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Extending the background metric optimization procedure for Euclidean path integrals of two-
dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602
(2017), J. High Energy Phys. 11 (2017) 097], to a z ¼ 2 anisotropically scale-invariant ð2þ 1Þ-dimensional
Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic
correlation functions. For the static correlation functions, the optimal background metric is equivalent to an
AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric.
This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered
an optimal background spacetime configuration for the numerical description of this system, even though
the classical action we start with is not a conformal field theory.
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I. INTRODUCTION

An important quest of many body physics is the search
for efficient variational characterizations of correlated
quantum systems. (for a review see, e.g., [1]). A class of
tensor network states, particularly geared toward the
description of scale-invariant systems, are called the multi-
scale entanglement renormalization ansatz (MERA) [2,3].
MERA is used to represent approximate ground states of
1D quantum spin chains at criticality described by 2D
conformal field theory (CFT)[4]. The scale-invariance of
the MERA network turned out to also play a special role in
connecting it to holographic duals in the sense of the
AdS=CFT correspondence [5]. Here, the bulk of a MERA
network can be understood as a discrete realization of 3D
anti–de Sitter space ðAdS3Þ, identifying the extra holo-
graphic direction with the renormalization group (RG) flow
in the MERA [5].
The ground work for the connection between continuous

tenor networks [6–8] and path integral optimization for
AdS3=CFT2 was initially laid out in [9–11]. Recent work
on the relationship between path integral optimization, differ-
ent types of CFTs and complexity can be found in [12–15].
Motivated by the procedure of tensor network renormalization
in [16], Caputa et al. [9,10], reinterpreted this connection as
optimization of the background metric in the space of path
integrals. Starting with flat Euclidean metric with a ultraviolet
(UV) cutoff, they argued that their optimization procedure
amounts tominimizing the Jacobian of the scale transformation

for the path integral measure. In the conformally flat gauge, this
translates to solving the equation of motion of the Liouville
effective action from which they find that the AdS3 metric a
Poincare patch H2 naturally emerges. This new approach is
very appealing, as it suggests a concrete procedure connecting
the AdS=CFT correspondence with numerical approaches to
many body systems, such as the MERA tensor net-
work [2,3,5,17].
In this paper, we extend the idea in [9,10] to a non-

relativistic field theory, specifically to a z ¼ 2 anisotropi-
cally scale-invariant ð2þ 1Þ-dimensional Lifshitz field
theory of a free massless scalar field and show that the
procedure can be successfully applied in systems of interest
beyond a CFT. We show how natural geometries arise from
the path integral optimization procedure. Our results are
illustrated in Fig. 1.

II. THE QUANTUM LIFSHITZ MODEL

The quantum Lifshitz model is a canonical example of
a ð2þ 1Þ-dimensional Lifshitz field theory known [18].

FIG. 1. The two geometries emerging for the quantum Lifhsitz
model. (a) An AdS3-like geometry arises when considering equal
time correlation functions and (b) A Lifshitz metric that is optimal
for computing correlation functions with a temporal component.
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This model describes a free massless scalar field with
dynamical scaling exponent z ¼ 2 and represents an
important example of a conformal quantum critical point.
Different aspects of this theory have been studied and
analyzed in [18–20]. For example, it emerges as the scaling
limit of the square lattice quantum dimer model [20].
The quantum Lifshitz Hamiltonian [18] of a z ¼ 2 theory

of a massless scalar field ϕðt; xÞ, where x ¼ fx; yg, in
2þ 1 dimensions is given by

H ¼
Z

dxfπϕ2 þ ðΔsϕÞ2g: ð1Þ

The Euclidean action of the field ϕðt; xÞ coupled to a
background metric gij is given by

S ¼
Z

dxdtN
ffiffiffi
h

p
ðN−2ð∂tϕÞ2 þ ðΔsϕÞ2Þ; ð2Þ

where Δs is the spatial Laplace-Beltrami operator

Δs ¼
1ffiffiffi
h

p ∂ihij
ffiffiffi
h

p ∂j; ð3Þ

and hij is the spatial component of the background
metric [21].

ds2 ¼ N2dt2 þ hijdxidxj: ð4Þ

where N is called the lapse function. The action in (2) is
invariant under the following foliation-preserving diffeo-
morphism transformations

t ↦ t̃ðtÞ; x ↦ x̃ðxÞ ð5Þ

and anistoropic Weyl scaling transformations

N → ezσN; hij → e2σhij; i; j ≠ t: ð6Þ

As stated before, in [9], such a starting point led, via path
integral optimization, to an AdS metric. The path integral
optimization suggested in [9] looks for the extremal
measure over all choices of the gauge σ, due to the
Weyl anomaly in the model. Here we use the same
structure, though with the appropriate anisotropic Weyl
scaling exponent.

