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We derive a manifestly duality-symmetric formulation of the action principle for conformal gravity
linearized around Minkowski space-time. The analysis is performed in the Hamiltonian formulation, the
fourth-order character of the equations of motion requiring the formal treatment of the three-dimensional
metric perturbation and the extrinsic curvature as independent dynamical variables. The constraints are
solved in terms of two symmetric potentials that are interpreted as a dual three-dimensional metric and a
dual extrinsic curvature. The action principle can be written in terms of these four dynamical variables,
duality acting as simultaneous rotations in the respective spaces spanned by the three-dimensional metrics
and the extrinsic curvatures. A twisted self-duality formulation of the equations of motion is also provided.
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I. INTRODUCTION

Understanding dualities is a major challenge in modern
theoretical physics. Despite their widespread presence in
field theory, (super)gravity and string theory, the current
understanding of their origins and full implications is rather
limited. In the case of gravitational theories, dualities are
intimately related to the emergence of hidden symmetries
upon toroidal compactifications. For instance, it has long
been recognized that the reduction to three dimensions of
the four-dimensional Einstein-Hilbert action in the pres-
ence of a Killing vector, followed by the dualization of the
Kaluza-Klein vector to a scalar, exhibits a SLð2; RÞ
invariance acting on the scalar sector, commonly referred
to in the literature as the Ehlers symmetry, with its SOð2Þ
subgroup [1] acting as a gravitational analogue of electric-
magnetic duality. In the presence of two commuting Killing
vectors, the reduction to two dimensions yields the infinite-
dimensional Geroch group [2] as a hidden symmetry.
A similar phenomenon occurs in supergravity [3]: the

(11-d) toroidal compactification of the eleven-dimensional
theory yields maximally supersymmetric supergravity in
dimension d with a symmetry structure hidden within the
nongravitational degrees of freedom in the reduced bosonic
sector. After Hodge dualization of the p-forms to their
lowest possible rank, they combine in an irreducible
representation of a non-compact group G acting globally,

whereas the scalar sector is described by the nonlinear
sigma model G=H, with H the maximal compact subgroup
of G. In even dimensions, the global symmetry G is
realized as an electric-magnetic duality transformation
interchanging equations of motion and Bianchi identities.
Reduction to five, four and three dimensions yields asG the
exceptional Lie groups E6ð6Þ, E7ð7Þ and E8ð8Þ, respectively.
The study of the rich algebraic structure that underlies

the emergence of hidden symmetries in compactifications
of (super)gravity has led to conjecture the existence of an
infinite-dimensional Kac-Moody algebra acting as a fun-
damental symmetry of the uncompactified theory [4–7],
encompassing the duality symmetries that appear upon
dimensional reduction. A key property of these algebras is
that they involve all the bosonic fields in the theory and
their Hodge duals, including the graviton and its dual field.
In four dimensions, the graviton and its dual are each
described by a symmetric rank-two tensor field, and a
duality symmetry relating them is expected to emerge,
inherited from the underlying infinite-dimensional
algebraic structure. This has motivated the search of
duality-symmetric action principles involving gravity.
A SOð2Þ-invariant action principle for linearized gravity
has been derived [8–10],1 making use of the Hamiltonian
formalism and therefore breaking manifest space-time
covariance, along the lines of [13]. Duality acts as rotations
among potentials that solve the constraints in the canonical
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1Interestingly, gravitational duality at the linearized level and
electric-magnetic duality have been related via the double copy
[11,12]: electric-magnetic duality rotates a Coulomb charge into a
dyon, and the double copy maps this process as the trans-
formation of linearized Schwarzschild into linearized Taub-NUT
produced by gravitational duality.
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formalism. On the other hand, a different approach based
on the light-cone formalism [14] suggests that the Ehlers
symmetry in three dimensions can be lifted to the unre-
duced theory, appearing as a remnant of an uplift of E8ð8Þ to
four dimensions obtained by a field redefinition in d ¼ 3
and a subsequent “oxidation” procedure back to d ¼ 4, and
provides some hope for a nonlinear extension of the
duality-invariant action in [8].
It seems natural to wonder about the possibility of

