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We use a new mechanism for generating a Fayet-Iliopoulos term in supergravity, which is not associated
to an R-symmetry, to construct a semirealistic theory of slow-roll inflation for a theory with the same
Kähler potential and superpotential as the Kachru-Kallosh-Linde-Trivedi string background (without anti-
D3 branes). In our model, supersymmetry must be broken at a high scale in a hidden sector to ensure that
the cutoff of the effective field theory is above the Hubble scale of inflation. The gravitino has a super-EeV
mass and supersymmetry breaking is communicated to the observable sector through gravity mediation.
Some mass scales of the supersymmetry-breaking soft terms in the observable sector can be parametrically
smaller than the SUSY breaking scale. If a string realization of the new Fayet-Iliopoulos term were found,
our model could be the basis for a low energy effective supergravity description of realistic superstring
models of inflation.
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I. INTRODUCTION

It is rather challenging to describe inflation, supersym-
metry (SUSY) breaking, and de Sitter (dS) vacua in simple
supergravity models and even more so in string theory. In
string theory, the Kachru-Kallosh-Linde-Trivedi (KKLT)
model [1] is a prototype that can give dS vacua, under
certain assumptions about moduli stabilization. The effec-
tive field theory description of the KKLT model is a
supergravity with a no-scale Kähler potential for its volume
modulus and with a superpotential that differs from its
constant no-scale form because of two nonperturbative
corrections.1 The superpotential produces a supersymmet-
ric anti–de-Sitter (AdS) vacuum. In Ref. [1], a mechanism
was proposed for generating dS vacua through the addition
of anti-D3 brane contributions to the superpotential,
that uplifts the AdS vacuum to dS. While the additional
correction by anti-D3 branes creates dS vacua, it also
deforms the shape of the scalar potential creating a “bump”
which gives rise to a moduli stabilization problem [1]. As
an attempt to improve on KKLT, Kachru, Kallosh, Linde,

Maldacena, McAllister, and Trivedi (KKLMMT) proposed
a model that modifies KKLT by introducing a contribution
arising from the anti-D3 tension in highly warped com-
pactifications [2].
Both models, KKLT and the KKLMMT, contain anti-D3

branes, whose known effective field theory description uses
nonlinear realizations of supersymmetry. The presence of
nonlinearly realized supersymmetry means that if super-
symmetry is restored at energies below the string scale,
Mstring, then the known description of KKLT cannot
accurately describe the whole energy range E≲Mstring.

2

On the other hand, nothing in principle forbids the
existence of some effective field theory description even
in that energy range, but such description must employ a
linear realization of supersymmetry, which would neces-
sarily employ only whole multiplets. A natural question to
ask from an effective field theory point of view is whether
such a description is possible. Said differently: does a
supergravity with the same Kähler potential and super-
potential as KKLT exist, that breaks supersymmetry, gives
rise to an inflationary potential and a dS post-inflationary
vacuum, and is valid even at energy scales where super-
symmetry is restored? We answer affirmatively to this
question by adding to the KKLT effective theory a new
Fayet-Iliopoulos (FI) term, in the form proposed by
Antoniadis, Chatrabhuti, Isono, and Knoops (ACIK) [3].
We will show that this FI term also generates irrelevant
operators that introduce a cutoff scale for the effective

*hun.jang@nyu.edu
†massimo.porrati@nyu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The corrections come from either Euclidean D3 branes in
type IIB compactifications or from gaugino condensation due to
D7 branes.

2We assume Mstring < Mpl, with Mpl the Planck scale.
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theory. We will also show that differently from nonlinear
realizations, this cutoff can be made larger than the
supersymmetry breaking scale—and in fact even larger
than the Planck scale.
Our construction begins with the observation that, in the

absence of anti-D3 branes, the supergravity scalar potential
of the KKLT model has a supersymmetric AdS vacuum and
it becomes flat for large values of the volume modulus field.
The flat direction could be used for constructing a viable
model of inflation without eta problem, if the scalar
potential minimum V0 could be simply translated upward
by a constant, V0 → V0 þ constant. This could happen if a
constant positive FI term existed. This term was long
thought to be forbidden in supergravity, since the only
possible FI terms were thought to arise from gauging the
R-symmetry [4], require an R-invariant superpotential [5],
and be subject to quantization conditions when the gauged
R-symmetry is compact [6]. On the other hand, recently FI
terms not associated with R-symmetry were proposed,
starting with Ref. [7]. We use here the Kähler-invariant
FI term proposed in [3] and we call it “ACIK-FI” to
distinguish it from many other new FI terms suggested in
the literature (for instance in [7–10]). To find an approx-
imately flat potential for inflation and a dS postinflationary
vacuum, we add an ACIK-FI term to the N ¼ 1 super-
gravity describing the KKLT model without anti-D3
branes. We must remark that a field-dependent generali-
zation of the new Kähler-invariant FI term has been
introduced recently in Ref. [11], which also studies the
cosmological consequences of such a term.
In our model supersymmetry is spontaneously broken in

a hidden sector at a very high but still sub-Planckian scale
Mpl ≫ MS ≫ 10−15Mpl. We employ gravity mediation
(see e.g., the review [12]) to communicate the SUSY
breaking to the observable sector, where supersymmetry
breaking manifests itself through the existence of explicit
soft SUSY breaking terms, characterized by an energy scale
Mobservable ≪ MS. The reason for a high MS is that MS
controls the magnitude of nonrenormalizable fermionic
terms that determine the cutoff of the effective theory. This
is a feature that the ACIK-FI term shares with liberated
supergravity (see e.g., [13,14]).
The purpose of our work is to find an effective field

theory of inflation, de-Sitter moduli stabilization, and
supersymmetry breaking as a cosmological application
to the effective theory of KKLT of the ACIK-FI term
proposed in [3]. The string theory origin of one particular
type of the new FI terms has recently been investigated
through a supersymmetric Born-Infeld action [15], so it
would be of clear interest to study a possible string-
theoretical origin of the ACIK-FI term.
This paper is organized as follows. In Sec. II we showhow

to add an ACIK-FI term to theN ¼ 1 supergravity effective
theory of the KKLT model. Next we add matter, which we
divide into a hidden sector and an observable sector.

Supersymmetry is broken in the hidden sector and the
SUSY breaking is communicated to the observable sector
via gravity mediation. In Secs. III and IV we probe the
hidden-sector dynamics of our model. In Sec. III, we
construct a minimal supergravity model of plateau-potential
inflation—sometimes called in the literature “Starobinsky”
or “Higgs” inflation—with high scale SUSY breaking and
dS vacua, using the results from Sec. II. In Sec. IV, we
explore the gravitino mass, which is very high, being well
above the EeV scale. We also study possible constraints on
the ACIK-FI term by investigating the nonrenormalizable
fermionic terms in the Lagrangian. These constraints can be
satisfied if the gauge coupling for a certain U(1) necessarily
present in our model is sufficiently small. They also lead to a
hierarchy of energy scales. In Sec. V we study the observ-
able-sector dynamics of our model by computing its soft
SUSYbreaking terms.A few final observations are collected
in Sec. VI.

