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Inflaton effective potential from photons for general ¢
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We accurately approximate the contribution that photons make to the effective potential of a charged
inflaton for inflationary geometries with an arbitrary first slow roll parameter e. We find a small, nonlocal
contribution and a numerically larger, local part. The local part involves first and second derivatives of e,
coming exclusively from the constrained part of the electromagnetic field which carries the long range
interaction. This causes the effective potential induced by electromagnetism to respond more strongly to
geometrical evolution than for either scalars, which have no derivatives, or spin one-half particles, which
have only one derivative. For ¢ = 0, our final result agrees with that of Allen [Nucl. Phys. B226, 228
(1983)] on de Sitter background, while the flat space limit agrees with the classic result of Coleman and

Weinberg [Phys. Rev. D 7, 1888 (1973)].

DOI: 10.1103/PhysRevD.103.105007

I. INTRODUCTION

No one knows what caused primordial inflation, but the
data [1] are consistent with a minimally coupled, complex
scalar inflaton ¢,

L= =0,00,0"9" /=9 = V(pp*)\/=9. (1)

If the inflaton couples only to gravity, the loop corrections
to its effective potential come only from quantum gravity
and are suppressed by powers of the loop-counting param-
eter GH?> < 107'°, where G is Newton’s constant and H is
the Hubble parameter during inflation. In that case, the
classical evolution suffers little disturbance but reheating is
very slow.

Efficient reheating requires coupling the inflaton to
normal matter such as electromagnetism with a noninfini-
tesimal charge ¢,

L= _(au - lqAﬂ>(p(av =+ iqu/)go*vi -9

1
- V((p€0*)\/:§ - ZFﬂquagﬂpgua\/:?' (2)

But the price of efficient reheating is significant one-loop
corrections to the inflaton effective potential [2]. For large

fields, these corrections approach the Coleman-Weinberg

form of flat space AV — =25 (¢*p¢")* In(g>pep* / s*), where

s is the renormalization scale [3]. However, cosmological
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Coleman-Weinberg potentials generally depend in a com-
plicated way on the geometry of inflation [4],

. )
ds> = a’[-dp* +dx-dX] = H= aLza,
OoH
=——73. 3
clry =28 3)

For the special case of de Sitter (with constant H and ¢ = 0),
the result takes the form [5-7]

3H4 QZ(PQD* q2¢¢* H2
oo =g () + () (%)
1 quﬂw* 2 H2
+§< ) ") @

where the function b(z) (whose z and z> terms depend on
renormalization conventions) is

2
+/0de(1+x) [W@%m)

b(z) = (=1 +27)z + (_§+ y> 2

w@_;m)]. (5)

Cosmological Coleman-Weinberg potentials are prob-
lematic because they make large corrections which cannot
be completely subtracted using allowed local counterterms
[4]. The classical evolution of inflation is subject to
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unacceptable modifications when partial subtractions are
restricted to just functions of the inflaton [8], or functions of
the inflaton and the Ricci scalar [7]. No other local sub-
tractions are permitted [9], but it has been suggested that an
acceptably small distortion of classical inflation might result
from cancellations between the effective potentials induced
by fermions and by bosons [10]. The purpose of this paper is
to facilitate study of this scheme by developing an accurate
approximation for extending the de Sitter results (4) and (5)
to a general cosmological geometry (3).

As before on flat space [3], and on de Sitter background
[6], we define the derivative of the one-loop effective
potential through the equation

1
AV'(¢9") = 5ER + 5 ko9 + 7*¢"i[,A)(x;x). (6)

Here i[,A,](x; x") is the propagator of a vector gauge field,
in Lorentz gauge, which acquires its mass through the
Higgs mechanism rather than being a fundamental Proca
field [11],

(O, = R,Y — M?6,*i[ A,](x;x')

Gupid” (x = ') .
= Wﬁ + 8,,8;,1A,(x;x’). (7)
Here [],” is the covariant vector d’Alembertian, M? =

2q%p@* is the photon mass squared, which is assumed to be
constant (in spite of the background evolution) as per the
definition of “effective potential,” and iA,(x;x’) is the

propagator of a massless, minimally coupled (MMC)
scalar. We regulate the ultraviolet by working in D
spacetime dimensions.

In Sec. II, we express the photon propagator as an exact
spatial Fourier mode sum involving massive temporal and
spatially transverse vectors, along with gradients of the
MMC scalar. Section III begins by converting the various
mode equations to a dimensionless form, then these are
approximated. Each approximation is checked against
explicit numerical evolution, both for the simple quadratic
potential, which is excluded by the lower bound on the
tensor-to-scalar ratio [12], and for a plateau potential [13]
that is in good agreement with all data. In Sec. IV, our
approximations are applied to relation (6) to compute the
one-loop effective potential. This consists of a local part
which depends on the instantaneous geometry and a
numerically smaller nonlocal part which depends on the
past geometry. Exact expressions are obtained, as well as
expansions in the large field and small field regimes. Our
conclusions are given in Sec. V.

II. PHOTON MODE SUM

The purpose of this section is to express the Lorentz
gauge propagator for a massive photon as a spatial Fourier
mode sum. We begin by expressing the right-hand side of
the propagator equation (7) as mode sum. Then the various
transverse vector modes are introduced. Next, these modes
are combined so as to enforce the propagator equation.
The section closes by checking the de Sitter and flat space
correspondence limits.

A. Lessons from the propagator equation

If we exploit Lorentz gauge, the u = 0 component of (7) reads

1 , ,
~ [0 + (D —2)0yaH + azMz}l[OAp}(x;x )=-—

8,0i8" (x — x')

pr= + 0p0,iA(x;X'), (8)

where 8% = #**0,0, is the flat space d’Alembertian. The 4 = m component of Eq. (7) reads

- % ([0 + (D — 4)aHOy + aM2i] A)(x; ) + 2aHO,il,A,)(xix')} =

Spi6P (x — x')

D-2

+ 0,,0,i8,(x;x"). (9)
a

We begin by writing the right-hand sides of expressions (8) and (9) as Fourier mode sums.
The MMC scalar propagator iA,(x;x") can be expressed as a Fourier mode sum over functions #(#, k) whose wave

equation and Wronskian are

[0% 4+ (D —2)aHd, + k*|t(n, k) = 0,

t-Ogt* — Opt - t* = (10)

aD—Z :

Although no closed form solution exists to the #(, k) wave equation for a general scale factor, relations (10) do define a
unique solution when combined with the early time asymptotic form,
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e—ikn

—_— 11
2kaP—2 (1

k>aH = t(nk)—>

Up to infrared corrections [14], which are irrelevant owing to the derivatives in expressions (7) and (8), the Fourier mode
sum for iA,(x;x) is

)= | %ﬁ’fl{e(mm Q) (7 ) 1 0(=An)e* (1K) K)e=F7), (12)

where Ay = — ' and AX =X — X'. Acting 9,8, on (12) produces a term proportional to §°,5(An), which the Wronskian

(10) and the change of variable k — —k allow us to recognize as a D-dimensional delta function,

dP-k -
aoa;,lA[(x, x’) = /W{éop(s(An)[t . aot* - aot . t*]elk.Ax + H(Aﬂ)aoa/p
x[t(n, k)1 (1, K)e™*A%) + O(=An) Do, [ (n, k)1, k)e~FAT]}, (13)

&,i6P (x — x') dP'k - -
=T [ S AT DT (. )

N

+ O(=An)Tj(x, k)T, (X', )} (14)

a

Here we define 7, (x, I_c') = 0,[t(n. k) eﬂ?z]_
Substituting (14) in the right-hand side of (8) gives

~ =P+ (D= 2)haH + ML) = [ S0 Ty BT .F) +0-an) Ty (e BT (D)) (15)

The corresponding expression for (9) is

—%{[—82 + (D = 4)aHdy + a*M?]i[ A )] (x:x') 4+ 2aH,,i[,A,](x;x)}

B / dPk {5,npi5(A;1)ei75-Af

2o o + (AT, (x, K)T5(x', k) + O(=An) Ty (x, k)T, (<, 1?)}. (16)

The right-hand sides of (15) and (16) are the Fourier mode sums that will guide us in constructing the photon propagator.

