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Entanglement entropy (EE) in interacting field theories has two important issues: renormalization of UV
divergences and non-Gaussianity of the vacuum. In this paper, we investigate them in the framework of the
two-particle irreducible formalism. In particular, we consider EE of a half space in an interacting scalar
field theory. It is formulated as ZM gauge theory on Feynman diagrams: ZM fluxes are assigned on
plaquettes and summed to obtain EE. Some configurations of fluxes are interpreted as twists of propagators
and vertices. The former gives a Gaussian part of EE written in terms of a renormalized 2-point function
while the latter reflects non-Gaussianity of the vacuum.
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I. INTRODUCTION

Entanglement entropy (EE) provides important informa-
tion of a given state, in particular, correlations in a ground
state between two spatially separated regions and has been
widely discussed in quantum information, condensed
matter physics and, even in quantum gravity, cosmology,
and high energy physics [1–12]. Despite its importance, the
practical computation of EE in field theories is not an easy
task and consequently, much of the works have focused on
Gaussian states [13–19], low-energy sectors of conformal
field theories (CFTs) [5,20–22] or holographic CFTs
[6,7,23]. For Gaussian states, both the so-called real-time
approach and the imaginary time approach as known as the
replica trick [24] are applicable. The computations make
use of its Gaussianity; the reduced density matrix is still
Gaussian [25]. For CFTs, EE of quite general shapes of
subregions can be studied while the conformal symmetry
plays an important role in reducing the problem simpler and
tractable. For theories with holographic duals, EE can be
computed in a simple, easy manner as a geometric quantity
while the existence of the AdS=CFT correspondence
[26–28] is obviously necessary. Many features of EE were
clarified, but there are only a few studies on EE in

interacting theories: a perturbation from free theories
[25,29] or CFTs [30], the renormalization group flow
given fixed point CFTs [31], and large N expansions
[32,33]. There are also some nonperturbative studies
[34–42], but their analytical evaluations are difficult. Our
goal in this paper is to provide a field theoretic, systematic
way to explore EE in a massive interacting theory, which is
neither free nor conformally invariant and the existence of
its holographic dual is not assumed.
Besides computability, EE has an obvious problem

specific to field theories. Since field theories contain
infinitely many degrees of freedom, EE suffers from
ultraviolet divergences and an appropriate regularization
and renormalization are necessary to obtain finite results.
For free theories, the UV-divergent EE can be regularized
by suitably renormalizing parameters in the background
gravity [43–48]. There are additional UV divergences in
interacting field theories, which should be dealt with the
usual flat space renormalization. A perturbative treatment
of this renormalization was discussed [29].
In this paper, we give a systematic study of EE in

interacting field theories. We consider a scalar field theory
with ϕ4 interactions in a simple geometrical setup, a half
space being traced over. It is formulated as a ZM gauge
theory on Feynman diagrams: We perturbatively evaluate
EE in the two-particle irreducible (2PI) formalism and
obtain a generalized 1-loop type expression of EE in terms
of renormalized propagators. Moreover, we show that the
non-Gaussian nature of the vacuum wave function gives
further corrections to EE associated with 4-point vertex
functions.
For the Hilbert space composed of two subsystems on a

time slice, Htot ¼ HA ⊗ HĀ, the EE for A is defined as
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SA ¼ −TrAρA log ρA, where ρA ¼ TrĀρtot is a reduced
density matrix of the total one, ρtot. In this paper,
we choose the subregion A as a half space specified by
A ¼ fx0 ¼ 0; x⊥ ≥ 0; ∀ xkg and Ā as its complement,
where x⊥ and xk are the normal and parallel directions
to ∂A respectively. A standard method to calculate
EE SA is known as the replica method [5,49], where
SA ¼ limn→1½ð1=ð1 − nÞ log TrρnA�. Let us define an unnor-
malized density matrix ρ̃tot by ρtot ¼ ρ̃tot=Z1, where Z1 is a
partition function on Rdþ1 as a Euclidean path integral.
Then, using ρ̃A ¼ TrAρ̃tot, an unnormalized reduced
density matrix, Trρ̃nA can be viewed as a partition function
on Σn ×Rd−1, where Σn is an n-folded cover of a two-
dimensional plane and, thus, a two-dimensional cone
with deficit angle 2πð1 − nÞ. The EE can be rewritten in
terms of the free energy Fn ≡ − logZn ≡ − log TrAρ̃nA
as SA ¼ ∂Fn=∂njn→1 − F1.