deriving duality-symmetric action principles for theories
of gravity involving higher derivatives. Among those,
conformal gravity occupies a position of particular interest
in the literature. Being constructed out of the square of the
Weyl tensor, the action principle is invariant under con-
formal rescalings of the metric. As opposed to Einstein
gravity, it is power-counting renormalizable [15,16],
albeit it presents a Ostrogradski linear instability in
the Hamiltonian—due to the fourth-order character of
the equations of motion and the nondegeneracy of the
Lagrangian,2 which is typically assumed to translate into
the presence of ghosts—negative-norm states—upon quan-
tization. It is well known that solutions of Einstein gravity
form a subset of solutions of conformal gravity, a fact that
has recently been exploited in [17] to show the equivalence
at the classical level of Einstein gravity with a cosmological
constant and conformal gravity with suitable boundary
conditions that eliminate ghosts. Another interesting aspect
of conformal gravity is that it admits supersymmetric
extensions for N ≤ 4, the maximally supersymmetric
theory admitting different variants (see [18] for a review
and [19] for recent progress). Other theoretical advances
involving conformal gravity include its emergence from
twistor string theory [20] and its appearance as a counter-
term in the AdS/CFT correspondence [21].
A generalization of electric-magnetic duality in con-

formal gravity was studied in the early work [22], where the
Euclidean action with a gauge-fixed metric was expressed
in terms of quadratic forms involving the electric and
magnetic components of the Weyl tensor, exhibiting a
discrete duality symmetry upon the interchange of these
components. This result can be regarded as the analog of
the duality symmetry of Euclidean Maxwell action under
the exchange of electric and magnetic fields. Unlike [13],
duality is discussed in terms of the electric and magnetic
components of the curvature, and not at the level of the
dynamical degrees of freedom of the theory.
In the present article we focus on linearized conformal

gravity with Lorentzian signature and show that the action
principle admits a manifestly duality invariant form in
terms of the dynamical variables. The derivation requires
working in the Hamiltonian formalism, the identification of

the constraints—both algebraic and differential—and the
resolution of the differential ones in terms of potentials, that
we will eventually interpret as a dual metric and a dual
extrinsic curvature. The structure of the duality-symmetric
action principle is new, different from duality-invariant
Maxwell theory and linearized gravity: duality acts rotating
simultaneously the three-dimensional metrics ðhij; h̃ijÞ and
the extrinsic curvatures ðKij; K̃ijÞ.
The rest of the article is organized as follows. In Sec. II

we review general features of conformal gravity and remark
that, in the linearized regime, the Hodge dual of the
linearized Weyl tensor obeys an identity of the same
functional form as the equation of motion satisfied by
the Weyl tensor itself, in complete analogy with the
symmetric character of vacuum Maxwell equations with
respect to the exchange of the field strength and its Hodge
dual. Motivated by this observation, in Sec. III we establish
a twisted self-duality form of the linearized equations of
motion of conformal gravity. Section IV deals with the
generalities of the Hamiltonian formulation, including the
identification of the dynamical variables and the constraints
of the theory. To deal with the fact that the Lagrangian
contains second order time derivatives of the metric
perturbation, we will formally promote the linearized
extrinsic curvature to an independent dynamical variable.
Section V is dedicated to the resolution of the differential
constraints in terms of two potentials. These are interpreted
as a dual three-dimensional metric and a dual extrinsic
curvature. In Section VI we present a manifestly duality
invariant form of the action principle, where the two
metrics and extrinsic curvatures appear on equal footing.
Finally we draw our conclusions in Sec. VII and set out
proposals for future work.

II. CONFORMAL GRAVITY

The action principle of conformal gravity is given by

S½gμν� ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
WμνρσWμνρσ; ð2:1Þ

with gμν the metric tensor defined on a manifold M and
Wμ

νρσ the Weyl tensor

Wμ
νρσ ≡Rμ

νρσ − 2ðgμ½ρSσ�ν − gν½ρSσ�μÞ: ð2:2Þ

HereRμ
νρσ and Sμν are the Riemann and Schouten tensors,

respectively. The latter is defined as

Sμν ≡ 1

2

�
Rμν −

1

6
gμνR

�
: ð2:3Þ

We adopt the convention that indices within brackets are
antisymmetrized, with an overall factor of 1=n! for the
antisymmetrization of n indices.

2Recall that a higher order Lagrangian is nondegenerate
whenever the highest time derivative term can be expressed in
terms of the canonical variables.
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The Weyl tensor Wμ
νρσ is invariant under diffeomor-

phisms

δgμν ¼ ∇μξν þ∇νξμ; ð2:4Þ

and local conformal rescalings of the metric

gμν → g0μν ¼ Ω2ðxÞgμν: ð2:5Þ

These transformations also determine the symmetries of the
action principle (2.1).
The Weyl tensor satisfies the same tensorial symmetry