B. Transverse vector mode functions

In the cosmological geometry (3), a transverse (Lorentz gauge) vector field F,(x) obeys

1 1

We seek to express the photon propagator as a Fourier mode sum over a linear combination of transverse vector mode
functions. Expressions (15) and (16) imply that one of these must be the gradient of a MMC scalar plane wave,

T,(x, k) = 9, [t(n, k). (18)

Its transversality follows from the MMC mode equation (10),

~DTy + 0,T; = —[0% + (D — 2)aHd, + k]t(n, k)e™** = 0. (19)
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In D spacetime dimensions, there are D — 2 purely spatial and transverse massive vector modes of the form
V,(x, kKAM) = M(/?, 2) x v(n, k)el*=, €0 = 0 = ke;. (20)

The polarization vectors eﬂ(lz, A) are the same as those of flat space, and their polarization sum is

- > 0 0 _ -
e,(k, Aey(k,A) = < A > =1I1,(k). (21)
Z/l: g 0 5mr - kmkr .
The wave equation and Wronskian of v(n, k) are
02 + (D — 4)aHdy + k> + M?Jv(n.k) =0,  v-0yv* — dov - v* = # (22)
Relations (22) define a unique solution when coupled with the form for asymptotically early times,
ae—ikn
k> {CIH, CZM} = 1}(7’], k) d W . (23)

The spatially transverse vector modes V,(x, /? A, M) represent dynamical photons. There is also a single temporal-

longitudinal mode which represents the constrained part of the electromagnetic field. It is a combination of T, (x, 12) with a
transverse vector formed from the u = 0 component u(#, k, M) of a massive vector,

i

[0% 4+ (D —2)0gaH + k> + a*>M?|u(n, k, M) = 0, u-Ogu* = Oou - u* = ——. (24)
a
Relations (24) define a unique solution when combined with the early time asymptotic form,
e> (aH.aM) = (k) »— 25
> {aH,aM = un k) > ——.
V2kaP?
One converts u(n, k, M) to a transverse vector U,(x, 1?, M),
U, (x, kM) = 8, u(n, k)ei*3), (26)
where the differential operator 5ﬂ has the 3 + 1 decomposition,
_ - 0,D N
Jo=V-V2 =k  d=-—2"_ - kD, (27)

C. Enforcing the propagator equation

We have seen that the photon propagator i[pA/,} (x;x") is the spatial Fourier integral of contributions from the three
transverse vector modes, each having the general form of constants times,

Fup(x:x') = 0(An)F,(x)F(x") + 0(=An)F;,(x)F,(x'), F,el{1,U,V,} (28)
We might anticipate that the spatially transverse modes contribute with unit amplitude, but the MMC scalar and temporal
photon modes must be multiplied by the square of an inverse mass to even have the correct dimensions. The multiplicative

factors are chosen to enforce the propagator equation (7).
To check the temporal components (15) of the propagator equation, we must compute

1
~ [~0% + (D —2)0paH + a*M?|F g, (x;x'). (29)
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To check the spatial components (16), we need
1 1
- [-0% + (D —4)aHdy + a*M?|F ,,(x;x") — X 2aHO,,Fo,(x;x'). (30)

The factors of J, in the differential operators of (29) and (30) can act on the theta functions or on the mode functions. When
all derivatives act on the MMC contribution, the result is —M? times the original mode function,

- % 0% + (D — 2)0aH + ®MTo(x) = —M>Ty(x), (31

1 1
-5 [~0% + (D — 4)aHO, + a*?M?|T,,(x) — — X 2aHO,,To(x) = —M’T,,(x). (32)

This suggests that the MMC contribution enters the mode sum with a multiplicative factor of —M~2. No further information
comes from acting the full differential operators on the other modes,

_ % [~ + (D — 2)dpaH + @MUy (x) = 0, (33)
- % [~0% + (D — 4)aHd, + MU, (x) - % x 2aH0,,Uy(x) = 0, (34)
- % [0 + (D —2)0gaH + a*M?|Vy(x) = 0, (35)
_ % [~8% + (D — 4)aHOy + a*M* |V, (x) — % x 2aH®,,Vy(x) = 0. (36)

It remains to check what happens when one or two factors of J, from the differential operators in (29) and (30) act on the
factors of O(+An). A single conformal time derivative gives

0o F up(x:x') = O(An) O F  F, 4 O(=An) Oy F, F , 4 6(An)[F,F, — F,F ). (37)

If we change the Fourier integration variable k to —k in the second of the delta function terms, the result for the MMC
modes is

OptOpt* — Ogt*Opt]  —ik,[Opgtt" — Opt*t]\ - .-
T A ) L &
- ik, [101* — t* 0yt kk,[tt* — 1)

0 —k,\ ¢ifAx
(4

The temporal photon modes make exactly the same contribution,

K2 [uu* — u*u] ik, [uDu* — u*Du] 7A%
uu, -U,U, - : 2oz e, (40)
ki —ik,,[Duu* — Du*u] k,,k,[DuDu* — Du*Dul
0 —k, \ kAt
-k, 0 Ja

Canceling (41) against (39)—whose multiplicative coefficient is —M~>—fixes the multiplicative coefficient for the
temporal photons as +M~2. The delta function term in (37) vanishes for the spatially transverse modes.
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We turn now to second derivative which comes from —9* = 95 — V2,

G%fﬂp(x;x’) = G(An)agFﬂ(x)F;(x') + 9(—A1’])8(2)FZ()C)FP<XI)
+ 8(An)[0oF F) — OoFyuF,] + 0o{6(An)[F F) — FLF,}. (42)

We have already arranged for the cancellation of the final term in (42). For the new delta function term, the MMC modes
give

D2tOt* — O3t*0pt]  —ik, [O3tt — D3t*t]\ - .-
TeF ik, [0gtOgt* — Dot*Opt]  k,k,[Ott* — Opt*1]
2 ik,(D —2)aH \ e*A%
O (44)
0 k. k, a
where we have used 931 = —[(D — 2)aHd, + k*]t. The corresponding contribution for the temporal modes is
k2 [Oguu* — Ogu*u ik,.|0yuDu* — dyu*Du o
U, U; - BoUSU, _ < [0 o ul o [0 0 ] )ezkAx’ (45)
N —ik,,[0gDuu* — 0yDu*u] k,k,,[0gDuDu* — OyDu*Dul|
K* ik (D -2)aH kAT
-t 4D ~2) )or (46)
0 k(K2 +a2M?)) a
where we have used 9yDuy = —(k*> + a®>M?)u,. And each of the spatially transverse modes gives
0 0 e
BV, V= 0ViV | = ekt 47
0V u"p 0 u Plk—»—k (0 €m€i[50vv*—8ov*v]> ( )
(0 0 oik-A% 8)
~ o enes ) aP™’

The second conformal time derivatives in both expression (29) and the corresponding spatial relation (30) come in the
form — % x 93. Including the multiplicative factors, we see that the temporal delta functions which are induced consist of
ﬁ times (44) minus the same factor times (46), plus the polarization sum (21) over (48),

a

i (K ik, (D—2)aH e k2 ik (D—=2)aH \ kAT /0 0 ei/ZA;?_ /00 kAt
M*\ 0o k, k, @ M\ 0 hok(K+aemr)) a0 6, —kek ) P2 \o s, ) P

(49)

With — # times expressions (31) and (32), we see that the propagator equations (15) and (16) are obeyed by the Fourier
mode sum,

D1 ok B M) = T (e VT (. R
i[ﬁ;;}(x;x'):/éﬂ)—,)'fl{ (M)[U"( MU M) = T, 0 BT

— -

. L U (x, k, M)U,(x', k, M)
L, (B o(n. K)o (nak)elkﬂ +e<—An>[ ; v

M2

Ti(x, T, (X, k)

- ”T 10, (K)v* (1, K)o o k)e"";mﬂ } (50)
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Note that the U, (x, I_c' M) and T, (x, /2) modes combine to form a vector integrated propagator analogous to the scalar ones
introduced in [15].

