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Solutions to the backreaction equation in 1þ 1-dimensional semiclassical electrodynamics are obtained
and analyzed when considering a time-varying homogeneous electric field initially generated by a classical
electric current, coupled to either a quantized scalar field or a quantized spin-1

2
field. Particle production by

way of the Schwinger effect leads to backreaction effects that modulate the electric field strength. Details of
the particle production process are investigated along with the transfer of energy between the electric field
and the particles. The validity of the semiclassical approximation is also investigated using a criterion
previously implemented for chaotic inflation and, in an earlier form, semiclassical gravity. The criterion
states that the semiclassical approximation will break down if any linearized gauge-invariant quantity
constructed from solutions to the linear response equation, with finite nonsingular data, grows rapidly for
some period of time. Approximations to homogeneous solutions of the linear response equation are
computed and it is found that the criterion is violated when the maximum value, Emax, obtained by the
electric field is of the order of the critical scale for the Schwinger effect, Emax ∼ Ecrit ≡m2=q, where m is
the mass of the quantized field and q is its electric charge. For these approximate solutions the criterion

appears to be satisfied in the extreme limits qEmax

m2 ≪ 1 and qEmax

m2 ≫ 1.

DOI: 10.1103/PhysRevD.103.105003

I. INTRODUCTION

The semiclassical approximation has been com-
monly used among a wide variety of physical scenarios
where a quantized field on a classical background is
investigated, with interesting phenomena emerging from
such considerations including the decay of an electric
field by the Schwinger effect [1], particle creation in
an expanding universe [2], and black hole evapora-
tion via the Hawking effect [3] (see also Refs. [4,5]
and references therein). Consider for instance quantum
electrodynamics, described in terms of an electromagnetic
potential Aμ and a Dirac field ψ , with classical action
S½Aμ; ψ̄ ;ψ �. The semiclassical theory can be formally
described using the concept of the effective action Γ½Aμ�,
obtained by functional integration of the matter degrees of
freedom [6]

expfiΓ½Aμ�g ¼
Z

Dψ̄Dψ expfiS½Aμ; ψ̄ ;ψ �g: ð1:1Þ

Within this framework the (semiclassical) Maxwell field
equations take the form

∂μFμν ¼ qh0Ajψ̄γμψ j0Ai; ð1:2Þ

and replace the proper Maxwell equations of the full
quantized theory in the Schwinger-Dyson form ∂μhFμνi ¼
qhψ̄γμψi. In Eqs. (1.1) and (1.2) the electromagnetic field is
treated as a purely classical entity. Moreover, the right-hand
side of Eq. (1.2) is implicitly a function of Aμ in the sense
that the assumed vacuum depends on Aμ. This is so because
the modes of the charged Dirac field, defining the appro-
priate vacuum j0Ai, satisfy equations involving the back-
ground field Aμ. This semiclassical approach is usually
regarded as a truncated and effective version of the fully
quantized theory, with a limited range of validity.
One advantage of the semiclassical viewpoint is that it

provides a clear description of the spontaneous particle
creation phenomena. The nonzero imaginary part of the
effective action Γ½Aμ� indicates the quantum instability of
the vacuum j0Ai and the corresponding pair creation
process [1]. This phenomena can be better understood in
the canonical language: a positive-frequency solution of the
Dirac equation ðiD −mÞψ ¼ 0 at early times will evolve
into a superposition of positive- and negative-frequency

*silvia.pla@uv.es
†newsim18@wfu.edu
‡linkrs15@wfu.edu
§anderson@wfu.edu∥jnavarro@ific.uv.es

PHYSICAL REVIEW D 103, 105003 (2021)

2470-0010=2021=103(10)=105003(23) 105003-1 © 2021 American Physical Society

https://orcid.org/0000-0001-8286-8118
https://orcid.org/0000-0001-8066-7419
https://orcid.org/0000-0002-9558-8737
https://orcid.org/0000-0002-9882-001X
https://orcid.org/0000-0002-5390-6477
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.105003&domain=pdf&date_stamp=2021-05-06
https://doi.org/10.1103/PhysRevD.103.105003
https://doi.org/10.1103/PhysRevD.103.105003
https://doi.org/10.1103/PhysRevD.103.105003
https://doi.org/10.1103/PhysRevD.103.105003


solutions at late times (this was first described for a
gravitational background [2]). The semiclassical approach
encapsulates in a clear way this very important effect.
The original calculation by Schwinger [1] involved a
background field calculation in which the electric field E
is constant in both space and time. A particle production
rate was obtained. The dependence on the coupling con-
stant q displayed an essential singularity e−m

2=qE, showing
the nonperturbative nature of the Schwinger effect. The
damping of the electric field can be deduced from this
particle production rate. The real part of the (Heisenberg-
Euler) effective action can also account for perturbative
effects, such as light-by-light scattering, in agreement
with the exact one-loop calculation in the limit of low-
frequency light, or the running of the effective coupling
constant.
Subsequently the semiclassical backreaction equation

was solved for an electromagnetic field coupled to a
massive scalar field or a massive spin-1

2
field in 1þ 1

dimensions (D) [7–9] and 3þ 1D [9–11]. The electric field
was assumed to be homogeneous in space, but was allowed
to vary in time in response to the electric current that occurs
when the produced particles are accelerated by the electric
field. It was found the counter-electric field produced by
this current initially starts to negate the original background
electric field. Eventually the background field is completely
canceled, but by this time there is a significant electric
current due to particle production and the result is that the
particles keep moving which generates an electric field in
the opposite direction. The process continues and the
particles end up undergoing plasma oscillations with an
overall electric field oscillation in time. Similar studies
have also been done by solving the Vlasov equation with a
source term to account for particle production [7–9,12],
using lattice simulations [13,14], and classical statistical
field theory techniques [11].
In this paper we obtain and further study solutions to the

semiclassical backreaction equation in 1þ 1D for both
scalar and spin-1

2
fields coupled to an electromagnetic

field initially generated by a homogeneous, classical
current. We have two primary goals. The first is to study
the details of the particle production process when back-
reaction effects have been taken into account, including
also the transfer of energy between the electric field and
the created particles. The second goal is to estimate the
importance of certain types of quantum fluctuations and use
the results to assess the validity of the semiclassical
approximation.
We study three classical current profiles which generate

an electric field that is initially zero. The first is similar to
the previous cases in that the current is proportional to a
delta function potential and the electric field goes from zero
to a constant value instantaneously. A second profile
involves a sudden turn on of the classical current but a
gradual turn on of the electric field. The third profile is that

of the Sauter pulse [15] in which the current is in the form
of a smooth pulse that has a significant value only for a
finite period of time. For the Sauter pulse the turn on and, if
quantum effects are ignored, the turn off of both the current
and the electric field are very gradual. In all three cases
there is a well-defined vacuum state for the quantum fields
since the electric field is initially zero. The semiclassical
backreaction equation is solved numerically both in the
case of semiclassical scalar and spinor electrodynamics. To
our knowledge the semiclassical backreaction equations
have not been generically studied for the second and third
classical current profiles. The first one has been considered
in Refs. [10–14].
The particle production process for individual modes of