II. AREA LAW OF EE IN ORBIFOLD METHOD

We first show the area law of EE. For this purpose, the
orbifolding method [50,51] is convenient. We consider a
space R2=ZM instead of the n-folded space, Σn. Since M
can be interpreted as n ¼ 1=M, the vacuum EE on the ZM
orbifold is given in terms of the free energy on the ZM

orbifold FðMÞ ¼ F1=n as

SA ¼ −
∂ðMFðMÞÞ

∂M
����
M→1

; ð1Þ

provided M ∈ Z>1 can be analytically continued to 1. A
state on the orbifold can be obtained by acting the ZM

projection operator, P̂ ¼ P
M−1
n¼0 ĝn=M on a state in an

ordinary two-dimensional plane, where ĝ is a 2π=M
rotation operator around the origin. In this paper, we call
a ZM rotation ĝn as an nð∈ Z mod MÞ twist operation.
Let us consider, for simplicity, a scalar field theory on the

ZM orbifold without a nonminimal coupling to the curva-
ture. Since scalar fields have no spin and are singlet under
the spatial rotation, the ZM action ĝ on the internal space of
the fields is trivial. Its explicit action is given as follows:

ĝ½ϕðxÞ� ¼ ϕðĝxÞ ¼ ϕðĝx;xkÞ ¼ ϕðe2πi=Mx⊥; e−2πi=Mx̄⊥; xkÞ;
ð2Þ

where the two-dimensional coordinates onZM is given by x
or equivalently by the complex coordinates ðx⊥; x̄⊥Þ. The
remaining codimension-two coordinates parallel to the
subregion boundary are given by xk. The total (dþ 1)-
dimensional coordinates are denoted by x. The action for
the scalar field theory on ZM orbifold is given in terms of
the field ϕðxÞ on a flat space R2 ×Rd−1 as

Z
d2x
M

dd−1xk

�
1

2
ϕP̂ð−□þm2ÞP̂ϕþ VðP̂ϕÞ

�
: ð3Þ

In the following, we consider λϕ4=4 potential for simplic-
ity. However, this particular choice of the potential is only
for simplicity and generalizations to the other form of
potentials such as cubic or higher orders are straightfor-
ward. From the action Eq. (3), the inverse propagator can be
read off as

Ĝ−1ðMÞ
0 ¼ P̂Ĝ−1

0 P̂:

Since the propagator is its inverse on the ZM orbifold, it
satisfies the relation

Ĝ−1ðMÞ
0

1

M
ĜðMÞ

0 ¼ ĜðMÞ
0

1

M
Ĝ−1ðMÞ

0 ¼ P̂:

Thus, the propagator on the orbifold is written as

GðMÞ
0 ðx; yÞ ¼ MhxjðP̂Ĝ0P̂Þjyi ¼

XM−1

n¼0

G0ðĝnx; yÞ; ð4Þ

where

G0ðĝnx; yÞ ¼ hĝnxjĜ0jyi ¼
Z

ddþ1p
ð2πÞdþ1

eip·ðĝnx−yÞ

p2 þm2
: ð5Þ

The projection operator on y is eliminated by a rotation of
the momentum p. Since p · ĝnx ¼ ĝ−np · x, we see that the
flow-in momentum from the propagator at a vertex x is
given by the twisted momentum, ĝ−np. Twists of coor-
dinates are equivalent to the inverse twists of the corre-
sponding momenta.
For the calculation of EE, we need to compute the free

energy, which is minus the sum of the all possible
connected bubble diagrams. Consider a Feynman diagram
with NV vertices, NP propagators, and L loops. At each
vertex, there is a factor