The photon propagator can also be expressed as the sum of three bi-vector differential operators acting on a scalar
propagator,

. / 1 s i[sD(x_xl) 1z a7 / / ; / 10 /
l[ﬂA,,](x;x ) = e (=1, +11,,] — + e [0,0,"iA,(x;x") = 0,0,iA,(x; X')] + 11, A, (x; X'). (51)

The Fourier mode sum for the MMC scalar propagator iA,(x;x") was given in expression (12). The mode sum for the
temporal propagator A, (x; x') comes from replacing #(1, k) with u(, k) in (12), and the mode sum for the transverse spatial
propagator iA, (x; x") is obtained by replacing #(n, k) with v(n, k). The resulting lowest order (free) field strength correlators
are

0.0, 16" (x — 9,0 _
@I [Fo () Fu ()10) = SO | a2 U i (o) £ 0008, (6 0). (52
(QIT*[Fo;(x) Fre(x')]|Q) = [6x0p — 8,0k]0gi s, (x5 X'), (53)
(QIT*[F;;(x)Frp(x')]|Q) = —[6:40;0, — 6¢;j070; + 8;,0,0k — 64;0,0;]iA,(x; X'). (54)

The T*-ordering symbol in these correlators indicates that the derivatives in forming the field strength tensor,
F,(x)=0,A,(x)—0,A,(x), are taken outside the time-ordering symbol.
An important simplification is

T,(x. k) = _i}[I/IiEI}()UM(x’ k,M). (55)
Comparing Egs. (31) with (33) and (32) with (34) shows that both sides of relation (55) obey the same wave equation for

M = 0. That they are identical follows from #(5, k) and u(n, k) having the same asymptotic forms (11) and (25). Relation
(55) is of great importance because it guarantees that the propagator has no # pole.

D. The de Sitter limit

In the limit of ¢ = 0, the mode functions have closed form solutions,1

in(, 41 T 1 k
t(n. k) _’ez(A+2>\/mXH£A> <%>, (56)

i 1 /3 k
k) — et [Tl (), 7
in, 1 V3 k
e e R )] 58
where the indices are
D-1 D-3\2 M?
I/A = <T> s l/h = <T> — m (59)

The Fourier mode sums for the three propagators can be mostly expressed in terms of the de Sitter length function y(x; x’),

yx) =X =X1° = (In—n'l - ie)*. (60)

'In the phase factors for u(n, k, M) and v(, k, M), one must regard v as a real number, even if M?> > 1 (D - 3)2H>.
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The de Sitter limit of the temporal photon propagator is a hypergeometric function,

HP2T (v, + vp)T(va — 1) < D y)
iA,(x;x") — s—2 Filvy+v,,vs—vy,—;1 == =b(y). 61
( ) (47[)7 F(%) 241 A b YA b 2 4 (y) ( )
The de Sitter limit of the spatially transverse photon propagator is closely related,
iA,(x;x') = ad'b(y). (62)

However, infrared divergences break de Sitter invariance in the MMC scalar propagator [16—18]. The result for the
noncoincident propagator takes the form [19,20]

e HP2T(D-1)

iA(x;x") > A(y) +WT%)IH(CM ), (63)

where we only need derivatives of the function A(y) [21],
) =3 2= 3)B() ~ 5 (D~ 2)B() (64)

(D -2)I(1) D y

By)=s——F~—,F|D-2,1,—;1-=). 65

It is useful to note that the functions B(y) and b(y) obey
0= (4y =y*)B"(y) + D(2 = y)B'(y) = (D = 2)B(y). (66)

2

0= (4y = )B"() + D2 = )H(3) = (D= 2)b(y) = 5 b(). (67)

A direct computation of the photon propagator on de Sitter background gives [11]

2 / Y
) = =553y =) L (0= - )| [P
8 a a b/ _ R
+ 8_)?;‘336);’) [(2 -) 9y - (D- 1)] [7()))21‘/[23 (y)} . (68)

To see that the de Sitter limit of our mode sum (51) agrees with (68) we substitute the de Sitter limits (63), (61), and (62) and
make some tedious reorganizations. This is simplest for the MMC scalar contribution,

50”60/71.5D(X - x’) a”a;)iA[(_x;x/) aZy Al ay ay A"
M2 T M2 O Ox MR ox ox ME (69)
___ % [@-y)B-(D-2)B] Gy Oy [2=y)B"-(D-DF (70)
S Ox*Ox’ 2M? It Ox'P M2 )
Py [@y-y)B"+(D-1)2-y)B 3y dy [2-y)B"—(D-1)B (71)
o axﬂaxlp 2M2 axﬂ ax/p 2M2 .

Each tensor component of the temporal photon contribution requires a separate treatment. The case of u = 0 = p gives

9,0y 2ulBX) | pbO) o B g B

M2 MZ M2 (72)
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:a?";z{_zw—1)b’+4[2—y—§—%1b"}, (73)

e [Fe-n 2 (G4 L) - - 0= vy
+[p-a-2e-n(5+2) -0 - - v}, (14)
(SR RN e PSS G R PR EC PR PSS

For 4 =0 and p = r, we have

= = 1A, (X" b(y) b b"
00, m: 0, D' 2 arD/yW + 3rya6yﬁ’ (76)
aa” H* Ax" a
:T{2(D—1)b’—2(2—y)b”+4;b”}, (77)
2 /HSA r !

et i+ 0 -ne-pn+ [-y-28 e -0-omb. oy

0%y 0 b dy Oy 0 b
=- 4y —y?)—+ (D -1)(2 - — 2—-y)——D-1)| —. 79
e [ PN R Cn) P e (R R P

And the result for y = m and p = 0 is
= = iA(x X)) b(y) b’ b"
Om0y’ oz - _amDW = _amDyW - 3myaoyW, (80)
a’*a' H3 Ax™ a

e R e T 1)

aa/2H3Axm 2 1/ / a /1 /
=-———n (G =y)p" + (D =12 =]+ 2=y =252 -y)b" = (D - 1)¥] . (82)

Py 0 b’ dy 0Oy 0 b’
= |4y -y)=—+(D-1)2- — 2—y)——(D-1 . 83
G | =) g+ 0=DC-0)| g+ e g - 0-0) e 69

The case of y = m and p = r requires the most intricate analysis. It begins with the observation
0,0,i6P(x=x') - - ,iA,(x;xX) 0,0, DD'b(y)
V2 b2 + 0,0/ M2 V2 M2 (84)
This component combines with the contribution from spatially transverse photons,
_ 0,,0

i, (55) (0,22 ) a1, (85)

The 0,,0,/V? terms from expressions (84) and (85) give

105007-9
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/

DD'b(y) — ad'M*b(y) = aa’Hz{ [8 —dy+y*=2(2-y) <a + a_)] b"
a

a/

+[-eo-ne-y+20-0(5+9) |+ [0-2-2]s) )

a

!/

- aa’H2{2(2 — )2 =3(D = 1)(2—y)b' + (D —2)(D — 1)b + 2(3 + %) ~(2 = y)b" + (D - 1)1/]}, (87)

_ %vzl[—(z — )b+ (D —2)b], (88)

where I[f(y)] represents the indefinite integral of f(y) with respect to y.
Substituting relation (88) in (84) and (85) gives

0,0,i6P (x =x') = = iA (X))~ , 9,,0, ,
N2 2 + 0,0, i + 0,18, (x; X') — ad'é,,.b(y) + WI[_(Z -y)b' +(D-2)b], (89)
aa/Hz YAYN/ / 172 m r " /
= O b4y =Y + (D= )2 = )b] + 20 A AV (-2 = )b + (D= DB]). (90)
B 5%y 5 0 b’ dy Oy 0 b’
= e R R ECCTY

This completes our demonstration that the de Sitter limit of our propagator agrees with the direct calculation (68). It should
also be noted that taking H — 0 in the de Sitter limit gives the well-known flat space result [11], so we have really checked
two correspondence limits.

ITII. APPROXIMATING THE AMPLITUDES

The results of the previous section are exact, but they rely upon mode functions #(n, k), u(n, k, M), and v(n, k, M) for
which no explicit solution is known in a general cosmological geometry (3). The purpose of this section is to develop
approximations for the amplitudes (norm squares) of these mode functions. We begin converting all the dependent and
independent variables to dimensionless form. Then approximations are developed for each of the three amplitudes and
checked against numerical evolution for the inflationary geometry of a simple quadratic potential which reproduces the
scalar amplitude and spectral index but gives too large a value for the tensor-to-scalar ratio. The section closes by
demonstrating that our approximations remain valid for the plateau potentials which agree with current data.