II. ADDING A KÄHLER-INVARIANT
FAYET-ILIOPOULOUS TERM TO

KKLT-TYPE N = 1 SUPERGRAVITY

In this section, we propose anN ¼ 1 supergravity model
that can describe the low energy effective field theory of
inflation andmoduli stabilization inKKLT-type backgrounds
[1]. To do so, we first add an ACIK-FI term to an N ¼ 1
supergravity that is compatible with the KKLT model.
In general, an ACIK-FI term can be introduced into

an N ¼ 1 supergravity without requiring a gauged
R-symmetry [3,11]. In our proposal, we will introduce
instead only an ordinary U(1) symmetry (under which the
superpotential is invariant) which will be gauged by a
vector multiplet V. Inflation will come from the same
potential as in the KKLT scenario. KKLT [1] argues that in
string theory some moduli can develop a nonperturbative
superpotential of the form

W ¼ W0 þ Ae−aT; ð1Þ

where T is a “volume” modulus field, which is a chiral
superfield, and W0, A are constants. For our construction it
is sufficient to compute the component action of N ¼ 1
supergravity characterized by the superpotential (1) and by
an ACIK-FI term. Notice that Antoniadis and Rondeau
have recently studied cosmological applications of gener-
alized ACIK-FI terms by considering no-scale models with
a constant superpotential W ¼ W0 [11]. Differently from
that model, ours uses the KKLT-type superpotential (1).
The key assumption that we will use is that both the

volume modulus T and the other matter fields that may
exist in the superpotential are gauge-invariant under the
U(1) that is used to introduce the ACIK-FI term. In this
paper, we use superconformal tensor calculus [16] to
calculate the action.
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The goal of this work is to find a modestly realistic
minimal supergravity model of inflation with realistic
moduli stabilization and supersymmetry breaking pattern.
The study of irrelevant operators generated by the ACIK-FI
termwill show that a low energy supersymmetry breaking is
incompatiblewith demanding that the cutoff for the effective
field theory is higher than the Hubble constant during
inflation. So, we take an alternative approach and break
supersymmetry at a high scale in the hidden sector (as in e.g.,
[17]) while keeping some of the scales of supersymmetry
breaking interactions in the observable sector low [18].
Todo so,we first decomposematter into a hidden sector and

an observable sector.Wewill discuss them separately in Secs.
III, IV, and V. So we separate the field coordinates yA into

yA ≡ ðT; zÎÞ≡ ðfT; zIgh; fzigoÞ; ð2Þ

where Î ≡ ðI; iÞ and fT; zIgh are hidden-sector fields,
while fzigo are the observable-sector ones. In addition
to this, we write a generic superpotential W as a sum of a
hidden-sector term Wh and observable-sector term Wo:

WðyAÞ≡WhðT; zIÞ þWoðziÞ: ð3Þ

We further assume that the hidden-sector superpotential
carries a high energy scale compared to the observable-sector

one. This implies that we decompose the F-term scalar
potential into two different parts: a hidden sector F-term
potential characterized by a high energy scale and
observable-sector F-term potential containing only low scale
SUSY-breaking soft terms.
Next, to introduce an ACIK-FI term into our theory we

suppose that the volume modulus multiplet T and all
observable-sector chiral matter multiplets Zi are neutral
under an ordinary (non-R) U(1) gauge symmetry, while the
hidden-sector chiral matter multiplets zI are charged, i.e.,
they transform as

Zi → Zi; T → T; ZI → e−qIΩZI: ð4Þ

Here qI denotes the U(1) gauge charges of the hidden-
sector chiral multiplets ZI and Ω is the chiral multiplet
containing in its lowest component the ordinary gauge
parameter. We make these choices because we will intro-
duce both a new FI term generated by a gauge vector
multiplet and a KKLT superpotential, which depends on the
volume modulus T and must be gauge invariant under all
gauge symmetries.
The superconformal action of the ACIK-FI term [3,11] is

defined by

LNEWFI ≡ −ξ
�
ðS0S̄0e−KðZeqV ;Z̄ÞÞ−3

ðWαðVÞWαðVÞÞðW̄ _αðVÞW̄ _αðVÞÞ
Tðw̄2ÞT̄ðw2Þ ðVÞD

�
D
; ð5Þ

and the corresponding superconformal action of N ¼ 1 supergravity with superpotential (1) and the new FI term is

L ¼ −3½S0S̄0e−KðZeqV;Z̄Þ=3�D þ ½S30WðZ; Z0Þ�F þ 1

2g2
½WαðVÞWαðVÞ�F þ c:c:

− ξ

�
ðS0S̄0e−KðZeqV;Z̄ÞÞ−3

ðWαðVÞWαðVÞÞðW̄ _αðVÞW̄ _αðVÞÞ
Tðw̄2ÞT̄ðw2Þ ðVÞD

�
D
: ð6Þ

In Eqs. (5), (6) S0 is the conformal compensator with
Weyl/chiral weights (1,1); ZA ¼ ðT; ZI;ZiÞ and V are
chiral matter and vector multiplets with weights (0,0);
KðZeqV; Z̄Þ is a Kähler potential gauged by a vector
multiplet V; WðZ; Z0Þ is a superpotential; WαðVÞ is the
field strength of the vector multiplet V; ξ is the constant

coefficient of the ACIK-FI term; w2 ≡ WαðVÞWαðVÞ
ðS0S̄0e−KðZ;Z̄ÞÞ2 and

w̄2 ≡ W̄ _αðVÞW̄ _αðVÞ
ðS0S̄0e−KðZ;Z̄ÞÞ2 are composite multiplets, TðXÞ; T̄ðXÞ are

chiral projectors, and ðVÞD is a real multiplet, whose
lowest component is the auxiliary field D of the vector
multiplet V.
Next, we write the following Kähler potential,

invariant under the same U(1) that generates the ACIK-FI
term,

KðZAeqV; Z̄ĀÞ
≡ −3 ln½T þ T̄ −ΦðZIeqV; Z̄Ī;Zi; Z̄īÞ=3�; ð7Þ

where Φ is a real function of the matter multiplets Zi, ZI

and the two terms in the superpotential W ≡Wh þWo are
the hidden-sector term

WhðTÞ≡W0 þ Ae−aT ð8Þ
and the observable-sector superpotential

WoðZiÞ≡ B0 þ SiZi þMijZiZj þ YijkZiZjZk þ � � � ; ð9Þ

where B0, Si, Mij, Yijk are constant coefficients. We will
chooseΦ to be sum of a term containing only hidden-sector
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fields and one containing only those of the observable
sector