−
λ

M
;

where 1=M comes from the integration measure in Eq. (3).
Thus, an overall M dependence seems to be given by
ð1=MÞNV . But it is not correct since NV − 1 of the
projection operators in the NP propagators can be further
eliminated by rotations of coordinates at the vertices. It can
be understood as follows. If we particularly pay attention to
a propagator G0ðĝnx; yÞ and a vertex x, the twist ĝn in the
propagator can be eliminated by changing the integration
variable x. Thus the summation of the twist ðn ¼ 0; � � �M −
1Þ eliminates the 1=M factor at the vertex. This procedure
can be continued only up to NV − 1 vertices. The last
integration of the coordinates of a vertex cannot absorb a
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twist of propagators. In ordinary flat space without twists,
due to the translational invariance, the integration gives
the volume of the space-time, ð2πÞdδdð0Þ ¼ Vd. In our
case with twists, reflecting the absence of the transla-
tional invariance on the orbifold, the last x-integration
instead gives Vd−1δ

2ðPL
l¼1ð1 − ĝ−nlÞklÞ. This procedure of

eliminating redundant twists is depicted in Fig. 1, giving a
3-loop bubble diagram as an example. On the right figure, a
twist of the propagator (the bottom dashed line) in the left
figure is removed by a rotation at a vertex (either left or
right point). Accordingly the coefficient M appears from
the sum of all the twists from 0 to M − 1.
Now the area law of EE is proved as follows. After

eliminating the redundancies of twists as above, there are
L ¼ NP − NV þ 1 nontrivial twists and the overall M-
dependence of the free energy FðMÞ is given by 1=M. The
ordinary volume factor ð2πÞdþ1δdþ1ð0Þ ¼ Vdþ1 in FðM¼1Þ
is being replaced by the area Vd−1 of the boundary of the
subregion times an additional factor δ2ðPL

l¼1ð1 − ĝ−nlÞklÞ
in the momentum integrations. Note that the additional
factor gives the two-dimensional volume V2 only when all
nl ¼ 0. Due to the overall 1=M factor, Vdþ1-proportional
terms in FðMÞ, i.e., all nl ¼ 0 (l ¼ 1 � � �L), are canceled in
Eq. (1), and do not contribute to EE, while the other terms,
such that some of fnlg are nonvanishing, are proportional
to the area Vd−1 and contribute to EE. This analysis holds to
all orders in the perturbation theory.

III. ZM GAUGE THEORY ON
FEYNMAN DIAGRAMS

The orbifold field theory can be regarded as ZM gauge
theory on Feynman diagrams. On a ZM orbifold, each
propagator in a Feynman diagram is twisted as in Eq. (4).
A rotation of the coordinates at the vertex x in Fig. 2 by
2πl=M shifts n1 by l, and n2 by −l; therefore, the sum of
twists around a plaquette m ¼ P

i mi, which we call a flux,
is invariant under ZM rotations at vertices. Consequently,
for a given Feynman diagram such as the right figure of
Fig. 2, a ZM invariant set of twists is given by a set of
Lð¼ 5Þ fluxes of twists on each plaquette of the Feynman
diagram. The twist of the outer circle is given by
m6 ¼ −

P
5
i¼1mi, since the direction of the twist is opposite

when the diagram is put on a sphere. We can calculate a

contribution to EE from a Feynman diagram in the
following procedure: (1) assign twists mi (mod M) to each
plaquette of the diagram, (2) perform momentum integra-
tions and evaluate free energy of the Feynman diagram for a
configuration of twists fmig, (3) sum over all the twists
fmig. As discussed in the previous section, when all the
twists are trivial, i.e., mi ¼ 0, it does not contribute to EE
since the overall factor 1=M of the free energy is canceled
in Eq. (1). Thus, we are interested in a configuration of
twists, in which some of them are nonvanishing.
Let us begin with a 1-loop diagram. In the following,

we write (dþ 1)-dimensional momenta and coordinates
as ðk; kkÞ and ðx; xkÞ. For a 1-loop diagram, there is
a single twist n (Fig. 3). The free energy with twist n
is easily calculated [50] by noting that hkjĝnjki ¼
ð2πÞ2δ2ðkÞ=4sin2ðnπ=MÞ for n ≠ 0. Thus, we have

