally, it will be convenient to consider the union of Ḡ1 and
Ḡ2 obtained by putting together all the vertices and lines of
Ḡ1 and Ḡ2. This is clearly a graph which we denote Ḡ1 ∪ Ḡ2.
Its number of external legs is given by

nextðḠ1 ∪ Ḡ2Þ ¼ x1 þ xþ x2: ð4Þ

Using Eqs. (1)–(4), it is then easily checked that

nextðḠ1 ∩ Ḡ2Þ þ nextðḠ1 ∪ Ḡ2Þ ¼ nextðḠ1Þ þ nextðḠ2Þ: ð5Þ

This formula strongly reminds the well known relation
between the cardinals of two finite sets X1, X2 and the
cardinals of the sets X1 ∪ X2 and X1 ∩ X2.

4 We stress

however that Eq. (5) is not a trivial application of the
corresponding formula between the cardinals of the sets
of external legs of Ḡ1, Ḡ2, Ḡ1 ∪ Ḡ2 and Ḡ1 ∩ Ḡ2 because
the sets of external legs of Ḡ1 or Ḡ2 are not subsets of the
set of external legs of Ḡ1 ∪ Ḡ2 and so the union of the sets
of external legs of Ḡ1 and Ḡ2 is not the set of external legs
of Ḡ1 ∪ Ḡ2. Instead, the formula (5) needs to be seen as
consequence of the overlapping structure depicted
in Fig. 3.

C. Listing the possible overlaps

The previous formulas allow us to list all possible
overlaps between Ḡ1 and Ḡ2. First it follows from
Eq. (5) that a necessary condition for Ḡ1 and Ḡ2 to have
an overlap is that

nextðḠ1 ∩ Ḡ2Þ ≤ nextðḠ1Þ þ nextðḠ2Þ: ð6Þ

This also means that, given nextðḠ1Þ and nextðḠ2Þ, we can
obtain all possible overlaps between Ḡ1 and Ḡ2 by con-
sidering all possible values of nextðḠ1 ∩ Ḡ2Þ compatible
with the constraint (6) and, for each of these values,
solve the system (1)–(3) for x, x1 and x2 as a function
of nt1 and nt2 . One finds

x ¼ nextðḠ1 ∩ Ḡ2Þ − nt1 − nt2 ; ð7Þ

x1 ¼ nextðḠ1Þ − nextðḠ1 ∩ Ḡ2Þ þ nt1 ; ð8Þ

x2 ¼ nextðḠ2Þ − nextðḠ1 ∩ Ḡ2Þ þ nt2 ; ð9Þ

with the constraints

x

C

nc2

G2

x2

n
1

n
2

C

r r

nc1

G1 C

x1

FIG. 3. Overlap between two graphs Ḡ1 and Ḡ2. The overlap graph C̄ ¼ Ḡ1 ∩ Ḡ2 is the (maximal) common subgraph of Ḡ1 and Ḡ2. This
common subgraph has nci connecting lines within Ḡi and nri returning lines within Ḡi. We denote by x, x1 and x2 the numbers of external
legs of C̄, Ḡ1=C̄ and Ḡ2=C̄ that are connected neither to connecting lines nor to returning lines.

4More precisely, one has card ðX1 ∩ X2Þ þ card ðX1 ∪ X2Þ ¼
card X1 þ card X2.
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nt1 þ nt2 ≤ nextðḠ1 ∩ Ḡ2Þ; ð10Þ

nt1 ≥ nextðḠ1 ∩ Ḡ2Þ − nextðḠ1Þ; ð11Þ

nt2 ≥ nextðḠ1 ∩ Ḡ2Þ − nextðḠ2Þ: ð12Þ

Any possible solution defined by the values of x, x1, x2,
nt1 and nt2 is called an overlap mode. In Appendix, we
determine the number of overlap modes and in Table I,
we collect the various overlap modes for subgraphs with
0 and 1 external legs. An example of overlap of two
subgraphs with 6 external legs each is provided in Fig. 1
where the highlighted subgraph, obtained by cutting the
lines attached to the legs e03;…; e06, overlaps with the
subgraph obtained by cutting the lines attached to the legs
e01 and e02. This overlap mode is characterized by nt1 ¼ 4

(with nc1 ¼ 2 and nr1 ¼ 1), nt2 ¼ 2 (with nc2 ¼ 2 and
nr2 ¼ 0), x ¼ 0, x1 ¼ 2 and x2 ¼ 4.
We mention that the above equations make no direct

reference to the numbers or connecting lines nci or to the
numbers of returning lines nri , but rather to the combination
nti ¼ nci þ 2nri and, in fact, one can interpret the returning
lines as a degenerate case of connecting line which does not
connect to any complementary graph but loops back
instead to the subgraph. This allows us to simplify the
graphical representation given in Fig. 3 by ignoring the
returning lines, or, more precisely, by hiding them as part of
the connecting lines.5

So far the analysis concerned any type of subgraphs of a
given graph. In particular, the subgraphs did not need to be
connected. In the next section, we particularize the analysis
to specific classes of subgraphs for which we show that
overlaps are not possible.