the quantum field has previously been studied in back-
ground field calculations where the electric field is either
constant [16,17] or is gradually turned on and then off [18].
It was found that a single particle creation event occurs for
many modes when the electric field is either constant or
approximately constant. Here, we consider particle pro-
duction when backreaction effects are taken into account.
Because of the plasma oscillations, there is a richer
evolution for some modes that involves multiple particle
creation events and can also involve particle destruction
events. We do this for individual modes for the delta
function classical current profile.
For completeness, and to give better insight into the

particle creation process, we also compute the total number
of particles produced for all three profiles and the energy
density of the produced particles for the delta function
current profile. The energy density of the particles is
compared with the energy density of the electric field.
Similar calculations have been done previously in 1þ 1D
using lattice simulations [13] and in 3þ 1D using canoni-
cal quantization [10] and classical statistical field theory
techniques [11].
We compute the energy density of the quantum field

using the continuous adiabatic regularization prescription,
obtaining compatible results. The agreement between both
approaches for Dirac massless fermions can be easily
understood since the full QED2 model is integrable [19]
and particle production can be well described within the
semiclassical framework. The presence of a nonzero mass
breaks integrability and hence one could expect it to also
break the accuracy of the semiclassical picture.
The validity of the semiclassical approximation is

studied here by estimating the importance of some of
the quantum fluctuations. The semiclassical approximation
breaks down if quantum fluctuations are too large. We use a
criterion for the validity of the semiclassical approximation
that has been previously applied to the process of preheat-
ing in models of chaotic inflation [20]. An earlier version of
the criterion has also been used to study the validity of the
semiclassical approximation for free scalar fields in flat
space when the fields are in the Minkowski vacuum state
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[21] and for the conformally invariant scalar field in the
Bunch-Davies state in de Sitter space in the usual spatially
flat cosmological coordinates [22]. To our knowledge no
similar study of the validity of the semiclassical approxi-
mation has been done previously for scalar electrodynamics
or quantum electrodynamics when particle creation occurs
due to the presence of a strong electric field.
The method we use to study the validity of the semi-

classical approximation involves an analysis of solutions to
the linear response equation which can be obtained by
perturbing the semiclassical backreaction equation. In
general, the linear response equation obtained in this
way is an integro-differential equation which involves an
integral over the retarded two-point correlation function for
the source term in the semiclassical backreaction equation.
In this case, that is the two-point correlation function for the
electric current. While the general form is known, the
specific forms for the case of a homogeneous electric field
in 1þ 1D coupled to either a massive scalar field or a spin-1

2
field has not previously been derived. We do so in the
Appendix for both of these cases.
Although the linear response equation can be solved

directly, there is a simpler method which can be used to
obtain an approximate solution which should be valid
at early times if the exact solution is relatively small.
The method involves computing the difference ΔE
between two solutions to the semiclassical backreaction
equation which have similar starting values at a given time.
This method was used to investigate the validity of the
semiclassical approximation during the preheating phase
of chaotic inflation in Ref. [20]. It works for the homo-
geneous solutions to the linear response equation that we
consider here.
The paper is organized as follows. In Sec. II brief reviews

are given of the quantization of complex charged scalar and
spin-1

2
fields in electrodynamics. The semiclassical back-

reaction equations are also discussed along with the
renormalization techniques used. In Sec. III the details
of the particle production process are investigated for the
case of a classical current profile proportional to a delta
function. Also discussed is the transfer of energy between
the electric field and the created particles. The criterion for
the validity of the semiclassical approximation that we use
is discussed in Sec. IV where both the general form and the
specific form of the linear response equation are displayed
for the separate cases of a scalar field and spin-1

2
field

coupled to the electromagnetic field. In Sec. V some of the
results of numerical calculations we have made related to
the validity of the semiclassical approximation are pre-
sented and discussed. A summary of our results and some
conclusions are given in Sec. VI. The Appendix contains
derivations of the specific contributions to the linear
response equations from the current-current commutators
when scalar fields and spin-1

2
fields are coupled to the

electromagnetic field.

II. QUANTIZATION AND RENORMALIZATION
OF COMPLEX SCALAR AND SPIN-12 FIELDS

In this section we will briefly describe the models under
consideration: a quantized complex scalar field and a
quantized Dirac field, both interacting with a background
electromagnetic field generated by a prescribed classical
source. For the two systems under investigation, we restrict
our analysis to a 1þ 1D Minkowski space and assume that
the background electric field is spatially homogeneous so
that E ¼ EðtÞ in a given reference frame. We use units such
that ℏ ¼ c ¼ 1 and our convention for the metric signature
is ð−;þÞ.

A. Scalar field

The classical action representing a scalar field ϕðt; xÞ
coupled to a background electromagnetic field is

S ¼
Z

d2x

�
−
1

4
FμνFμν þ AμJ

μ
C −Dμϕ

†Dμϕ −m2ϕ†ϕ

�
;

ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field-
strength tensor, the mass of scalar field excitations is
given by m, and Dμ ¼ ∂μ − iqAμ is the gauge-covariant
derivative required to make the action gauge invariant. JμC is
a classical and conserved external source. Variation of
Eq. (2.1) with respect to the vector potential yields the
classical Maxwell equations

−□Aμ þ ∂μ∂νAν ¼ JμC þ JμQ; ð2:2Þ

where the source term JμQ induced by the scalar field is
given by

JμQ¼ ημν½−iqðϕ†∂νϕ− ð∂νϕ
†ÞϕÞ−2q2Aνðϕ†ϕÞ�: ð2:3Þ

The field equation for ϕðt; xÞ is ðDμDμ −m2Þϕðt; xÞ ¼ 0.
We choose the Lorentz gauge ∂μAμ ¼ 0, and fix the vector
potential in the convenient form

Aμ ¼ ð0; AðtÞÞ; ð2:4Þ

which therefore yields F01 ¼ ∂0A1 ¼ _A ¼ −E. The field
equation reduces to

½−∂2
t þ∂2

x−2iqAðtÞ∂x−q2A2ðtÞ−m2�ϕðt;xÞ¼0: ð2:5Þ

Quantizing the scalar field and expanding it in terms of
modes yields

ϕðt; xÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dk½akUkðt; xÞ þ b†kVkðt; xÞ�; ð2:6Þ
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where ak, a†k, bk, and b†k are the usual creation and
annihilation operators obeying the commutation relations
½ak; a†k0 � ¼ ½bk; b†k0 � ¼ δðk − k0Þ. Due to spatial homogeneity
we can write the modes Ukðt; xÞ and Vkðt; xÞ in
the convenient form Ukðt; xÞ ¼ fkðtÞeikx, Vkðt; xÞ ¼
f�−kðtÞe−ikx, where fkðtÞ satisfies the ordinary differential
equation

f̈kðtÞ þ ½ðk − qAÞ2 þm2�fkðtÞ ¼ 0 ð2:7Þ
and is normalized using the Wronskian condition

fk _f
�
k − f�k _fk ¼ i: ð2:8Þ

This allows us to recast the scalar field mode decompo-
sition as

ϕðt; xÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

dk½akfkðtÞ þ b†−kf
�
kðtÞ�eikx: ð2:9Þ

B. Spin-12 field

The classical action representing a spin-1
2
field ψðt; xÞ

coupled to a background electric field is

S ¼
Z

d2x

�
−
1

4
FμνFμν þ AμJ

μ
C þ iψ̄γμDμψ −mψ̄ψ

�
;