Φ ¼ ΦhðZIeqV; Z̄ĪÞ þΦoðZi; Z̄īÞ: ð10Þ

The supergravity G-function corresponding to our model
is then

GðyA; ȳĀÞ≡ KðyA; ȳĀÞ þ ln jWðyAÞj2

¼ −3 ln
�
T þ T̄ −

ΦðzÎ; z̄¯̂IÞ
3

�
þ ln jWhðT; zIÞ þWoðziÞj2: ð11Þ

The F-term supergravity scalar potential is given by the
formula VF ≡ eGðGAGAB̄GB̄ − 3Þ, which in our case reads

VF ¼ −
1

X2
½ðWh þWoÞW̄h

T̄ þ ðW̄h þ W̄oÞWh
T � þ

1

3

jWh
T j2

X2
þ 1

9

jWh
T j2

X2
½ΦIΦIJ̄ΦJ̄ þΦiΦij̄Φj̄�

þ 1

3

1

X2
½Wh

TðΦIΦIJ̄W̄h
J̄ þΦiΦij̄W̄o

j̄ Þ þ W̄h
T̄ðWh

IΦIJ̄ΦJ̄ þWo
iΦij̄Φj̄Þ�

þ 1

X2
½Wh

IΦIJ̄W̄h
J̄ þWo

iΦij̄W̄o
j̄ �: ð12Þ

When matter scalars are charged under a gauge group
there exists also a D-term contribution to the scalar
potential, VD. In our model, we find it to be

VD ¼ 1

2
g2
�
ξþ

X
I

ðqIzIGI þ qIz̄ĪGĪÞ
�

2

¼ 1

2
g2
�
ξþ qIzIΦI þ qIz̄ĪΦĪ

X

�
2

; ð13Þ

where X ≡ T þ T̄ −Φ=3, g is the gauge coupling constant
and ξ is the ACIK-FI constant. Remember that only hidden-
sector chiral matter multiplets are charged under the U(1).
The scalar potential is the sum of two terms. One, Vh
contains the D-term contribution and the F-term potential
of the hidden sector, depends on the high mass scale MS

and is OðH2M2
plÞ during inflation; the other, Vsoft contains

the observable sector scalars and depends only on low mass
scales:

V ¼ Vh þ Vsoft; ð14Þ

where

Vh ≡ VD −
Wh

TW̄
h þ W̄h

T̄W
h

X2
þ jWh

T j2
3X2

�
X þ 1

3
ΦIΦIJ̄ΦJ̄

�

þ 1

3

1

X2
½Wh

TΦIΦIJ̄W̄h
J̄ þ W̄h

T̄W
h
IΦIJ̄ΦJ̄�

þ 1

X2
Wh

IΦIJ̄W̄h
J̄ ; ð15Þ

Vsoft ≡ −
1

X2
½WoW̄h

T̄ þ W̄oWh
T � þ

1

9

jWh
T j2

X2
ΦiΦij̄Φj̄

þ 1

3

1

X2
½Wh

TΦiΦij̄W̄o
j̄ þ W̄h

T̄W
o
iΦij̄Φj̄�

þ 1

X2
Wo

iΦij̄W̄o
j̄ : ð16Þ

III. HIDDEN SECTOR DYNAMICS 1:
A MINIMAL SUPERGRAVITY MODEL

OF INFLATION, HIGH-SCALE
SUPERSYMMETRY BREAKING

AND DE SITTER VACUA

In this section, we explore a minimal supergravity
model of high-scale supersymmetry breaking and pla-
teau-potential inflation through gravity mediation and
no-scale Kähler potential. We investigate first the hidden
sector dynamics. We have assumed that the hidden-sector
potential depends on a high energy scale and dominates
over the observable-sector one. Hence, it is reasonable to
minimize the hidden-sector potential first. Let us compute
now the F-term potential in the hidden sector. Recalling that
the KKLT superpotential is

WhðTÞ≡W0 þ Ae−aT; ð17Þ

and redefining W0 ≡ −cA, we rewrite it as

WhðTÞ ¼ Aðe−aT − cÞ; ð18Þ

where a, c, A are positive constants. Note that Wh
I ¼∂Wh=∂zI ¼ 0.
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Since we defined X ≡ T þ T̄ −Φ=3, the KKLT superpotential gives

Wh
T ¼ −aAe−aT; jWh

T j2 ¼ a2A2e−aðTþT̄Þ ¼ a2A2e−aðXþΦ=3Þ; ð19Þ

Wh
TW̄

h þ W̄h
T̄W

h ¼ −aA2e−aTðe−aT̄ − cÞ − aA2e−aT̄ðe−aT − cÞ
¼ −2aA2e−aðTþT̄Þ þ aA2cðe−aT þ e−aT̄Þ
¼ −2aA2e−aðXþΦ=3Þ þ aA2cðe−aðReTþiImTÞ þ e−aðReT−iImTÞÞ
¼ −2aA2e−aðXþΦ=3Þ þ 2aA2ce−aReT cosðaImTÞ
¼ −2aA2e−aðXþΦ=3Þ þ 2acA2e−aðXþΦ=3Þ=2 cosðaImTÞ; ð20Þ

jWhj2 ¼ A2je−aT − cj2 ¼ A2ðe−aT − cÞðe−aT̄ − cÞ ¼ A2ðe−aðTþT̄Þ − cðe−aT þ e−aT̄Þ þ c2Þ
¼ A2ðe−aðXþΦ=3Þ − 2ce−aðXþΦ=3Þ=2 cosðaImTÞ þ c2Þ: ð21Þ

Here we have used the following transformation from the complex coordinate T to two real coordinates X; ImT:

T ¼ ReT þ iImT ¼ 1

2

�
X þΦ

3

�
þ iImT; ð22Þ

which gives e−aT ¼ e−
a
2
ðXþΦ

3
Þe−aiImT . Remember that X ≡ T þ T̄ −Φ=3.