IV. THE CASE OF ONE-PARTICLE-IRREDUCIBLE
SUBGRAPHS

A one-particle-irreducible (1PI) subgraph is a con-
nected graph that cannot be made into two disconnected
pieces by cutting just one line. In this section we analyze
the possibility of overlap between two such subgraphs.
More precisely, we look for generic enough conditions
under which such overlaps are excluded. Of course, it will
be implicitly assumed here that none of the subgraphs
in question is a subgraph of the other one (in particular,
they are assumed to be distinct). Otherwise they always
overlap, in a trivial manner. Moreover, since the union of
two overlapping 1PI subgraphs is also 1PI, it is neces-
sarily contained in one of the 1PI components of the
original graph G. Thus, without loss of generality, we can
assume that the original graph is 1PI (and in particular
connected).
A 1PI subgraph with p external legs is called a

p-insertion. This notion includes the (1PI) graph itself
if the latter has p external legs, and also any single
vertex associated to the φp interaction if the latter was
included in the theory. We shall now introduce certain
notions associated to p-insertions and then analyze the
conditions under which the 2-, 3- and 4-insertions cannot
overlap.

A. Definitions

A graph G is called a p-skeleton if it contains no other
p-insertion than the graph itself (if it has p external legs)
or those made of a single vertex (if the φp interaction vertex
is part of the model). We mention that a 1PI graph is
necessarily a 0-skeleton (since it is connected) and also a
1-skeleton (since any nontrivial 1-insertion would be
necessarily connected to the rest of the graph by a line).
More generally, we call p1=p2-skeleton, a graph that is
both a p1- and a p2-skeleton.
Given two p-insertions Ḡ1 and Ḡ2 of a graph G, it might

occur that one of them is a subgraph of the other, say
Ḡ1 ⊂ Ḡ2. This defines a partial ordering over the set of

TABLE I. overlap modes between subgraphs with 0 and 1 external legs as obtained using Eqs. (7), (8) and (9) and the constraints
(10)–(12). We have omitted certain cases that are deduced from the ones in the table using the exchange Ḡ1 ↔ Ḡ2. For the cases listed
here nti ≤ 1 and thus there are no returning lines.

nextðḠ1Þ nextðḠ2Þ nextðḠ1 ∩ Ḡ2Þ nt1 nt2 x x1 x2 nextðḠ1 ∪ Ḡ2Þ
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1
0 1 1 1 0 0 0 0 0
1 1 0 0 0 0 1 1 2
1 1 1 0 0 1 0 0 1
1 1 1 0 1 0 0 1 1
1 1 1 1 0 0 1 0 1
1 1 2 1 1 0 0 0 0

5We could introduce overlapping submodes by considering all
the possible ways one can distribute the given nti ¼ nci þ 2nri
among nci and nri . However the distinction between connecting
lines and returning lines does not play a very deep role in what
follows, see however the short discussion in Sec. IV D.
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p-insertions of the graph G. As any partial ordering over a
finite set, it admits maximal elements, that is elements that
are larger than any other element that is ordered with
respect to them. In the present context, we refer to these
maximal elements as maximal p-insertions. They corre-
spond to p-insertions that are not themselves subgraphs
of another p-insertion within the graph G. Obviously,
a maximal p-insertion cannot be a subgraph of another
maximal p-insertion of the same graph, unless these two
maximal p-insertions coincide.
The union of two overlapping p-insertions is another

q-insertion. This is because, if there was a way to split the
resulting graph by cutting one line, the cut should lie in any
of the two original p-insertions. But this is impossible since
the latter are 1PI by definition. If we now consider the
particular case of the union of two overlapping (and
distinct) maximal p-insertions, then necessarily q ≠ p
since otherwise the union would have created a new p-
insertion that is distinct from the original ones and that is
larger than any of them, in contradiction with the fact that
the latter were both assumed to be maximal. We shall make
use of this result below.

B. Nonoverlap theorems

It is not very difficult to see what is the added value of
considering 1PI subgraphs. First, the number of connecting
lines of Ḡ1 ∩ Ḡ2 within Ḡi is either nci ¼ 0 or nci ≥ 2, and
in the first case, we necessarily have nri ≥ 1, otherwise one
subgraph would be included in the other one. It follows that
nti ≥ 2. From Eq. (3) this implies nextðḠ1 ∩ Ḡ2Þ ≥ 4, and,
combining this with Eq. (5), we arrive at

4þ nextðḠ1 ∪ Ḡ2Þ ≤ nextðḠ1Þ þ nextðḠ2Þ: ð13Þ

For not two large values of nextðḠ1Þ and nextðḠ2Þ this is a
strong constraint on nextðḠ1 ∪ Ḡ2Þ that will allow us finding
certain obstructions to the presence of overlaps.
Consider first the case of 2-insertions, with p1 ≡

nextðḠ1Þ ¼ 2 and p2 ≡ nextðḠ2Þ ¼ 2. From Eq. (13) it
follows that nextðḠ1 ∪ Ḡ2Þ ¼ 0. Since the original graph
G is assumed to be 1PI, this means that Ḡ1 ∪ Ḡ2 is the graph
G itself, and, therefore, that the latter cannot have any
external leg. We have thus arrive at a first “nonoverlap”
theorem: the only possibility for a overlap of 2-insertions
(self-energies) is within a graph with no external legs. In
other words:
Theorem 2: 2-insertions cannot have an overlap within

a (1PI) graph with external legs.
Let us mention that we know exactly how this overlap

occurs in the case of a graph with no external legs since
nextðḠ1 ∩ Ḡ2Þ ¼ 4 from Eq. (5) and therefore nt1 ¼ nt2 ¼ 2

from Eqs. (10)–(12).
Consider next p1≡nextðḠ1Þ¼ 3 and p2 ≡ nextðḠ2Þ ¼ 3.