III. GEOMETRY OPTIMIZATION FOR THE
LIFSHITZ MODEL

Here we ask the following question: what is the optimal
geometry associated with a path integral computation of
correlation functions in the quantum Lifshitz model? In
contrast to the CFT case, due to the nonrelativistic nature of
the model, equal time correlation functions and dynamical
correlation functions should be treated differently. Indeed,

we find two separate geometries associated with the
optimal calculation, described in Fig. 1. For equal-time
correlation functions, we consider Weyl transformations
which are translationally invariant in space, but not in time,
Fig. 1(a), covered by case (1) below.
Consider dynamical correlation functions on the other

hand. To find the optimized geometry that describe two
point functions, such as, say, hϕðt; xÞϕðt; x0Þi, we can
choose the spatial axis x − x0 to be our y direction, due
to spatial rotational invariance of the model. We concen-
trate therefore on the computation of the description of the
state in the t, y plane, and thus choose a Weyl scaling which
is homogeneous in t, y, but can depend on the third
coordinate x, Fig. 1(b) as explained in case (2) below.
Of particular interest to us in this paper, is the Weyl

anomaly of this model which has first been computed
holographically in [22] and by Baggio et al. in [23] using
heat kernel expansion and the holographic renormalization
methods in [24]. In [25,26], Lifshitz Weyl anomalies have
been computed cohomologically in different dimensions
and for different values of the dynamical scaling exponent
z. In [27], the heat kernel expansion has been generalized to
calculate effective actions and Weyl anomalies for Lifshitz
field theories. A general framework for computing one
loop effective action for Lifshitz theory via heat kernel
coefficients has been presented in several places, see
e.g., [27,28].
We note that in contrast with [9], here, we do not start

from the quantum effective action and then derive the
equation of motion as they do but rather directly compute
the variation in the Lifshitz effective action due to an
infinitesimal transformation of the Weyl transformation
parameter σ. Our starting point is a flat metric, deformed by
a Weyl scaling, therefore σ carries the entire information
about the metric in the space of metrics we explore. We
compute the variation of the effective action explicitly
utilizing the particular structure of our metric and finally
obtain differential equations for the scaling factor σ.
Concretely, we compute the variation of the one loop
effective action under σ → σ þ δσ. In this case (see, e.g.,
Appendix 5.A. in [29]),

δW½σ� ¼ 1

2

Z
drδσðrÞhrje−ϵρDjri; ð7Þ

where r ¼ ðx; tÞ, ρðrÞ ¼ 1ffiffiffiffiffiffi
gðrÞ

p , ϵ is the infinitesimal heat

kernel “time” parameter, and D ¼ − 1

N
ffiffi
h

p ∂tN−1
ffiffiffi
h

p ∂t þ
1
NΔsNΔs [23]. In our system, we fix our gauge so that
N ¼ e2σ, hij ¼ Nδij. In this case we have:

D ¼ ð−∂2
t þ ð∂2

x þ ∂2
yÞ2Þ: ð8Þ

We note that upon varying σ we have δD ¼ −4δσD. The
ϵ → 0 behavior of (7) is dominated by the short distance
behavior of the heat kernel hrje−ϵρDjri.
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Now, as promised, we specialize to cases where, σ
depends either on the time coordinate t alone, or on one
of the spacial coordinates, say x. Denoting ρ ¼ e−4σ , we
expand ρ close to a given point r0,

ρðδrþ r0Þ ¼ ρ0 þ δρ; ð9Þ
where ρ0 ¼ ρðr0Þ ¼ 1ffiffiffiffiffiffi

gðrÞ
p jr¼r0 .

To obtain the variation we carry out a second order
perturbation calculation of the heat kernel, using:

e−ϵðρ0þδρÞD ¼ e−ϵ̃D −
1

ρ0

Z
ϵ̃

0

dse−ðϵ̃−sÞDδρDe−sD

þ 1

ρ20

Z
ϵ̃

0

ds
Z

s

0

ds1e−ðϵ̃−sÞDδρDe−ðs−s1ÞDδρDe−s1D ð10Þ

where ϵ̃ ¼ ρ0ϵ. We assume that the operator D is diagonal
in momentum, and that δρ depends on a single coordinate u
such as x or t and has an expansion:

δρðuÞ ¼ Σm¼1cmðu − u0Þm ð11Þ

Explicitly evaluating the heat kernel through second order
perturbation series in δρ, using the integrals detailed in the
Appendix, we find that the leading (in ϵ) contributions to
δW up to two derivatives are given as (1) σ ¼ σðtÞ. In this
case:

δW ¼ 1

2

Z
dtdxδσ

�
e4σ

16πϵ
−

1

24π

d2σ
dt2

�
ð12Þ

(2) σ ¼ σðxÞ. In this case, the leading order ϵ contribution
reads:

δW ¼ 1

2

Z
dtdxδσ

�
e4σ

16πϵ
−
e2σððdσdxÞ2 þ d2σ

dx2Þ
12π3=2

ffiffiffi
ϵ

p
�

ð13Þ

A. Optimized geometry for equal time
correlation functions

Following [9], we search for a profile ρðtÞ to minimize
the effective action by solving for δW ¼ 0. Equation (12)
implies that the optimal σðtÞ obeys the Liouville equation:

e4σ

ϵ
−
2

3

d2σ
dt2

¼ 0 ð14Þ

Much as in [9], The solution is given by the standard

substitution of the form σðtÞ ¼ − 1
2
log μt, where μ ¼

ffiffi
3
ϵ

q
we find the optimal metric is given by

ds2 ¼ 1

μ2t2
dt2 þ 1

μt
ðdx2 þ dy2Þ; ð15Þ

This surprising result suggests that indeed some type of a
hierarchical tensor network would still be the optimal

discrete spacetime configuration even if the field theory
we started with is only anistropically scale invariant. It is
interesting to note how the combination t=

ffiffiffi
ϵ

p
arises

naturally in (14). This is a natural scaling: If we consider
our path integral with action (2) as describing, e.g., the
ground state of the quantum Lifshitz Hamilotnian, and
considering the gap scaling as 1

L2 for a system with spatial
extent L, we see that we would have to evolve the system
during time T ∼ L2 in order to resolve the low lying states.
Setting ϵ ∼ 1

L2, we get that the time coordinate has to be
scaled as T ∼ Lffiffi

ϵ
p .

Noting that our theory is invariant to foliation preserving
diffeomorphisms, it is possible to uniformize the geometry
by using a coordinate u ¼ 2

ffiffi
t

p
(we take ϵ ¼ 1 here), the

optimal metric can also be written as

ds2 ¼ 4

3u2
ðdu2 þ

ffiffiffi
3

p
ðdx2 þ dy2ÞÞ; ð16Þ

which is the AdS3 metric of a Poincaré patch. Thus, a
proper MERA-like description is possible for this nonun-
iformally rescaled Lifshitz theory. Another possibility,
hinted by recent work on exact holographic tensor net-
works [30], is that a nonunitary MERA-like structure may
be chosen that features a scale-invariant tensor network for
a non-CFT spin chain model.

B. Optimized geometry for dynamical
correlation functions

We turn to address the optimization in the “lateral”
direction. In this case our equation is (13):

e4σ

16πϵ
−
e2σððdσdxÞ2 þ d2σ

dx2Þ
12π3=2

ffiffiffi
ϵ

p ¼ 0 ð17Þ

To solve this equation, we define: YðxÞ≡ eσðxÞ, and note
that (17) can be written as:

Y 00 ¼ CY3; C ¼ 3π1=2

4
ffiffiffi
ϵ

p ð18Þ
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This nonlinear equation is equivalent to the system Y 0 ¼ Z;
Z0 ¼ CY3, which allows us to find an integral of motion by
solving for dZ

dY ¼ CY3

Z , from which we obtain the integral of
motion:

1

2
Y 02 ¼ C

Y4

4
þ const: ð19Þ

We can solve this equation for const ¼ 0, getting:

Y ¼
ffiffiffi
2

p

ð ffiffiffiffi
C

p
xþ αÞ ; ð20Þ

resulting in the metric, written in terms of Y our metric is

ds2 ¼ Y4dt2 þ Y2ðdx2 þ dy2Þ ð21Þ

and the leading behavior of the metric at large x is thus:

ds2 ≈ 4
dt2

C2x4
þ 2

dx2 þ dy2

Cx2
: ð22Þ

We emphasize, that as opposed to the usual notion of
holographic Lifshitz geometry for this model, where the
boundary is ð2þ 1Þ-dimensional, here we deform one of
the original dimensions of the ð2þ 1Þ spacetime and use it
as our holographic direction. We stress that the geometry
(22) is also suitable for the computation of equal point
correlation functions, as long as all points involved are
along a single line. On the other hand, (14) may be useful
for computing any multipoint equal correlation functions
but not dynamical ones.