Then, since Wh
I ¼ 0, the corresponding hidden-sector F-term scalar potential is given by

Vh
F ¼ −

Wh
TW̄

h þ W̄h
T̄W

h

X2
þ jWh

T j2
3X2

�
X þ 1

3
ΦIΦIJ̄ΦJ̄

�

¼ −
1

X2
ð−2aA2e−aðXþΦ=3Þ þ 2acA2e−aðXþΦ=3Þ=2 cosðaImTÞÞ þ 1

3X2

�
X þ 1

3
ΦIΦIJ̄ΦJ̄

�
a2A2e−aðXþΦ=3Þ: ð23Þ

Since we assume that the D-term potential belongs to the hidden sector, the hidden-sector total scalar potential can be
written as

Vh ¼ VD þ Vh
F

¼ 1

2
g2
�
ξþ qIzIΦI þ qIz̄ĪΦĪ

X

�
2

−
1

X2
ð−2aA2e−aðXþΦ=3Þ þ 2acA2e−aðXþΦ=3Þ=2 cosðaImTÞÞ

þ 1

3X2

�
X þ 1

3
ΦIΦIJ̄ΦJ̄

�
a2A2e−aðXþΦ=3Þ: ð24Þ

We define the SUSY breaking scale MS in terms of the scalar potential Vh and the gravitino mass m3=2 as

Vþ ≡M4
S ¼ Vh þ 3m2

3=2 ¼ Vh þ
3

X3
A2ðe−aðXþΦ=3Þ − 2ce−aðXþΦ=3Þ=2 cosðaImTÞ þ c2Þ: ð25Þ

To investigate the moduli stabilization, we identify the canonically normalized fields by inspection of the kinetic terms,
which are given by

LK ¼ ΦÎ ¯̂J

X
gμνDμzÎDνz̄

¯̂J þ 3

4X2
gμν∂μX∂νX þ 3

X2
gμν½∂μImT − ðImDμzÎΦÎ=3Þ�½∂νImT − ðImDνzÎΦÎ=3Þ�; ð26Þ

where Dμ ≡ ∂μ − iqÎAμ is the U(1) gauge covariant derivative for the matter multiplets zÎ ¼ ðzI; ziÞ with gauge charge
qÎ ¼ ðqI ≠ 0; qi ¼ 0Þ, and Aμ is the corresponding gauge field.
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After performing another field redefinition X ≡ e
ffiffiffiffiffiffi
2=3

p
ϕ,

we find

LK ¼ ΦIJ̄e
−

ffiffiffiffiffiffi
2=3

p
ϕgμνDμzIDνz̄J̄ þ 1

2
gμν∂μϕ∂νϕ

þ 3e−2
ffiffiffiffiffiffi
2=3

p
ϕgμν½∂μImT − ðImDμzIΦI=3Þ�

× ½∂νImT − ðImDνzIΦI=3Þ�: ð27Þ

Notice that ϕ is canonically normalized, while the other
fields zI, ImT are so only when ϕ is small.
Now, let us investigate the scalar potential vacuum. First

of all, we find the minimum with respect to the matter
scalars zÎ ,

∂V
∂zÎ ¼ 0 ⇒ ΦÎ ¼ 0: ð28Þ

If we choose a real function such that ΦÎ ¼ 0 implies
Φ ¼ 0 together with zÎ ¼ 0 then at this vacuum the scalar
potential becomes3

VhjzÎ¼0
¼1

2
g2ξ2−

1

X2
ð−2aA2e−aXþ2acA2e−aX=2cosðaImTÞÞ

þ 1

3X
a2A2e−aX: ð29Þ

Next, we consider the vacuum with respect to the ImT field.
We find the vacuum at aImT ¼ nπ, where n is an even
integer, leading to cosðaImTÞ ¼ 1

4 and

VhjzÎ¼0;aImT¼0
¼ 1

2
g2ξ2 þ 2aA2

X2
e−aX −

2acA2

X2
e−aX=2

þ a2A2

3X
e−aX: ð30Þ

Next, let us find the vacuum with respect to the ϕ field.

Recalling that X ¼ e
ffiffiffiffiffiffi
2=3

p
ϕ, calling hϕi the vacuum expect-

ation value of ϕ and setting ϕ¼hϕi¼
ffiffi
3
2

q
lnhXi¼

ffiffi
3
2

q
lnx,

where X ¼ hXi≡ x, we have

∂Vh

∂ϕ
����
ϕ¼hϕi

¼ ∂Vh

∂X
����
X¼x

∂X
∂ϕ

����
ϕ¼hϕi

¼ 0⇒
∂Vh

∂X
����
X¼x

¼ 0; ð31Þ

which gives

∂Vh

∂X
����
zÎ¼0;aImT¼0;X¼x

¼ −
4aA2

x3
e−ax −

2a2A2

x2
e−ax þ 4acA2

x3
e−ax=2

þ a2cA2

x2
e−ax=2 −

a2A2

3x2
e−ax −

a3A2

3x
e−ax

¼ 0: ð32Þ
At first glance, this equation seems a little complicated, but
after a short calculation, we can obtain the following simple
relation:

∂Vh

∂X
����
X¼x

¼ 0 ⇒ c ¼
�
1þ ax

3

�
e−ax=2: ð33Þ

Inserting the value of c into Vh, we obtain the following
equation:

VhjzÎ¼0;aImT¼0
¼ 1

2
g2ξ2 þ 2aA2

X2
e−aX

−
2aA2

X2

�
1þ ax

3

�
e−ax=2e−aX=2

þ a2A2

3X
e−aX; ð34Þ

where X ¼ e
ffiffiffiffiffiffi
2=3

p
ϕ.

Then, the vacuum energy at X ¼ x is given by

VhjzÎ¼0;aImT¼0;X¼x ¼
1

2
g2ξ2 −

a2A2e−ax

3x
≡ Λ; ð35Þ

where Λ is defined to be the postinflationary cosmological
constant, and the SUSY breaking scale is given by

VþjzÎ¼0;aImT¼0;X¼x

¼ VhjzÎ¼0;aImT¼0;X¼x

þ 3

X3
A2ðe−aX − 2ce−aX=2 þ c2Þ

���
zÎ¼0;aImT¼0;X¼x

¼ Λþ 3

x3
A2ðe−ax=2 − cÞ2 ¼ Λþ 3A2

x3
a2x2e−ax

9

¼ Λþ a2A2e−ax

3x
¼ 1

2
g2ξ2 ≡M4

S; ð36Þ

whereMS is by definition the SUSY breaking scale. We can
set Λ to any value we wish, in particular we can choose it to
be Λ ∼ 10−120.
Here, we point out that the term 1

2
g2ξ2 governs the

magnitude of the total scalar potential, and simultaneously
controls the scale of spontaneously supersymmetry break-
ing. Hence, if we want that the scalar potential describes
inflation, we need to impose

M4
S ¼

1

2
g2ξ2¼! H2M2

pl ≡M4
I ; ð37Þ

3The observable-sector superpotentialWo can shift the vacuum
expectation values (VEVs) of the scalars in the observable sector
zi, but since those VEVs must be in any case small compared toH
and Mpl we can approximately set zi ¼ 0. Moreover, in our toy
example in Sec. V we will choose a superpotential that indeed
gives a minimum at zi ¼ 0.