FðMÞ
1-loop ¼

1

2
Tr½logG−1

0 �ðMÞ

¼ Vd−1

2

Z
ddþ1k
ð2πÞdþ1

logðk2 þm2ÞhkjP̂jki

¼ Vd−1

2M

Z
d2kdd−1kk
ð2πÞd−1 logðk2 þm2Þ

×

�
V2

ð2πÞ2 þ
XM−1

n¼1

δ2ðkÞ
4sin2ðnπMÞ

�
: ð6Þ

The volume factor proportional to V2 vanishes in Eq. (1).
By using the relation

P
M−1
n¼1 1=sin2ðnπ=MÞ ¼ ðM2 − 1Þ=3,

we obtain the EE

S1-loop ¼ −
∂
∂M ½MFðMÞ

1-loop�j
M→1

¼ −
Vd−1

12

Z
1=ϵ dd−1kk

ð2πÞd−1 log½ðk
2
k þm2Þϵ2�: ð7Þ

Here a UV cutoff scale ϵ is introduced. Note that EE
decreases as the mass increases. The appearance of the area

FIG. 1. Two equivalent sets of three-loops diagrams in the ϕ4

theory on the orbifold. Red dashed lines denote the propagators
with their momenta twisted. A black line in the right figure
represents the ordinary propagator in the flat space.

FIG. 2. ZM gauge theory on Feynman diagrams: fnig are twists
on links (propagators), and m ¼ P

i ni is a flux of twists around
the plaquette and invariant under ZM gauge transformations on
vertices. The right figure is a set of ZM invariant fluxes of twists
on plaquettes.
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law can be interpreted as pinning of the propagatorG0ðx; yÞ
at the origin of the orbifold as demonstrated below. A
twisted propagator of G0ðx; yÞ ≔ G0ðr; rkÞ is written as

G0ðĝnx − yÞ ¼ G0ðĝn=2x − ĝ−n=2y; rkÞ
¼ G0ðcos θnri þ 2 sin θnϵkiXk; rkÞ
¼ ecot θnR̂X=2G0ð2 sin θnX; rkÞ; ð8Þ

where R̂X ¼ ϵijri∂Xj
, r ¼ x − y, X ¼ ðxþ yÞ=2 and

θn ¼ nπ=M. Suppose that the twisted propagator is multi-
plied by a function FðrÞ of the relative coordinate r and
integrated as I ¼ R

dxdyG0ðĝnx − yÞFðrÞ. Such integra-
tion appears when there are no more twists in the Feynman
diagram. Then, due to R̂XFðrÞ ¼ 0, the twisted propagator
G0ðĝnx − yÞ can be replaced by G0ð2 sin θnX; rkÞ. For
n ≠ 0, by rescaling momentum p, it is written as

G0ð2snX; rkÞ ¼
1

4s2n

Z
d2kdd−1kk
ð2πÞdþ1

eik·Xþikk·rk

ðk2=4s2nÞ þM2
kk

¼ 1

4s2n

Z
dd−1kk
ð2πÞd−1 e

ikk·rk
1

ð−∂2
X=4s

2
nÞ þM2

kk

× δ2ðXÞ; ð9Þ

where M2
kk ≔ k2k þm2 and sn ≔ sin θn. Since ∂X is set to

zero via integration by parts in the X integration, the
coordinate X ¼ ðxþ yÞ=2 is pinned at the origin of the
orbifold. It is straightforward to see that S1-loop in Eq. (7)
can be reproduced by using this pinned propagator. Note
that, when there is another twist in the Feynman diagram,
the function F depends on X and derivative terms in Eq. (8)
cannot be dropped.
Next let us consider a figure-eight 2-loop diagram of