properties as the Riemann tensor,

Wμνρσ ¼ −Wνμρσ ¼ −Wμνσρ ¼ Wρσμν; ð2:6Þ

as well as the identities

W ½μνσ�ρ ¼ 0; ð2:7Þ

Wμ
νμσ ¼ 0; ð2:8Þ

and

∇μWμ
νρσ ¼ −Cνρσ; ð2:9Þ

where we have introduced the Cotton tensor

Cνρσ ≡ 2∇½ρSσ�ν: ð2:10Þ

Equation (2.9) is a consequence of the Bianchi identity for
the Riemann tensor.
The fourth-order equation of motion derived from the

conformal gravity action principle (2.1) reads

ð2∇ρ∇σ þRρ
σÞWρ

μσν ¼ 0: ð2:11Þ

This is usually referred to as the Bach equation, the left-
hand side of (2.11) being dubbed the Bach tensor. Clearly,
conformally flat metrics constitute a particular subset of
solutions to the equations of motion (2.11). Einstein
metrics constitute another subset of particular solutions.

A. Remarks on the linearized regime

In the linearized regime

gμν ¼ ημν þ hμν ð2:12Þ

the Weyl tensor takes the form

Wμ
νρσ½h� ¼ Rμ

νρσ½h� − 2ðδμ½ρSσ�ν½h� − δν½ρSσ�μ½h�Þ; ð2:13Þ

where Rμνρσ is the linearized Riemann tensor

Rμνρσ ¼ −
1

2
½∂μ∂ρhνσ þ ∂ν∂σhμρ − ∂μ∂σhνρ − ∂ν∂ρhμσ�

ð2:14Þ

and Sμν the linearized Schouten tensor. The action principle
and equations of motion reduce to

S½hαβ� ¼ −
1

4

Z
d4xWμνρσ½h�Wμνρσ½h� ð2:15Þ

and

∂μ∂νWμρνσ½h� ¼ 0: ð2:16Þ

The linearized Weyl tensor still obeys the symmetry
properties (2.6), and the identity (2.9) takes the linearized
form

∂μWμνρσ½h� ¼ −Cνρσ½h�: ð2:17Þ

This allows for a rewriting of the linearized Bach equation
in terms of the Cotton tensor:

∂ρCνρσ½h� ¼ 0: ð2:18Þ

Let us now introduce the Hodge dual of the linearized
Weyl tensor:

�Wμνρσ½h�≡ 1

2
ϵμν

αβWαβρσ½h�: ð2:19Þ

By construction it possesses the same symmetries asWμνρσ,
namely

�Wμνρσ ¼ �Wρσμν ¼ −�Wνμρσ ¼ −�Wμνσρ: ð2:20Þ

It also satisfies the cyclic identity

�W½μνρ�σ ¼ 0 ð2:21Þ

and is traceless

�Wμ
νμρ ¼ 0: ð2:22Þ

At this point, it is crucial to observe that �Wμνρσ satisfies the
following identity:

∂μ∂ν
�Wμρνσ½h� ¼ 0: ð2:23Þ

This is directly related to the identity

Cσ½νρ;μ�½h� ¼ 0 ð2:24Þ

satisfied by the linearized Cotton tensor, for
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∂μ∂ν
�Wμρνσ½h� ¼ 1

2
∂μ∂νϵ

μραβWαβ
νσ½h�

¼ −
1

2
∂μϵ

μραβCσ
αβ½h� ¼ 0: ð2:25Þ

It is now clear that the set of equations conformed by the
linearized Bach equation (2.16) and the identity (2.23)

∂μ∂ρWμνρσ½h� ¼ 0

∂μ∂ρ
�Wμνρσ½h� ¼ 0 ð2:26Þ

may be regarded as the analog of Maxwell equations in
vacuum,

∂μFμν½A� ¼ 0

∂μ
�Fμν½A� ¼ 0: ð2:27Þ

The set of equations (2.26) is symmetric under the
replacement of the Weyl tensor and its Hodge dual.

III. TWISTED SELF-DUALITY FORM OF THE
EQUATIONS OF MOTION

Given the formal resemblance between Eqs. (2.27) and
(2.26), it seems natural to wonder about the existence of an
underlying electric-magnetic duality structure in linearized
conformal gravity. In this section we show that the set of
equations (2.26) can be cast in a covariant twisted self-
duality form, and that the noncovariant subset defined by
selecting the purely spatial components of the latter
contains all the information of the full covariant set—
which parallels the situation in electromagnetism [23] and
linearized Einstein gravity [24].
In order to understand the logic underlying twisted self-