4When cosðaImTÞ ¼ 1, the second derivative of the potential
can be positive, which means that the stationary point is a
minimum.
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where H is the Hubble parameter, and MI is defined to be
the mass scale of inflation.
We then identify

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xðM4

I − ΛÞeax
a2

s
;

W0 ¼ −cA ¼ −
�
1þ ax

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xðM4

I − ΛÞ
a2

s
: ð38Þ

Substituting the above parameters A, W0, MI into the
hidden-sector potential, we can obtain a plateau inflation
potential

VhjzÎ¼0;aImT¼0

¼ M4
I − ðM4

I − ΛÞx
�
6e−aðX−xÞ=2

aX2

�
1 − e−aðX−xÞ=2 þ ax

3

�

−
e−aðX−xÞ

X

�
; ð39Þ

where X ¼ e
ffiffiffiffiffiffi
2=3

p
ϕ and ϕ is defined to be the inflaton.

Notice that the inflaton mass after inflation is of order of the
Hubble scale, i.e., m2

ϕ ∼H2 ¼ 10−10M2
pl.

We note that the hidden-sector scalar potential Vh has a
plateau, so it is of HI type (in the notations of Ref. [19]).
Furthermore, it depends only on four parameters, which are
the vacuum expectation value of X (i.e., x≡ hXi); the
KKLT parameter a in the superpotential, which will be
determined according to the type of the nonperturbative
correction we choose5; the inflation scale MI; and the
postinflationary cosmological constant Λ. At X ¼ x, the
potential indeed reduces to the postinflationary cosmologi-
cal constant. As an additional remark, we observe that for
fixed x, MI , Λ inflation ends earlier when a is smaller.
When the nonperturbative corrections to the KKLT
superportential come from gaugino condensation [1], a
smaller parameter a corresponds to more D7 branes being
stacked.

IV. HIDDEN SECTOR DYNAMICS 2: SUPER-EeV
GRAVITINO MASS, WEAK GAUGE COUPLING,

AND A HIERARCHY OF ENERGY SCALES

In this section, we investigate some physical implica-
tions that can be obtained from our model. First of all, let us
find the gravitino mass after inflation, which is generated
by the high-scale SUSY breaking in the hidden sector. It is
given by

m2
3=2 ¼ eG ¼ jWhj2

X3
¼ A2

X3
ðe−aðXþΦ=3Þ − 2ce−aðXþΦ=3Þ=2 cosðaImTÞ þ c2Þ

����
zÎ¼0;aImT¼0;X¼x

¼ 3xðM4
I − ΛÞeax
a2x3

ðe−ax − 2ce−ax=2 þ c2Þ ¼ 3xðM4
I − ΛÞeax
a2x3

ðc − e−ax=2Þ2

¼ ðM4
I − ΛÞ
3

⇒ m3=2 ≈
Hffiffiffi
3

p ¼ 10−6Mpl ∼ 1012 GeV ¼ 103 EeV; ð40Þ

which is compatible with the case of EeV-scale gravitino
cold dark matter candidates. This is not surprising because
we are considering the same high-scale supersymmetry
breaking scale as in [20–23], where that scenario was
proposed. The possibility of direct detection for such heavy
dark matter candidates has recently been studied in
Ref. [24]. Notice that in our model the gravitino mass is
always OðHÞ, irrespective of the ultraviolet cutoff.
Next, we explore possible constraints on the FI term by

analyzing the fermionic nonrenormalizable interaction
terms that are induced by such term (5). Schematically
the general fermionic terms have the form

LF ⊃ ξM4mþ2
pl D−2m−4þpOð10−2pÞ

F ; ð41Þ

where ξ is the dimensionless ACIK-FI constant; OðδÞ
F is an

effective field operator of dimension δ, which does not
contain any power of D; m is the total order of derivatives
with respect to the composite chiral fields Tðw̄2Þ and T̄ðw2Þ
defined after Eq. (6), and p ¼ 0, 1. Detailed calculations
will be given in [25], here we will only briefly summarize
the main points.
To evaluate the fermionic terms we need to solve for

the auxiliary field D. Equation (5) gives the following
Lagrangian for them:

LauxD ¼ 1

2
D2 − iðGiki −Gīk

īÞD − ξD

≡ 1

2
D2 − ðξ0 þ ξÞD; ð42Þ

where ξ is the new FI constant while ξ0 ≡ iðGiKi − GīK
īÞ

is the standard field-dependent linear term inD. It is written
in terms of the Killing vector K ¼ Ki∂i giving the action of
our U(1) gauge symmetry on the scalar fields. G is the

5For example, if we consider a nonperturbative correction due
to gaugino condensation, then we find a ¼ 2π

Nc
for a non-Abelian

gauge group SUðNcÞ where Nc is interpreted as the number of
coincident D7 branes being stacked [1].
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standard supergravity G-function [16]. Restoring the
dependence on the gauge coupling constant g we have

LauxD ¼ 1

2g2
D2 − ξ0D − ξD ¼ 1

2g2
D2 − ðξ0 þ ξÞD: ð43Þ

After solving the equation of motion for D, we find the
solution

D ¼ g2M2
plðξþ ξ0Þð¼ g2ðξþ ξ0Þ when Mpl ¼ 1Þ: ð44Þ

Plugging this solution into the fermionic terms in Eq. (41)
we obtain

LF ⊃ ξM4mþ2
pl ðg2M2

plðξþ ξ0ÞÞ−2m−4þpOð10−2pÞ
F

¼ ξðg2ðξþ ξ0ÞÞ−2m−4þpM−6þ2p
pl Oð10−2pÞ

F : ð45Þ

The fermionic nonrenormalizable interactions generated by
the ACIK-FI term introduce a strong coupling scale that
sets the limit of validity of the effective field theory
description. If we demand that the theory is valid up to
some cutoff scale Λcut, we find the following constraint on
the ACIK-FI term:

ξðg2ðξþ ξ0ÞÞ−2m−4þp ≲
�
Mpl

Λcut

�
6−2p

: ð46Þ

We must also examine the constraints on the post-
inflation vacuum, that is the true vacuum, in which
ξ0 ¼ 0. In this case, we obtain

ðg−1Þ2
�
Λcut

Mpl

�
6−2p

< ðg−1Þ2ð2mþ4−pÞ
ð2mþ3−pÞ

�
Λcut

Mpl

�
6−2p ≲ ξ: ð47Þ

This inequality reduces to the following: for all Λcut ≤ Mpl,
we obtain

g−2
�
Λcut

Mpl

�
4

≤ ξ: ð48Þ

Now we are ready to ask how does this constraint affect our
supergravity model of inflation. To answer this, let us get
back to the definition of the inflation scale (restoring the
mass dimension)

M4
I ¼

1

2
g2ξ2M4

pl ⇒ ξ ¼
ffiffiffi
2

p M2
I

M2
pl

g−1 ∼ 10−5g−1: ð49Þ

Inserting this equation into the constraints, we find that for
Λcut ≤ Mpl:

105
�
Λcut

Mpl

�
4

≤ g ð50Þ

We see from this equation that it is easy to obtain g≲ 1. Let
us define Λcut ≡ 10kMpl where k ∈ R and plug this into the
constraint in Eq. (50). Then, we have

105þ4k ≤ g: ð51Þ
If we demand a small gauge coupling such that g≲ 1, then
the constraint reduces to

105þ4k ≤ g≲ 1 ⇒ k≲ −1.25 ⇒ Λcut ≲ 10−1.25Mpl < Mpl:

ð52Þ
Therefore, we note that requiring a small gauge coupling
such that g≲ 1 guarantees that the cutoff scale Λcut is lower
than the Planck scaleMpl and enables us to choose any sub-
Planckian cutoff scale up to the upper bound in Eq. (52).
As an example, if we assume that the cutoff of our theory

is given by a grand unified theory (GUT) scale (i.e.,
Λcut ∼ 10−2Mpl ≫ H ≈ 10−5Mpl), then we find that the
gauge coupling must only obey 10−3 ≤ g, so it can easily
obey g≲ 1. Remember that our SUSY breaking scale was
given by MS¼MI¼

ffiffiffiffiffiffiffiffiffiffiffiffi
HMpl

p
∼10−2.5Mpl, which is slightly

below the GUT-scale cutoff, i.e., MS < Λcut ¼ ΛGUT ¼
10−2Mpl. Consequently, we have to consider an effective
theory with the following hierarchy of scales: H ≪ MS≲
Λcut ¼ ΛGUT < Mpl, to ensure that the gauge coupling
constant obeys Oð10−3Þ≲ g≲ 1. We may also set the
cutoff at the string scaleMstring ∼ 10−3Mpl. In this case, the
hierarchy of mass scales is given by H ≪ Λcut ¼
Mstring < MS < Mpl.

V. OBSERVABLE SECTOR DYNAMICS:
LOW SCALE SOFT SUPERSYMMETRY

BREAKING INTERACTIONS

In this section we investigate the mass scales of the soft
supersymmetry-breaking interactions in the observable
sector. We need to find under which conditions our model
could be phenomenologically realistic. A full investigation
of the detailed structure of the soft interactions in the
observable sector requires a study that goes beyond the
scope of this work, so here we will limit ourselves to
general remarks and a coarse-grained analysis of necessary
conditions for the viability of our model. We focus our
analysis on the soft masses.
Restoring the mass dimension (so that the T, zi have

canonicalmass dimension 1), the soft-termpotential becomes

Vsoft ≡ −
1

MplX2
½WoW̄h

T̄ þ W̄oWh
T � þ

1

9

jWh
T j2

M2
plX

2
ΦiΦij̄Φj̄

þ 1

3

1

MplX2
½Wh

TΦiΦij̄W̄o
j̄ þ W̄h

T̄W
o
iΦij̄Φj̄�

þ 1

X2
Wo

iΦij̄W̄o
j̄ : ð53Þ
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This formula is obtained by taking the following low-energy limit: Fh, Mpl → ∞ (where Fh are the hidden-sector auxiliary
F-term fields)whilem3=2 ¼ constant [12]. Elegant examples of gravitymediation and soft SUSYbreaking are simply explained
in e.g., [26].
In addition, the hidden-sector superpotential can be written as

Wh ¼ Aðe−aT=Mpl − cÞ

¼ Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xðM4

I − ΛÞeax
a2

s
ðe−aT=Mpl − ð1þ ax=3Þe−a=2Þ

¼ Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xðM4

I − ΛÞeax
a2

s
ðe−aðXþΦ=3M2

plÞ=2e−iaImT=Mpl − ð1þ ax=3Þe−ax=2Þ; ð54Þ

where we have used e−aT ¼ e−
a
2
ðXþΦ=3M2

plÞe−aiImT=Mpl .
Then, using

Wh
T ¼ −

1

Mpl
aAe−aðXþΦ=3M2

plÞ=2e−iaImT=Mpl ; jWh
T j2 ¼

1

M2
pl

a2A2e−aðXþΦ=3M2
plÞ; ð55Þ

we obtain

Vsoft ≡ aAe−aðXþΦ=3M2
plÞ=2

M2
plX

2
½WoeiaImT=Mpl þ W̄oe−iaImT=Mpl � þ 1

9

a2A2e−aðXþΦ=3M2
plÞ

M4
plX

2
ΦiΦij̄Φj̄

−
1

3

aAe−aðXþΦ=3M2
plÞ=2

M2
plX

2
½e−iaImT=MplΦiΦij̄W̄o

j̄ þ eiaImT=MplWo
iΦij̄Φj̄� þ

1

X2
Wo

iΦij̄W̄o
j̄ : ð56Þ

At the true vacuum we have aImT=Mpl ¼ nπ, X ¼ x, zI ¼ 0 where n is an even integer, so the soft terms become

Vsoft ≡ aAe−ax=2

M2
plx

2
½Wo þ W̄o� þ 1

9

a2A2e−ax

M4
plx

2
ΦiΦij̄Φj̄ −

1

3

aAe−ax=2

M2
plx

2
½ΦiΦij̄W̄o

j̄ þWo
iΦij̄Φj̄� þ

1

x2
Wo

iΦij̄W̄o
j̄ : ð57Þ

From A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xðM4

I−ΛÞeax
a2

q
Mpl ≈

ffiffi
3

p
a x1=2eax=2M2

IMpl, we find aAe−ax=2 ¼ ffiffiffi
3

p
x1=2M2

IMpl. Inserting this expression into the
soft-terms potential, we get

Vsoft ≡
ffiffiffi
3

p
x1=2M2

IMpl

M2
plx

2
½Wo þ W̄o� þ 1

9

ð ffiffiffi
3

p
x1=2M2

IMplÞ2
M4

plx
2

ΦiΦij̄Φj̄

−
1

3

ffiffiffi
3

p
x1=2M2

IMpl

M2
plx

2
½ΦiΦij̄W̄o

j̄ þWo
iΦij̄Φj̄� þ

1

x2
Wo

iΦij̄W̄o
j̄ : ð58Þ

The soft-terms potential thus reduces to

Vsoft ≡
ffiffiffi
3

p
x−3=2M2

I

Mpl
½Wo þ W̄o� þ 1

3

M4
I

M2
plx

ΦiΦij̄Φj̄ −
1ffiffiffi
3

p x−3=2M2
I

Mpl
½ΦiΦij̄W̄o

j̄ þWo
iΦij̄Φj̄� þ

1

x2
Wo

iΦij̄W̄o
j̄ : ð59Þ

Next, let us consider a general expansion of the observable-sector superpotential Wo

WoðziÞ ¼
X
n¼0

Wo
i���k
n!