A. Dimensionless formulation

Time scales vary so much during cosmology that it is desirable to change the independent variable from conformal time 7
to the number of e-foldings since the start of inflation n,

a(n)

a;

nEln[ ] = 0y=aHOJ,, 03 = a*H?[0% + (1 —€)0,]. (92)

We convert the wave number k and the mass M to dimensionless parameters using factors of 8zG,
kK = V8xnGk, u=+v8xGM. (93)
And the dimensionless Hubble parameter, inflaton, and classical potential are
x(n) =VB8aGH(n),  w(n)=V82Go(n),  Ulyy*) = (82G)*V(pp"). (94)

The first slow roll parameter is already dimensionless and we consider it to be a function of n,
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__x
e(n) = . (95)

In terms of these dimensionless variables, the nontrivial
Einstein equations are

(D=2)(D=1)y* =Wy + Ulpy*), (96)

N =

1

—5(D=2)(D=1=2e) =y = Ulwy").  (97)

The dimensionless inflaton evolution equation is

2"+ (D =1=ey'| +wU (yy*) =0.  (98)

This can be expressed entirely in terms of yw and its
derivatives,

2 1y, /%
lp”+<D—1—%>[V/’+

Although our analytic approximations apply for any
model of inflation, comparing them with exact numerical
results of course requires an explicit model of inflation. It is
simplest to carry out most of the analysis using a quadratic
model with U(y) = c>wy*. Applying the slow roll
approximation gives analytic expressions for the scalar,
the dimensionless Hubble parameter, and the first slow roll
parameter,

c 1
V= V=2n = o ey
(100)

D=2V wy | _,
2U0(yy*) '

(99)

Note also that y(n) ~yo\/1 —2n/y§. By starting from
wo = 10.6, one gets somewhat over 50 e-foldings of
inflation. Setting ¢ = 7.126 x 107 makes this model
consistent with the observed values of the scalar spectral
index and the scalar amplitude [12], but the model’s tensor-
to-scalar ratio is about 3 times larger than the 95% con-
fidence upper limit. Although we exploit the simple slow
roll results (100) of this phenomenologically excluded
model to develop approximations, the section closes with
a demonstration that our analytic approximations continue
to apply for viable models.
We define the dimensionless MMC scalar amplitude,

T(n,x) =1n ["%T .

Following the procedure of [22-24], we convert the mode
equation and Wronskian (10) into the nonlinear relation

(101)

2x2e~2n e—Z(D—l)n—ZT

=0.
P

1
T”+§T’2+(D—1—6)T’+ 5

%
(102)

The asymptotic relation (11) implies the initial conditions
needed for equation (102) to produce a unique solution,

T(0.x) = —In(2k).  T'(0.x) = —(D—2). (103)

The temporal photon and spatially transverse photon
amplitudes are defined analogously,

) = [ EOEIOF]
Vi) = IO

Applying the same procedure [22-24] to the temporal
photon mode equation and Wronskian (24) gives

(104)

1
U + 51/1’2 +(D=-1-e)lt

2k“e 2’ e

2 ,—2n —2(D-1)n-2U
+ oD-)(1—e) 4 T T
7 7

=0.

2y
(105)

And the initial conditions follow from (25),

U0, x, 1) = —In(2x), U0,k,u) =—-(D-2). (106)

The analogous transformation of the spatially transverse
photon mode equation and Wronskian (22) produces

1 2Kk
i )2 _2_ /
V' + 2V +(D-3-¢)V + p

2 ,—2(D-3)n-2V
————=0. (107)

The initial conditions associated with (23) are

V(0,x,u) = —In(2x), V'(0,k,u) =—(D—4). (108)

B. Massless, minimally coupled scalar

The MMC scalar amplitude is controlled by the relation
between the physical wave number ke™ and the Hubble
parameter y (n). In the subhorizon regime of k > y(n)e", the
amplitude falls off roughly like 7 (n,x)=~—In(2x)—
(D —2)n, whereas it approaches a constant in the super-
horizon regime of k < y(n)e". (The e-folding of first horizon
crossing is n, such that k = y(n,)e".) Figure 1 shows that
both the subhorizon regime, and also the initial phases of the
superhorizon regime, are well described by the constant e
solution [24],
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-8r e —15} Nt ool \\V __________________
(@ n, ~ 6.0 (b) n, ~ 8.3 (c) n, ~ 10.0
FIG. 1. Plots the massless, minimally coupled scalar amplitude 7 (n,x) (in solid green) and the (black dashed) ultraviolet
approximation (109) versus the e-folding n for three different values of «.

(109)
Here the ratio z(n, k) and the MMC scalar index v,(n) are

_ ke 1(D=l=cn)
00 =y 403 )

(110)
Of course, expression (109) is an approximation to the exact result. Because we propose to use this to compute the

divergent coincidence limit of the propagator, it is important to see how well 7 | (n, k) captures the ultraviolet behavior of
7 (n, k). Because (109) is exact for constant first slow roll parameter, the deviation must involve derivatives of ¢(n). It turns
out to fall off like x=* [24],

T(n,k) =T, (n,«)

= (D1_6 2) [(D+5-Te)e + €] (%)4 +0 ( <)(Zn)6>. (111)

The discrepancy between 7 (n, k) and 7 | (n, k) that is evident at late times in Fig. 1 is due to evolution of the first slow
roll parameter e¢(n). Figure 2 shows that the asymptotic late time phase is captured with great accuracy by the form

We will see in Sec. IV that this suffices for an exact description of the ultraviolet.

Q@@:mﬁﬁ?xqwmﬁ

where the nearly unit correction factor C(¢) is

( 11 2)
=380 - =20000
Tk K Xo P k = 3800 xo Tk K Xo
-20.30
Numerical Solution ~15.538 \ Numerical Solution Numerical Solution
-8.588 \ -20.35F \
"""" Late Time Approximation  _15.540F \ -------- Late Time Approximation \ s-2++- Late Time Approximation
\ -20.40 F \
8589 \ ~15.542f \ \\
-2045F \
_8500F \ E \ \
8590 \ -15.544 \ -2050f \\
8501 \ -15.546} > 2055 S~
N B T
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S Teeacsesceeciieaieiciieen.. -15.548 —20.60 F
-8.592
. . . . n . . . . . - . . . . . o
8 10 12 14 10 1" 12 13 14 15 10 11 12 13 14 15
(@) n, ~6.0 (b) n, ~ 8.3 (©) n, ~10.0
FIG. 2. Plots the massless, minimally coupled scalar amplitude 7 (n, k) (in solid green) and the (black dashed) late time approximation
(112) versus the e-folding n for three different values of .

105007-12



INFLATON EFFECTIVE POTENTIAL FROM PHOTONS FOR ... PHYS. REV. D 103, 105007 (2021)
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FIG. 3. Plots the temporal amplitude U(n, k, 1) and the ultraviolet approximation (114) versus the e-folding n for k = 3800y, (with
n,. ~ 8.3) and three different values of y with outside the range of inflation.

C(e)E;F2<;+11€>[2(1—6)]1_3e. (113)

Expression (112) is exact for constant e(n). When the first slow roll parameter evolves, there are very small nonlocal
corrections whose form is known [25] but whose net contribution is negligible for smooth potentials.

C. Temporal photon

The temporal photon amplitude is very similar to the massive scalar which was the subject of a previous study [26]. Like
that system, the functional form of the amplitude is controlled by the following two key events:

(1) First horizon crossing at n, such that ke™ = y(n,).

(2) Mass domination at n, such that y = J )((nﬂ).2
The ultraviolet is well approximated by the form that applies for constant e¢(n) and u « y(n) [27],

_ o [22mK) >
U](H,K,ﬂ) =In [WH%("#)(Z("’K)N s (114)
where the temporal index is
1 /D —-3+¢(n)\2 u?
2(nop) =~ - . 115
o =3 (T T e

Figure 3 shows that the ultraviolet approximation is excellent when matter domination comes either before or after inflation.
The ultraviolet regime is xke™ > {y(n),u}. To see how well the ultraviolet approximation captures this regime, we
substitute the difference into the exact evolution equation (105) and expand in powers of e”y(n)/k to find [26]

U, k., 1) — U, (n, k. 1) = {(56—362)£;+ (Dlg 2) (D =9+ 7e)e —e"]} <"e">4 + 0<<"§">6). (116)

K

This suffices to give an exact result for the ultraviolet so we that can take the unregulated limit of D =4 for the
approximations which pertain for n > n,.