ð2:10Þ

where ψ̄ ¼ ψ†γ0, with Fμν and Dμ defined the same as for
the scalar field case. The Dirac matrices γμ satisfy the
anticommutation relations fγμ; γνg ¼ −2ημν. As for the
scalar field, JC is an external classical source. The Maxwell
equations include the source term induced by the field ψ

JμQ ¼ qψ̄γμψ : ð2:11Þ

The field equation for ψðt; xÞ is the Dirac equation
ðiγμDμ −mÞψðt; xÞ ¼ 0. With the gauge choice (2.4) the
explicit form of the Dirac equation is

½iγt∂t þ iγx∂x þ qγxAðtÞ −m�ψðt; xÞ ¼ 0: ð2:12Þ

Quantizing the spin-1
2
field and expanding it in terms of

modes yields

ψðt; xÞ ¼
Z

∞

−∞
dk½Bkukðt; xÞ þD†

kvkðt; xÞ�; ð2:13Þ

where here Bk, B†
k, Dk, and D†

k are the usual creation
and annihilation operators obeying the anticommutation
relations fBk;B

†
k0 g ¼ fDk;D

†
k0 g ¼ δðk− k0Þ. Using the

formalism introduced in Refs. [23,24], we can construct
two independent spinor solutions as follows:

ukðt; xÞ ¼
eikxffiffiffiffiffiffi
2π

p
�

hIkðtÞ
−hIIk ðtÞ

�
;

vkðt; xÞ ¼
e−ikxffiffiffiffiffiffi
2π

p
�
hII�−k ðtÞ
hI�−kðtÞ

�
: ð2:14Þ

Utilizing the Weyl representation of the Dirac matrices γμ

γt ¼
�
0 1

1 0

�
; γx ¼

�
0 1

−1 0

�
;

γ5 ¼ γtγx ¼
�−1 0

0 1

�
; ð2:15Þ

one can show that hIkðtÞ and hIIk ðtÞ are solutions of the mode
equations

_hIk − iðk − qAÞhIk − imhIIk ¼ 0; ð2:16aÞ
_hIIk þ iðk − qAÞhIIk − imhIk ¼ 0: ð2:16bÞ

The normalization condition jhIkj2 þ jhIIk j2 ¼ 1 ensures that
the standard anticommutation relations between the crea-
tion and annihilation operators are satisfied.

C. Semiclassical backreaction equation
and renormalization

A simple way to obtain the semiclassical backreaction
equation is to replace JμQ in Eq. (2.2) with hJμQi and then use
Eq. (2.4) and either Eq. (2.9) or Eq. (2.13), with the result

d2

dt2
AðtÞ ¼ −

d
dt

EðtÞ ¼ JC þ hJQi: ð2:17Þ

Here we have simplified the notation by omitting
the superscript x on JC and JQ since in this case the t
component of these vectors vanishes. When particle pro-
duction occurs the background electric field accelerates the
produced particles creating a current which then reacts back
on this electric field. In the semiclassical approximation
this current is hJQi. The net electric field EðtÞ is then
generated by both the classical current JC and the current
from the created particles hJQi.
We now obtain the generic forms of the finite, physical

expression of hJQi for both scalar and fermion fields. This
is nontrivial since the formal expressions for the current are
quadratic in the quantized fields. Here we will explain how
the ultraviolet divergences can be tamed by using the so-
called adiabatic regularization method. The method was
originally proposed to obtain finite expectation values for
the stress-energy tensors of scalar fields in expanding
universes [25–27] (see also Refs. [4,5] for scalar fields
and Refs. [28–33] for fermion fields). The adiabatic method
has been adapted to treat spatially homogeneous electric
backgrounds in Refs. [8,34,35], and it has been improved to
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make it consistent with gravity in Refs. [23,36,37] and
connected to the DeWitt-Schwinger proper-time expansion
in Ref. [38]. Here we follow the procedure proposed in
Refs. [23,36,37].

1. Scalar field

It is useful to symmetrize the current operator for the
scalar field with the result

JμQ ¼ 1

2
ημν½−iqðϕ†∂νϕ − ð∂νϕ

†ÞϕÞ
þ iqðϕ∂νϕ

† − ð∂νϕÞϕ†Þ − 2q2Aνðϕ†ϕþ ϕϕ†Þ�:
ð2:18Þ

Using Eq. (2.4) and evaluating Eq. (2.18) in the vacuum
state gives for the nontrivial spatial component

hJQi ¼
q
π

Z
∞

−∞
dkðk − qAðtÞÞjfkðtÞj2: ð2:19Þ

Note that the μ ¼ 0 component of the current is identically
zero, meaning that no net charge is created. The integral
(2.19) contains ultraviolet divergences and hence must be
renormalized. Since the external electric field is assumed to
be spatially homogeneous, it is especially convenient to use
an extension of the adiabatic regularization method. For
scalar fields the procedure is based on the standard WKB-
type expansion of the field modes. In our case one writes
the ansatz

fkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩkðtÞ
p e−i

R
t Ωkðt0Þdt0 ; ð2:20Þ

where Ωk is expanded in powers of derivatives of AðtÞ, as
Ωk ¼ ωð0Þ þ ωð1Þ þ ωð2Þ þ � � �. The leading term ωð0Þ is
assumed to be of zeroth adiabatic order, while ωð1Þ is of
adiabatic order one, etc. The choice of the leading-order
term ωð0Þ determines univocally the subsequent orders.
A natural possibility [35] is ωð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − qAÞ2 þm2

p
,

which assumes that AðtÞ should be considered as a variable
of adiabatic order zero, _A of adiabatic order one, etc.
However, AðtÞ is intrinsically a dimensionful quantity

and this suggests an alternative possibility. As proposed in
Refs. [23,36], one can also choose ωð0Þ ≡ ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
.