duality, it is useful to briefly recall the situation in Maxwell
theory. Consider the vacuum equations (2.27), where we
tacitly assume Fμν ¼ ∂μAν − ∂νAμ. Although (2.27) are
symmetric under the exchange of Fμν½A� and �Fμν½A�, these
quantities do not appear exactly on an equal footing: the
equation for �Fμν is an identity. In other words, �Fμν has
been implicitly solved in terms of the potential Aμ. Indeed,
upon use of the Poincaré lemma, one finds �Fμν ¼
ϵμναβ∂αAβ for some vector potential Aμ, and the definition
of the Hodge dual yields Fμν ¼ ∂μAν − ∂νAμ, as expected.
We seek instead a formulation where Fμν and �Fμν appear
on equal footing, with no implicit prioritization of any of
them. This is achieved [23] by considering the field
strength and its Hodge dual as independent variables,
solving simultaneously for both in terms of potentials
Fμν½A� ¼ ∂μAν − ∂νAμ and �Fμν≡Hμν½B� ¼ ∂μBν− ∂νBμ,
and finally imposing a first-order, twisted self-duality
condition that takes into account that Fμν½A� and Hμν½B�
are not independent but actually related by Hodge
dualization:

�
�
Fμν

Hμν

�
¼ S

�
Fμν

Hμν

�
; S ¼

�
0 1

−1 0

�
: ð3:1Þ

Clearly, equation (3.1) implies the second-order Maxwell
equations (2.27) by taking the divergence. However, in this
first-order formulation Fμ½A� and Hμν½B� appear on an
equal footing, related to each other by Hodge dualization.
As a caveat, we notice a redundancy in the twisted self-

duality equations (3.1), for either row can be obtained from
the other by Hodge dualization. It is actually possible to
identify a noncovariant subset of (3.1) that is equivalent to
the original set of equations and free from redundancies
[23]. This is achieved by selecting the purely spatial
components of (3.1), which produces

�
Bi½A�
Bi½B�

�
¼ S

�
Ei½A�
Ei½B�

�
; ð3:2Þ

with Ei and Bi the usual electric and magnetic fields.
Let us now turn the discussion to linearized conformal

gravity. Since the dual Weyl tensor �Wμνρσ has the same
algebraic and differential properties as the Weyl tensor, it
can be written itself in the same functional form asWμνρσ½h�
for some different metric fμν:

�Wμνρσ½h� ¼ Hμνρσ½f�; ð3:3Þ

with

Hμ
νρσ½f�≡Rμ

νρσ½f� − 2ðδμ½ρSσ�ν½f� − δν½ρSσ�μ½f�Þ; ð3:4Þ

the relation between hμν and fμν being nonlocal. Similarly,
it is easy to verify that the Cotton tensor and its Hodge dual
have the same properties, and therefore we can write

�Cμνρ½h� ¼ Dμνρ½f�; ð3:5Þ

where Dμνρ½f� has the same functional form as the Cotton
tensor for the dual metric fμν

Dμνρ½f� ¼ −∂ρHρ
μνρ½f�: ð3:6Þ

Exactly in parallel as what happens in electromagnetism,
Hodge duality exchanges equations of motion and
differential identities. In the theory defined by hμν,
∂μ∂νWμνρσ½h� ¼ 0 is an equation of motion and
∂μ∂�

νWμνρσ½h� can be seen as the analog of the Bianchi
identity in Maxwell theory. However, when we consider the
dual theory defined by fμν, the latter implies the equation
of motion for the dual metric ∂μ∂νHμνρσ½f� ¼ 0,
whereas the former is related to the differential identity
∂μ∂ν

�Hμνρσ½f� ¼ 0.
Although the set of equations (2.26) is symmetric under

the formal exchange of the Weyl tensor and its Hodge dual,
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implicitly we have prioritized the formulation based on hμν,
for fμν does not appear at all. Following the same logic as
discussed above in the case of electromagnetism, it is
possible though to find a set of second-order equations
equivalent to (2.26) where both metrics appear on an equal
footing. This is the twisted self-duality equation for
linearized conformal gravity:

�
�
Wμνρσ½h�
Hμνρσ½f�

�
¼S

�
Wμνρσ½h�
Hμνρσ½f�

�
; S¼

�
0 1

−1 0

�
: ð3:7Þ

Equation (3.7) is obtained from (2.26) by solving forWμνρσ

and Hμνρσ ≡ �Wμνρσ , treated as independent field strengths,
and imposing the condition that they are actually related by
Hodge dualization. On the other hand, taking the double
divergence on both sides, the twisted self-duality equa-
tion (3.7) reproduces immediately the equations of motion
for Wμνρσ½h� and Hμνρσ½f� in virtue of the differential
identities satisfied by their Hodge duals, exactly as what
happens in the Maxwell theory. We notice (3.7) also
implies the vanishing of the trace of Wμνρσ½h� and
Hμνρσ½f�, owing to the respective cyclic identities. This
is consistent with their definitions as the traceless part of the
Riemann tensor for the corresponding metrics hμν and fμν.
The set of Eqs. (3.7) is redundant, in the sense that either

row can be obtained as the Hodge dual of the other one. So
we can keep only the subset of equations associated to the
first row in (3.7):

