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We study the retarded field sourced by a uniformly accelerated particle in a nonlocal scalar field theory.
While the presence of nonlocality regularizes the field at the location of the source, we also show that
Lorentz-invariant nonlocal field theories are particularly sensitive to the somewhat unphysical assumption
of uniform acceleration, leading to logarithmic divergences on the acceleration horizon. Analytic properties
of the nonlocal retarded Green function indicate that the divergences can be removed by placing
appropriate sources on the acceleration horizon in the asymptotic past.
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I. INTRODUCTION

Locality is deeply woven into our notion of physics:
from classical mechanics to general relativity and quantum
field theory, locality has been an undergirding principle
across disciplines. However, there are notable exceptions
from that rule. Quantum entanglement is a nonlocal
phenomenon, effective actions in quantum field theory
typically contain nonlocal factors, and it has proven
difficult if not outright impossible to define local observ-
ables in quantum gravity [1]. Therein, the role of non-
locality may also play a major role in possible resolutions
of the black hole information loss problem [2].
The recent years have seen a flurry of activity with a

particular focus on the class of ghost-free infinite-derivative
theories [3–5]. These theories propose a fundamental
nonlocality by means of nonlocal form factors fð□Þ,
and have been remarkably successful in alleviating curva-
ture singularities [6–14] in the context of weak-field
gravity. Some exact nonsingular solutions of infinite-
derivative gravity theories have been constructed in the
context of gravitational waves [15,16] and cosmology
[17,18]. Implications of such nonlocal modifications have
also been investigated in quantum theory [19–21], quantum
field theory [22–26], quantum field theory in curved
spacetime [27], Hamiltonian mechanics [28,29], and other

aspects of gravitational theory [30–32]. Nonlocal Green
functions have proven a particularly useful tool in such
studies [33], even though most scenarios considered in the
literature so far are either time independent or space
independent, implying that the full spacetime notion of
nonlocal Green functions is not yet very well understood.
This paper aims towards closing that gap by studying the

retarded nonlocal scalar field of a uniformly accelerated
source in flat spacetime. The study of the retarded field for
uniformly and arbitrarily accelerated point particles has a
long history, but, to the best of our knowledge, has so far
been focused on local field theories.
In 1909, Born studied the field of two charges under-

going uniform acceleration in opposite directions [34]. The
following decades saw substantial activity in this field, and
while much progress was made in analyzing the radiation
content of such a field configuration—see e.g., the intro-
duction in Ref. [35] for a brief historical overview—Bondi
and Gold [36] emphasized that the behavior of the field on
the acceleration horizons was singular. Boulware [37] and
Das [38] considered physically meaningful limiting pro-
cedures towards the unphysical assumption of uniform
acceleration, and Bondi [39] used their approach to rederive
the original Bondi-Gold solution. While Ginzburg has
deemed the problem of the radiation of uniformly accel-
erated charges solved [40–42], the field is still active,
focusing on the influence of gravitation [43], studying
scalar theory [44], or extending the studies to de Sitter
spacetime [45,46].
These considerations have provided much insight on the

causal structure of fields propagating in Minkowski space-
time, the spacetime properties of retarded Green functions,
and have brought to light some unphysical consequences of
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assuming uniform acceleration. This paper presents a first
step towards extending many of these considerations from
local field theory to a class of nonlocal field theories.
In order to focus our discussion somewhat we shall

consider a simple toy model of a scalar field theory in four-
dimensional Minkowski spacetime with the metric

ds2 ¼ gμνdXμdXν ¼ −dt2 þ dx2 þ dy2 þ dz2; ð1Þ

expressed in Cartesian coordinates Xμ ¼ ðt; xÞ where we
denoted x ¼ ðx; y; zÞ for simplicity. The scalar field equa-
tion takes the simple form

Dϕ ¼ j; ð2Þ

where j is an external source, and D is a differential
operator.1 The local theory is specified by the choice
D ¼ □, where □ is the d’Alembert operator, and one
recovers the massless Klein-Gordon equation. Suppose
now that the external source has the following form:

jðXÞ ¼ 2μαδð2Þð−t2 þ z2 − α2ÞδðxÞδðyÞ
× θðzþ tÞθðz − tÞ; ð3Þ

which describes a uniformly accelerated particle of mass
μ > 0 and acceleration parameter α such that the constant
acceleration of the particle is μ=α, and the particle is located
on the positive part of the z axis. The retarded field created
by such a source may be calculated via the retarded Green
function

GRðX0; XÞ ¼ 1

2π
δð2Þ½ðX0 − XÞ2�θðt0 − tÞ;

ðX0 − XÞ2 ¼ −ðt0 − tÞ2 þ ðx0 − xÞ2; ð4Þ

such that the retarded solution for ϕ takes the well-known
form [43–46]

ϕðXÞ ¼
Z

d4X0GRðX;X0ÞjðX0Þ

¼ −
μα

2π

θðzþ tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2 þ α2Þ2 − 4α2ðz2 − t2Þ

p : ð5Þ

This retarded field of a uniformly accelerated source has
several remarkable properties.
First, this expression diverges when −t2 þ z2 ¼ α2 and

x ¼ y ¼ 0, that is, at the location of the uniformly
accelerated source. Second, this expression is nonzero only
in the future and right Rindler wedges, while being finite on

all horizons. And third, across the past acceleration horizon
located at u≡ zþ t ¼ 0, the retarded field exhibits a
discontinuity:

Δϕu¼0 ≡ ϕðu ¼ 0þÞ − ϕðu ¼ 0−Þ ¼ −
μ

2πα
: ð6Þ

These three properties are intimately connected to the
properties of the retarded Green function of the local scalar
theory.
In the remainder of this paper it is our objective to

understand how the presence of nonlocality affects the
properties of the retarded field of a uniformly accelerated
particle. Our model of nonlocality utilizes the following
differential operator:

D ¼ exp½ð−l2
□ÞN �□; N ¼ 1; 2;…; l > 0: ð7Þ

This expression is to be understood via a formal expansion.
N is an integer, and l > 0 is the scale of nonlocality, and
this class of nonlocal theories is also referred to as GFN.
Here, “GF” stands for “ghost-free” since the inverse of the
nonlocal differential operator in Fourier space has no
additional poles and is thereby devoid of spurious ghost-
like particles typically encountered in higher-derivative
theories. In the local limit l → 0 one recovers the local
theory. It has been demonstrated that GFN theories man-
ifestly regularize the field of stationary sources, but in the
time-dependent case only even values for N are permis-
sible, since odd N leads to time-dependent instabilities and
divergences in the classical theory [26,47].
Moreover, in a true spacetime sense it is impossible to

define “small” Lorentz-invariant spacetime volumes by
relations of the form −ðt0 − tÞ2 þ ðx0 − xÞ2 < l2 since they
are always hyperbolic in nature. While in many purely
spatial problems the question of time dependence can be
neglected and nonlocality truly acts on a small scale, in the
present paper this interpretation is not possible. For this
reason we will place particular focus and emphasis on
nonlocal effects close to the light cone.
This paper is organized as follows. In Sec. II we will

briefly introduce some useful coordinate systems and the
notion of Fourier transforms in those curvilinear coordinate
systems. In Sec. III we will derive an integral expression for
the retarded field of a uniformly accelerated source in the
nonlocal theory and discuss its properties in detail. And
last, in Sec. IV, we will summarize our findings and outline
possible future research directions.

II. MINKOWSKI SPACETIME

In what follows it will be useful to work in Rindler
coordinates, so let us briefly fix our notation to encompass
different coordinate choices both in real space and
Fourier space.