This choice is attached to the adiabatic assignment of one
for AðtÞ, while _A is considered to be of adiabatic order two,
etc. This second possibility is actually the only consistent
possibility in the presence of both electromagnetic and
gravitational backgrounds. We then obtain

hJQiren ¼
q
π

Z
∞

−∞
dk

�
ðk− qAðtÞÞjfkðtÞj2 −

k
2ω

þ qm2

2ω3
AðtÞ

�
:

ð2:21Þ

Similarly, one can also determine the renormalized energy
density hT00i ¼ hρi induced by the quantized field

hρiren ¼
1

2π

Z
∞

−∞
dk

�
j _fkðtÞj2 þ ðm2 þ ðk− qAðtÞÞ2ÞjfkðtÞj2

−ωþ kq
ω
AðtÞ−m2q2

2ω3
A2ðtÞ

�
: ð2:22Þ

2. Spin-12 field

For the spin-1
2
field the appropriate antisymmetrized

term is [4]

JμQ ¼ q
2
½ψ̄ ; γμψ �: ð2:23Þ

The expression for μ ¼ 0 corresponds to the induced
electric charge and, as expected, hJ0Qi is identically zero,
i.e., no net charge is created. The renormalized expression
for the spatial component of the spin-1

2
current evaluated in

the vacuum state is [23,37]

hJQiren ¼
q
2π

Z
∞

−∞
dk

�
jhIkðtÞj2 − jhIIk ðtÞj2 þ

k
ω
−
qm2

ω3
AðtÞ

�
:

ð2:24Þ

It is particularly interesting to consider the massless case
where the first two terms in the above integral cancel and
the expression for the current becomes

hJQiren ¼ −
q2

π
AðtÞ: ð2:25Þ

This result is consistent with the two-dimensional axial
anomaly

∂μhJμ5iren ¼
q
π
ϵμνFμν; ð2:26Þ

where Jμ5 ¼ ψ̄γμγ5ψ and JμQ ¼ −qϵμνFμν. Furthermore, the
renormalized energy density is given by

hρiren ¼
1

2π

Z
∞

−∞
dk

�
i½hIIk ðtÞ _hII�k ðtÞ þ hIkðtÞ _hI�k ðtÞ�

þ ω −
kq
ω

AðtÞ þm2q2

2ω3
A2ðtÞ

�
: ð2:27Þ

III. PARTICLE PRODUCTION AND
ENERGY CONSERVATION IN THE
SEMICLASSICAL FRAMEWORK

In this section we study both the details of the particle
production process and the transfer of energy between the
electric field and the produced particles for some solutions
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to the semiclassical backreaction equation for the delta
function current profile mentioned in the Introduction.
The vacuum instability due to pair production was first

realized by Heisenberg and Euler [39], who predicted, on
the basis of an effective action for a constant and homo-
geneous electromagnetic background, a pair production

rate in an electric field of order ∼q2E2e−
m2π
qE . Schwinger,

using the modern language of QED, computed the imagi-
nary part of the one-loop effective action, also for a
homogeneous and constant electric field, to evaluate the
vacuum persistence amplitude (for a historical perspective,
see Ref. [40]). From the exponential factor one notes
immediately that the order of the critical scale for pair
production can be defined to be

Ecrit ∼m2=q: ð3:1Þ

For some of the numerical work described in the following
sections we compare the classical electric field to Ecrit and
for those comparisons we take Ecrit to be equal to m2=q, as
is customary in the literature on the Schwinger effect.
While particle production in quantum field theory is a

nonlocal process, for free quantum fields such as the ones
we are considering, it is possible to define a time-dependent
particle number that is based on the WKB approximation
for the modes of the quantum field. This has been done
previously in the electric field case in Refs. [16–18] where
background electric fields were considered. While there
was some variation in the details depending on the order of
the WKB approximation used, it was found for a constant
electric field that when a given mode starts out in an
adiabatic vacuum state, as the vector potential AðtÞ
increases in time, there is a particle creation event that
occurs when jk − qAj ∼m and lasts for a relatively short
period of time. After which the particle number for that
mode approaches a constant value. Here we use the zeroth-
order WKB approximation, used in Refs. [16–18]:

gkðtÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΩkðtÞ

p e
−i
R

t

t0
Ωkðt1Þdt1 ; ð3:2aÞ

_gkðtÞ≡ −i

ffiffiffiffiffiffiffiffiffi
ΩðtÞ
2

r
e
−i
R

t

t0
Ωkðt1Þdt1 ; ð3:2bÞ

ΩkðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k − qAðtÞ�2 þm2

q
: ð3:2cÞ

Writing the exact mode functions as

fkðtÞ ¼ αkðtÞgkðtÞ þ βkðtÞg�kðtÞ; ð3:3aÞ

_fkðtÞ ¼ αkðtÞ_gkðtÞ þ βkðtÞ_g�kðtÞ; ð3:3bÞ

and substituting these expressions into Eq. (2.7) converts
the mode equation into two first-order coupled differential

equations for αkðtÞ and βkðtÞ. Substitution into the
Wronskian condition (2.8) gives the condition jαkðtÞj2−
jβkðtÞj2 ¼ 1. Note that if the vector potential stops varying
in time then the zeroth-order WKB approximation becomes
exact and αk and βk become Bogoliubov coefficients which
relate the in vacuum state to the out vacuum state. With this
motivation one can define the time-dependent particle
number for a given mode k to be

NkðtÞ≡ jβkðtÞj2; ð3:4Þ

with the total number of created particles at time t given by

hNðtÞi≡ 2

Z
∞

−∞

dk
2π

jβkðtÞj2: ð3:5Þ

Inverting Eqs. (3.3a) and (3.3b) gives

βkðtÞ ¼
1

i
ðgk _fk − _gkfkÞ: ð3:6Þ

A similar analysis can be done for spin-1
2
particles. Time-

dependent Bogoliubov coefficients can be obtained by first
defining

gIk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωk − ðk − qAÞ

2Ωk

s
e
−i
R

t

t0
Ωkðt1Þdt1 ; ð3:7aÞ

gIIk ≡ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωk þ ðk − qAÞ

2Ωk

s
e
−i
R

t

t0
Ωkðt1Þdt1 ; ð3:7bÞ

and then imposing the relations

hIkðtÞ ¼ αkðtÞgIkðtÞ þ βkðtÞgII�k ðtÞ; ð3:8aÞ

hIIk ðtÞ ¼ αkðtÞgIIk ðtÞ − βkðtÞgI�k ðtÞ; ð3:8bÞ

with the result that

βkðtÞ ¼ ½gIkðtÞhIIk ðtÞ − gIIk ðtÞhIkðtÞ�: ð3:9Þ

A classical current adds energy to the electric field and, if
particle production occurs, then some of the electric field’s
energy is used for this process. If the classical current shuts
off at some point then, since the calculations are being done
in flat space, energy is conserved but can still be transferred
between the electric field and the produced particles. To see
this, note that the energy density of the electric field is
ρelec ¼ 1

2
E2. A formula for the energy density of a scalar

field in the case of a homogeneous electric field in 1þ 1D
is given in Eq. (2.22) and one for the energy density of a
spin-1