The various terms in Eq. (105) behave differently before and after first horizon crossing. Evolution before first horizon
crossing is controlled by the fourth and seventh terms,

2x2e—2n e—2(D—1)n—21/{

5 ~0 = Ux~-In(2x)—-(D-2)n. (117)

22

After first horizon crossing, these terms rapidly redshift into insignificance. We can take the unregulated limit (D = 4), and
Eq. (105) becomes

*The quadratic slow roll approximation (100) gives n, =~ 1yd[1 — (2u/x0)?].
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FIG. 4. Plots the temporal amplitude (n, 3800y, 0.4y,) and the three approximations (114), (123), and (124). For x = 3800y,
horizon crossing occurs at n, ~ 8.3; for 4 = 0.4y,, mass domination occurs at n, ~20.2.

1 2
U//+§U/2+(3—€)U/+4(1_€)+XL250' (118)

This is a nonlinear, first-order equation for /. Following [26], we make the ansatz,

U ~a+ ptanh(y). (119)
Substituting (119) in (118) gives
2
(Eqn.118) = o +%(12 +%ﬂ2 +(B-€ea+4(l—¢) —1—%
+ (B -e+a)f + ptanh(y) + ﬂ(}/’ - %ﬁ) sech?(y). (120)

Ansatz (119) does not quite solve (118), but the following choices reduce the residue to terms of order ¢ x tanh(y):

2
U 1
-=, Y ==p. (121)

+ p >

EN
[NSH)

1
a , 4ﬂ

Figures 4 and 5 show how U(n, k, ;1) behaves when mass domination comes after first horizon crossing and before the

end of inflation.
First comes a phase of slow decline followed by a period of oscillations. From (119) with (121), we see that these phases

are controlled by a “frequency” defined as
1 2
) =+ E o 2 ), (122)

During the phase of slow decline, w?(n, ) > 0. Integrating (119) with (121) for this case gives

=03 u=0.3x0 =03
Un K1) d Xo U(n, &) U(n,K,p) s Xo
. . . . \ . —40} ) )
~._ 10 20 30 40 50 " -20 »\\\\ Numerical Solution 'l;l:merlltlzla;l\Solutl.on ’
-20f T Numerical Solution 0 \\\ """" Phase Il Approximation ase fll Approximation
~ = sol T
_a0[ \\\\ """" UV Approximation ™ 60 e
S . _aof \ T~
60 ~ TR,
T -50F . -80f .
-80 RN e .
—60F RN \\\
-100 . _100k .
™. N
120 e ™ \
. N s
S Vs
ok o BOp ‘ ‘ ‘ ‘ Sh ‘ ‘ ‘ S
10 15 20 25 30 30 30 35 40 45 50

FIG. 5. Plots the temporal amplitude U(n, 3800y,,0.3y,) and the three approximations (114), (123), and (124). For x = 3800y,
horizon crossing occurs at n, ~ 8.3; for 4 = 0.3y,, mass domination occurs at n, ~ 36.0.
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Uy(n, ko pt) = Uy — 3(n — ny) +21n {cosh (/ dn’a)u(n’,//t)> + (3+—%) sinh </ dn/wu(n/,ﬂ)ﬂ . (123)

ny 2wu (n2’ lu) 2

where n, = n, +4. The oscillatory phase is characterized by w2 (n,u) < 0. Integrating (119) with (121) for this case

produces
n 3+ U n
cos an’Q, (', u ) + (—3) sin(/ dn'Q,(n', u >
([ i) + (s s sin( [ aneutorn

where n3 = n, + 4. Figures 4 and 5 show that these approximations are excellent.

It is worth noting that the approximations (123) and (124) depend on « principally through the integration constants
U> =U(ny, k, 1) and Uz = U(ns, k, u). Figure 6 shows the difference U(n, 400y, u) — U(n, 3800y, 1) for the same two
choices of u in Figs. 4 and 5. One can see that the difference freezes into a constant after first horizon crossing to better than
five significant figures.

Us(n,k,p) = U3 —3(n —n3) +21n{

}, (124)

D. Spatially transverse photons

The general considerations for the amplitude of spatially transverse photons are similar to those for temporal photons.
Before first horizon crossing, it is the fourth and last terms of Eq. (107) which control the evolution,

22 p=2D-3)n-2V
Ke ¢ 5 ~0 = V=~ —In(2x) — (D —4)n. (125)

Ve 2

A more accurate approximation is

52(n,x) 1
Vi(n, k1) =In {W ", (. sz] , (126)
where z(n, k) is the same as (110) and the transverse index is
1 /D-3-¢(n)\2 u?
2(n,pu) =~ - . 127
g =3 (™) e 12

Note the slight (order €) difference between v2(n, i) and v2(n, u). Figure 7 shows that (126) is excellent up to several e-
foldings after first horizon crossing and throughout inflation for n, < 0.

=0.4 X0, k1=400X0, k2=3800, =0.3X0, k1=400X0, k2=3800x0
AU H=0.4X0, K1 Xo, K2 Xo A U(n,p) H=0-9X X X som 1=0.3x0, kK1=400X0, k2=3800)0
2.0F \\\\ 22F \\
\ - \ t7eazof
15 L \ ]
~ | ,‘ 21 1.76469f
[ 1]
s \ 1.76469F
0.5F 2.0 \ 6469
. Ly \ 1.76468F
10 20 30 20 50
-05 \ 1.76468}
1.8f \
b AN . . . . . . . .
-1.0 10 20 30 40 50  1.76467L 35 40 45 50

FIG. 6. Plots the difference of the temporal amplitude AU = U (n, k;, ) —U(n, k1, u) for k; = 400y, and k, = 3800y with u chosen
so that all three approximations (114), (123), and (124) are necessary.
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FIG. 7. Plots the transverse amplitude V(n, , i) and the ultraviolet approximation (126) versus the e-folding n for x = 3800y, (with
n,. ~ 8.3) and three different values of y with outside the range of inflation.

Expression (126) also models the ultraviolet to high precision,

V(n.k.p) = V(. k. 1) = {(56 - 3e2)§2 + <D1—_64) (D +3-Te)e + e”}} (’%)4 + 0((1:'1)6). (128)

Figure 8 shows V(n, k, u) for the case where n, happens after first horizon crossing and before the end of inflation. One
sees the same phases of slow decline after first horizon crossing, followed by oscillations.

The second and third phases can be understood by noting that the two terms of expression (125) redshift into
insignificance after first horizon crossing. We can also set D = 4 so that Eq. (107) degenerates to

1 2u?
V”+§V’2+(1—e)v+i2zo. (129)
P

The same ansatz (119) applies to this regime, with the parameter choices,

2
1
O s R ) (130)

1
a . 4ﬂ s 3

B

Just as there was an order e difference between the temporal and transverse indices—expressions (110) and (127),
respectively—so too there is an order ¢ difference between w?(n, u) and w2 (n, ).
Integrating (119) with (130) for w?(n, u) > 0 gives

Va(n.k.pt) = Vs — (1= ny) +21n {cosh (/ dn’a),v(n',pt)> + (LVZQ sinh(f dn’a)v(n’,,u)>], (131)

ny 2(1)1} (I’lz, H 2

where n, = n, + 4. Integrating (119) with (130) for w?(n, u) < 0 results in

H=04x0 H=04xo 1=0.4x0
VIn,k.p) VIn,k.H) Yink)
1 . B
e . . . . _
10 e 20 30 20 50 e 25 30 35 40 45 50
AN N N N N N =g -
ol 10 12 \ 14 16 18 20 _10f *\\\‘
10 ~ .
-1 - ‘\\
N
N .
_20 -2 M -20 \_{/
-3 \\
30 RN -30
_ab ~.§>\
Numerical Solution Numerical Solution O\ Numerical Solution
Bl . UV Approximation SSE e Phase Il Approximation e Phase Il Approximation

FIG. 8. Plots the transverse amplitude V(n, 3800y, 0.4y,) and the three approximations (126), (131), and (132). For x = 3800y,
horizon crossing occurs at n, ~8.3; for 4 = 0.4y,, mass domination occurs at n, ~20.2.
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Vi(n,k,pu) = V53— (n—n3) +21n[

where n3 = n, + 4. Figures 8 and 9 demonstrate that (131)
and (132) approximations are excellent.