Fig. 4 with twists ðm1; m2Þ. Its free energy is given by

FðMÞ
2-loop ¼

X
m1;m2

3λ

4M

Z
ddþ1xG0ðĝm1x; xÞG0ðĝm2x; xÞ: ð10Þ

Specific configurations of twists, (m ≠ 0, 0) and
ð0; m ≠ 0Þ, correspond to a twist of each propagator
(Fig. 5) and renormalize the mass of the bare propagator
in Eq. (7) [29]. The corresponding EE to first order in λ is
given by

Spropag2-loop ¼ −
Vd−1

12
G0ð0Þð3λG0ð0ÞÞ: ð11Þ

This is nothing but S1-loop of Eq. (7) with the mass replaced
by m2 þ δm2, where δm2 ¼ 3λG0ð0Þ. Renormalization of
propagators is one important aspect of EE in interacting
field theories.
There is another nontrivial contribution to EE from the

twists ðm;�mÞ in Eq. (10), which is interpreted as twisting
the 4-point vertex (Fig. 6). By rewriting the integral of
Eq. (10), for m2 ¼ −m1, as

Z
ddþ1xddþ1yG0ðĝm1x; yÞG0ðĝ−m1y; xÞδdþ1ðx − yÞ

¼
Z

ddþ1xddþ1y ðG0ðx; yÞÞ2 δdþ1ðĝ−m1x − yÞ: ð12Þ

The same interpretation follows for m2 ¼ m1 as

FIG. 3. There is a single twist for 1-loop diagram.

FIG. 4. A 2-loop diagram with twist ðm1; m2Þ.

FIG. 5. 2-loop diagrams with a single twist
ðm1; m2Þ ¼ ðm; 0Þ; ð0; mÞ. These single flux can be interpreted
as a twist of each propagator.

FIG. 6. 2-loop diagrams with twist ðm1; m2Þ ¼ ðm;∓ mÞ.
These simultaneous twists from two fluxes can be interpreted
as a twist of the 4-point vertex by decomposing it into two 3-point
vertices.
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Z
ddþ1xddþ1yG0ðĝm1x; yÞG0ðĝm1x; yÞδdþ1ðx − yÞ

¼
Z

ddþ1xddþ1yðG0ðx; yÞÞ2δdþ1ðĝ−m1x − yÞ: ð13Þ

From Eqs. (8) and (9), we can replace

δ2ðĝnx − yÞ ¼ ecot θnR̂X=2
δ2ðXÞ
4s2n

→
δ2ðXÞ
4s2n

ð14Þ

in the integral. Hence, the effect of twisting is interpreted as
pinning of the position of the vertex at the origin. By the
above replacements, we obtain the 2-loop contribution
from twisting the vertex in the free energy

Fvertex
2-loop ¼ 2

3λ

4M
Vd−1

M2 − 1

12

Z
ddþ1rðG0ðrÞÞ2δd−1ðrkÞ:

ð15Þ
The 2-loop vertex correction to EE is then given by

Svertex2-loop ¼ −
1

4
Vd−1λ

Z
ddþ1rðG0ðrÞÞ2δd−1ðrkÞ: ð16Þ

The vertex correction to EE is negative for repulsive
(positive λ) interaction. In contrast to the twisting of
propagators, it essentially originates from the non-
Gaussianity of the vacuum. We also emphasize the impor-
tance of interpreting twisting in terms of ZM fluxes on
plaquette. If we took a special gauge and assigned twists on
particular links of Feynman diagrams, we could not find
vertex corrections to EE since they are hidden in twisting
multiple links.
Now we wonder what contributions to EE come from the

other twists of the figure-eight diagram; Fig. 4 with m1 and
m2 both nonzero and ðm1; m2Þ ≠ ðm;�mÞ. Performing the
integration of Eq. (10), we have
Z