2
field is given in Eq. (2.27). With these definitions it is

easy to check that
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d
dt

ðρelec þ hρirenÞ ¼
dA
dt

�
d2A
dt2

− hJQi
�

¼ 0; ð3:10Þ

where the last term in parentheses is precisely the semi-
classical Maxwell equation for the electric field (2.17).
Thus one can investigate the time dependence of the
transfer of energy between the electric field and the
particles by simply plotting ρelec and hρiren. We note that
in our approach energy conservation is a rigorous conse-
quence of the adiabatic renormalization prescription.
To study the effects of both particle production and the

transfer of energy we consider models in which the electric
field is initially generated by a classical current of the form

JC ¼ −E0δðtÞ: ð3:11Þ
Since the electric field is zero for t < 0, there is a natural
initial vacuum state which for a scalar field is

fkðt ¼ 0Þ ¼ 1ffiffiffiffiffiffi
2ω

p ; _fkðt ¼ 0Þ ¼ −i
ffiffiffiffi
ω

2

r
: ð3:12Þ

For a spin-1
2
field the initial vacuum state is

hIkðt¼ 0Þ¼
ffiffiffiffiffiffiffiffiffiffiffi
ω−k
2ω

r
; hIIk ðt¼ 0Þ¼−

ffiffiffiffiffiffiffiffiffiffiffi
ωþk
2ω

r
: ð3:13Þ

Since the classical current is zero for t > 0, the total energy
density of the system is constant for both the scalar and
spin-1

2
cases.

To solve the semiclassical backreaction equations
numerically we have used dimensionless variables and
parameters. We have scaled the mode equations, (2.7) for
scalars, (2.16a), (2.16b) for spin-1

2
fields, and also the

semiclassical Maxwell equation (2.17) in terms of the
electric charge q. The new scaled parameters are

k→ k=q; ω→ω=q; t→ qt; m→m=q: ð3:14Þ
For the mode functions for the scalar field

fðtÞ → ffiffiffi
q

p
fðtÞ: ð3:15Þ

We also use the definitions

Ẽ≡ E
Ecrit

; J̃ ≡ J
qEcrit

;

ρ̃≡ ρ

E2
crit

; hÑi≡ hNi
Ecrit

; ð3:16Þ

where Ecrit is the critical scale for pair production defined
in Eq. (3.1).

A. Particle production and energy transfer

Here we investigate some of the details of the particle
production process including the transfer of energy

between the electric field and the particles for solutions
to the semiclassical backreaction equation when either a
scalar field or a spin-1

2
field is coupled to the electric field

and the classical current is given by Eq. (3.11). The specific
solutions considered have Ecrit ¼ m2

q ¼ 10 and either E0 ¼
Ecrit or E0 ¼ 5Ecrit.
In Fig. 1, some of our results for a scalar field coupled to

the electric field are shown for E0 ¼ Ecrit in the top panels
andE0 ¼ 5Ecrit in the bottomones. It is apparent that as soon
as particle production starts to occur, the initial electric field
decays and the electric current increases as a consequence of
the created particles. When the electric field has been
reduced significantly the current reaches a plateau and the
particle creation saturates. Furthermore, when the electric
field changes sign and its magnitude again becomes large,
the particle creation rate is enhanced while the current is
slowed and then reversed. This results in plasmaoscillations.
Note also that the duration of the initial growth of the electric
current hJ̃Qi is of the same order as the duration of the initial
growth in the particle number hÑi.
In Fig. 2, some of our results for a spin-1

2
field coupled to

the electric field are shown for E0 ¼ Ecrit in the top panels
and E0 ¼ 5Ecrit in the bottom ones. Comparing Fig. 2 with
Fig. 1, one finds that for the smaller value of the initial
electric field, E0 ¼ Ecrit, all of the details are very similar to
the scalar field case. For the larger initial value of the
electric field many of the general features are also similar
including the initial damping of the electric field and
subsequent plasma oscillations. However, some of the
details differ significantly. Due to Pauli blocking the
particle production for the spin-1

2
field effectively shuts

off fairly early in the process. One result is that there is less
energy permanently transferred to the particles than in the
scalar field case.
There are some differences in both the scalar field and

spin-1
2
cases between the solution for which the electric field

is at the critical value initially and the solution for which it
is initially much larger. As would be expected there is
significantly more particle production and a significantly
faster initial damping for the larger field. Once the plasma
oscillations begin there also appears to be a much faster
approach of the amplitude of the electric field and the total
number of particles to their asymptotic values when the
initial electric field is larger. Further, examination of the
energy density shows that a significant amount of the initial
energy of the larger electric field is permanently transferred
to the particles during the first damping phase and this
increases during the plasma oscillation phase. For the
smaller field less energy is transferred initially to the
particles during the first damping phase and the permanent
transfer of energy to the particles upon each plasma
oscillation is smaller.
For both the scalar and spin-1

2
fields, a clear correlation is

found between the maxima of the energy density of the

PAIR PRODUCTION DUE TO AN ELECTRIC FIELD IN 1þ 1 … PHYS. REV. D 103, 105003 (2021)

105003-7



created particles and the maxima and minima of the current
due to the created particles. For cases in which the total
number of particles continues to increase significantly after
the first burst of particle production, the maxima in the
energy density of the created particles correlate with the
middles of the time periods when the total number of
particles is approximately constant. As expected, the
minima of the energy densities of the created particles
correspond to times when a new round of significant
particle production is just beginning in cases where there
is significant particle production after the first burst. In
general the periods of significant particle production
correspond to periods when energy is being transferred
to the particles. It is interesting to note that the above
results, obtained within the adiabatic renormalization
prescription in the continuous limit, are compatible with
the results obtained using a similar method in 3þ 1D [10]
as well as those obtained in 1þ 1D and/or 3þ 1D using
lattice simulations [13,14] and classical statistical field
theory techniques [11].
It was shown in Refs. [16–18] that a single particle

creation event occurs for an individual mode if the back-
ground electric field is either constant or approximately
constant. What is different here is that the backreaction
of the produced particles produces plasma oscillations.

The resulting oscillations of the electric field lead to some
modes undergoing multiple particle creation events and
sometimes also particle destruction events. This can be seen
in Fig. 3 where the time evolution of the function jβkj2 for
Ẽ0 ¼ 1 is shown for both the scalar field and spin-1

2
field

cases. Comparison with the plot of the vector potential AðtÞ
shows that the creation, or destruction, process for an
individual mode k happens when k − qAðtÞ ≈m.