In this case, the inequality (13) leaves room for the cases

nextðḠ1 ∪ Ḡ2Þ ¼ 0, 1, 2. We could analyze the various
overlap modes using the discussion in the previous
section. However, our purpose here is to find conditions
for nonoverlap. To this purpose, we note that in the cases
nextðḠ1 ∪ Ḡ2Þ ¼ 0, 1, we have again Ḡ1 ∪ Ḡ2 ¼ Ḡ and
therefore these cases can only exist if the original (1PI)
graph G has 0 or 1 external legs. In the case nextðḠ1 ∪ Ḡ2Þ ¼
2, we do not necessarily have Ḡ1 ∪ Ḡ2 ¼ Ḡ, so this case is
possible if the original graph has two external legs or if it
contains 2-insertions. We then arrive at a second non-
overlap theorem:
Theorem 3: 3-insertions cannot have a overlap within a

(1PI) 2-skeleton graph that has strictly more than two
external legs.
Let us finally consider p1 ≡ nextðḠ1Þ ¼ 4 and p2 ≡

nextðḠ2Þ ¼ 4. In this case, the inequality (13) leaves room
for the values nextðḠ1 ∪ Ḡ2Þ ¼ 0;…; 4. This situation is a
bit peculiar because, contrary to the previous cases, the
highest possible value of nextðḠ1 ∪ Ḡ2Þ allowing for an
overlap, that is 4, coincides precisely with the number of
external legs of the insertions we are probing. So we cannot
just get rid of this overlap mode by restricting to 4-skeleton
graphs, for this would mean that there are no 4-insertions to
consider in the first place (aside from the trivial ones). Here
is where the notion of maximal 4-insertions and the result
quoted at the end of Sec. IVA comes in handy. Indeed,
suppose that we restrict our analysis to 1PI graphs that are
2- and 3-skeletons. Then, what we can show is the
following third nonoverlap theorem:
Theorem 4: Maximal 4-insertions cannot have a over-

lap within a (1PI) 2=3-skeleton graph that has strictly more
than three external legs.
Restricting to 2=3-skeleton graph with strictly more than

3 legs immediately gets rids of the cases nextðḠ1 ∪ Ḡ2Þ ¼
0;…; 3. Restricting to maximal 4-insertions gets rid of the
case nextðḠ1 ∪ Ḡ2Þ ¼ 4 because, as we already discussed
above, the union of two overlapping (distinct) maximal
4-insertions cannot be a 4-insertion.
The above results have been obtained by using the

inequality (13). An alternative strategy consists in listing
all possible overlaps of a given type and check that none
of them fulfills the premises of the above theorems. This
is done in Fig. 4 where the possible overlaps between 2-, 3-
and 4-insertions are listed. In each figure, the blobs make
reference to the blobs in Fig. 3, with the little difference that
we have hidden the returning lines as part of the connecting
lines, see the discussion at the end of Sec. III C.

C. Overlapping insertions of different order

We can also consider overlaps between insertions of
different order. Take for instance p1 ¼ 2 and p2 ¼ 3. The
inequality (13) implies nextðḠ1 ∪ Ḡ2Þ ≤ 1. Thus an overlap
between these insertions can only occur in graphs with zero
or one external leg, or, in other words, a 2-insertion and a
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3-insertion cannot have an overlap within a graph with
strictly more than one leg:
Theorem 23: A 2-insertion and a 3-insertion cannot

overlap within a (1PI) graph with strictly more than one
external leg.
For p1 ¼ 2 and p2 ¼ 4, an overlap can occur only in the

cases nextðḠ1 ∪ Ḡ2Þ ¼ 0, 1, 2. This is a situation similar to
the one we encountered for the overlap of two 4-insertions:
the highest possible value of nextðḠ1 ∪ Ḡ2Þ allowing for an
overlap, that is 2, coincides precisely with the number of
external legs of one of the insertions we are probing.
Consider then not an overlap between an arbitrary 2-
insertion and an arbitrary 4-insertion, but rather between
a maximal 2-insertion and an arbitrary 4-insertion. This
type of overlap cannot occur in a graph with strictly more
than one external leg. Indeed, the cases nextðḠ1 ∪ Ḡ2Þ ¼ 0,
1 are trivially excluded, whereas the case nextðḠ1 ∪ Ḡ2Þ ¼ 2

is excluded because otherwise Ḡ1 ∪ Ḡ2 would correspond
to a 2-insertion that contains strictly Ḡ1, in contradiction
with the fact that Ḡ1 was assumed to be maximal. We arrive
then at the following result
Theorem 24: A maximal 2-insertion and a 4-insertion

cannot overlap within a (1PI) graph with strictly more than
one external leg.
Finally, for p1 ¼ 3 and p2 ¼ 4, an overlap can occur

only in the cases nextðḠ1 ∪ Ḡ2Þ ¼ 0, 1, 2, 3. This is a
situation similar to the one we encountered for the overlap
of two 4-insertions: the highest possible value of nextðḠ1 ∪
Ḡ2Þ allowing for an overlap, that is 3, coincides precisely
with the number of external legs of one of the insertions we
are probing. Consider then not an overlap between an
arbitrary 3-insertion and an arbitrary 4-insertion, but rather
between a maximal 3-insertion and a arbitrary 4-insertion.
This type of overlap cannot occur in a 2-skeleton graph with
strictly more than two external legs. Indeed, the cases
nextðḠ1 ∪ Ḡ2Þ ¼ 0, 1, 2 are excluded in a trivial way,whereas
the case nextðḠ1 ∪ Ḡ2Þ ¼ 3 is excluded because otherwise
Ḡ1 ∪ Ḡ2 would correspond to a 3-insertion that contains
strictly Ḡ1, in contradictionwith the fact that Ḡ1 was assumed
to be maximal. We arrive then at the following result
Theorem 34: A maximal 3-insertion and a 4-insertion

cannot overlap within a (1PI) 2-skeleton graph with strictly
more than two external legs.
These results can once again be derived by listing all

possible overlaps between 2-, 3- and 4-insertions, see Fig. 5.