ddþ1xG0ðĝm1x; xÞG0ðĝm2x; xÞ

¼ Vd−1

16π

Z
dd−1kkdd−1pk
ð2πÞ2ðd−1Þ

log ðs2m1
M2

kk=s
2
m2
M2

pk Þ
s2m1

M2
kk − s2m2

M2
pk

: ð17Þ

EE is obtained by the analytical continuation of M and
calculating the coefficient of the first derivative at M ¼ 1.
To see the behavior of M-dependence of Eq. (17), let us
focus on the d ¼ 1 case for simplicity. Summation over
nonzero m1 and m2 can be explicitly evaluated and
plotted in Fig. 7. FðMÞ in Fig. 7 is a sum of the integrand
of Eq. (17) over m1; m2 ¼ 1;…;M − 1. They include
2-loop vertex corrections ðm1; m2Þ ¼ ðm;�mÞ. GðMÞ is
plotted without the vertex corrections. If we can simply
interpolate the free energy to continuousM nearM ¼ 1, the
first derivative seems to be dominated by the vertex
contributions. Of course, it is not sufficient but we expect

that EE of the figure-eight diagram is dominantly given
by twisting the propagators, ðm; 0Þ and ð0; mÞ, and the
vertex ðm;�mÞ.

IV. EE IN 2PI FORMALISM

To study the renormalization of propagators systemati-
cally, we calculate EE in interacting field theories in the
framework of the 2PI formalism [52,53]. The 2PI effective
action is given, in addition to the classical action, by

Γ½G� ¼ F½G� ¼ − logZ

¼ −
1

2
tr logGþ 1

2
trðG−1

0 G − 1Þ þ Γ2½G�; ð18Þ

where Γ2 is (−1) times a collection of connected 2PI bubble
diagrams, denoted by Φ in some literature, in which all
propagators are the renormalized ones G. The 1PI effective
action is given by solving the gap equation

δΓ½G�
δG

¼ −
1

2
G−1 þ

�
1

2
G−1

0 þ δΓ2½G�
δG

�
¼ 0 ð19Þ

and substitutingG into Γ. From the first logarithmic term, it
is straightforward to see that we have

S2PI1-loop ¼ −
Vd−1

12

Z
1=ϵ dd−1kk

ð2πÞd−1 log ½G̃
−1ð0; kkÞϵ2�; ð20Þ

where G̃ðk; kkÞ is a Fourier transform of the renormalized
Green function, Gðx; xkÞ. Other contributions to EE follow
from the second term in Eq. (18) and 2PI diagrams Γ2. On
each plaquette, a flux of twist mi is assigned. Let us first
focus on contributions to EE from twisting one of the
renormalized propagators in Feynman diagrams. By taking
a variation with respect to a propagator G and multiply a
twisted propagator, these contributions are given by

F M

G M

1 2 3 4 5

0

2

4

6

M

F
re

e
en

er
gy

FIG. 7. FðMÞ is a sum of the integrand of Eq. (17) over
m1; m2 ¼ 1 � � �M − 1 for d ¼ 1. Vertex contributions ðm;�mÞ
are subtracted in GðMÞ.
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X
n≠0

Z
ddþ1xddþ1y

�
1

2
G−1

0 þ δΓ2½G�
δG

�
xy
Gðĝnx; yÞ

¼
X
n≠0

Z
ddþ1xddþ1y

�
1

2
G−1

�
yx
Gðĝnx; yÞ: ð21Þ

It is nothing but a twist of trðG−1GÞ=2, and gives a trivial
result. Thus, only the logarithmic term of Eq. (20) provides
the EE associated with a single twist of a propagator in the
2PI formalism: within the Gaussian approximation, this is a
general result and consistent with the leading order of
perturbative calculations in [25,29].
Among other contributions to EE, the figure-eight

diagram in Γ2 gives the same form of EE as Eq. (16),
with G0 replaced by G. The next nontrivial contribution to
EE comes from the 3-loop diagram in Fig. 8. Single twists
of propagators, as shown in Eq. (21), vanish in the 2PI
formalism by using the gap equation. Some other configu-
rations of twists are interpreted as twists of vertices. They
are given by ð0; m; 0Þ or ðm; 0;−mÞ or ðm;−m;mÞ in
Fig. 8. These configurations are regarded as s, t, u-channel
for twisting the 4-point vertices. All of them give the same
vertex correction. Each configuration of the twists can be
interpreted as either twist of the upper or lower vertex (but
not both). The corresponding EE is given by