Finally, we note that from Fig. 10 that V'(n,x,u) is
nearly independent of « after first horizon crossing.

One consequence for the (131) and (132) approxima-
tions is that only the integration constants }, and Vs
depend on k.

E. Plateau potentials

We chose the quadratic dimensionless potential
U(py*) = c*yy* for detailed studies because it gives
simple, analytic expressions (100) in the slow roll approxi-
mation for the dimensionless Hubble parameter y(n) and
the first slow roll parameter e(n). Setting ¢ ~7.126 x 107°
makes this model consistent with the observed values for
the scalar amplitude and the scalar spectral index [12]. On
the other hand, the model’s large prediction of r ~0.14 is
badly discordant with limits on the tensor-to-scalar ratio
[12]. We shall therefore briefly consider how our analytic
approximations fare when used with the plateau potentials
currently consistent with observation.

n 14V, ) n
cos dn'Q, (', + <73 ) sin (/ dn'Q, (', )

], (132)

The best known plateau potential is the Einstein-frame
version of Starobinsky’s famous R + R? model [13].
Expressing the dimensionless potential for this model in
our notation gives [28]

3 ,
Uypy™) :ZMZ(I —e—\/%‘w>2, M=13x105. (133)

Somewhat over 50 e-foldings of inflation result if one starts
from y, = 4.6, and the choice of M = 1.3 x 107> makes
the model consistent with observation [12]. Figure 11
shows why r = 16¢ is so small for this model: its
dimensionless Hubble parameter y(n) is nearly constant.

All our approximations pertain for this model, but the
general effect of (1) being so nearly constant is to increase
the range over which the ultraviolet approximations pertain.
The left-hand plot of Fig. 12 shows this for the MMC scalar
amplitude 7 (n, ). Because e(n) is so small, the temporal
and transverse frequencies are nearly equal w?(n,u)~
w?(n,u) and nearly constant. The right-hand plot of
Fig. 12 shows this for a carefully chosen value of u =
0.497y, which causes mass domination to occur during
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FIG. 9. Plots the transverse amplitude V(n, 3800y, 0.3y,) and the three approximations (126), (131), and (132). For x = 3800y,
horizon crossing occurs at n, ~ 8.3; for 4 = 0.3y,, mass domination occurs at n, ~ 36.0.

AV(n.p)

T

p=0.4x0, kK1=400x0, k2=3800x0

A V(n,u)

p=0.3x0, k1=400x0, k2=3800x0

\\,

L . . L
10 20 30 40

~n
50

A V(n,p)
1.7024f

1.70221

1.70201

1=0.3x0, k1=400x0, k2=3800x0

1.70181

1.7016

1.7014%

L L L o
35 40 45 50

FIG. 10. Plots the difference of the transverse amplitude AV = V(n,k,u) — V(n, k,, u) for k; = 400y, and x, = 3800y, with p
chosen so that all three approximations (126), (131), and (132) are necessary.
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FIG. 11. Potential and geometry for the Einstein-frame representation of Starobinsky’s original model of inflation [13]. The left-hand

plot shows the dimensionless potential U (yy™*) (133), the middle plot gives the dimensionless Hubble parameter y(n), and the right-
hand plot depicts the first slow roll parameter ¢(n). Inflation was assumed to start from y, = 4.6.
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FIG. 12. The left-hand plot shows the amplitude 7 (n, k) of the massless, minimally coupled scalar for k = 3800y, which corresponds
to n, ~8.3. The right-hand graph shows the frequency w3 (n, u) ~ w?(n, ) for u = 0.497y, which passes through zero at n, ~ 12.
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40
Numerical Solution
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n

p=0.497 xo, k=3800 xo

Numerical Solution \
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Plots of the temporal amplitude U(n, k, u) (left) and the spatially transverse amplitude V(n, «, u) (right) versus n for the

Starobinsky potential (133). For each amplitude, x = 3800y, (which implies n, ~8.3) and p = 0.497y, (which implies n, ~12).

inflation. For this case, we can just see the second and third

phases occur in Fig. 13.

by Eq. (6). We begin by deriving some exact results for the

trace of the coincident propagator, and we recall that

IV. EFFECTIVE POTENTIAL

The purpose of this section is to evaluate the one photon
loop contribution to the inflaton effective potential defined

7T (n,x) can be obtained from U(n,«,0). Then the ultra-
violet approximations (114) and (126) are used to derive a
divergent result whose renormalization gives the part of the
effective potential that depends locally on the geometry. We
give large field and small field expansions for this local
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part, and we study its dependence on derivatives of e(n). A. Trace of the coincident photon propagator
The section closes with a discussion of the nonlocal part of At coincidence, the mixed time-space components of the
the effective potential which derives from the late time  photon mode sum vanish, and factors of lAcmlAc,, average to
approximations (123), (124), (131), and (132). Spn/ (D —1),
|
APk (1 [Kuu 0 1 [ OotOot® 0 0 0

iL,A)(xx) = | —F=9-—> -— _ .
l[ll v](x x) /(ZH)D_I {MZ < 0 g”_’”]'DuDM*> M? 0 (%)5,",11)11* + <0 <g__%>5mnvv* >}

(134)

Its trace is

dP~'k {DuDu* — Kuu* + dptdpt* — K*11* + O 2)111)*}' (135)

gﬂyi[uAv](X;x>_/<2”)D—] azMZ a2

Relation (55) allows us to replace the MMC scalar mode function #(57, k) with the massless limit of the temporal mode
function uy(n, k) = u(n, k,0),

Dotdot* = Kugui, K21t = DugDug,. (136)

Substituting (136) in (135) gives

pran {DuDu* = DugDuy — K (uu’ — ugug) (D = 2)%*}' (137)

gﬂyi[ﬂAbKX;x)_/(zﬂ_)D—l a’M? a?

This second form (137) is very important because it demonstrates the absence of any 1/M? pole as an exact relation, before
any approximations are made.
The mode equation for temporal photons implies

DuDu* = a®>H*[W'v"* + (D = 2)(uu*)' + (D — 2)*uu’], (138)

a*H?

= (k* + a®?M*)uu* + (0, +D—-1-¢)(0, +2D —4)(uu*). (139)

Using relations (139) and (137) allows us to express the trace of the coincident photon propagator in terms of three
coincident scalar propagators,

i) = i, (0 + P 2in (e
+ ZH—A; (04 +D—=1-¢€)(0, +2D —4)[iA,(x;x) —iA, (x:x)]. (140)

The disappearance of any factors of k> from the Fourier mode sums in (140), coupled with the ultraviolet expansions (116)
and (128), means that the phase 1 approximations U, (n, k, u) and V;(n, k, u) exactly reproduce the ultraviolet divergence
structures.