D. Connecting lines versus returning lines

So far, we made no distinction between connecting
and returning lines. This was possible because they play
essentially the same role. In particular, with insertions, we
have nci ≥ 2 or, in the case where nci ¼ 0, 2nri ≥ 2 which
allowed us to use nti ≥ 2. One may want to make a
distinction between connecting lines and returning lines,
and, in particular treat the cases nci ¼ 0 and nci ≥ 2

separately. When proceeding this way, one is lead to discuss
three cases of overlap, a generic overlap with nc1 ≥ 2 and
nc2 ≥ 2 and nongeneric overlapswith nc1 ¼ 0 or nc2 ¼ 0, or
both. Using a terminology that we introduced above, the
generic overlap corresponds to the case where Ḡ1 ∩ Ḡ2 is
neither dense within Ḡ1 nor within Ḡ2, whereas the non-
generic overlaps correspond to the cases where Ḡ1 ∩ Ḡ2 is
dense either within Ḡ1 or within Ḡ2, or within both.
There is nothing to add to the discussion in the previous

section in the case of a generic overlap. In the case
of nongeneric overlaps, however, the analysis can be
slightly refined. Indeed, if nc1 ¼ 0 and because the sub-
graphs under consideration are connected, we need to
have x1 ¼ 0 which implies that nextðḠ1 ∪ Ḡ2Þ ¼ xþ x2.
Moreover, because nr1 ≥ 1, it follows from Eq. (2) that
nextðḠ1 ∪ Ḡ2Þ ≤ p2 − 2. Similarly, if nc2 ¼ 0, we need to

2/2 overlap

3/3 overlap

4/4 overlap

FIG. 4. Possible overlaps between two 2-insertions, two 3-
insertions or two 4-insertions. None of them complies with the
premises of the theorems 2, 3 and 4. In other words, the theorems
apply whenever their premises are fulfilled.
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have nextðḠ1 ∪ Ḡ2Þ ≤ p1 − 2. It is easily seen that these
constraints are stronger than (13).
More precisely, in the case p1 ¼ p2 ¼ 2, we obtain the

same constraint nextðḠ1 ∪ Ḡ2Þ ¼ 0. However, in the case
p1 ¼ p2 ¼ 3, we find nextðḠ1 ∪ Ḡ2Þ ¼ 0, 1 which is
stronger than the constraint that we found earlier and
which allows to enlarge the premise of theorem 3 to the
case of graphs with strictly more than one external leg.
Similarly, for p1 ¼ p2 ¼ 4, we find nextðḠ1 ∪ Ḡ2Þ ¼ 0, 1, 2
which allows to enlarge the premise of theorem 4 to graphs
with strictly more than two external legs and to any type of
4-insertion, not necessarily maximal.6 In the case where
p1 ≠ p2, with pi ¼ 2, 3 or 4, it is easily checked that the
constraints are the same as those obtained above so the
premises of theorems 23, 24 and 34 are not changed.

E. Higher order insertions

Consider now the case p1 ¼ p2 ¼ 5. The inequality (13)
imposes nextðḠ1 ∪ Ḡ2Þ ≤ 6. We see here that, even if
we restricted to 2=3=4-skeleton graphs and to maximal
5-insertions, we could find overlaps with nextðḠ1 ∪ Ḡ2Þ¼ 6.
From (5), this implies nextðḠ1 ∩ Ḡ2Þ ¼ 4 which, according

to (10)–(12), leads to all the overlap modes complying with
nt1 þ nt2 ≤ 4. It follows that, without further restrictions,
the nonoverlap theorems derived above are specific to the
cases p ¼ 2, 3 and 4.
We can find nonetheless a nonoverlap theorem in the

case p ¼ 5 if we further restrict the possible subgraphs
under consideration. Assume for instance that we inquire
about the overlap of two-particle-irreducible (2PI) sub-
graphs, that is subgraphs that cannot be split apart by
cutting two lines. In the case of a generic overlap, we have
nti ≥ 3 and therefore nextðḠ1 ∩ Ḡ2Þ ≥ 6, from which it
follows now that

6þ nextðḠ1 ∪ Ḡ2Þ ≤ nextðḠ1Þ þ nextðḠ2Þ: ð14Þ

This time, overlap of 3-insertions can only occur if the
original graph has no external legs, 4-insertions cannot
overlap if the graph has strictly more than 2 legs and 5-
insertions cannot overlap if the graph has strictly more than
4 legs. Moreover, maximal 6-insertions cannot overlap if
the graph has strictly more than 6 legs. These results extend
almost identically to the case of a nongeneric overlap.7

2/3 overlap

2/4 overlap

3/4 overlap

FIG. 5. Possible overlaps between a 2-insertion and a 3-insertion, a 2-insertion and a 4-insertion, and a 3-insertion and a 4-insertion.
None of them complies with the premises of the theorems 23, 24 and 34. In other words, the theorems apply whenever their premises are
fulfilled. We note that the first diagram in the last row has strictly more than 2 external legs, just as in the premise of theorem 34.
However the 3-insertion that overlaps with the 4-insertion is not maximal, so this case is not excluded by the theorem.