B. Massless limit for the spin-12 field

For completeness we extend our analysis to the massless
limit for the spin-1

2
field. In this case, the mode equa-

tions (2.16a) and (2.16b) decouple, and with the initial
conditions given in Eq. (3.13), their solutions are given by

hI;IIk ðtÞ ¼ �θð∓kÞe�i
R

t

t0
ðk−qAðt0ÞÞdt0

; ð3:17Þ

where θðxÞ is the Heaviside step function. The electric
current hJQiren has the simple form given in Eq. (2.25),
and hence, the semiclassical Maxwell equation (2.17)
turns out to be the equation of a harmonic oscillator

ÄðtÞ þ q2

π AðtÞ ¼ 0. With the initial conditions Eð0Þ ¼ E0

and Að0Þ ¼ 0, we immediately find the analytic solution

FIG. 1. Various quantities are plotted for solutions to the semiclassical backreaction equations for a quantized scalar field with the
classical current profile JC ¼ −E0δðtÞ. The solutions for Ẽ0 ¼ 1 are shown across the top row of panels and those for Ẽ0 ¼ 5 are shown
across the bottom row. The mass of the scalar field is m2

q2 ¼ 10 and thus E0

q ¼ 10 and 50 respectively. In the left panels the electric field Ẽ

and the electric current hJ̃Qiren are plotted. For each of the middle panels the blue dashed curve corresponds to the energy density of the
electric field ρelec, the orange solid curve represents the energy density of the created particles hρ̃iren, and the straight yellow line is the
total energy density of the system. The total particle number hÑi is plotted in the right panels.
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FIG. 3. The time-dependent particle number is shown for individual modes when Ẽ0 ¼ 1 for the scalar field (top row) and spin-1
2

(bottom row) cases for the classical current profile JC ¼ −E0δðtÞ. The mass of the scalar field is m2

q2 ¼ 10 and thus E0

q ¼ 10. The vector

potential is plotted in the far right panels. For each row the first panel on the left shows the particle number for k
q ¼ −20 and the middle

panel shows the particle number for k
q ¼ −40.

FIG. 2. Various quantities are plotted for solutions to the semiclassical backreaction equations for a quantized spin-1
2
field with the

classical current profile JC ¼ −E0δðtÞ. The structure of the figure, and also the initial conditions for the electric profile, are the same as
in Fig. 1.
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EðtÞ ¼ E0 cosð jqjffiffiπp tÞ. The energy density (2.27) and the

number of the created particles are hρðtÞiren ¼ q2

2π A
2ðtÞ and

hNðtÞi ¼ jqAðtÞj
π . For a detailed analysis of the adiabatic

invariance of the particle number see Ref. [41]. As in the
general case, the total energy of the system is conserved.
We note the exact analytic solubility of the case m ¼ 0 is
due entirely to the axial anomaly in 1þ 1D. In fact, the
constant jqjffiffi

π
p is the mass of the “photon” in the Schwinger

model generated by radiative corrections [19]. In the
massless case the (nonlocal) effective action Γ½Aμ; JC�
can be obtained exactly and it describes a gauge-invariant

vector field with mass jqjffiffi
π

p (see, for instance, Ref. [42]). The

semiclassical calculation of the produced energy due to the
external source provides an accurate result. In the massive
case the effective action does not describe an integrable
model [43,44] and the semiclassical picture is expected to
break down at some point. The validity of the semiclassical
approximation for massless and massive spin-1

2
fields for

the asymptotically constant classical profile is addressed
in Sec. VA.

IV. VALIDITY CRITERION FOR THE
SEMICLASSICAL APPROXIMATION

The semiclassical backreaction equation can be derived
from Eq. (1.1) via a loop expansion [6]. In this case when
solving the semiclassical backreaction equation, the semi-
classical approximation breaks down if contributions from
the quantum terms to the equations become comparable to
that of the classical background field and any other classical
fields. The reason is that one expects higher-order terms in
the loop expansion to be important in that limit. However,
there is a different way to derive the semiclassical back-
reaction equation called the large-N expansion. In this
expansion one considers N identical quantum fields
coupled to the background field, which to leading order
is treated as a classical field. At next-to-leading order in the
large-N expansion, quantum effects due to the background
field first appear [45,46]. Thus in this expansion it is
consistent to consider solutions to the semiclassical back-
reaction equation for which the quantum fields have a
significant effect on the classical background field. Here we
will take N ¼ 1 and consider a wide range of situations
ranging from those where the background electric field is
small compared with the (Schwinger) critical scale Ecrit ≡
m2=q and quantum effects are correspondingly small to
those where the background electric field is large compared
to the critical value and quantum effects are correspond-
ingly large. The critical value is the threshold for which a
significant amount of particle production is expected
to occur.
The large-N expansion provides a formal framework for

the semiclassical backreaction equation when quantum

effects are significant. However, it does not guarantee that
the semiclassical approximation is valid. There are three
reasons. The first is that interactions of the quantum fields
which are coupled to the classical background field are
ignored in most cases, including those considered here.
This works if the interactions are small over the time scales
relevant to the problem. The second is that even if the next-
to-leading-order terms in the large-N expansion are initially
small in size, it has been shown in certain quantum
mechanics calculations that they undergo secular growth
[47] and there is evidence that secular growth also occurs
for such terms in quantum field theory [48]. However, there
is also evidence that partial resummations of certain classes
of Feynman diagrams eliminate this problem [49,50].
The third is that the semiclassical backreaction equation
involves an expectation value of some quantity such as the
electric current or stress-energy tensor that is constructed
from the quantum fields. For an expectation value to be
a good approximation to what one would measure in
quantum theory, it is necessary that quantum fluctuations
are small.
A natural way to estimate the size of quantum fluctuations

is to evaluate the two-point correlation function for the
current. There are several different two-point correlation
functions including (i) hJðt; xÞJðt0; x0Þi, (ii) the connected
part, i.e., hJðt; xÞJðt0; x0Þi − hJðt; xÞihJðt0; x0Þi, (iii) the
time-ordered correlation function hTðJðt; xÞJðt0; x0ÞÞi, etc.
There are problems associated with some of these, as
described in Refs. [21,51,52]. For example, it has been
shown for the symmetric part of the stress-energy tensor
two-point correlation function that there can be state-
dependent divergences in the limit that the points come
together [51]. A related issue is that it has been shown in at
least one case in the limit that the points come together that
different renormalization schemes can give different results
for a particular quantity made from one component of the
stress-energy tensor two-point correlation function [52].
There can also be covariance issues with some of the
quantities made from the stress-energy tensor two-point
correlation function [21].
There is a correlation function that is free of these

problems and which emerges naturally from the semi-
classical theory itself and that is h½Jðt; xÞ; Jðt0; x0Þ�i. By
perturbing the semiclassical backreaction equation one is
led to the so-called linear response equation which contains
this correlation function and which describes the time
evolution of perturbations about a given semiclassical
solution. A criterion was developed in Ref. [21] for the
validity of the semiclassical approximation in gravity
which states that a necessary condition for the validity
of the semiclassical approximation to be valid is that any
linearized, gauge-invariant scalar quantity constructed from
solutions to the linear response equations with finite non-
singular initial data should not grow without bound. It is
important to emphasize that this is not a sufficient condition
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for the validity of the semiclassical approximation.
The criterion was adapted to cover preheating during
chaotic inflation [20] where a significant amount of
particle production occurs and quantum effects are large.
If the criterion is applied to semiclassical quantum electro-
dynamics then it would state that the semiclassical approxi-
mation breaks down if any linearized gauge-invariant
quantity constructed from solutions to the linear response
equation with finite nonsingular initial data grows rapidly
for some period of time.