Svertex3-loop

¼ −
∂
∂M

�
−3 ×

3λ2

2

Z
ddþ1x1ddþ1x2ddþ1y

×ðGðx1; yÞÞ2ðGðx2; yÞÞ2
XM−1

m¼0

δdþ1ðĝ−mx1 − x2Þ
�����

M→1

¼ 3Vd−1λ
2

Z
d2xd2ydd−1rk

× ðGðx − y; rkÞÞ2ðGðxþ y; rkÞÞ2

¼ Vd−1λ

Z
ddþ1rðGðrÞÞ2

�
3λ

4

Z
d2XðGðX; rkÞÞ2

�
: ð22Þ

Comparing it to Eq. (16), the delta function δd−1ðrkÞ, which
follows twisting the bare 4-point function, is replaced by

the square bracket in Svertex3-loop. The integral including two
Green functions might be interpreted as twisting a renor-
malized 4-point vertex function V4ðx1; x2; x3; x4Þ at 1-loop,
as inferred from the right figure of Fig. 8. To systematically
formulate twisting of higher point functions, we need to
evaluate, e.g.,

P
m≠0 V4ðĝmx1; ĝmx2; x3; x4Þ. We would like

to come back to this issue in future investigations.

V. CONCLUSIONS AND DISCUSSIONS

We have calculated entanglement entropy (EE) of a
scalar field theory with ϕ4-interactions in the 2PI formalism
and showed that EE has two different kinds of contribu-
tions, one from propagators and another from vertices. The
contributions from propagators are written in terms of
renormalized 2-point Green functions. On the other hand,
those from vertices reflect the non-Gaussian nature of the
vacuum wave function. The calculations are performed by
interpreting the free energy in terms of ZM (M → 1) gauge
theory on Feynman diagrams; ZM fluxes are assigned on
each plaquette. Special configurations of fluxes give the
above two contributions. Due to the ZM twisting, center
coordinates of propagators or positions of vertices are
pinned at the origin of the ZM orbifold so that the area law
of EE appears.
There are many issues to be solved. We have perturba-

tively calculated contributions from 4-point vertices up to
3-loops in the 2PI formalism. In contrast to the clear
understanding of contributions from propagators, it is
difficult to systematically understand vertex contributions
in terms of fully renormalized 4- (and higher) point
functions. Besides twisting a single propagator or a vertex,
there are many other configurations of twists. The next
simple configuration of twists will be twisting two separate
propagators. We expect that it gives less dominant con-
tributions to EE because two positions are simultaneously
pinned at the origin due to the twisting, and the integration
will be largely constrained in Feynman diagram integrals.
This expectation is also plausible since, if two twists can be
independently summed, each summation gives an ðM2 − 1Þ
factor and in total ðM2 − 1Þ2. Then it does not contribute to
EE. In general, they cannot be independent, but if we can
introduce distance between twists, we could estimate their
degrees of contributions to EE. For this, we need a deeper
understanding of ZM gauge theory on Feynman diagrams.
Finally, we comment on the analytical continuation ofM

to M ∼ 1. The basic assumption of the orbifold method to
calculate EE is an analytical continuation from an integer
M to a real number. It is justified if there are no
contributions to EE that vanish at integer Ms. Then, the
EE can be calculated by summing all the configurations of
fluxes of twists on each Feynman diagram. In comparison,
the heat kernel calculation of EE by Hertzberg [29] uses a
propagator on a cone with an arbitrary deficit angle and
no other modifications are made besides propagators.

FIG. 8. A 3-loop diagram with twists ðm1; m2; m3Þ (leftmost).
A particular configuration ð0; m; 0Þ corresponds to twisting a
vertex, as well as ðm; 0;−mÞ and ðm;−m;mÞ (three diagrams on
the right). These three diagrams are equivalent although they
seem different. All of these three diagrams are a single twist of the
delta function from x1 to x2.
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Our study indicates that in addition to the propagators,
vertex functions also need to be modified on a cone. It is
also interesting to see if some contributions to EE vanish
for 1=M deficit angle corresponding to the orbifold case.
This will give a justification (or a falsification) for our basic
assumption of the analytical continuation.
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