6Arbitrary 4-insertions can have a generic overlap though. In a
2=3-skeleton graph, we necessarily have nextðḠ1 ∪ Ḡ2Þ ¼ 4 and
then nextðḠ1 ∩ Ḡ2Þ ¼ 4, which, according to (10)–(12), leads to
all the overlapping modes complying with nt1 þ nt2 ≤ 4. Since
nti ≥ 2 in the generic case, we must have nti ¼ 2 and thus nci ¼ 2
and nri ¼ 0.

7For the 3-insertions, we need to require the graph to have
strictly more than1 leg, for the 4-insertions, it is enough to require
the graph to have strictly more than 2 legs, for the 5-insertions, it
is enough to require the graph to have strictly more than 3 legs,
and for the 6-insertions it is enough to require the graph to have
strictly more than 4 legs and the result applies to arbitrary 6-
insertions, not necessarily maximal.
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V. APPLICATION: HIDING THE BARE
MASS AS WELL AS THE TRILINEAR
AND QUARTIC BARE COUPLINGS

In this section we build upon the previous results to show
how, for a large class of functions, it is possible to hide the
dependence on the bare mass as well as the dependence on
the trilinear and quartic bare couplings, using the two-,
three- and four-point functions. For simplicity, we first
show how this is done for the vertex functions ΓðnÞ with
n ≥ 5. To do so, we show that these vertex functions admit
a skeleton expansion, that is rather than computing them by
adding all the perturbative graphs they are made of, we can
alternatively sum over all the 2=3=4-skeleton graphs in this
list, and then replace each free propagator by the full two-
point function G ¼ ½Γð2Þ�−1, each tree-level 3-vertex by the
full three point function Γð3Þ and each tree-level 4-vertex by
the full four-point function Γð4Þ. As already mentioned in
the Introduction, this is a known result. It is however
interesting to see how it derives from the nonoverlap
theorems of the previous section. At the end of the section,
we argue that this result extends in fact to a larger class of
functions.

A. Hiding the bare mass

Consider a 1PI graph G with external legs. We define a
chain of G as any connected sequence of lines G0 and
2-insertions Σi of the form

G0Σ1G0Σ2G0 � � �G0ΣnG0: ð15Þ

Since we have assumed that the 1PI graph G has external
legs, the startingG0 is necessarily different from the ending
one. Moreover, we request that this sequence is complete,
that is that one cannot add additional ΣkG0’s orG0Σk’s. In a
graph with external legs, it is always possible to identify
unambiguously all the chains. It may happen that certain
lines G0 are not connected to any self-energy. We call these
trivial chains.
Given two chains C1 and C2 of G, we say that C2 is a

subchain of C1 if it is a chain of one of the 2-insertions
of C1. This relation which we denote as C2 ⊂ C1 defines
a partial ordering over the set of chains of G. As any
partial ordering over a finite set, it admits maximal
elements which we call maximal chains. Now, according
to theorem 2 above, in a graph with external legs,
2-insertions cannot have any overlap (unless of course
one of them is a subgraph of the other). It is then easily
verified that maximal chains cannot have any overlap either
(unless of course one of them is a subchain of the other).
Let us now use this result to show how to hide the bare mass
in ΓðnÞ, with n ≥ 3.

We start by writing Γðn≥3Þ as

Γðn≥3Þ ¼
X

D

D½G0; fgðm≥3Þ
b g�; ð16Þ

where the sum runs over all Feynman graphs D that
contribute to Γðn≥3Þ. Depending on the context, D denotes
the graph itself or the corresponding Feynman integral. It
depends on the bare mass mb via the bare free propagator
G0. We have also made explicit the dependence on the

various bare couplings fgðm≥3Þ
b g.

Since maximal chains do not overlap in the graphs
contributing to Γðn≥3Þ, one can unambiguously associate to
each graph D, a 2-skeleton graph denoted D2 and obtained
from D by replacing any maximal chain by a trivial chain.
It is convenient to momentarily associate a different label
to each trivial chain appearing in D2, so that D2 is a

function of these various chains D2½G1;…; Gp; fgðm≥3Þ
b g�.

The original graph D can now be written in terms of its
associated 2-skeleton as

D½G0; fgðm≥3Þ
b g� ¼ D2½C1;…; Cp; fgðm≥3Þ

b g� ð17Þ

where the Ci are the maximal chains ofD that were replaced
by trivial chains Gi in order to obtain the 2-skeleton

D2½G1;…; Gp; fgðm≥3Þ
b g�. We mention that there is no

prefactor in the right-hand side of Eq. (17). This is because
the symmetry factors factorize: the symmetry factor of D
equals the symmetry factor of D2 times the symmetry
factors of the Ci. This property relates to the fact that the
replacement of maximal chains by trivial chains is unam-
biguous, see below for more details.
Let us now sum both sides of Eq. (17) over the graphs D

contributing to Γðn≥3Þ. We perform the sum in two steps.
First we sum over all graphs D that have the same D2, and
then we sum over all the possible 2-skeletons D2. Because
we are summing over all possible graphs of Γðn≥3Þ and
because this does not put any restrictions on the chains that
can appear in the right-hand side of Eq. (17) for a givenD2,
we find that the sum over all graphs D that share the same
D2 replaces each chain in the right-hand side of Eq. (17) by
the sum of all possible chains, that is the two-point function
½Γð2Þ�−1:

D2½½Γð2Þ�−1;…; ½Γð2Þ�−1; fgðm≥3Þ
b g� ð18Þ

which we denote for simplicity as D2½½Γð2Þ�−1; fgðm≥3Þ
b g�.