�W0i0j ¼ H0i0j;
�W0ijk ¼ H0ijk;
�Wijkl ¼ Hijkl: ð3:8Þ

Moreover, we see that the third equation in (3.8) can be
obtained from the second one, for

�Wijkl ¼ Hijkl ⇔ ϵij0mW0m
kl ¼ Hijkl

⇔ W0mkl ¼ −
1

2
ϵij

0mHijkl ¼ −�H0mkl; ð3:9Þ

the last expression being the Hodge dual of the second
equation in (3.8). Thus, the only independent components
of the covariant twisted self-duality equations (3.7) are

�W0i0j ¼ H0i0j;
�W0ijk ¼ H0ijk: ð3:10Þ

Defining the electric component Eij and magnetic compo-
nent Bij of the Weyl tensor Wμνρσ as

Eij½h�≡W0i0j½h�;

Bij½h�≡ −�W0i0j½h� ¼ −
1

2
ϵ0imnW0j

mn½h�; ð3:11Þ

and similarly for Hμνρσ

Eij½f�≡H0i0j½f�;

Bij½f�≡ −�H0i0j½f� ¼ −
1

2
ϵ0imnH0j

mn½f�; ð3:12Þ

Eq. (3.10) can be cast in the form

�
Eij½h�
Eij½f�

�
¼ S

�
Bij½h�
Bij½f�

�
; S ¼

�
0 1

−1 0

�
: ð3:13Þ

This equation is nonredundant and contains all the infor-
mation in the covariant twisted self-duality equation (3.7).
It will be referred to as the noncovariant twisted self-duality
equation.
From their definitions, it is straightforward to see that the

electric and magnetic components are both symmetric and
traceless. Moreover, their double divergence vanishes:

∂i∂jEij½h� ¼ ∂i∂jEij½f� ¼ ∂i∂jBij½h�
¼ ∂i∂jBij½f� ¼ 0: ð3:14Þ

IV. HAMILTONIAN FORMULATION

Having established the twisted self-duality structure
underlying the equations of motion of linearized conformal
gravity, the natural next step is to seek a formulation of the
corresponding action principle that manifestly displays
duality symmetry. In order to do so, we shall follow the
same strategy as in Maxwell theory [13] and linearized
gravity [8]: the Hamiltonian formulation is introduced by a
3þ 1 slicing of space-time, constraints are identified and
solved in terms of potentials, and finally a manifest duality
symmetric action is written down upon substitution in
terms of potentials. This section deals with the Hamiltonian
formulation of the theory and the identification of the
constraints.
The action principle for linearized Weyl gravity is

S ¼ −
1

4

Z
d4xWμνρσWμνρσ: ð4:1Þ

The squared Weyl tensor is decomposed upon a 3þ 1
slicing of space-time as follows:

WμνρσWμνρσ ¼ 4W0i0jW0i0j þ 4W0ijkW0ijk þWijklWijkl

¼ 8W0i0jW0i0j þ 4W0ijkW0ijk: ð4:2Þ

In order to deal with the second-order character of the
Lagrangian, we shall follow the Ostrogradski method to
define a dynamical variable depending on first-order
derivatives that will be formally treated as independent.
A natural choice is the linearized extrinsic curvature:
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Kij ¼
1

2
ð _hij − ∂ih0j − ∂jh0iÞ: ð4:3Þ

It will be required then to express the Weyl tensor in terms
of Kij.
First, let us write the Riemann tensor and its contractions

in terms of the extrinsic curvature. The components of
(2.14) are

Rijkl ¼ −
1

2
½∂i∂khjl þ ∂j∂lhik − ∂i∂lhjk − ∂j∂khil�;

R0i0j ¼ − _Kij −
1

2
∂i∂jh00;