1We use the letter j to denote the external source term, but
recall that a scalar field theory couples to a density and not to a
conserved current.
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A. Various coordinates

In this paper we exclusively consider flat Minkowski
spacetime, but it is convenient to introduce several coor-
dinates. We start with the standard Cartesian coordinates
ft; x; y; zg, where the flat metric takes the form

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2: ð8Þ

It is useful to transform to null coordinates fu; vg via2

u ¼ zþ t; v ¼ z − t: ð9Þ

Finally, let us define the real Rindler coordinates
fτ; ζ; x; yg that are adapted to the boost Killing vector
z∂t − t∂z such that

τ ¼ 1

2
log ju=vj ¼ artanh½ðt=zÞσuσv �;

ζ ¼
ffiffiffiffiffiffiffiffi
juvj

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j − t2 þ z2j

q
; ð10Þ

where σu ¼ signðuÞ and σv ¼ signðvÞ. The inverse trans-
formations are given by

u ¼ σuζeτ; v ¼ σvζe−τ; ð11Þ

t ¼ ζ

2
ðσueτ − σve−τÞ; z ¼ ζ

2
ðσueτ þ σve−τÞ: ð12Þ

Introducing the subscript W ∈ fR;L; F; Pg we may label
individual regions of Minkowski spacetime as MW; see
Fig. 1. The metric in Rindler coordinates is

ds2 ¼ σuσvð−ζ2dτ2 þ dζ2Þ þ dρ2 þ ρ2dφ2; ð13Þ

where we also introduced the polar cylindrical version
given by the standard relations ðx; yÞ ¼ ðρ cosφ; ρ sinφÞ.
Denoting the four-dimensional spacetime volume element
by g1=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffijDetgjp

, we can write

g1=2 ¼ dtdxdydz ¼ 1

2
dudvdxdy ¼ ζρdτdζdρdφ: ð14Þ

The norm of a position vector X in these coordinates reads

X2 ≡ X · X ≡ gμνXμXν ¼ −t2 þ x2 þ y2 þ z2

¼ uvþ x2 þ y2 ¼ σuσvζ
2 þ ρ2; ð15Þ

where the dot denotes the scalar product. The difference of
two such vectors X and X̃ has the norm

ðX − X̃Þ2 ¼ −ðt − t̃Þ2 þ ðx − x̃Þ2 þ ðy − ỹÞ2 þ ðz − z̃Þ2
¼ e−τ−τ̃ðσueτζ − σũeτ̃ ζ̃Þðσveτ̃ζ − σṽeτζ̃Þ
þ ρ2 þ ρ̃2 − 2ρρ̃ cosðφ − φ̃Þ: ð16Þ

B. Fourier transform

Due to the translational invariance of Minkowski space-
time M it is convenient to employ Fourier transform
methods. Because Minkowski spacetime is an affine space,
after fixing an arbitrary origin one may freely convert
coordinate positions into vectors with respect to that origin.
We denote the Fourier transform of a function fðXÞ as fX̄,
and in four spacetime dimensions their interrelations are
given by the formulas

fX̄ ¼ 1

4π2

Z
M
g1=2ðXÞeþiX̄·XfðXÞ; ð17Þ

fðXÞ ¼ 1

4π2

Z
M
g1=2ðX̄Þe−iX̄·XfX̄: ð18Þ

In our terminology, the coordinate space vector X as well
as momentum space vector X̄ live in the same vector space.
This definition is useful because now several coordinate
systems can be used both for the Fourier transform and its

FIG. 1. The split of Minkowski spacetime into the four regions
“L,” “R,” “F,” and “P,” here displayed for x ¼ y ¼ 0. The dash-
dotted line represents the spacetime location of the uniformly
accelerated particle, and the dashed line v ¼ 0 (u ¼ 0) represents
the future (past) acceleration horizon.

2Note that in the literature one also finds the alternative
definitions ǔ ¼ t − z and v̌ ¼ tþ z. We choose the present
convention such that u > 0 and v > 0 in the right Rindler wedge,
which reduces the amount of signs encountered in the following
calculations significantly.
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inverse. The contraction between the momentum space and
coordinate space vectors is given by

X̄ · X ¼ −t̄tþ x̄xþ ȳyþ z̄z

¼ ζ̄ζ

2
ðσūσveτ̄−τ þ σv̄σue−τ̄þτÞ þ ρ̄ρ cos ðφ̄ − φÞ:

ð19Þ

Let us emphasize here that the above notation presents a
departure from the common notation where one would
write Xμ ¼ ðt; xÞ and X̄μ ¼ ðω; kÞ. Hence, in what follows,
a barred quantity is the conjugate Fourier momentum to
the unbarred real-space variable. For Euclidean coordinates
this procedure is somewhat odd, but its notational
advantage becomes apparent when performing Fourier
transforms in curvilinear coordinates—as we shall see
below—since in that case one does not need to invent
new coordinate symbols for Fourier space. For similar
methods in Lorentz-invariant Fourier transforms we refer to
the insightful paper by DeWitt-Morette et al. [48].

III. NONLOCAL SOLUTION FOR AN
ACCELERATED PARTICLE

A. Nonlocal theory

With the brief reminder on Lorentz-invariant Fourier
transforms out of the way, let us discuss our nonlocal toy
model. In what follows we shall consider a scalar field
theory described by the equation of motion

að□Þ□ϕ ¼ j: ð20Þ

Here, að□Þ is an analytic operator

að□Þ ¼
X∞
k¼0

ak□k; ð21Þ

and j is an external source. In this paper, for simplicity, we
focus on so-called GFN theories defined by

að□Þ ¼ exp½ð−l2
□ÞN �; ð22Þ

which reduces to the local case að□Þ ¼ 1 in the local limit
l → 0. að□Þ is called the form factor, and it satisfies two
important properties: it is nonvanishing when acting on
functions, and it satisfies að0Þ ¼ 1.

B. Retarded solution

Consider a particle with mass μ that uniformly accel-
erates in the direction of the positive z axis with the
constant acceleration μ=α. The corresponding source is
localized in the region MR and can be parametrized as

jðXÞ ¼ 2μαδð2Þð−t2 þ z2 − α2ÞδðxÞδðyÞθðuÞθðvÞ
¼ μδðζ − αÞδðxÞδðyÞθðuÞθðvÞ: ð23Þ

In order to find the response of the nonlocal theory to this
source, we employ the Green function method such that the
retarded solution is given by the integral

ϕðXÞ ¼ 1

4π2

Z
M
g1=2ðX̄Þe−iX̄·XGR

X̄jX̄: ð24Þ

Real-space expressions for GR are known and can be given
in terms of Meijer G functions, and we derive an explicit
expression in Appendix A, where we also prove that
they satisfy DeWitt’s asymptotic causality criterion [49].
However, their form is rather complicated and hence
impractical for calculational purposes. As we will demon-
strate now it is much simpler to perform the calculations in
momentum space.
A momentum space Green function for the differential

operator □að□Þ is given by the expression

GX̄ ¼ 1

−X̄2að−X̄2Þ ; ð25Þ

and we may rewrite it as a sum of two terms,

GX̄ ¼ GX̄ þ ΔGX̄;

GX̄ ¼ 1

−X̄2
; ΔGX̄ ¼ a−1ð−X̄2Þ − 1

−X̄2
: ð26Þ

Here, GX̄ denotes the Green function of the □ operator.
This quantity is a Green function for the local theory and
does not depend on the presence of nonlocality. It has two
poles in complex Fourier space, and needs to be regulated,
typically via a suitable iϵ prescription. As is well known,
the choice of iϵ regularization gives rise to distinct causal
properties. The quantity ΔGX̄, on the other hand, encap-
sulates the nonlocal modification of the local theory: in
the limiting case of l → 0 one has a → 1 such that this
quantity vanishes identically. Moreover, since the form
factor satisfies að0Þ ¼ 1, the quantity ΔGX̄ is devoid of any
poles in the complex plane and hence analytic. This implies
that nonlocality, as described in nonlocal infinite-derivative
theories, modifies all local Green functions equally, irre-
spective of their causal properties.
Concretely, making use of Eq. (22), the Green function

for our scalar nonlocal theory takes the form

GX̄ ¼ e−ðl2X̄2ÞN

−X̄2
: ð27Þ

Because the nonlocal modification does not change the
structure of the poles in the complex momentum plane,
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one might be tempted to perform a similar iϵ prescription
and contour integration in analogy to the local case. This,
however, is impossible, since contour integration assumes a
fall-off behavior of the momentum space representation of
the Green function which is not satisfied in our nonlocal
infinite-derivative model due to the exponential factor.
Incidentally, this problem is well known in the nonlocal
literature and lies at the heart of unitarity issues of nonlocal
theories [22–25].
At this point we note that it is possible to avoid the notion

of contour integration by following the approach proposed
in Ref. [47]. Using the Sokhotski-Plemelj theorem for
continuous functions it is shown that one may derive
nonlocal Green functions with the correct causal properties
by performing a one-dimensional line integral along the
real axis. To obtain the retarded Green function we shift
the poles by an infinitesimal quantity −iϵ in accordance to
the local theory, and define