A. Linear response equation

The linear response equation for semiclassical electro-
dynamics can be obtained by perturbing Eq. (2.17) about
a background solution to the semiclassical equation with
the result

d2

dt2
δAðtÞ ¼ −

d
dt

δE ¼ δJC þ δhJQi: ð4:1Þ

It can be seen from Eq. (4.1) that a first integral of the linear
response equation gives the perturbed electric field, which
is gauge invariant.
To analyze the behaviors of solutions to this equation,

particularly at early times, it is useful to break the solutions to
the semiclassical backreaction equation into two parts with

EQ ≡ E − EC; ð4:2aÞ

EC ≡ −
Z

t

t0

dt1JCðt1Þ: ð4:2bÞ

From the structure of the linear response equation it is clear
that its solutions δE can be broken up in exactly the same
way. Then, the criterion for the validity of the semiclassical
approximation can be modified to state that if the quantity
δEQ grows significantly during some period of time then the
semiclassical approximation is invalid. It is worth noting that
because hJQi and δhJQi are constructed from solutions to the
mode equation which depend on the vector potential A, and
therefore indirectly on E, then EQ depends on EC and δEQ

depends on δEC.
In the Appendix it is shown for both the scalar and spin-1

2
coupled systems that for homogeneous perturbations,
δhJQi depends upon the two-point correlation function
for the current. A more general derivation is given in
Ref. [53]. For scalar fields the result is

δhJQiren ¼ −
q2

π
δAðtÞ

Z
∞

−∞
dk

�
jfkðtÞj2 −

m2

2ω3

�

þ i
Z

∞

−∞
dx0

Z
t

−∞
dt0h½JQðt; xÞ; JQðt0; x0Þ�iδAðt0Þ;

ð4:3Þ

where

ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
; ð4:4Þ

andZ
∞

−∞
dx0h½JQðt;xÞ;JQðt0;x0Þ�i

¼ 4iq2

π

Z
∞

−∞
dkðk−qAðtÞÞðk−qAðt0ÞÞImffkðtÞ2f�kðt0Þ2g:

ð4:5Þ

It can be shown, using the point-splitting technique, that the
divergence structure in the first integral is conveniently
compensated for by the divergence structure that is inherent
in the second integral.1 Therefore, δhJQi is finite and the
overall equation is well defined.
For spin-1

2
fields the renormalized perturbation of the

quantum current in Eq. (4.1) is

δhJQiren ¼ −
q2m2

2π
δAðtÞ

Z
∞

−∞

dk
ω3

þ i
Z

∞

−∞
dx0

Z
t

−∞
dt0h½JQðt; xÞ; JQðt0; x0Þ�iδAðt0Þ;

ð4:6Þ

withZ
∞

−∞
dx0h½JQðt; xÞ; JQðt0; x0Þ�i

¼ 4iq2

π

Z
∞

−∞
dkImfhIkðtÞhIIk ðtÞhI�k ðt0ÞhII�k ðt0Þg: ð4:7Þ

Recall that in the massless limit we find that the
mode equations decouple and the solutions are given in
Eq. (3.17). Thus, for a given value of k either hIk or h

II
k is

zero, and hence hIkh
II
k ¼ 0 for any value of k. Therefore

in the massless limit the current-current commutator in
Eq. (4.7) is zero.

B. Approximate solutions to the
linear response equation

From Eqs. (4.1), (4.3), and (4.6), it is clear that the linear
response equation is an integro-differential equation. This
makes it significantly more difficult to solve numerically
compared to an ordinary differential equation. A useful way
to approximate the solutions to the linear response equation
for the case of homogeneous perturbations was given in

1It is not obvious that there is a divergence in the second
integral because the commutator vanishes in the limit that the
points come together. However, a careful analysis shows that it is
there.
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Ref. [20]. It involves solving the semiclassical backreaction
equation for two sets of initial conditions which differ from
each other by only a small amount. At early times we
expect these two solutions to be an approximate solution to
the linear response equation so long as the difference does
not grow too large. If this difference grows significantly,
then the corresponding solution to the linear response
equation should also grow substantially. Hence, our cri-
terion for the validity of the semiclassical approximation is
considered to be violated.
As has been mentioned previously, solutions to the

semiclassical backreaction equation tend to oscillate over
long periods of time due to plasma oscillations and it is
possible that solutions to the linear response equation could
oscillate over shorter periods of time. While there is no
problem in comparing the absolute difference between two
solutions to the semiclassical backreaction equation, it is
more problematic when one considers the relative differ-
ence because the denominator will vanish at certain points.
For this reason we introduce a modified version of the
relative difference which is guaranteed to be no smaller
than zero and no larger than one. Consider two solutions to
either the classical or semiclassical backreaction equation
in 1þ 1D, E⃗1 ¼ E1x̂ and E⃗2 ¼ E2x̂ (or just E1 and E2

since we are only considering one spatial dimension). Then
the absolute and relative differences are respectively

ΔE≡ E2 − E1; ð4:8aÞ

R≡ jΔEj
jE1j þ jE2j

: ð4:8bÞ

We note that R can be easily reexpressed as a Lorentz-
invariant quantity.
It is useful to apply the relative difference R for two

solutions to the classical backreaction equation which, as
can be seen in Eq. (4.2b), are simply integrals over the
classical current JC. Consider a classical current of the form

JC ¼ −E0 _gðtÞ: ð4:9Þ

Here _gðtÞ is the time derivative of some well-behaved,
dimensionless function gðtÞ, and the solution to the
classical Maxwell equation is EC ¼ E0gðtÞ. In the follow-
ing sections we will consider the cases gðtÞ ¼ qt

1þqt and

gðtÞ ¼ sech2ðqtÞ, with the latter being the Sauter pulse. The
solutions are parametrized by the constant E0. For two
solutions to Eqs. (4.2b) with (4.9), EC1 and EC2, with E0 ¼
E01 and E0 ¼ E02 respectively, we have for the absolute
and relative difference

ΔE0 ≡ E02 − E01; ð4:10aÞ

RC ¼ jΔECj
jEC1j þ jEC2j

¼ jΔE0j
jE01j þ jE02j

: ð4:10bÞ

Next, consider two solutions to the semiclassical back-
reaction equation. Since we are considering classical
currents, which are zero initially, and an electric field
that is zero initially, there is no ambiguity in the choice
of vacuum state. Therefore these solutions are also para-
metrized by the value of E0 for a given function gðtÞ. Using
the subscripts 1 and 2 to denote quantities computed for
these solutions, it is clear that the difference ΔE is an exact
solution to the equation