Two of the scalar propagators in expression (140) are

P~k

= W {6(An)u(n, k, M)u*(if  k, M)e™®>% + 0(=An)u*(n, k, M)u(y', k, M)e=F2%}, (141)

iA,(x;x)

. dP 'k e -
iA,(xx) = / W{Q(Amv(n, k. M)v* (i, ke, M) e 25 + 0(=An)v* (g, k. M)v (i k, M)e=* 27} (142)
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The third scalar propagator iA,, (x;x’) is just the M — 0 limit of iA, (x; x’). The coincidence limits of each propagator can
be expressed in terms of the corresponding amplitude,

iAM(X;X> :/ dD_lk eu(",’ﬂﬂ)’ iAv(X;x) :/ dD lk V(Vl,K,/l)' (143)
V887G (2z)P-1 \V8xG (27)P-1

Expression(140) is exact but not immediately useful because we lack explicit expressions for the coincident propagators
(143). It is at this stage that we must resort to the analytic approximations developed in Sec. III. Recall that the phase 1
approximation is valid until roughly 4 e-foldings after horizon crossing. If one instead thinks of this as a condition on the
dimensionless wave number k = /8zGk at fixed n, it means that k > k,,_,, where we define k,, as the dimensionless wave
number which experiences horizon crossing at e-folding n. Taking as an example the temporal photon contribution, we can
write

M) o Ok — Kp_y) e RH) 1 O,y — K) M3 (H) (144)
= k) 4 Gk, _y — k) [M23(1KH) — QUi (k)] (145)

Substituting the approximation (145) into expression (143) allows us to write
iA,(x;x) =L, (n) + N,(n), (146)

where we define the local (L) and nonlocal (V) contributions as

L) = VBaG [ St (147)
N,(n) =+382G / %9(&1_4 — K)[eMaa(nrn) _ glhi(nxp)] (148)

Note that we have taken the unregulated limit (D = 4) in expression (148) because it is ultraviolet finite. The same
considerations apply as well for the coincident spatially transverse photon propagator iA,(x; x") and for the massless limit
of the temporal photon propagator iA, (x;x).

B. The local contribution

The local contribution for each of the coincident propagators (143) comes from using the phase 1 approximation (147).
For the temporal modes, the amplitude is approximated by expression (114), whereupon we change variables to z using
k = (1 — e€)Haz and then employ integral 6.574#2 of [29],

L o [(1 _G)H]D_z F(%—l—yu)r(%—yu) (1 D 14
u(n) = D X (L 1 x o) (149)
(47)2 G+ v)lG =)
Recall that the index v, (n, u) is defined in expression (115). Of course, the massless limit is
L, (n) = L= AP MO+ )N — ) | r<1 - 9) (150)
o (47)% G+ v, TG —vy,)
where the index is
D -3+ ¢(n)
0 —_— . 151
) = .0 =3 (27254 (151)

The phase 1 approximation (126) for the transverse amplitude contains two extra scale factors which serve to exactly cancel
the inverse scale factors that are evident in the transverse contribution to the trace of the coincident photon propagator (140).
Hence, we have
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(152)

Lin)  [(1—0HP? TR+ —,) D
&t T@rerds) «r(1-3)

where the transverse index v, (n,u) is given in (127).
Each of the local contributions (149), (150), and (152) is proportional to the same divergent gamma function,

r<1—§> :%qt 0<(D—4)0>. (153)

Each also contains a similar ratio of gamma functions,

P+t —0) KD_3>2_UZ] e (154)

LG +vIG-v) 2

(A b)) ol

These considerations allow us to break up each of the three terms in (140) into a potentially divergent part plus a manifestly
finite part. For iA,(x;x) — L,(n), this decomposition is

L —w {Mz—%((D—S)e—%(D—4)€2>}F(1 —§>

—— [M? — eH?] {1//(%%—1/”) +w<%—vu>} +O(D —4). (156)

(021, = L=OH _(42;][)_4 {(D _oe - P 2)(5 —HH ((D ~3)e
R T U S (00| IO

And the final term in (140)—the one with derivatives—becomes

2

2}52 H? (1= )P~ < 1 D>

—(0,+D—-1-¢)(0,+2D-4)[L,-L,] :7(3H+D— 1-¢)(0,+2D—4) (4n)?

2

H
332 00 +3 =)0, +4)

e i) Eb) o)
+1//<%—zzu> —w<%-uuo>“+0(p—4). (158)

Note that the difference (3 + v,) — (5 £ v, ) is of order M? so expression (158) has no 1/M? pole. Note also that the 1/¢
pole in y(} —v,,) = w(=5) is canceled by an explicit multiplicative factor of .
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The potentially divergent terms [the ones proportional to T'(1 — %)] in expressions (156)—(158) sum to give

(1 -e)H]P 1 D
(156) 4y + (157) g5y + (158) 45y = W [(D -1)M?* + ER]r<1 - 5)

H (6€' 4 €”) e \?2
13- 12e+ 462 -2 — - oD -4), (159
+16;12[ e Sy pups (1—e>]+ (D=4, (159

where we recall that the D-dimensional Ricci scalar is R = (D — 1)(D — 2¢)H?. Comparison with expression (6) for
AV'(p¢*) reveals that we can absorb the divergences with the following counterterms:

L(1-%)s"* 1

(4n) 5 @T x 4(D - 1)g*, (160)

where s is the renormalization scale. Up to finite renormalizations, these choices agree with previous results [4,6,7], in the
same gauge and using the same regularization, on de Sitter background.

Substituting expressions (156)—(158) and (160) into the definition (6) of AV’(p¢*) and taking the unregulated limit give
the local contribution,

’H? 2 212 / "
- qH> [(6M*+R) [(1-¢€)*H (6 + €
AVL(ew™) =1 { S| | +3 - 12e 42 —2¢ -

N M () cop( L) ol
- — —+v ——v —4v ——v
1—6 HZ l// 2 u W 2 u l)l/ 2 v l/‘/ 2 v

+%[(a,, +3—€)(0, +4) —2¢] ["’G*”") -l—l//(%—vu)} — (9, +3—€)(0, +4)

o) o) (i) ()

It is worth noting that there are no singularities at ¢ = 1, or when either 1/(1 —¢€) or —¢/(1 — ¢) becomes nonpositive
integers [14]. The effective potential is obtained by integrating (161) with respect to g¢™. The result is best expressed using
the variable z = ¢’p¢*/H?,

H* Rz (1 -¢€)*H? (6" +€")
AVL:@{[3ZZ+2H2]In[ = }+[3—12€+4€2—2€’—17_€z

a2 [ el rolGe) o) ()
+%[(an +3-3¢)(0, +4 - 2¢) — 2¢] fdx[wejta(x)) +w<%—a<X)>}
— (0, +3-3€)(0, +4—2¢) K% [w(%+a(x)> _‘”(1 i€>

+l//<%—a(x)> _"’<1_—€e>]}’ (162)

where the x-dependent indices are

(163)

Note that the term inside the square brackets on the last line of (162) vanishes for x = 0, so the integrand is well defined
at x = 0.
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C. Large field and small field expansions

Expression (162) depends principally on the quantity z = g*>@¢* /H>. During inflation, z is typically quite large, whereas
it touches O after the end of inflation. Figure 14 shows this for the quadratic potential, and the results are similar for the
Starobinsky potential (133). It is therefore desirable to expand the potential AV, (p¢*) for large z and for small z.

The large field regime follows from the large argument expansion of the digamma function,

11 ! ! !
I ) 1) 164
V) =) = 5= 122 T 1206 25650 0(x8> e

Substituting (164) in (162) and performing the various integrals give

H* 2¢*pp*\ 3 Rz . (24%p¢*
AVL:@{3221H< S2 —522+W1n 5—2 —(4+8€—3€2)Z

_ez— Ee(l _e)(2—e) + % (1= e)e —1—%6”} In2(22) + O(In(z))}. (165)

The leading contribution of (165) agrees with the famous flat space result of Coleman and Weinberg [3],

2 *)2 2 2 *
Ay o @ ee’) 1n< 199 ) (166)

1672 52

The first three terms of (165) could be subtracted using allowed counterterms of the form F(p@*, R) [9]. A prominent
feature of the remaining terms is the presence of derivatives of the first slow roll parameter. These derivatives are typically
very small during inflation but Fig. 15 shows that they can be quite large after the end of inflation.

70 o)
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FIG. 14. Plots of the dimensionless inflaton field y(n) and the ratio z = g*y?/y? after the end of inflation for the quadratic potential.
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FIG. 15. Plots of the first slow roll and its derivatives after the end of inflation for the quadratic potential.