GR
X̄ ≡ e−ðl2X̄2ÞN

−X̄2j−iϵ
≡ e−½l2ð−t̄2þx̄2þȳ2þz̄2Þ�N

−½−ðt̄ − iϵÞ2 þ x̄2 þ ȳ2 þ z̄2�

¼ e−½l2ðσūσv̄ ζ̄2þρ̄2Þ�N

−½σūσv̄ζ̄2 þ ρ̄2 þ iζ̄ðσūeτ̄ − σv̄e−τ̄Þϵ�
; ð28Þ

where in the second line we employed Rindler coordinates
that are ideally suited for analytical calculations with
uniformly accelerated sources.
To that end, the momentum space description of the

source jX̄ takes the following form in Rindler coordinates:

jX̄ ¼ μα

2π2

Z
M
dtdxdydzeið−t̄tþx̄xþȳyþz̄zÞ

× δð2Þð−t2 þ z2 − α2ÞδðxÞδðyÞθðuÞθðvÞ

¼ μα

2π2

Z
MR

dτdζζ exp

�
i
ζ̄ζ

2
ðσūeτ̄−τ þ σv̄e−τ̄þτÞ

�

× exp ½iðx̄xþ ȳyÞ�δð2Þðζ2 − α2Þ

¼ μα

4π2

Z
R
dτ exp

�
i
αζ̄

2
ðσūeτ̄−τ þ σv̄e−τ̄þτÞ

�
: ð29Þ

With the expressions for both GR
X̄ and jX̄ known in

momentum space we may now utilize Eq. (24) to arrive
at the real-space expression of the retarded field ϕ. Since
we shall employ Rindler coordinates, this step involves the
integration over four distinct patches of momentum space,
which we refer to asMW̄ (with W̄ ¼ R̄; L̄; F̄; P̄ in analogy to
the real-space covering of Minkowski spacetime). For this
reason the integration can be split into four integrals IW̄
over the regions MW̄. The retarded solution for ϕ is then
given by four contributions,

ϕðXÞ ¼
X
W̄

IW̄ðXÞ; ð30Þ

IW̄ðXÞ ¼
1

4π2

Z
MW̄

g1=2ðX̄Þe−iX̄·XGR
X̄jX̄: ð31Þ

Then, employing the integral expression for the source as
per Eq. (29), IW̄ takes the following rather lengthy form:

IW̄ðXÞ ¼
μα

8π3

Z
R
dτ̄

Z
∞

0

dζ̄
Z
R
dτ̃ ζ̄ exp

�
i
ζ̄

2
½σūðαe−τ̃ − σvζe−τÞeτ̄ þ σv̄ðαeτ̃ − σuζeτÞe−τ̄�

�

×

�Z
�
∞

0

dρ̄ ρ̄ J0ðρρ̄Þ
e−½l2ðσūσv̄ ζ̄2þρ̄2Þ�N

−ðσūσv̄ζ̄2 þ ρ̄2Þ þ
iπðσū − σv̄Þ

2
ζ̄J0ðρζ̄Þ

Z
∞

0

dρ̄δð2Þðσūσv̄ζ̄2 þ ρ̄2Þ
�

¼ μα

8π3

Z
R
dτ̄

Z
∞

0

dζ̄
Z
R
dτ̃ ζ̄ exp

�
i
ζ̄

2
½σūðαe−τ̃ − σvζeτ̄Þ þ σv̄ðαeτ̃ − σuζe−τ̄Þ�

�

×
�Z
�
∞

0

dρ̄ ρ̄ J0ðρρ̄Þ
e−½l2ðσūσv̄ ζ̄2þρ̄2Þ�N

−ðσūσv̄ζ̄2 þ ρ̄2Þ þ
iπðσū − σv̄Þ

4
J0ðρζ̄Þ

�
: ð32Þ

In the above we first integrated out the angles,
Z

2π

0

dφ̄ exp ½−iρ̄ρ cos ðφ̄ − φÞ� ¼ 2πJ0ðρ̄ρÞ; ð33Þ

where J0ðxÞ denotes the Bessel function of the first kind
[50]. Then we made use of the Sokhotski-Plemelj theorem
to rewrite the regulated expression

fðρ̄Þ
−X̄2j−iϵ

¼ p:v:ρ̄
fðρ̄Þ
−X̄2

þ iπðσū − σv̄Þ
2

fðζ̄Þδð2ÞðX̄2Þ; ð34Þ

where fðρ̄Þ is a continuous function. Due to the central
importance for the causal properties of the solution pre-
sented in this paper, we prove the above relation in detail in
Appendix B.
In the above, the symbol p:v:ρ̄ denotes the Cauchy

principal value with respect to the variable ρ̄ with other
coordinates held fixed. The symbol

R� denotes that the
integration is to be performed with the standard prescrip-
tion for the Cauchy principal value. Note that the last term
of Eq. (34), including the δ distribution, has support only in
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MF̄ ∪ MP̄ as there are no poles inMR̄ ∪ ML̄. Consequently,
in the regionsMR̄ ∪ ML̄ the Cauchy principal value integral
reduces to the standard integral and Eq. (34) yields the
identity, as it must.
Then, in the second equality of Eq. (32), we integrated

out the δ distribution and shifted the variables τ̃ and τ̄. In
order to obtain the final expression for the retarded field ϕ
we now need to sum the contributions IW̄ , and it is useful to
first sum the integrals corresponding to the opposite
regions. We arrive at the compact expressions

I�ðXÞ≡
�
IR̄ðXÞþIL̄ðXÞ
IF̄ðXÞþIP̄ðXÞ

¼ μα

4π3

Z
∞

0

dζ̄ ζ̄

�
C�
Wðζ; ζ̄Þ

Z
�
∞

0

dρ̄ ρ̄J0ðρρ̄Þ
e−½l2ð�ζ̄2þρ̄2Þ�N

−ð�ζ̄2þ ρ̄2Þ

−
π

2
θ∓SWðζ; ζ̄ÞJ0ðρζ̄Þ

�
; ð35Þ

where we defined θþ ¼ 1, θ− ¼ 0, and C�
Wðζ; ζ̄Þ and

SWðζ; ζ̄Þ denote the following cosine and sine integrals:

C�
Wðζ; ζ̄Þ≡

Z
R
dτ̄

Z
R
dτ̃ cos

�
ζ̄

2
ðαe−τ̃ − σvζeτ̄Þ

� ζ̄

2
ðαeτ̃ − σuζe−τ̄Þ

�
;

SWðζ; ζ̄Þ≡
Z
R
dτ̄

Z
R
dτ̃ sin

�
ζ̄

2
ðαe−τ̃ − σvζeτ̄Þ

−
ζ̄

2
ðαeτ̃ − σuζe−τ̄Þ

�
: ð36Þ

These double integrals can be separated into products of
integrals [see Eq. (3.868), (1)–(4) in Ref. [51] ] and take
the following form in the various regions of Minkowski
spacetime:

C�
R ðζ; ζ̄Þ ¼

�
π2½J0ðαζ̄ÞJ0ðζζ̄Þ þ Y0ðαζ̄ÞY0ðζζ̄Þ�;
4K0ðαζ̄ÞK0ðζζ̄Þ;

C�
L ðζ; ζ̄Þ ¼

�
π2½−J0ðαζ̄ÞJ0ðζζ̄Þ þ Y0ðαζ̄ÞY0ðζζ̄Þ�;
4K0ðαζ̄ÞK0ðζζ̄Þ;

C�
F ðζ; ζ̄Þ ¼ C�

P ðζ; ζ̄Þ ¼
�
−2πY0ðαζ̄ÞK0ðζζ̄Þ;
−2πK0ðαζ̄ÞY0ðζζ̄Þ;

SRðζ; ζ̄Þ ¼ SLðζ; ζ̄Þ ¼ 0;

SFðζ; ζ̄Þ ¼ −SPðζ; ζ̄Þ ¼ 2πK0ðαζ̄ÞJ0ðζζ̄Þ: ð37Þ

Then, the final solution for ϕ is given by the sum

ϕðXÞ ¼ IþðXÞ þ I−ðXÞ: ð38Þ

We were not able to find a closed-form analytic expression
for ϕ, which is why we refrain from giving an explicit
expression at this point.