R0ijk ¼ −ð∂jKik − ∂kKijÞ: ð4:4Þ
In turn, the components of the Ricci tensor read

R00 ¼ R0i0
i ¼ − _K −

1

2
Δh00

R0i ¼ ∂kKik − ∂iK

Rij ¼ − _Kij −
1

2
∂i∂jh00 þ Rikj

k; ð4:5Þ

and the scalar curvature is

R ¼ −2R0i0
i þ Rij

ij ¼ 2 _K þ Δh00 þ Rij
ij: ð4:6Þ

From the definition of the Weyl tensor (2.13) one derives
the relations

W0i0j ¼
1

2
ðR0i0j þ Rimj

mÞ − 1

6
δijðRmn

mn þ R0m0
mÞ

¼ 1

2

�
− _Kij −

1

2
∂i∂jh00 þ Rimj

m

�

−
1

6
δij

�
− _K −

1

2
Δh00 þ Rmn

mn

�

and

W0ijk ¼ ∂kKij − ∂jKik

þ 1

2
ðδijð∂lKlk − ∂kKÞ − δikð∂lKjl − ∂jKÞÞ:

The Lagrangian reads

L¼−
1

4
WμνρσWμνρσ

¼−
�
1

2
ð _Kij

_KijþRimj
mRinj

n

þ _Kij∂i∂jh00−2 _KijRimj
m−∂i∂jh00Rimj

mÞ

−
1

6
ð _K2þRij

ijRmn
mnþ _KΔh00−2 _KRij

ij−Δh00Rmn
mnÞ

þ 1

12
Δh00Δh00−W0ijkW0

ijk

�
: ð4:7Þ

The conjugate momentum associated to Kij is defined as
usual:

Pij ¼ ∂L
∂ _Kij

¼ −
�
_Kij þ 1

2
∂i∂jh00 − Rimj

m

−
1

6
Δh00δij þ

1

3
Rmn

mnδij −
1

3
_Kδij

�
: ð4:8Þ

We notice that the trace of Pij vanishes identically:

P ¼ 0: ð4:9Þ

This shall be treated as a primary constraint.
The Hamiltonian is now introduced through the

Legendre transformation

H ¼ Pij _Kij − L: ð4:10Þ

Upon substitution for the generalized velocities, it can be
expressed in terms of Pij and Kij:

H ¼ −
1

2
PijPij −

1

2
Pij∂i∂jh00 þ Rimj

mPij −W0ijkW0
ijk:

ð4:11Þ

Now we have to take into account the fact that
the definition of Kij actually depends on _hij by intro-
ducing in the action principle the constraint term
λijð _hij − ∂jh0i − ∂ih0j − 2KijÞ. The factor λij becomes a
Lagrange multiplier enforcing the definition of Kij:

S½hij;pij;Kij;Pij;λij�

¼
Z

d4x

�
Pij _Kijþ

1

2
PijPijþ1

2
Pij∂i∂jh00−PijRimj

m

þ2∂jKik∂jKikþ2∂kK∂lKkl−∂lK∂lK−3∂lKkl∂mKkm

þλijð _hij−∂jh0i−∂ih0j−2KijÞ
�
: ð4:12Þ

Clearly one can identify the Lagrange multiplier λij with
the conjugate momentum associated to hij, pij ≡ λij. Upon
integration by parts, the components h00 and h0j act now as
Lagrange multipliers imposing the constraints

∂i∂jPij ¼ 0 ð4:13Þ

and

∂jpij ¼ 0: ð4:14Þ
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The latter reads exactly as in linearized gravity [8]. Ignoring
total derivatives coming from the previous integration by
parts, the final form of the Hamiltonian action principle is

S½hij; pij; Kij; Pij; h0i; h00�

¼
Z

d4x

�
Pij

_Kij þ pij _hij

−H0 þ 2∂jpijh0i −
1

2
∂i∂jPijh00

�
ð4:15Þ

with

−H0 ¼
1

2
PijPij − PijRimj

m − 2pijKij þ 2∂jKik∂jKik

þ 2∂kK∂lKkl − ∂lK∂lK − 3∂lKkl∂mKkm: ð4:16Þ

One notices in (4.16) the presence of terms linear in the
conjugate momenta, which points out the Ostrogradski
linear instability of the theory.
There is an additional constraint that comes about by

demanding the preservation of the constraint (4.9) under
time evolution. In other words, the Poisson bracket of the
constraint (4.9) with the Hamiltonian should vanish:

�
P;

Z
d3xH

�
¼ 0: ð4:17Þ

This results in the constraint

p ¼ 0: ð4:18Þ

The consistency condition applied to this constraint does
not produce any further ones.
Adding up the traceless constraints (4.9) and (4.18), the

action principle reads

S½hij;pij;Kij;Pij;h0i;h00;λ1;λ2�

¼
Z

d4x

�
Pij

_Kijþpij _hij−H0þ2∂jpijh0i−
1

2
∂i∂jPijh00

þ λ1Pþλ2p

�
: ð4:19Þ

The gauge transformations of the dynamical variables are

δhij ¼ ∂iξj þ ∂jξi þ δijξ;

δKij ¼
1

2
½−2∂i∂jξ0 þ δij _ξ�;

δpij ¼ 0;

δPij ¼ 0: ð4:20Þ

These can be obtained directly from the definition of
the dynamical variables in terms of the components of

the four-dimensional metric hμν. It is straightforward to
verify that the constraints (5.1), (5.2), (4.9) and (4.18) are
first class, so the previous gauge transformations can
also be derived from the Poisson bracket with the con-
straints. We notice that p ¼ 0 generates the Weyl rescaling
for hij, whereas ∂jpij is responsible for the same three-
dimensional diffeomorphism invariance of linearized
Einstein gravity.