105007-23



S. KATUWAL, S.P. MIAO, and R.P. WOODARD PHYS. REV. D 103, 105007 (2021)

The small field expansion derives from expanding the digamma functions in expression (162) in powers of x,

w(5+am) =(12) -v (12 o+ o) (167
w(5-a) =u (1) (1) 12+ o) (168)
o(3+000) =20 (169)
w(%—ﬁ(x)) __a ;)2 Fl-y+ {1 +%2] (]iixe)z +0(x). (170)

The result is

H* R [(1-¢€)*H? (6¢' +€¢") €’
AVL—16ﬂ2{LH21n[ 2 ]+1—8€+2€2—2€’— - }z

1
+

(8, +3 = 3€)(8, + 4 — 2¢) — 2] {y/<i) +w(1__€€>}z

2
+%(5n +3=3€)(0, +4 - 2e) [w’ (ﬁ) —w’( — )} =+ O(ZZ)}- (171)

Note that the 1/e pole from (=) on the penultimate line of (171) cancels against the double pole from y’'(7=5) on the
last line.

D. The nonlocal contribution

The nonlocal contribution to the effective potential is obtained by substituting the nonlocal contribution (148) to each
coincident propagator in (140), and then into expression (6),

AVR(o0") = N () + 22N, ) + LI (0, 43 €) (0, + 4V, () — Ny ()] (172)
The nonlocal contributions to the various propagators are
N, (n) = A 3‘;’;’;2(; [ethaa(nin) _ gthy(ncp)], (173)
No(n) — AK‘,,-4 321:[’:2(; [Ma(nx0) _ ol (n0)], (174)
No(n) = /OKH 36;’:;2 [evm(n,x,,,) _ eV'(”'K’”)]. (175)

The nonlocal nature of these contributions derives from the integration over k, which can be converted to an integration
over n,,

k=e"y(n,) = % = [l —e(n,)]dn,. (176)

After this is done, any factors of x depend on the earlier geometry.

A number of approximations result in huge simplification. First, note from Figs. 4 and 5 that the ultraviolet
approximation (114) for U(n, k, u) is typically more negative than the late time approximations (123) and (124). Figures 8
and 9 show that the same rule applies to V(n, k, u). Hence, we can write
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ks dKK? ks dkK?
N,(n) =~ Un3(nkp) N,(n) ~ / T pVauslnk), 177
(n) A 167°G ¢ R A Tr (177)
Second, because the temporal and transverse frequencies are nearly equal, we can write
w2 (n, p) =~ wi(n, u) = U(n,k, 1) =~ V(n,k, 1) — 2n. (178)

When the mass vanishes, there is so little difference between the ultraviolet approximation (114) and its late time extension
(123) that we can ignore this contribution, N, (n) ~ 0. Next, Figs. 6 and 10 imply that the late time approximations for
U(n,k,p) and V(n,k, ) inherit their x dependence from the ultraviolet approximation at n ~ n, + 4, which is itself
independent of y,

n>n.+4 =

Uy s(n. i p) = Uy (n +4,x,0) + fr3(n. 1), (179)

where f,3(n, ) can be read off from expressions (123) and (124) by omitting the x-dependent integration constants.
Finally, we can use the slow roll form (112) for the amplitude reached after first horizon crossing and before the mass

dominates,

2
itnests) LX) o).

Putting it all together gives

(180)

n— _ 2
AVy(pe*) =~ 3q2/ ! dn, [ — e(m)lr (n) Cne)) x ef23(np)
0

327°G

+ ngi;gn) (0, +3—€)(D, +4) [_4 an L= O] ),

V. CONCLUSIONS

In Sec. II, we derived an exact, dimensionally regulated,
Fourier mode sum (50) for the Lorentz gauge propagator of
a massive photon on an arbitrary cosmological background
(3). Our result is expressed in terms of mode functions
t(n, k), u(n, k, M), and v(n, k, M) whose defining relations
are (10), (24), and (22), which, respectively, represent
massless minimally coupled scalars, massive temporal
photons, and massive spatially transverse photons. The
photon propagator can also be expressed as a sum (51) of
bi-vector differential operators acting on the scalar propa-
gators iA,(x;x'), iA,(x;x"), and iA, (x; x") associated with
the three mode functions. Because Lorentz gauge is an
exact gauge, there should be no linearization instability,
even on de Sitter, such as that occurs for Feynman
gauge [30,31].

In Sec. III, we converted to a dimensionless form with
time represented by the number of e-foldings n since the
beginning of inflation, and the wave number, mass, and
Hubble parameter all expressed in reduced Planck units,
k=+/8nGk, u=+/8xGM, and y(n)=+/8xGH (n). Analytic
approximations were derived for the amplitudes 7 (n, ),
U(n,k,u), and V(n, k, ) associated with each of the mode
functions. Which approximation to use is controlled by first

325G (181)

horizon crossing at k = e"~y(n,) and mass domination at
u =4%x(n,). Until shortly after first horizon crossing, we
employ the ultraviolet approximations (109), (114), and
(126). After first horizon crossing and before mass domi-
nation, the appropriate approximations are (112), (123), and
(131). And after mass domination [which 7 (n,«) never
experiences], the amplitudes are well approximated by (124)
and (132). The validity of these approximations was checked
against explicit numerical solutions for inflation driven by
the simple quadratic model and by the phenomenologically
favored plateau model (133).

In Sec. IV, we applied our approximations to compute
the effective potential induced by photons coupled to a
charged inflaton. Our result consists of a part (162) which
depends locally on the geometry (3) and a numerically
smaller part (181) which depends on the past history. The
local part was expanded both for the case of large field
strength (165) and for small field strength (171). The
existence of the second, nonlocal contribution was con-
jectured on the basis of indirect arguments [4] that have
now been explicitly confirmed. Another conjecture that has
been confirmed is the rough validity of extrapolating de
Sitter results [5,6] from the constant Hubble parameter of
de Sitter background to the time-dependent one of a general
cosmological background (3). However, we now have good
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approximations for the dependence on the first slow roll
parameter €(n).

We have throughout considered the inflaton field in the
vector mass M? = 2¢’p@* to be constant because this is
how the effective potential is defined. It would be easy to
relax this assumption with only minor changes in the result.
In particular, Egs. (6) and (140) would still pertain. Our
approximations for the propagators would remain, so that
renormalization would be unaffected. The only thing that
would change is that the 0, derivatives in expression (140)
would now act on y as well as € and y. This would produce
some factors of e and its first derivative through the relation

vy =—(D -2)e. (182)

N[ =

Our most important result is probably the fact that
electromagnetic corrections to the effective potential
depend upon first and second derivatives of the first slow
roll parameter. One consequence is that the effective
potential from electromagnetism responds more strongly
to changes in the geometry than for scalars [26] or spin one-
half fermions [32]. This can be very important during
reheating (see Fig. 15); it might also be significant if
features occur during inflation. Another consequence is that
there cannot be perfect cancellation between the positive
effective potentials induced by bosons and the negative
potentials induced by fermions [10]. Note that the deriv-
atives of ¢ come exclusively from the constrained part of
the photon propagator—the #(n, k) and u(n, k) modes—
which is responsible for long range electromagnetic inter-
actions. Dynamical photons—the »(, k) modes—produce
no derivatives at all. These statements can be seen from
expression (140), which is exact, independent of any
approximation.

We close with a speculation based on the correlation
between the spin of the field and the number of derivatives

it induces in the effective potential: scalars produce no
derivatives [26], spin one-half fermions induce one deriva-
tive [32], and this paper has shown that spin one vectors
give two derivatives. It would be interesting to see if the
progression continues for gravitinos (which ought to induce
three derivatives) and gravitons (which would induce four
derivatives). Of course, gravitons do not acquire a mass
through coupling to a scalar inflaton, but they do respond to
it, and the mode equations have been derived in a simple
gauge [33,34]. Until now, it was not possible to do much
with this system because it can only be solved exactly for
the case of constant e(n); however, we now have a reliable
approximation scheme that can be used for arbitrary e(n).
Further, we have a worthy object of study in the graviton
one-point function, which defines how quantum zero-point
fluctuations backreact to change the classical geometry. At
one-loop order, it consists of the same sort of coincident
propagator we have studied in this paper. On de Sitter
background, the result is just a constant times the de Sitter
metric [35], which must be absorbed into a renormalization
of the cosmological constant if “H” is to represent the true
Hubble parameter. Now suppose that the graviton propa-
gator for general first slow roll parameter consists of a local
part with up to fourth derivatives of e(n) plus a nonlocal
part. That sort of result could not be absorbed into any
counterterm. So perhaps, there is one-loop backreaction
after all [36] and de Sitter represents a case of unstable
equilibrium.
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