C. Local case l= 0

As a simple consistency check let us recover the known
local solution for l → 0. Employing Eq. (35) we find

ϕðXÞ ¼ μα

4π3

Z
∞

0

dζ̄ ζ̄

�
−K0ðρζ̄ÞCþ

Wðζ; ζ̄Þ

þ π

2
Y0ðρζ̄ÞC−

Wðζ; ζ̄Þ −
π

2
J0ðρζ̄ÞSWðζ; ζ̄Þ

�
; ð39Þ

where we used the following principal value integral
expressions (for ρ ≠ 0):

Z
�
∞

0

dρ̄
ρ̄J0ðρρ̄Þ

−ð�ζ̄2 þ ρ̄2Þ ¼
�−K0ðρζ̄Þ;

π
2
Y0ðρζ̄Þ:

ð40Þ

Numerical integration of Eq. (39) perfectly matches the
known analytic result for the retarded solution [43–46],

ϕðXÞ ¼ −
μα

4π

θðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσvζ2 þ ρ2 þ α2Þ2=4 − σvα

2ζ2
p : ð41Þ

Note that this field is nonzero in MR ∪ MF and vanishes
in ML ∪ MP. Despite the discontinuity across the surface
u ¼ 0, it fully satisfies the field equations with distribu-
tional source (23). The advanced solution ϕA can be found
by formally reversing the time direction, t → −t, which is
equivalent to the exchange u ↔ v,

ϕAðXÞ ¼ −
μα

4π

θðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσuζ2 þ ρ2 þ α2Þ2=4 − σuα

2ζ2
p : ð42Þ

As already pointed out in the Introduction, this local
solution is singular at the location of the source, that is,
in the plane ζ ¼ α whenever ρ ¼ 0. On the future horizon
t ¼ z, however, the retarded field is regular. For a more
detailed discussion of this local solution, including quan-
tum radiation, we refer to Ren and Weinberg [44].

D. Nonlocal case l > 0

Let us now study the nonlocal case l > 0. In general, for
ρ > 0, we were not able to proceed analytically with the
integral expressions for the nonlocal retarded field via
Eqs. (32), (35), and (38). Restricting ourselves to the plane
ρ ¼ 0, however, the solution reduces to

IVAN KOLÁŘ and JENS BOOS PHYS. REV. D 103, 105004 (2021)

105004-6



ϕ0ðXÞ≡ ϕðXÞjρ¼0

¼ μα

4π3

Z
∞

0

dζ̄ ζ̄

�
Eið−l2N ζ̄2NÞ

2N
Cþ
Wðζ; ζ̄Þ

þ Eið−ð−l2ÞN ζ̄2NÞ
2N

C−
Wðζ; ζ̄Þ −

π

2
SWðζ; ζ̄Þ

�
;

ð43Þ

where we used the principal value integral expression

Z
�
∞

0

dρ̄
ρ̄e−½l2ðσūσv̄ ζ̄2þρ̄2Þ�N

−ð�ζ̄2 þ ρ̄2Þ ¼ Eið−ð�l2ÞN ζ̄2NÞ
2N

; ð44Þ

and EiðxÞ denotes the exponential integral [50]. Inspecting
Eq. (43) one immediately notices that the cases of even and
odd N are quite different. Indeed, the integrals for odd
values of N do not converge. This can be shown simply for
X ∈ MR ∪ ML. In this case, the first and third terms in the
integrand of Eq. (43) are suppressed for large values of ζ̄,
but the second term grows to infinity. For X ∈ MF ∪ MP,
the second term is also unbounded because it oscillates
with growing amplitude. On the other hand, the integral
converges for even values of N. This behavior for
even/odd nonlocal theories seems to be in agreement with
Refs. [26,47].
For numerical analysis it is useful to introduce dimen-

sionless quantities. Since we assume the scale of non-
locality l to be fundamental, we choose to normalize the
physical parameters of distance and acceleration with
respect to that length scale and introduce the quantity

α̂≡ α

l
: ð45Þ

The scalar field is proportional to the mass of the particle μ.
Since that constant does not appear anywhere else we
define the dimensionless scalar field ϕ̂ as

ϕ̂≡ ϕl
μ

: ð46Þ

Now the only free parameter is the dimensionless accel-
eration parameter α̂, which measures inverse acceleration
per unit mass.
For the remainder of this paper let us focus on the

simplest case of N ¼ 2, which we refer to as GF2 theory.
Then one finds

ϕ̂0ðX̂Þ ¼
α̂

4π3

Z
∞

0

dζ̄ ζ̄

�
Eið−ζ̄4Þ

4
Cþ
Wðζ̂; ζ̄Þ

þ Eið−ζ̄4Þ
4

C−
Wðζ̂; ζ̄Þ −

π

2
SWðζ̂; ζ̄Þ

�
; ð47Þ

where we introduced the dimensionless distance ζ̂ ≡ ζ=l.
The integration can be performed numerically for each
Rindler wedge, and we plot a graphical representation in
Fig. 2. For convenience we combined the numerical
expressions for the right and future wedge by artificially
plotting ϕ as a function of σuσvζ, and, similarly, in the left
and past Rindler wedge.
The retarded field has several noteworthy properties:
(1) For large timelike and spacelike distances, ζ ≫ l,

one recovers the local result discussed in the
previous section.

(2) The nonlocal field is regular at the location of the
source, ζ ¼ α, in contrast to the local field.

(3) The nonlocal field is nonvanishing in the left and
past Rindler wedges, unlike the local field.

(4) The behavior of the nonlocal solution around the
horizon appears singular. Closer inspection, as we
shall discuss below, reveals that this is an artefact of
the unphysical assumption of uniform acceleration.

Let us now discuss these properties of the retarded nonlocal
field in more detail.

1. Asymptotic timelike and spacelike behavior

As discussed in Sec. III C, in the local limit l → 0 one
recovers the local expression for the retarded field.
However, we may also consider the dimensionless limit
ζ̂≡ ζ=l → ∞, which corresponds to the limit of l → 0 at
finite Rindler radius ζ, or to the large-distance limit in the
case of finite l > 0. From the graphical representation in
Fig. 2 it is clear that the nonlocal retarded field approaches
the values of the local theory at large spacelike and timelike
distances,

ϕ̂0ðζ̂ ≫ 1Þ ¼ −
α̂ð1þ σuÞ

4πζ̂2
: ð48Þ

This is a nontrivial consistency check since it implies that
for large timelike and spacelike distances the effects of
nonlocality are heavily suppressed.