We now need to sum over all possible skeletonsD2, and we
then find

Γðn≥3Þ ¼
X

D2

D2½½Γð2Þ�−1; fgðm≥3Þ
b g�: ð19Þ
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B. Hiding the trilinear and quartic bare couplings

Let us now consider n ≥ 4 and start from Eq. (19). Since
this sum is made of 2-skeletons that have strictly more than
2 legs, we can apply theorem 3. This means that to any
graph D2, we can unambiguously associate a 2=3-skeleton
D23 ∈ P23 by shrinking any maximal 3-insertion to a trivial
one. Using the same argument as above, we find8

Γðn≥4Þ ¼
X

D23

D23½½Γð2Þ�−1;Γð3Þ; fgðm≥4Þ
b g�: ð20Þ

Finally, let us now consider n ≥ 5 and start from Eq. (20).
Since this sum is made of 2=3-skeletons that have strictly
more than 3 legs, we can apply theorem 4. Using the same
strategy as above, we conclude that

Γðn≥5Þ ¼
X

D234

D234½½Γð2Þ�−1;Γð3Þ;Γð4Þ; fgðm≥5Þ
b g� ð21Þ

where the sum runs over the 2=3=4-skeleton graphs
contributing to Γðn≥5Þ. Note that it was important to first
resum the three-point function. Otherwise, the graphs
would not have been 3-skeletons and we could not have
applied theorem 4.
One could wonder whether the 2=3-skeleton graph D23

(obtained from D by first replacing each maximal chain by
a trivial chain and then any maximal 3-insertion by a trivial
one) coincides with D32 (obtained via a similar procedure
but in opposite order). The identification D23 ¼ D32 relies
on the nonoverlap theorem 23 and grants also that the
graphs D23 are all the 2=3-skeletons originally present in
the collection of graphs D, that is that no 3-skeleton graph
disappeared in the reduction fromD toD2. Similar remarks
apply to D234, D243, D342, D324, D423 and D432.
Note finally that we cannot continue the procedure (16)

→ (19) → (20) → (21) further because maximal 5-
insertions can overlap within 2=3=4-skeleton graphs, as
discussed in the previous section.

C. Symmetry factors

The above results rely on the factorization of symmetry
factors. Let us now show how this factorization comes

about. Consider for instance a graph D2½½Γð2Þ�−1; fgðm≥3Þ
b g�.

After identifying the maximal 3-insertions of the graph,

which we write Vð3Þ
1 ;…; Vð3Þ

p , the graph rewrites in terms of
the associated 2=3-skeleton as

D2½½Γð2Þ�−1; fgðm≥3Þ
b g�

¼ αD23½½Γð2Þ�−1; Vð3Þ
1 ;…; Vð3Þ

3 ; fgðm≥4Þ
b g�; ð22Þ

where the pre-factor α accounts for a potential mismatch
between the symmetry factor of D2 and the symmetry
factor of D23 multiplied by the symmetry factors of the

Vð3Þ
i . We now show that α ¼ 1, meaning that the symmetry

factors factorize.
To see this, we note that in order to compute the

symmetry factor of D2½½Γð2Þ�−1; fgðm≥3Þ
b g�, we can first

compute the symmetry factor of a ðnþ 3pÞ-point function
R obtained by chopping off the 3-insertions from the
original graph and then connecting the chopped legs back

to the Vð3Þ
i . The only thing that one needs to pay attention to

is that, by computing the symmetry factor in this alternative
way, we are missing someWick contractions resulting from
the possibility of redistributing the various tree-level
vertices of the of the original graph (for simplicity, we
assume here that there are only trilinear vertices) among

each of the Vð3Þ
i or R. Denoting ni the number of vertices in

each of the Vi and by n the number of vertices in the R, this
produces a factor ðnþ n1 þ � � � þ npÞ!=ðn!n1! � � � np!Þ in
the counting of Wick contractions. If we denote by NX the
number of Wick contractions of a given contribution X, we
have then

ND2
¼ ðnþ n1 þ � � � þ npÞ!

n!n1! � � � np!
NRNVð3Þ

1

� � �N
Vð3Þ
p
: ð23Þ

But the symmetry factor is equal to the number of Wick
contractions divided the factorial of the number of vertices
and 3! (since we are here considering cubic vertices)
elevated to the number of vertices. It follows that

sD2
¼ ND2

ðnþn1þ���þnpÞ!ð3!Þnþn1þ���þnp

¼ NR

n!ð3!Þn
NV1

n1!ð3!Þn1
� � � NVp

np!ð3!Þnp
¼ sRsVð3Þ

1

� ��s
Vð3Þ
p
: ð24Þ

Applying the same formula to D23, with Vð3Þ
i ¼ gð3Þb , we

find sR ¼ sD23
and thus

sD2
¼ sD23

s
Vð3Þ
1

� � � s
Vð3Þ
p
: ð25Þ

which is the announced factorization of symmetry factors.
The same reasoning applies to the resummation of chains or
four-point functions.