V. RESOLUTION OF THE CONSTRAINTS

We shall now focus on the resolution of the differential
constraints

∂i∂jPij ¼ 0 ð5:1Þ

and

∂jpij ¼ 0; ð5:2Þ

subject to the traceless constraints

P ¼ 0 ð5:3Þ

and

p ¼ 0: ð5:4Þ

Let us first focus on (5.1). Taking into account that P ¼ 0,
this can be solved in terms of some tensor potential ψ ij as
follows [8]:

Pij ¼ ϵimn∂mψnj þ ϵjmn∂mψni: ð5:5Þ

Because of the traceless condition on Pij, the antisym-
metric component of ψ ij is restricted to have the form

ψ ½ij� ¼ ∂iwj − ∂jwi: ð5:6Þ

However, by the redefinition of the symmetric component
of the potential ψ ðijÞ ≡ ϕij þ ∂iwj þ ∂jwi the solution
simply takes the form

Pij ¼ ϵimn∂mϕnj þ ϵjmn∂mϕni; ð5:7Þ

with ϕij a symmetric tensor. Note that, since δPij ¼ 0, the
ambiguities in the definition of the potential ϕij are
restricted to have the form

δϕij ¼ ∂i∂jξþ δijθ: ð5:8Þ

This has exactly the same form as δKij, which already
suggests that Kij and ϕij can be treated on equal footing,
and justifies the renaming ϕij ≡ K̃ij.
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In order to solve the constraint (5.2), we may use the
Poincaré lemma and write [8]

pij ¼ ϵimnϵjkl∂m∂kω
nl ð5:9Þ

for some symmetric potential ωnl. The traceless condition
p ¼ 0 (which was not present in [8]) imposes a further
constraint on ωij:

Δω − ∂i∂jω
ij ¼ 0: ð5:10Þ

Once this is taken into account, (5.9) becomes

pij ¼ −
1

2
ðϵimn∂mRnj½h̃� þ ϵjmn∂mRni½h̃�Þ; ð5:11Þ

with Rij½h̃� having the functional form of the linearized
three-dimensional Ricci tensor for some symmetric tensor
h̃ij—to be interpreted in the sequel as a second, dual
metric—, and the global factor has been chosen for future
convenience. Clearly we can choose the dual metric h̃ij to
coincide with the metric fij introduced in Sec. III, up to a
gauge transformation. The expression (5.11) is invariant
under transformations of h̃ij having the same form as those
defining the symmetries of conformal gravity,

δh̃ij ¼ ∂iχj þ ∂jχi þ δijχ; ð5:12Þ

as we could have expected.

VI. MANIFEST DUALITY INVARIANCE

We can now implement Eqs. (5.7) and (5.11) in the
action principle (4.19). Let us first compute the quadratic
term in Pij:

1

2
PijPij ¼ 2∂jK̃ik∂jK̃ik þ 2∂kK̃∂lK̃kl

− ∂lK̃∂lK̃ − 3∂lK̃kl∂mK̃km: ð6:1Þ

Remarkably, this has exactly the same form as the quadratic
terms in Kij appearing in the Hamiltonian (4.16), and
suggests an invariance under the transformation

Kij → K̃ij; K̃ij → −Kij: ð6:2Þ

The kinetic term Pij _Kij is also invariant under (6.2) (up to
total derivatives):

Pij _Kij ¼ 2ϵimn∂mK̃jn
_Kij → −2ϵimn∂mKjn

_̃K
ij

¼ 2ϵimn∂mK̃jn
_Kij þ total derivatives: ð6:3Þ

Substituting now in the term −2pijKij, we find

−2pijKij ¼ 2ϵimn∂mRnj½h̃�Kij

¼ −2ϵimnRnj½h̃�∂mKij þ total derivatives: ð6:4Þ

We may compare this expression with the term

−PijRij½h� ¼ −2ϵimn∂mK̃njRij½h� ð6:5Þ

and see that these two are rotated into each other by the
transformation (6.2) supplemented by

hij → h̃ij; h̃ij → −hij: ð6:6Þ

The kinetic term _hijpij ¼ − _hijϵimn∂mRnj½h̃� is also invari-
ant under (6.6) up to total derivatives:

− _hijϵimn∂mRnj½h̃� ¼
1

2
_hijϵimn∂mðΔh̃nj − ∂j∂kh̃knÞ

→ −
1

2
_̃hijϵimn∂mðΔhnj − ∂j∂khknÞ

¼ 1

2
_hijϵimn∂mðΔh̃nj − ∂j∂kh̃knÞ

þ total derivatives: ð6:7Þ

So we conclude that, once the constraints are solved, the
action principle (4.19) can be cast in the manifestly duality
invariant form

S½hij; h̃ij; Kij; K̃ij; � ¼
Z

d4x½2ϵimn∂mK̃jn
_Kij

− _hijϵimn∂mRnj½h̃� −H�; ð6:8Þ

where

−H ¼ 2ϵimn∂mK̃njRij½h� − 2ϵimn∂mKijRnj½h̃�
2∂jKik∂jKik þ 2∂kK∂lKkl − ∂lK∂lK − 3∂lKkl∂mKkm

þ 2∂jK̃ik∂jK̃ik þ 2∂kK̃∂lK̃kl − ∂lK̃∂lK̃

− 3∂lK̃kl∂mK̃km ð6:9Þ

and we have dropped surface terms. One can verify that
the action principle (6.8) is actually invariant under
continuous duality rotations of the dual metrics and
extrinsic curvatures:

� hij

h̃ij

�
¼

�
cos θ sin θ

− sin θ cos θ

��hij

h̃ij

�

�Kij

K̃ij

�
¼

�
cos θ sin θ

− sin θ cos θ

��Kij

K̃ij

�
: ð6:10Þ
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VII. CONCLUSIONS

We have shown that electric-magnetic duality is a hidden
symmetry of linearized conformal gravity, both at the level
of the equations of motion and the action principle. In order
to render the symmetry manifest, i.e., to establish a formu-
lation where the “electric” and “magnetic” degrees of
freedom appear on equal footing, it seems necessary to
work in a nonmanifestly space-time covariant framework.
The covariant equations of motion and differential identities
obeyed by the Weyl tensor and its Hodge dual can be
recovered from a noncovariant subset of the twisted self-
duality equation, where the electric and magnetic compo-
nents of the Weyl tensors for two dual metrics appear on
equal footing. The action principle is cast in a manifestly
duality-invariant form as well, upon resolution of the
constraints in the Hamiltonian formalism. The potentials
that solve these constraints are interpreted as a dual
three-dimensional metric and a dual extrinsic curvature.
Duality acts as simultaneous rotations in the respective
spaces spanned by the two metrics and the two extrinsic
curvatures.
There are several interesting directions for future work to

be discussed. An important question is to determinewhether
a manifestly duality invariant action principle can be
obtained upon linearization around more general back-
grounds, in particular (anti) de Sitter space-time. The precise
relation between the equations of motion obtained from the
duality-symmetric action principle and the noncovariant
twisted self-duality equation should be determined.
Supersymmetric extensions can also be investigated, along
the lines of the work [25]. Although we have not dealt
with topological terms, it may be interesting to study the

consequences of their presence: for instance, to investigate if
they can cancel out the total derivatives produced by
integration by parts in the process of rending the action
principle in its manifestly duality-invariant form. Manifest
space-time covariance of the action principle might be
restored upon introduction of auxiliary fields, although
those are expected either to enter in a nonpolynomial fashion
[26] or to appear in infinite number [27] (see [28], however,
for a construction of actions for self-dual 2nþ 1-forms with
auxiliary fields in 4nþ 2 dimensions that do not display
these drawbacks). It should be determined whether obstruc-
tions to manifest duality invariance at higher perturbative
orders are present [29]. Connections with the double copy
[11,12] at the linearized level constitute another interesting
aspect to be investigated.
Electric-magnetic duality in Abelian Yang-Mills theory

has been discussed at the quantum level in the path-integral
formulation [30]. Here one adds to the Abelian action S½A�
a term i

R
B ∧ dF featuring an additional 1-form field B,

such that integrating over it produces a delta functional
δðdFÞ allowing integration over not necessarily closed
2-forms F. If we instead integrate over F, the partition
function written as an integral over B takes the same form
as expressed in terms of the original 1-form field A, but
interchanging the coupling constant e2 and the θ-parameter.
Whether a similar analysis can be performed in linearized
conformal gravity seems an avenue worth exploring.
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