2. Regularity at the location of the source

In stark contrast to the local solution (41), the nonlocal
field is finite at the location of the particle, ζ ¼ α. It is
possible to calculate this value analytically,

ϕ̂0ðζ̂ ≈ α̂Þ ¼ 1

64π7=2α̂

�
−4π3α̂22F4

�
1

4
;
3

4
;
1

2
; 1; 1;

3

2
;
α̂4

16

�

þ π5=2α̂42F4

�
3

4
;
5

4
;
3

2
;
3

2
;
3

2
; 2;

α̂4

16

�

−
ffiffiffi
2

p
π2α̂2Aðα̂Þ − 2

ffiffiffi
2

p
Bðα̂Þ

�
þOðζ̂ − α̂Þ;

ð49Þ
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Aðα̂Þ≡G62
69

� 1
2
; 1
2
; 1

4
; 1
4
; 3
4
; 3
4

0; 0; 0; 1
2
; 1
2
; 1
2
; − 1

2
; 1
4
; 3
4

				 α̂
4

16

�
; ð50Þ

Bðα̂Þ≡G62
47

�
1; 1; 3

4
; 5
4

1
2
; 1
2
; 1
2
; 1; 1; 1; 0

				 α̂
4

16

�
; ð51Þ

where Gmn
pq denote Meijer G functions [50]. One may show

that ϕ̂ðζ̂ ≈ α̂Þ is finite, smooth, and negative for positive
values of α̂, whereas it vanishes for α̂ → 0. This manifestly
finite behavior at the location of the source matches our
expectation that nonlocality regularizes the field of localized
sources and, perhaps more importantly, presents a concrete
extension from previous static and stationary results known
in the literature to the full, time-dependent case.
A closer inspection reveals that the linear term Oðζ̂ − α̂Þ

does not vanish. This corresponds to the fact that the
minimum of the nonlocal potential is not located at ζ ¼ α

but, rather, is shifted towards smaller values of ζ. This
behavior can also be seen in Fig. 2.

3. Causal properties

Recall that the local solution (41) is proportional to the
step function θðuÞ, implying that the local retarded field is
strictly zero in the left and past Rindler wedges. In the
nonlocal case one might expect that this is no longer
the case. And indeed, Fig. 2 confirms this suspicion: the
nonlocal retarded field is nonzero in the left and past
Rindler wedges. While we were unable to find a complete
analytical description, it is again possible to find the value
of the field analytically at the somewhat ad hoc location
ζ ¼ α. In the left Rindler wedge we find

ϕ̂0ðζ̂≈ α̂Þ¼−
1

32
ffiffiffi
2

p
π7=2α̂

½π2α̂2Aðα̂Þþ2Bðα̂Þ�þOðζ̂− α̂Þ;

ð52Þ

FIG. 2. The local (dashed) and nonlocal (solid) retarded dimensionless field in the four Rindler wedges plotted as a function of σuσvζ,
in the plane ρ ¼ 0 for a dimensionless acceleration of α̂ ¼ 7, with a dimensionless step size of 0.05. The vertical dashed line in the right
wedge indicates the position of the particle at ζ̂ ¼ α̂.
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whereas for the past Rindler wedge one has

ϕ̂0ðζ̂≈ α̂Þ¼ 1

8πα̂
−

α̂

64π5=2
G31

14

�1
2
; ;

0;0;0; − 1
2

				 α̂
4

64

�
þOðζ̂− α̂Þ:

ð53Þ

Let us emphasize that these nonzero values arise solely
due to the presence of nonlocality, l > 0. In the limit of
vanishing nonlocality and finite acceleration parameter α
one has α̂ ¼ α=l → ∞, and one may show that in this limit
the above terms vanish identically.
In linearized nonlocal theories it is common wisdom that

“nonlocality smears out sharp sources” [33,52], and one
might be tempted to interpret the above expressions as
the result of a smeared out step function similar to the
expression ∼el2□2

θðuÞ. However, due to the lack of
concrete analytical expressions for the retarded field for
arbitrary values of ζ it is not possible to test this idea
further.

4. Singular behavior in vicinity of acceleration horizons

From our numerical plot in Fig. 2 it is obvious that
the retarded nonlocal field behaves somewhat singularly
in proximity to the acceleration horizons. Expanding the
integrand (43) for small values of ζ̂ one finds the following
logarithmic behavior:

ϕ̂0ðζ̂ ≪ 1Þ ¼ c0ðα̂Þ þ c1ðα̂Þ log ζ̂ þOðζ̂2Þ; ð54Þ

c0ðα̂Þ ¼
Z
R
dζ̄

α̂ ζ̄

32π3

�
πEið−ζ̄4Þ½πðσu þ σvÞJ0ðα̂ ζ̄Þ

þ 4Y0ðα̂ ζ̄Þ
�
γ þ log

ζ̄

2

��

− 4K0ðα̂ ζ̄Þ½π2ðσu − σvÞ

þ 2Eið−ζ̄4Þ
�
γ þ log

ζ̄

2

���
; ð55Þ

c1ðα̂Þ ¼
1

4π4α̂
G42

25

�
1; 1;
1
2
; 1
2
; 1; 1; 0

				 α̂4

256

�

−
1

2π2α̂
G42

47

�
1; 1; 1

4
; 3
4

1
2
; 1
2
; 1; 1; 0; 1

4
; 3
4

				 α̂4

256

�
: ð56Þ

Apparently, the retarded field diverges logarithmically as
one approaches the acceleration horizon. Note that c0
depending on σu and σv leads to different values in different
Rindler wedges. However, the constant c1 that multiplies
the diverging logarithmic term is universal.
This logarithmic divergence arises due to nonlocality and

is pathological as the retarded field of the local theory does

not exhibit any singular behavior, except for a discontinuity
on the past horizon, which we shall address in the next
subsection. In what follows we will demonstrate that the
pathological logarithmic divergence arises solely due to the
unphysical assumption of a uniformly accelerated massive
particle. This acceleration would require an infinite amount
of energy and result in a massive particle moving asymp-
totically at the speed of light.
In order to gain some qualitative understanding of the

divergences, let us consider a simpler setting of a single
point-like source located at ðu0; v0Þ,

jtestðXÞ ¼ κδðu − u0Þδðv − v0ÞδðxÞδðyÞ; ð57Þ

where κ is a dimensionless prefactor. Focusing our con-
siderations to the plane ρ ¼ 0 the resulting field is then
simply

ϕtestðXÞ ¼ κGðu; v;u0; v0Þ: ð58Þ
To study the effects of nonlocality it is sufficient to consider
the nonlocal modification of the Green function. Since we
are interested in a source that becomes asymptotically null
we need to check two cases:
(a) Past horizon: Set u0 ¼ 0 and consider the resulting

field in the limit v0 → ∞, evaluated on the past
horizon (u ¼ 0).

(b) Future horizon: Set v0 ¼ 0 and consider the resulting
field in the limit u0 → −∞, evaluated on the future
horizon (v ¼ 0).

For a visualization we refer to Fig. 3. The nonlocal Green
function modification—see Appendix A—can be written
as follows:

ΔG ¼ 1

4π5=2s2

Z
∞

0

dye−y
2=4 sin

�
s2

4yl2

�
ð59Þ

¼ −
sgn½ðu − u0Þðv − v0Þ�

4π5=2l2

Z
∞

0

dy sin
�
1

4y

�

× exp ½−y2ðu − u0Þ2ðv − v0Þ2=ð4l4Þ�; ð60Þ

where s2 ¼ ðu − u0Þðv − v0Þ. In order to probe the diver-
gence on the past horizon we set u0 ¼ 0. If u ≠ 0 then
ΔG≡ 0 due to the exponential suppression in the limit
v0 → ∞. If u ¼ 0, then the integral diverges logarithmi-
cally close to the past horizon. For the future horizon the
analysis goes through identically, mutatis mutandis.
An analytic representation of the nonlocal Green func-

tion modification confirms this behavior:

ΔGðs2Þ ¼ js2j
1024π2l4

G20
03

�
− 1

2
;− 1

2
; − 1

				 s4

256l4

�
; ð61Þ

where G20
03 denotes the Meijer G function [50]. For a

derivation of this expression we refer to Appendix A. This
function has the following asymptotics:
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ΔGðjs2j ≪ 1Þ ¼ 1

32π5=2l2

�
2 − 3γ − log

�
s4

64l4

��
;