zi � � � zk ¼ B0 þ Sizi þMijzizj þ Yijkzizjzk þ � � � ; ð60Þ

where Wo
i���k ≡ ∂nWoðziÞ=∂zi � � � ∂zk and B0, Si, Mij, Yijk are constant parameters determining masses and interactions.
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We will not perform a full analysis of all possible ranges
of values for B0, Si,Mij, and Yijk; instead, we will simplify
our analysis by setting Si ¼ 0, so that the vacuum of the
observable sector is at zi ¼ 0, assume that for all i, j, k all
Mij and Yijk are of the same order, and set B0 ¼ 0. The soft
terms in the scalar potential are then generated only by the
following terms in the expansion of Wo [18]:

WoðziÞ ¼ Mijzizj þ Yijkzizjzk; ð61Þ

where the Mij have mass dimension one and the Yijk are
dimensionless.
This choice also implies that such superpotential does

not significantly change the cosmological constant because
all the minima of the zi are located at zero. We will choose
the U(1) gauge-invariant Kähler function of matter fields as
follows:

Φ ¼ δIJ̄z
I z̄J̄ þ δij̄z

iz̄j̄; ð62Þ

where the first (second) term corresponds to the hidden
(observable) sector.
With our simplifying assumptions we obtain

Vsoft ¼
2

ffiffiffi
3

p

3

x−3=2M2
I

Mpl
½ðMijzizjþYijkzizjzkÞþ c:c:�

þM4
I x

−1

3M2
pl

δij̄z
iz̄j̄

þx−2½MijzjþYijkzjzk�δij̄½M̄ī j̄z̄
īþ Ȳī j̄ k̄z̄

īz̄k̄�: ð63Þ

We also find the magnitude of the corresponding soft
parameters from Eq. (63) as

2
ffiffiffi
3

p

3

M2
I

Mpl
x−3=2jMijj≡m2

s1;
2

ffiffiffi
3

p

3

M2
I

Mpl
x−3=2jYijkj≡ms2;

1

3

M4
I

M2
pl

x−1 ≡m2
s3;

jMijj2x−2 ≡m2
s4; jYijkj2x−2 ≡ms5

Mpl
; jMijjjYijkjx−2 ≡ms6: ð64Þ

We observe that during inflation (for large X or ϕ) all the soft mass parameters are very small. Also, the above result gives us
the following relations:

x ¼ M4
I

3m2
s3M

2
pl

¼ H2

3m2
s3
; jMijj ¼

1

6

M4
I

M2
pl

m2
s1

m3
s3

¼ 1

6
H2

m2
s1

m3
s3

¼
ffiffiffi
3

p

2

m2
s1

H
x3=2; jYijkj ¼

1

6

M4
I

M2
pl

ms2

m3
s3

;

ms4 ¼
1

4

m2
s1

ms3
; ms5 ¼

1

4

�
ms2

ms3

�
2

Mpl; ms6 ¼
1

4

�
ms1

ms3

�
2

ms2: ð65Þ

We note that only ms1, ms2, ms3 are free parameters.
However, when we examine the kinetic term in Eq. (27)
we observe that at x ¼ 1 the kinetic terms of the matter
multiplets are canonically normalized. The condition x ¼ 1

then givesms3 ¼ Hffiffi
3

p ¼ 10−6Mpl ∼m3=2. So in this case, the

free parameters reduce to m1 and m2 only. Notice that in
the regime ms3 ∼m3=2, the parameter ms1 determines the
magnitude of jMijj and ms4, while ms2 determines that of
jYijkj, ms5, and ms6.
Finally, let us investigate further the physical masses of

matter scalars in the observable sector. Here, we are going
to look only at the matter scalar masses and leave a detailed
study of fermion masses and interactions to a future work,

since the purpose of this section is to demonstrate the
existence of light scalars in the observable sector, whose
masses can be smaller than that of the gravitino. Because of
the soft mass parameters we found, we expect that some
scalars will be as heavy as the gravitino, while other scalars
could be much lighter.
To compute the scalar masses we must remember to

include contributions coming from the expansion of the
hidden-sector potential to second order in the observable-
sector scalars zi: VhðzI; ziÞ ¼ Vhð0.0Þ þ Vhij̄z

iz̄j̄. We
thus consider the general expression for the total scalar
potential, which is written with the canonical mass
dimensions by

V ¼ VD þ Vh
F þ Vsoft

¼ 1

2
g2M4

pl

�
ξþ qIzIΦI þ qIz̄ĪΦĪ

XM2
pl

�
2

−
1

X2M2
pl

ð−2aA2e−aðXþΦ=3M2
plÞ þ 2acA2e−aðXþΦ=3M2

plÞ=2 cosðaImT=MplÞÞ
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þ 1

3X2M2
pl

�
X þ 1

3M2
pl

ΦIΦIJ̄ΦJ̄

�
a2A2e−aðXþΦ=3M2

plÞ þ aAe−aðXþΦ=3M2
plÞ=2

M2
plX

2
½WoeiaImT=Mpl þ W̄oe−iaImT=Mpl �

þ 1

9

a2A2e−aðXþΦ=3M2
plÞ

M4
plX

2
ΦiΦij̄Φj̄ −

1

3

aAe−aðXþΦ=3M2
plÞ=2

M2
plX

2
½e−iaImT=MplΦiΦij̄W̄o

j̄ þ eiaImT=MplWo
iΦij̄Φj̄�

þ 1

X2
Wo

iΦij̄W̄o
j̄ : ð66Þ

First, we find that masses of the hidden-sector matter
scalars zI and ImT can be independently defined by tuning
the magnitude of the U(1) gauge charge ∀ I∶qI ≡ q and the
parameter a respectively such that they are positive definite.
This implies that the hidden-sector fields can be heavy as
much as we wish. Thus, to get an effective single-field
slow-roll inflation we should make the hidden-sector matter
scalars much heavier than the Hubble scale during slow
roll. Their masses can be lighter than the Hubble scale
before the onset of the slow-roll period, that is for very large
values of X. Second, it is obvious that the inflaton mass is
of the same order as the Hubble scale, i.e., mϕ ∼H, since
the scalar potential is of “HI” or “Starobinsky”form and has
a de Sitter vacuum, as we have seen in the previous
sections.