IV. FINAL REMARKS

The equal-time and dynamical two-point correlation
functions for the quantum Lifshitz model that we consider
in this work have been studied in [18] and more recently in
[31] where they have been compared with the holographic
two-point function. The authors find that the correlation
functions match quite well with the scaling obtained from a
holographic calculation with a Lifshitz geometry, thereby
strengthening our expectation that a tensor network
description of the system will inherit the features of a
Lifshitz geometry. We find it quite striking that a semi-
classical description of correlation functions is obtained for
the system, although there is no manifest small parameter
like ℏ or a strong/weak coupling duality to drive us into a
semi-classical regime in our original setup. Finally, we
remark that although we obtained here an optimal geometry
for a specific z ¼ 2 ð2þ 1Þ-dimensional field theory, it is
natural to expect that the procedure described here would
still work for more general field theories in higher dimen-
sions with arbitrary values of z.
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APPENDIX: PERTURBATIVE HEAT KERNEL
CALCULATION

To obtain our equations we carry out a second order
perturbation calculation of the heat kernel, using:

e−ϵðρ0þδρÞD ¼ e−ϵ̃D −
1

ρ0

Z
ϵ̃

0

e−ðϵ̃−sÞDδρDe−sD þ 1

ρ20

Z
ϵ̃

0

ds
Z

s

0

ds1e−ðϵ̃−sÞDδρDe−ðs−s1ÞDδρDe−s1D ðA1Þ

where ϵ̃ ¼ ρ0ϵ. For convenience, set r0 ¼ 0 throughout
the calculation, and reinstate its value in the end. We
assume that the operator D is diagonal in momentum, and
that δρ depends on a single coordinate u, and has an
expansion:

δρðuÞ ¼ Σm¼1cmum ðA2Þ

Taking q to be the momentum in the u direction andK to be
the momentum vector in all other directions, the zeroth
order contribution to the heat kernel reads:

A0 ¼ h0je−ϵ̃Dj0i ¼ 1

ð2πÞdþ1

Z
ddKdqe−ϵ̃DðK;qÞ; ðA3Þ

The contribution from the first order term in (A1) is

A1 ¼ −
1

ρ0
h0j

Z
ϵ̃

0

e−ðϵ̃−sÞDδρDe−sDj0i

¼ −
1

ρ0

2π

ð2πÞdþ2

Z
ϵ̃

0

Z
ddKdq

�
Σcm

�
i
d
dq

��
me − ðϵ̃ − sÞDðK; qÞe−sDðK;qÞ ðA4Þ
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which can also be expressed in the form:

A1 ¼−
1

ρ0

1

ð2πÞdþ1

Z
ϵ̃

0

Z
ddKdqe−ϵ̃DðK;qÞDðK;qÞfΣm¼1imΣm

h¼1ð−1ÞhcmBh;mððϵ̃− sÞD0ðK;qÞ;ðϵ̃− sÞD00ðK;qÞ; ...Þg ðA5Þ

where Bh;m are Bell polynomials. In the case we are interested in, due to the time reversal/space inversion symmetry the first
non zero contribution comes from c2 ¼ 1

2
∂2
uδρju¼0:

A1 ≈
1

ρ0

c2
ð2πÞdþ1

Z
ddKdqe−ϵ̃DðK;qÞ

�
−
1

2
D00ðK; qÞϵ̃2 þ 1

3
ðD0ðK; qÞÞ2ϵ̃3

�
: ðA6Þ

The second order contribution is given by:

A2 ¼
1

ρ20
h0j

Z
ϵ̃

0

ds
Z

s

0

ds1e−ðϵ̃−sÞDδρDe−ðs−s1ÞDδρDe−s1Dj0i

¼ 1

ρ20

Σn;mcncm
ð2πÞdþ1

Z
ϵ̃

0

ds
Z

s

0

ds1

Z
ddKdq

��
i
d
dq

�
m
e−ðϵ̃−sÞDðK;qÞ

�
DðK; qÞe−ðs−s1ÞDðK;qÞ

��
−i

d
dq

�
n
DðK; qÞe−s1DðK;qÞ

�
:

ðA7Þ

When applying these formulas to the situation discussed in
the main text, we have considered the two cases:
(1) ρ ¼ ρðtÞ is only time dependent, where we associate
the q momentum with the t coordinate and D ¼ q2 þ
ðK2

1 þ K2
2Þ2 and, (2) ρ ¼ ρðyÞ is only y-dependent, where

we associate the q coordinate with y and take
D ¼ K2

1 þ ðK2
2 þ q2Þ2.

Carrying out the integrals, and expressing ρ and its local
derivatives explicitly in terms of the factor σ, we get
Eqs. (12) and (13).
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