8One could wonder here why we are not applying our strategy
to Γð3Þ since theorem 3 applies to graphs with strictly more than
two external legs. This has to do with our choice of definition of a
p-skeleton diagram which allows for the presence of p-insertions
equal to the whole graph (in the case the latter has p-external
legs). Shrinking such insertion to a trivial one would lead to a
skeleton graph but would miss many others. We could redefine
p-skeletons as graphs that contain only trivial, tree-level
p-insertions. In this case, no skeleton would be missed and
Eq. (20) would apply also to Γð3Þ. This has limited interest
however, for the latter identity is a tautology. Similar remarks
apply to Eq. (21) and Γð4Þ.
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D. Extension

So far we have we have considered the case of 1PI
graphs. However, it is pretty clear that our results apply to a
larger class of graphs. Consider first the nonoverlap
theorems. They apply to any disconnected graph whose
connected pieces fulfill the premises of these theorems. For
instance, theorem 4 applies to any disconnected graph
whose connected parts are 2=3-skeletons with strictly more
than three external legs, and so on.
Next, let us wonder how the possibility to hide bare

parameters extends to functions other than the ΓðnÞ’s.
Consider for instance a quantity given as an infinite sum
of 2-skeleton graphs whose connected pieces have strictly
more than two external legs. It is clear that theorems 2, 3
and 23 apply to each of these graphs and one can therefore
associate unambiguously 2=3-skeleton graphs to each of
these graphs. If we now assume that the infinite sum of
graphs puts no restriction on the 2- and 3-insertions that
can appear (this is a property that needs to be verified for
each infinite class of graphs that one may consider; it is of
course obvious for the ΓðnÞ’s) then we can proceed as for
the ΓðnÞ’s and hide the dependence on the bare mass and
trilinear bare coupling using the full two- and three-point
functions.
A direct application of this result is the elimination

of the bare parameters in the higher derivatives
δnΦ=δGn (with n ≥ 3) of the Luttinger-Ward functional
Φ½G�. This functional is the sum of two-particle-irre-
ducible graphs with no external legs, that is graphs that
cannot be split apart by cutting two lines. The deriv-
atives δnΦ=δGn are also sums of two-particle-irreduc-
ible graphs but only with respect to cuts that leave the
external legs associated to a given δ=δG on the same
side of the cut. It is easily seen that the connected
components of any δnΦ=δGn with n ≥ 3 obey the
premises of theorem 3 above. Moreover, the two-
particle irreducibility puts no constraint on the possible
3-insertions that can occur.9 One can then follow the
same strategy as in Sec. V B to show that δnΦ=δGn

with (n ≥ 3) admits a skeleton expansion in terms of
the full two- and three-point functions. The correspond-
ing 2=3-skeletons obey the premises of theorem 4 and
since the two-particle irreducibility puts no constraint
on the possible 4-insertions that can occur, one can
proceed one step further and derive a skeleton expan-
sion in terms of the full two-, three- and four-point
functions. As already mentioned in the Introduction,
this has been recently put into good use to formulate a
finite set of flow equations for Φ-derivable approxima-
tions that make no reference to the bare theory,
see Ref. [5].

VI. FINAL REMARKS

A. Applications

The possibility to express Γðn≥5Þ as an infinite sum of
2=3=4-skeleton graphs with propagators, three- and four-
vertices given respectively by ½Γð2Þ�−1, Γð3Þ and Γð4Þ is a
useful tool in order to truncate infinite hierarchies of
equations that appear in continuum approaches to quan-
tum field theory, such as the Dyson-Schwinger tower of
equations or the functional renormalization group hier-
archy. In such frameworks, a given n-point function is
typically expressed in terms of higher ones, leading to an
infinite tower of equations. Now, by moving deep down
enough the hierarchy and by using the present result,
it is clear that one can replace the infinite tower of
equations by a finite number of them in which the highest
n-point functions are expressed in terms of lower ones.
The hierarchy is thus closed at the price of expressing
some of the n-point functions as infinite sums of skeleton
graphs in terms of the lower n-point functions. But
since one can truncate this infinite sum of skeleton
according to the number of loops of the skeletons, one
obtains a systematically improvable scheme in which one
only needs to solve a finite number of equations of the
hierarchy.
We also mention that in theories where primarily

divergent n-point functions have at most n ¼ 4 external
legs, this gives a very graphical explanation of why,
in a renormalizable theory, higher n-point functions
(with n ≥ 5) are finite once the primarily divergent
functions have been renormalized. Indeed once written
in terms of 2=3=4-skeletons, there are no other sub-
divergences in the graph than those of the two-, three-
and four-point functions. Moreover, there are no
global divergences since n ≥ 5. In the case of a theory
such as φ6 in d ¼ 3 dimensions, which is also renor-
malizable but features primarily divergent functions
with 6 legs, this graphical explanation does not apply
since maximal 6-point functions can overlap within any
graph and therefore there are inevitably overlapping
divergences.

B. Connection to nPI effective actions

The present approach pretty much resembles that fol-
lowed with n-particle-irreducible (nPI) effective actions
[14–16]. Let us here emphasize some differences however.
In fact, the present approach deals only with quantities for
which the bare mass and the trilinear and quartic bare
coupling can be hidden into the two-, three- and four-
point functions while avoiding graph over-counting. In
contrast, the nPI framework deals with the sum of vacuum
graphs lnZ for which none of the above nonoverlap
theorems apply. Indeed, for such graphs, there is no
unambiguous way to identify the maximal 2-, 3- and
4-insertions. It is still possible to rewrite this sum of

9It only imposes that the 3-insertions cannot be attached to two
external legs originating from the same derivative δ=δG.
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vacuum graphs as a sum of skeletons.10 However, this
writing always involve certain terms that depend on the
bare mass and the bare couplings and requires additional
terms to avoid double counting. For instance, within the
2PI framework, using the notion of cycles [14], one can
show that

lnZ ¼ Γ½G� ¼ 1

2
Tr lnGþ 1

2
TrG−1

0 GþΦ½G�; ð26Þ

where Φ½G� is the Luttinger-Ward function referred to
above. The first two terms account for the overcounting of
graphs that arise from the fact that there is no unique way to
identify maximal 2-insertions in lnZ. Moreover the second
term depends explicitly on the bare mass m2

b, so it is not
possible to fully hide this bare parameter in this case
(although we stress that this remaining dependence is rather
trivial). Similar remarks apply to the rewriting of lnZ
in terms of the three- and four-point functions leading to
the so-called 3PI and 4PI effective actions Γ½G;Γð3Þ� and
Γ½G;Γð3Þ;Γð4Þ� which express lnZ in terms of G≡ ½Γð2Þ�−1
and Γð3Þ, or G, Γð3Þ and Γð4Þ respectively. The same
remarks apply to the n-point functions obtained by impos-
ing a stationarity condition to any of these functionals.
For instance, the four-point function as derived from
Γ½G;Γð3Þ;Γð4Þ� is given by an equation that still makes
explicit reference to the quartic bare coupling. In contrast,
higher n-point functions admit a representation in which no
such reference to the bare parameters appears.