ΔGðjs2j ≫ 1Þ ¼ 1

2
ffiffiffi
3

p
π2js2j sin

�
3

ffiffiffi
3

p
s4=3

8 · 22=3l4=3

�

× exp

�
−

3s4=3

8 · 22=3l4=3

�
: ð62Þ

While for large arguments the nonlocal contributions are
strongly suppressed, on the light cone the modifications
diverge logarithmically. This means that nonlocality may
have a nontrivial influence if the point of observation ðu; vÞ
and the location of a source at ðu0; v0Þ are null separated.
This is precisely what happens on the acceleration horizons.
Extracting the prefactor of the logarithmic divergence

created by the presence of the test source (57),

Z0 ≡ −
κ

8π5=2l2
; ð63Þ

we may now equate it to the negative of the near-horizon
constant c1ðα̂Þ of Eq. (56) while simultaneously restoring a
dimensional ϕ field, resulting in an expression for the
dimensionless constant κ,

κ ¼ −4
ffiffiffi
π

p μl2

α

�
G42

47

�
1; 1; 1

4
; 3
4

1
2
; 1
2
; 1; 1; 0; 1

4
; 3
4

				 α4

256l4

�

−
1

2π2
G42

25

�
1; 1;
1
2
; 1
2
; 1; 1; 0

				 α4

256l4

��
: ð64Þ

This implies that it is possible to regularize the logarithmic
divergence by adding a counterterm-like source with the
above prefactor on the past horizons at both ðu0 → −∞;
v0 ¼ 0Þ and ðu0 ¼ 0; v0 → ∞Þ; see also Fig. 3. It is clear
that this procedure is necessitated solely due to the presence
of nonlocality, since in the limit l → 0 one has κ → 0, as
expected.
Hence, just as in the local case, the singular behavior

arises due to the unphysical assumption of uniform accel-
eration: in order to accelerate a particle of mass μ to the
speed of light we would require an infinite amount of
energy. In the local case, due to the simplicity of the local
Green function, it is possible to consider instead a source
which is initially at rest and then starts accelerating: see
Bondi and Gold [36] and Boulware [37] for the electro-
magnetic case, and Ren and Weinberg [44] for the scalar
case. Boosting such a source to a finite speed, and then
taking the ultrarelativistic limit, one recovers the unphys-
ical discontinuities on the past acceleration horizon that are
otherwise absent.
Unfortunately, due to the complicated analytical form

of the nonlocal Green function, such a construction is not
feasible in this case. However, based on the above
discussion we may argue that if the source never reaches
the future light cone (or has never emanated from the past
light cone) then there would be no such singular behavior.
Alternatively, one may place the κ sources on the past
horizons as a regularization prescription.
These considerations confirm our hypothesis that the

unphysical assumption of uniform acceleration leads to
the pathological behavior on the past and future horizons,
and any physically well-behaved source should be devoid
of such artefacts. Nonlocal theories, such as the GF2 theory
studied in the present work, appear to be more sensitive to
the physicality of sources.

5. “Principal values” across acceleration horizons

While the field is logarithmically divergent on the
horizon, it is possible to show that the difference of the
field across both the past acceleration horizon (u ¼ 0)
as well as the future acceleration horizon (v ¼ 0) is
finite. Since this difference is taken between two
diverging expressions we shall refer to it as a “principal
value.” This principal value is known from the local
case, l ¼ 0. In the local theory the field is manifestly
finite on all horizons, and hence the principal value
becomes a mere discontinuity. Moreover, this disconti-
nuity only appears across the past horizon, and not on
the future horizon.
In this subsection we will determine the principal values

across the acceleration horizons analytically (for ρ ¼ 0).
Since ϕ depends only on the coordinate ζ ¼ ffiffiffiffiffiffiffiffijuvjp

, the
near-horizon expressions for the functions in the integrand
of Eq. (43) can be found by inserting ζ ¼ pq (with p > 0
and q > 0) and expanding around q ¼ 0,

FIG. 3. Test setup to understand the emergence of singular
behavior on the past and future acceleration horizons due to
nonlocality. Consider two sources of magnitude κ located at
ðu0; 0Þ and ð0; v0Þ and then take the limit u0 → −∞ and v0 → ∞,
shifting the sources into the asymptotic past.
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Cþ
Wðζ; ζ̄Þ ≈

1

2
πf4Y0ðαζ̄Þ½log ðpqζ̄=2Þ þ γ�

þ πðσu þ σvÞJ0ðαζ̄Þg; ð65Þ

C−
Wðζ; ζ̄Þ ≈ −4K0ðαζ̄Þ½log ðpqζ̄=2Þ þ γ�; ð66Þ

SWðζ; ζ̄Þ ≈ πðσu − σvÞK0ðαζ̄Þ: ð67Þ

It turns out that the difference of these integrals between
either side of the horizon is independent of the position on
the horizon p as well as the near-distance coordinate q. As a
consequence, the jumps across u ¼ 0 and v ¼ 0 reduce to
the finite expressions

Δϕu¼0
0 ¼ þ μα

16π

Z
∞

0

dζ̄ ζ̄½Eið−l2N ζ̄2NÞJ0ðαζ̄Þ − 4K0ðαζ̄Þ�;

ð68Þ

Δϕv¼0
0 ¼ −

μα

16π

Z
∞

0

dζ̄ ζ̄½Eið−l2N ζ̄2NÞJ0ðαζ̄Þ þ 4K0ðαζ̄Þ�:

ð69Þ

For N ¼ 2 one finds the analytic expressions

Δϕu¼0
0 ¼ −

μ

2πα

�
1 −

1

2
Qðα̂Þ

�
; ð70Þ

Δϕv¼0
0 ¼ −

μ

4πα
Qðα̂Þ; ð71Þ

Qðα̂Þ≡ 0F2

�
;
1

2
;
1

2
;

α̂4

256

�
−

ffiffiffi
π

p
α̂2

8 0F2

�
; 1;

3

2
;

α̂4

256

�
;

ð72Þ

where Qðα̂Þ captures the influence of nonlocality. Let us
emphasize that the logarithmic divergence encountered
on the horizon in GF2 theory precisely cancels out of this
symmetric limit from both sides of the horizons. In the
cases of small and large values for the dimensionless
acceleration parameter α̂ one finds

lim
α̂→0

Q ¼ 1; lim
α̂→∞

Q ¼ 0: ð73Þ

The latter equation shows that in the limiting case of
vanishing nonlocality, l → 0 (which implies α̂ → ∞), the
principal value across the future horizon (v ¼ 0) vanishes.
Hence, the principal value across the future horizon is

solely related to the presence of nonlocality, and the
principal value across the past horizon is modified by
nonlocality—in the local theory it is merely a discontinuity
since there are no divergences. Let us also note that the
contributions due to nonlocality across these horizons are
equal in magnitude but opposite in sign.

It is conceivable that these nontrivial principal values
remain present in the nonlocal retarded field even after the κ
subtraction presented in the previous subsection. This is
because the logarithmically divergent term, as per Eq. (56),
does not depend on the Rindler wedge and hence cancels
out of the symmetric principal value prescription presented
in this subsection. The constant term, however, as per
Eq. (55), differs across the Rindler wedges, giving rise to
the nontrivial principal value.
The function Q exhibits damped oscillatory behavior

with an infinite number of nonperiodic zeros, the first few
taking place at α̂ ¼ f2.77; 6.26; 9.18; 11.81g. For these
values the principal value vanishes across v ¼ 0. On the
other hand, the quantity κ viewed as a function of α̂
also undergoes damped nonperiodic oscillations, with the
first zeros at α̂ ¼ f0; 4.63; 7.77; 10.52g. For those distinct
values there are no divergences on the horizons, but the
solution is discontinuous due to the nonvanishing principal
value. A graph of the functions Qðα̂Þ and κðα̂Þ can be seen
in Fig. 4. Their zeros do not coincide, which means that for
select values of dimensionless acceleration α̂ ¼ α=l one
may have either no principal value or a finite field at the
acceleration horizon.