Next, we investigate masses of the observable-sector
fields. We can simplify further our analysis to make our
point clearer by assuming that the quadratic term in the
superpotential is diagonal Mij ¼ δijM. From the total
scalar potential, we find the observable-sector squared
mass matrixM2

obs at the vacuum specified by the conditions
that aImT ¼ nπ, zI ¼ 0, and zi ¼ 0

M2
obs ≡

�
Vij̄ Vij

Vī j̄ Vīj

�
ð67Þ

where

Vij̄ ¼ −
2a2A2

3X2
δij̄e

−aX þ ca2A2

3X2
δij̄e

−aX=2 −
a3A2

9X
e−aXδij̄ þ

a2A2

9X2
e−aXδij̄ þ

1

X2
Wo

ilΦln̄W̄o
n̄ j̄

¼ 1

X2
Wo

ilΦln̄W̄o
n̄ j̄ −

2a2A2

9X2
e−aXδij̄ ¼

�
M2

X2
−
2a2A2

9X2
e−aX

�
δij̄;

Vij ¼
aA
3X2

e−aX=2Wo
ij ¼

aA
3X2

e−aX=2Mδij: ð68Þ

Restoring the mass dimension, the mass eigenvalues are

m2
� ≡

�
M2

X2
−

2a2A2

9X2M4
pl

e−aX
�
� aA
3X2M2

pl

e−aX=2M

¼ 1

X2

�
M � aA

6M2
pl

e−aX=2
�

2

−
a2A2

4X2M4
pl

e−aX: ð69Þ

We observe that if M ∼ aA=M2
pl (which is equivalent to the

condition that ms1 ∼H), then both masses m� are positive

definite for all X ¼ e
ffiffiffiffiffiffi
2=3

p
ϕ > 0 (or all ϕ), which means that

during inflation the matter scalar masses are well defined
(and become very light for large values of X or ϕ). This will
be confirmed in the following.
Let us check the values of the scalar masses on

the postinflationary vacuum. Using the relations A ¼
Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xðM4

I−ΛÞeax
a2

q
, c ¼ ð1þ ax

3
Þe−ax=2, and M ¼

ffiffi
3

p
2

m2
s1
H x3=2

in Eq. (65) and setting Λ ≈ 0 at X ¼ x ¼ 1, where the

kinetic terms of the matter scalars are canonically normal-
ized, we obtain

m2
� ¼ 3

4

M2
pl

M4
I
m4

s1 −
2

3

M4
I

M2
pl

� 1

2
m2

s1 ¼
�
3

4
k2 � k −

2

3

�
H2;

ð70Þ
in which we define m2

s1 ≡ kH2 (where k > 0 and
M2

I =Mpl ¼ H). We notice that physical masses of scalars
are determined only by the “free” parameter ms1 (or k) and
the Hubble massH. Positivity of the physical masses “m�”
imposes the inequality

mþ∶−
2

3
þ2

3

ffiffiffi
3

p
<k; m−∶

2

3
þ2

3

ffiffiffi
3

p
<k⇒

2

3
þ2

3

ffiffiffi
3

p
<k:

ð71Þ
Then, with this inequality, we can choose an arbitrary value
of k such that
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2

3
þ 2

3

ffiffiffi
3

p
< k ¼ 2

3
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þm2

−=H2Þ
q

¼ −
2

3
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þm2þ=H2Þ

q
ð72Þ

allowing one physical mass m− to be parametrically lighter
than the other physical mass mþ as

m2þ ¼ 4H2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þm2

−=H2Þ
p

Þ þ 3m2
−

3
: ð73Þ

We note that ms1 ¼
ffiffiffi
k

p
H ∼H when m− ≪ H, implying

that m2
� > 0 is indeed satisfied. In this limit, we find that

one physical massm− can be much smaller than the Hubble
scale, while the other physical mass are of the order of the
Hubble scale:

m− ≪ H; mþ ≳H: ð74Þ
From this we note that in the observable sector after

inflation (that is at x ¼ 1) one physical mass m− can be
lighter than that of the gravitino, while the other physical
mass mþ becomes of the same order of the gravitino mass.
We also note that the matter scalar with mass of order
of the super-EeV gravitino mass (∼10−6Mpl) may be a
heavy dark matter candidate, because it is in the mass range
10−8Mpl ≤ mχ ≤ Mpl, which is outside the excluded region
shown in Figs. 2, 3, and 4 of Ref. [24]. To summarize, we
found the following constraints on soft masses. First, ms1
must satisfy Eq. (71) to allow for some light scalars while
ms3 is of the same order as the gravitino massm3=2 andms4

is determined by the chosen value of ms1. Notice that all
these mass parameters are subject to strict constraints such
as Eq. (71). Furthermore, ms2, ms5, and ms6 can be
arbitrarily small, ms5 and ms6 are proportional to m2

s2
and ms2 respectively, and ms2 is a free parameter.
It is worth noticing that the observable sector masses m−

are compatible with the “Case 1” reheating-scenario con-
dition of Ref. [19], for which single-field plateau-potential
inflation is robust under the introduction of light scalars.
The parameters characterizing the reheating scenario are

Γϕ < Γzi < mzi ∼m− < H;
< zi >
Mpl

≪ 1; ð75Þ

where Γϕ, Γzi are the decay rates of ϕ and zi during the
reheating phase and hzii are the expectation values of

matter scalars zi after inflation. We note that hzii
Mpl

≪ 1

implies that the slow-roll inflation should begin around
the minima of matter scalars, so that at the end of inflation

the corresponding vacuum expectation values will be much
smaller than the Planck scale Mpl. Hence, as long as the
above “Case 1” reheating-scenario condition is satisfied,
the slow-roll inflation in our model will effectively be
driven by a single inflaton field ϕ along the minima of the
matter scalars.

VI. CONCLUSIONS AND OUTLOOK

To summarize our findings, we have seen that our
model can naturally produce plateau-potential inflation at
the Hubble scale with a high scale spontaneously super-
symmetry breaking in the hidden sector and low scale
soft supersymmetry breaking interactions with various soft
masses in the observable sector. We also obtain naturally
a super-EeV gravitino, which is compatible with
constraint for heavy gravitino cold dark matter (i.e.,
0.1 EeV≲m3=2 ≲ 1000 EeV) [21]. In this work, we have
not investigated the specific structure and dynamics of
observable-sector interactions or the detailed construction
of a realistic low energy effective theory of the observable
sector. It would be of obvious interest to see how far this
scenario could be pursued and how to incorporate in it a
supersymmetric extension of the StandardModel or a grand
unified theory. Models with a dynamically generated FI
term, realistic observable sector, D-term inflation, and high-
scale supersymmetry breaking have been studied in [27];
other uses of FI terms for inflation were presented in [28]. It
would be interesting to reproduce the phenomenologically
desirable features of [27,28] and other models proposed in
the literature in our scenario. On a different note, it would
be extremely interesting to see if the new FI term in general
and in our KKLT-type scenario in particular can be
obtained in string theory. In other words, it would be
interesting to see if our model belongs to the string
landscape or the string swampland [29] (See refs. [30,31]
for recent reviews of swampland conjectures). Here we
shall just mention that the magnetic weak gravity con-
jecture given e.g., in Eq. (3.7) of Ref. [31] can be easily
satisfied in our model.
On a more concrete note, a detailed analysis and

derivation of the bounds on the new FI terms that were
crucial in this paper is highly desirable. This will be the
main focus of our forthcoming paper [25].
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