VII. CONCLUSION

In this article, we have studied how two arbitrary
subgraphs of a given Feynman graph can overlap with
each other. When restricting to 1PI subgraphs, we have
shown how this allows to derive useful “nonoverlap”
theorems for the cases of 2-, 3- and 4- insertions. One
consequence of these is the well known skeleton expansion
for vertex functions ΓðnÞ with n ≥ 5 which allows one to
entirely hide any reference to the bare mass, as well as the
trilinear and quartic bare couplings using the two-, three-
and four-point functions, and this without any over-count-
ing correction. We have also discussed how this result can
be extended to other classes of functions, in particular to
iterated derivatives of the Luttinger-Ward functional.
As discussed in Ref. [5], the previous results have

applications in the renormalization of the 2PI effective

action and the corresponding Φ-derivable approximations,
as well as in the construction of new truncation schemes for
the functional renormalization group hierarchy but their
potential range of applicability is definitely larger.
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APPENDIX: NUMBER OF OVERLAP MODES

In this section, we would like to evaluate the number of
overlap modes of two graphs Ḡ1 and Ḡ2 of nextðḠ1Þ and
nextðḠ2Þ external lines each, when no restrictions are
imposed on the graphs as in Sec. III. These are determined
by the constraints (6) and (10)–(12). To ease the reading we
shall simplify the notations as n1 ≡ nextðḠ1Þ, n2 ≡ nextðḠ2Þ
and n≡ nextðḠ1 ∩ Ḡ2Þ. Then, the constraints rewrite

n ≤ n1 þ n2; ðA1Þ

nt1 þ nt2 ≤ n; ðA2Þ

nt1 ≥ n − n1; ðA3Þ

nt2 ≥ n − n2: ðA4Þ

Without loss of generality, we can assume that n1 ≤ n2.
We first need to consider all possible values of n

compatible with (A1), that is n1 þ n2 þ 1 choices in total.
For each of these values, we need to choose nt1 and nt2
complying with (A2)–(A4). Here, we need to con-
sider various ranges for the values of n over which only
some of the constraints matter. More precisely, in the
range n ≤ n1, only the constraint (A2) matters, in the range
n1 < n ≤ n2 both (A2) and (A3) matter, and in the range
n2 < n ≤ n1 þ n2, the three constraints (A2)–(A4) matter.
We will use the following result: given three positive
integers a, b, c such that a ≥ b ≥ c and c ≤ a − b,
the conditions n1 þ n2 ≤ a, n1 ≥ b, n2 ≥ c define an
isosceles right triangle in the ðn1; n2Þ-plane of sides of
length a − b − c, corresponding to ða − b − cþ 1Þða −
b − cþ 2Þ=2 points.
In the first range, the constraint (A2) gives a number of

cases ðnþ 1Þðnþ 2Þ=2 for each value of n in the range, so

1

2

Xn1

n¼0

ðnþ 1Þðnþ 2Þ ¼ 1

6
ðn1 þ 1Þðn1 þ 2Þðn1 þ 3Þ; ðA5Þ

in total. In the second range, the constraints (A2) and (A3)
gives a number of cases ðn1þ1Þðn1þ2Þ=2 for each value of
n in the range, so

10The notion of skeleton needs to be slightly extended though,
as compared to the definition given in the present paper. For
instance, a 2-skeleton with no external legs is usually defined as a
graph in which one cannot isolate a self-energy by cutting two
distinct lines. This definition incorporates more graphs than the
ones that are enclosed in the definition of the present paper since
one can then allow for 2-insertions that are closed on each other
by means of a single line.
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1

2
ðn1 þ 1Þðn1 þ 2Þðn2 − n1Þ; ðA6Þ

in total. In the third range, the constraints (A2)–(A4) give a
number of cases ðn1 þ n2 − nþ 1Þðn1 þ n2 − nþ 2Þ=2 for
each value of n (one checks that one has c ≤ a − b), so

1

2

Xn1þn2

n¼n2þ1

ðn1 þ n2 − nþ 1Þðn1 þ n2 − nþ 2Þ

¼ 1

2

Xn1−1

n¼0

ðnþ 1Þðnþ 2Þ ¼ 1

6
n1ðn1 þ 1Þðn1 þ 2Þ; ðA7Þ

in total. Putting all the pieces together, we arrive at

1

6
ðn1 þ 1Þðn1 þ 2Þð3þ 3n2 − n1Þ: ðA8Þ

The formula for arbitrary n1 and n2 (that is not necessarily
ordered as n1 ≤ n2) is obtained after replacing n1 by
Minðn1; n2Þ and n2 by Maxðn1; n2Þ. For n1 ¼ n2 ¼ 0,
we find 1. For n1 ¼ 0 and n2 ¼ 1, we find 2. For
n1 ¼ n2 ¼ 1, we find 5. This agrees with the number of
overlap modes found in Table I.
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