E. A nonlocal Born-type solution

Before concluding, let us briefly comment on a possible
extension of the retarded solution discussed so far. Namely,
we would like to construct a nonlocal generalization of the
Born solution [34] and comment on its features in relation
to the previously discussed logarithmic divergences and
principal values.
Formally, the Born solution may be regarded as the

field resulting from the retarded response of a uniformly
accelerated particle in the right Rindler wedge superposed
with the advanced field of a uniformly accelerated particle
in the left Rindler wedge [45,46]. Instead of rederiving
Eqs. (32), (35), and (38) for that particular case, let us

FIG. 4. A plot of the dimensionless function Qðα̂Þ and κðα̂Þ in
arbitrary units. They both undergo nonperiodic oscillations, and
their zeros do not coincide.
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observe that we can transform the retarded field in the
right Rindler wedge into the advanced field in the left
Rindler wedge by mapping the null coordinates u → −u
and v → −v, which amounts to identifying MR → ML as
well as MF → MP. Let us call the retarded solution ϕR and
the advanced solution ϕA. The Born solution is

ϕB ≡ ϕR þ ϕA: ð74Þ

The Born field in, say, the right Rindler wedge is then the
superposition of the retarded field in the right Rindler
wedge and the advanced field of the left Rindler wedge, and
similarly for all other wedges. For this reason the depend-
ence on the factors σu and σv, as encountered in Eqs. (32),
(35), and (38), drops out entirely. This immediately implies
that the principal values across the horizons vanish iden-
tically for the Born solution.
The logarithmic divergences on the horizons, however,

as can be seen from Eqs. (54)–(56), do not depend on
the Rindler wedge, and hence are still present in the
Born solution and need to be removed via a suitable κ
subtraction.

IV. CONCLUSIONS

In this paper we constructed the retarded field of a
uniformly accelerated point particle in a nonlocal scalar
field theory: we employed the Sokhotski-Plemelj theorem
to construct a nonlocal causal Green function in momentum
space and found an integral representation for the resulting
field. We then proved that the presence of nonlocality
regularizes the field at the location of the source, while—
for large timelike and spacelike distances away from
the hyperbolically accelerated source—approaching the
expression for the retarded field found in the local theory,
in accordance with DeWitt’s notion of asymptotic causality
encountered in nonlocal theories.
On the acceleration horizons of the source, however, the

retarded field is mildly logarithmically divergent due to the
presence of nonlocality. Using a pair of test sources on a
null cone we proved analytically that such sources indeed
give rise to logarithmic divergences in this particular
nonlocal theory. We believe that this divergence is similar
to those artefacts encountered in local theories, arising
due to the unphysical assumption of uniform acceleration.
Our considerations prove that if the source is never to
become asymptotically null (either in its past or future)
then there are no such divergences present, consistent with
the regular field of null sources in other nonlocal theories
[13,15,16,53]. Moreover, we devised a prescription that
involves test sources placed in the asymptotic past of the
acceleration horizon which is capable of removing these
spurious divergences. It remains to be seen if and how these
additional sources are related to modified boundary con-
ditions that one may encounter in nonlocal field theories.
We shall leave this question for future research.

Let us offer an additional perspective on the logarithmic
divergences on the acceleration horizon. The nonlocal
modification of the Green function ΔG, see Eqs. (A2)
and (A5), encodes all effects of nonlocality in our linear
theory such that new nonlocal effects are due to this object.
At the same time, ΔG is a quantity that has no poles in the
complex momentum plane. For this reason it is insensitive
to iϵ prescriptions, such that the causal properties of the
total Green function (and hence the relation to boundary
conditions) are encoded in the local Green function. In
other words, the logarithmic divergence only arises due to
nonlocality, and for this reason is unlikely to be caused by
boundary conditions.
Last, we found that the difference of the retarded field

across acceleration horizons is finite, even without a
regularization procedure, and we demonstrated that for a
nonlocal generalization of the Born solution these principal
values vanish identically. If combined with the regulariza-
tion procedure of sources in the asymptotic past one
then arrives at a solution that is completely regular on
the horizons.
It is a natural question to ask how the radiation of a

retarded nonlocal source behaves, but since energy-
momentum tensors of nonlocal fields are notoriously hard
to compute, see e.g., Ref. [27] for a concrete example
of GF1 theory, this point deserves further study. Another
avenue would be the study of nonlocal electrodynamics,
where recently ultrarelativistic objects have been studied
by one of the authors [53]. Then, it would also be highly
interesting to study implications for the presence of
radiation vis-à-vis the equivalence principle in Lorentz-
invariant nonlocal theories.
Let us emphasize that the results derived in this paper

present only one step towards improving our understanding
of the spacetime structure of nonlocality. Due to the
intrinsic Lorentz invariance that lies at the very heart of
this class of nonlocal field theories, modifications of the
Green function can only be a function of the dimensionless
4-distance,

ΔGðt0; x0; t; xÞ ¼ ΔG
�
−ðt0 − tÞ2 þ ðx0 − xÞ2

l2

�
: ð75Þ

Naively speaking, Lorentz-invariant nonlocal field theories
cannot seem to tell whether two points in spacetime are
coincident or null separated. Whether this presents a bug or
a feature of this class of nonlocal theories remains to
be seen.
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APPENDIX A: REAL-SPACE EXPRESSION FOR
THE NONLOCAL MODIFICATION OF THE

SCALAR GREEN FUNCTION

The free scalar retarded Green function GRðX0; XÞ, due to
the translational isometry of Minkowski space, depends
only on the difference of its arguments, GRðX0; XÞ ¼
GRðX0 − XÞ. Moreover, writing Xμ ¼ ðt; xÞ, one can
further decompose the argument structure as GRðX0; XÞ ¼
GRðt0 − t; x0 − xÞ. A Green function in GF2 theory is a
solution of

□e−l
4
□

2

GRðt0 − t; x0 − xÞ ¼ −δðt0 − tÞ × δð3Þðx0 − xÞ;
ðA1Þ

and clearly it is sensitive to the existence of nonlocality
l > 0. We may decompose it as

GRðt0 − t; x0 − xÞ ¼ GRðt0 − t; x0 − xÞ þ ΔGðt0 − t; x0 − xÞ;
ðA2Þ

where ΔGðt0 − t; x0 − xÞ is a nonlocal modification term
and GRðt0 − t; x0 − xÞ is the local retarded Green function
that solves

□GRðt0 − t; x0 − xÞ ¼ −δðt0 − tÞδð3Þðx0 − xÞ; ðA3Þ

subject to the retarded constraint GRðt0 − t; x0 − xÞ ¼ 0 if
t0 < t. From now on we shall denote t0 − t simply as t and
x0 − x as x. For the local piece one may calculate

GRðt; xÞ ¼ 1

2π
δð2Þð−t2 þ x2ÞθðtÞ; ðA4Þ

which, by construction, is only nonvanishing on the future
light cone. Inside the future light cone, as well as anywhere
outside of it, it vanishes identically. The nonlocal part can
be calculated as

ΔGðt; xÞ ¼
Z

∞

−∞

dω
2π

Z
R3

d3k
ð2πÞ3 e

þiωt−ik·x 1 − e−l
4ðω2−k2Þ2

ω2 − k2

¼ l2

2π7=2x

Z
∞

0

dω cosωt
Z

∞

0

kdk sin kx

×
Z

∞

0

e−y
2=4

Z
y

0

dz sin ½l2ðω2 − k2Þz�

¼ l2

2π7=2x

Z
∞

0

dye−y
2=4

Z
y

0

dz

× ½I1ðt; zÞI2ðx; zÞ − I3ðt; zÞI4ðx; zÞ�; ðA5Þ

where we defined k≡ jkj as well as x≡ jxj, and I1, I2, I3,
and I4 denote the following regularized integrals:

I1ðt; zÞ ¼ lim
α→0

Z
∞

0

dωe−αω cosωt sinω2l2z

¼
ffiffiffiffiffiffiffiffiffiffi
π

8zl2

r �
cos

�
t2

4zl2

�
− sin

�
t2

4zl2

��
; ðA6Þ

I3ðt; zÞ ¼ lim
α→0

Z
∞

0

dωe−αω cosωt cosω2l2z

¼
ffiffiffiffiffiffiffiffiffiffi
π

8zl2

r �
cos

�
t2

4zl2

�
þ sin

�
t2

4zl2

��
; ðA7Þ

I2ðx; zÞ ¼ lim
α→0

Z
∞

0

kdke−αk sin kx cos k2l2z

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
π

8z3l6

r
x

�
sin

�
x2

4zl2

�
− cos

�
x2

4zl2

��
; ðA8Þ

I4ðx; zÞ ¼ lim
α→0

Z
∞

0

kdke−αk sin kx sin k2l2z

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
π

8z3l6

r
x
�
sin

�
x2

4zl2

�
þ cos

�
x2

4zl2

��
: ðA9Þ

Then one can further regulate (s2 ≡ −t2 þ x2)

ΔGðt; xÞ ¼ −
1

16π5=2l2

Z
∞

0

dye−y
2=4

Z
y

0

dz
z2

cos

�
s2

4zl2

�

¼ −
1

16π5=2l2

Z
∞

0

dye−y
2=4

× lim
α→0

Z
∞

1=y
dze−αz cos

�
s2

4l2
z

�

¼ 1

4π5=2s2

Z
∞

0

dye−y
2=4 sin

�
s2

4yl2

�

¼ js2j
1024π2l4

G20
03

�
− 1

2
;− 1

2
;−1

				 s4

256l4

�
; ðA10Þ
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where G20
03 denotes a Meijer G function [50]. It is clear that

this function is invariant under s2 → −s2, meaning that it
does not distinguish between timelike and spacelike dis-
tances, consistent with the putative acausality typically
encountered in nonlocal theories.
For small and large arguments s2 one finds the following

asymptotic behavior:

ΔGðjs2j ≪ 1Þ ¼ 1

32π5=2l2

�
2 − 3γ − log

�
s4

64l4

��
;

ΔGðjs2j ≫ 1Þ ¼ 1

2
ffiffiffi
3

p
π2js2j sin

�
3

ffiffiffi
3

p
s4=3

8 · 22=3l4=3

�

× exp

�
−

3s4=3

8 · 22=3l4=3

�
: ðA11Þ

The nonlocal modification is logarithmically divergent on
the light cone and decreases exponentially fast for large
spacelike and timelike distances. We plot the function
ΔGðs2Þ as well as its asymptotics in Fig. 5. The exponential
suppression happens in accordance with DeWitt’s asymp-
totic causality criterion [49] which states that any causal
Green function must satisfy

lim
t0−t→−∞

Gðt0 − t; x0 − xÞ ¼ 0; ðA12Þ

that is, if the effect precedes the cause arbitrarily, any causal
Green function must vanish. Since local causal Green
functions satisfy DeWitt’s criterion identically—since they

are proportional to θðt0 − tÞ—we only need to verify that
the nonlocal modification satisfies condition (A12), which
it does, as can be seen from Eq. (A11).

APPENDIX B: PROOF OF EQ. (34) USING THE
SOKHOTSKI-PLEMELJ THEOREM

The Sokhotski-Plemelj theorem may be stated as fol-
lows: for any continuous function fðxÞ one has

fðx − x0Þ
x − x0 � iϵ

¼ p:v:x
fðx − x0Þ
x − x0

∓ iπδðx − x0Þ: ðB1Þ

These expressions are understood under the integral sign,

lim
ϵ→0

Z
b

a
dx

fðx − x0Þ
x − x0 � iϵ

¼
Z
�
b

a

dx
fðx − x0Þ
x − x0

∓ iπfðx0Þ: ðB2Þ

First, let us consider X̄ ∈ MR ∪ ML. Then the function
−fðρ̄Þ=X̄2 has no poles since X̄2 ≠ 0 in that region. This
means that Eq. (34) is satisfied trivially: the Cauchy
principal value integral reduces to the standard integral,
and the δ term does not contribute since the momentum is
spacelike. In other words, in this domain the iϵ prescription
is not necessary and we may simply set ϵ ¼ 0.
If X̄ ∈ MF̄ ∪ MP̄, we define σ ≡ ðσū − σv̄Þ=2 such that

σ ¼ 1 in MF̄ and σ ¼ −1 in MP̄. Then one can show

−fðρ̄Þ
−ðt̄ − iϵÞ2 þ x̄2 þ ȳ2 þ z̄2

≈
−fðρ̄Þ

σūσv̄ζ̄
2 þ ρ̄2 þ iζ̄ðσūeτ̄ − σv̄e−τ̄Þϵ

≈
−fðρ̄Þ

½ρ̄ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ̄2 − iσζ̄ϵ

p
�½ρ̄þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ̄2 − iσζ̄ϵ

p
�

≈
−fðρ̄Þ

ðρ̄ − ζ̄ þ iσεÞðρ̄þ ζ̄ − iσεÞ

¼ 1

2ζ̄

�
−fðρ̄Þ

ρ̄ − ζ̄ þ iσε
−

−fðρ̄Þ
ρ̄þ ζ̄ − iσε

�

¼ p:v:ρ̄
−fðρ̄Þ
ρ̄2 − ζ̄2

þ iσπfðζ̄Þδð2Þðρ̄2 − ζ̄2Þ; ðB3Þ

where in several lines we have rescaled ϵ by a positive
constant. Utilizing this relation in Eq. (24) and the
following steps, one readily obtains Eq. (34) as written
in the main body of the paper.

FIG. 5. The dimensionless nonlocal modification ΔGðjs2jÞ ×
l2 plotted as a function of dimensionless 4-distance js2j=l2,
together with its null expansion (js2j ≪ 1) as well as large-
distance expansion js2j ≫ 1.
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Impulsive waves in ghost free infinite derivative gravity in
anti-de Sitter spacetime, Phys. Rev. D 102, 044016 (2020).

[17] T. Biswas, A. Mazumdar, and W. Siegel, Bouncing uni-
verses in string-inspired gravity, J. Cosmol. Astropart. Phys.
03 (2006) 009.

[18] T. Biswas, T. Koivisto, and A. Mazumdar, Towards a
resolution of the cosmological singularity in non-local
higher derivative theories of gravity, J. Cosmol. Astropart.
Phys. 11 (2010) 008.

[19] J. Boos, V. P. Frolov, and A. Zelnikov, Quantum scattering
on a delta potential in ghost-free theory, Phys. Lett. B 782,
688 (2018).

[20] L. Buoninfante, A. Mazumdar, and J. Peng, Nonlocality
amplifies echoes, Phys. Rev. D 100, 104059 (2019).

[21] J. Boos, V. P. Frolov, and A. Zelnikov, Resonant particle
creation by a time-dependent potential in a nonlocal theory,
arXiv:2011.12929.

[22] I. L. Shapiro, Counting ghosts in the ‘ghost-free’ non-local
gravity, Phys. Lett. B 744, 67 (2015).

[23] C. D. Carone, Unitarity and microscopic acausality in a
nonlocal theory, Phys. Rev. D 95, 045009 (2017).

[24] F. Briscese and L. Modesto, Cutkosky rules and perturbative
unitarity in Euclidean nonlocal quantum field theories,
Phys. Rev. D 99, 104043 (2019).

[25] L. Buoninfante, G. Lambiase, and A. Mazumdar, Ghost-free
infinite derivative quantum field theory, Nucl. Phys. B944,
114646 (2019).

[26] J. Boos, V. P. Frolov, and A. Zelnikov, Probing the vacuum
fluctuations in scalar ghost-free theories, Phys. Rev. D 99,
076014 (2019).

[27] J. Boos, V. P. Frolov, and A. Zelnikov, Ghost-free modifi-
cation of the Polyakov action and Hawking radiation, Phys.
Rev. D 100, 104008 (2019).

[28] G. Calcagni, M. Montobbio, and G. Nardelli, Localization
of nonlocal theories, Phys. Lett. B 662, 285 (2008).
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