−
dΔE
dt

¼ ΔJC þ ΔhJQi: ð4:11Þ

with ΔJC ¼ JC2 − JC1 and ΔhJQi ¼ hJQ2i − hJQ1i.
Suppose at some early time t1, when EC is still very

small with no significant amount of particle produc-
tion, that RCðt1Þ ≪ 1. One can then arrange the initial
conditions for the perturbation δE such that δEðt1Þ ¼
ΔEðt1Þ. It is also obvious that one can set for all times
δJCðtÞ ¼ ΔJCðtÞ. Then Eq. (4.11) is approximately equiv-
alent to the linear response equation (4.1) so long as
ΔhJQi ≈ δhJQi, which one would certainly expect to be
the case at times near t1.
As discussed in the previous subsection [see Eq. (4.2a)],

it is more useful at early times to consider the quantity
ΔEQ ≈ δEQ. To measure the relative growth of ΔEQ we
compute the relative difference

RQ ¼ jΔEQj
jEQ1j þ jEQ2j

: ð4:12Þ

This difference can then be compared to the relative
difference between the corresponding classical solutions
RC in Eq. (4.10b), which does not change in time.
Consider two times t2 > t1 where t1 is the initial time

discussed above when one imagines fixing the starting
values for the linear response equation and t2 is a
relatively early time after that. Then the possibilities
are as follows. (i) If RQðtÞ≲ RC then the criterion for the
validity of the semiclassical approximation will be
satisfied by the approximate homogeneous solutions that
we consider up to the time t2. (ii) If for any times
between t1 and t2, RQðtÞ ≫ RC, then the solution to the
linear response equation, δE, grows rapidly during at
least some part of the period t1 ≤ t ≤ t2 and the criterion
for validity of the semiclassical approximation is not
satisfied. Note that once the semiclassical approximation
has broken down, one can no longer trust its solutions
even if for later times RQ ≲ RC. (iii) Finally, the
intermediate case when RQ is larger than RC but still
of the same order of magnitude is ambiguous. Perhaps
the best that can be said is in this case quantum
fluctuations are increasing and so the accuracy of the
semiclassical approximation is decreasing in proportion
to this increase.
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V. NUMERICAL RESULTS

In this section we implement a numerical analysis to
study the validity of the semiclassical approximation for
two different classical source profiles. To do so, we use the
method described in the previous section to compare the
numerical solutions of the semiclassical backreaction
equation for two distinct, but very close values of the
external source amplitude E0. The first profile considered
has a classical source current given by

JC ¼ −
qE0

ð1þ qtÞ2 ; ð5:1Þ

for t ≥ 0 and JC ¼ 0 for t < 0. The classical solution of the
Maxwell equation (− _EC ¼ JC) gives rise to the asymp-
totically constant electric field profile for t ≥ 0

ECðtÞ ¼ E0

�
qt

1þ qt

�
: ð5:2Þ

The second profile considered is the Sauter pulse with
source current given by

JC ¼ 2qE0sech2ðqtÞ tanhðqtÞ; ð5:3Þ

and corresponding classical electric field

ECðtÞ ¼ E0sech2ðqtÞ: ð5:4Þ

In Fig. 4 we show the classical behavior of both
profiles. For the first profile, one can easily see that
at late times the electric field approaches the constant
value E0. The Sauter pulse models a possibly more
realistic scenario for the detection of the Schwinger
effect, in which both the initial and the final values of
the classical electric field tend to zero. Note that, for the
first profile we choose an initial time t0 ¼ 0, while for
the Sauter pulse the initial time has to be fixed as
t0 ¼ −∞. As discussed in Sec. IV B, it is useful,
particularly at early times, to work with the quantity
EQ in Eq. (4.2a) which is the difference between the net
electric field and the electric field EC that would be
present if there were no quantum effects. Therefore
the natural quantity to consider is the relative difference
RQ in Eq. (4.12) which is constructed from two
solutions to the semiclassical backreaction equation
with values of E0 that differ by some small amount.
This can be compared to the relative difference RC
between two solutions to the classical Maxwell equation
with the same values of E0.
In what follows, numerical results will be shown for

calculations of RQ and other quantities such as EðtÞ, hJQi,
and hNi for scalar and spin-1

2
semiclassical electrodynamics

FIG. 4. Electric profiles for E0=q ¼ 2. In the left (top) panel we show the asymptotically constant profile. In the right (top)
panel we show the Sauter pulse. In both bottom panels, the classical current generating the respective electric field profiles is plotted.
For the asymptotically constant profile we choose an initial time t0 ¼ 0, while for the Sauter pulse the initial time has to be fixed
as t0 ¼ −∞.
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for the asymptotically constant classical profile and then for
the Sauter pulse classical profile. As stressed before, we
mainly focus on the early-time behavior. In both cases it is
assumed that the electric field and vector potential are
initially zero. As a result, for scalar fields the initial
conditions for the mode functions are

fkðt0Þ ¼
1ffiffiffiffiffiffi
2ω

p ; _fkðt0Þ ¼ −i
ffiffiffiffi
ω

2

r
: ð5:5Þ

For spin-1
2
fields the initial conditions are

hIkðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ω − k
2ω

r
; hIIk ðt0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
ωþ k
2ω

r
: ð5:6Þ

First, we discuss the mass dependence of the function RQ
and its relation to the validity of the semiclassical approxi-
mation, with a focus on the asymptotically constant profile.
Then, we show the results of our analysis for the most
relevant case E0 ∼ Ecrit ¼ m2=q for both the asymptotically
constant profile and the Sauter pulse. As in Sec. III, for the
numerical computations we use the dimensionless param-
eters described therein. However, in this section the electric
field and the electric current are given in terms of E=q and
J=q2 respectively.
Since we are considering multiple cases and subcases,

a summary of all relevant information, including all
cases and subcases with figure references, can be found
in Table I.

A. Asymptotically constant classical profile

1. Massless spin-12 field

As explained in Sec. III B, for m ¼ 0 the mode equa-

tions (2.16a) and (2.16b) decouple, and hJQiren ¼ − q2

π A.
Thus the semiclassical Maxwell equation (2.17) reduces to

Äþ q2

π
A ¼ JC; ð5:7Þ

which is the equation for a simple harmonic oscillator with
frequency jqjffiffi

π
p and external source JC. In this case, the linear

response equation is just

δÄþ q2

π
δA ¼ δJC: ð5:8Þ

Note that δhJQiren ¼ − q2

π δA and also that the initial
conditions for δJC can be arranged so that δJC ≡ ΔJC.
For the asymptotically constant profile, JC is given in

Eq. (5.1). With initial conditions Að0Þ ¼ 0 and Eð0Þ ¼ 0,
we immediately find

AðtÞ ¼ −
E0

q

�
cos

�
1þ qtffiffiffi

π
p

�
Ciðπ−1=2Þ

− cos

�
1þ qtffiffiffi

π
p

�
Ci

�
1þ qtffiffiffi

π
p

�

þ ffiffiffi
π

p
sin

�
qtffiffiffi
π

p
�
þ sin

�
1þ qtffiffiffi

π
p

�
Siðπ−1=2Þ

− sin

�
1þ qtffiffiffi

π
p

�
Si

�
1þ qtffiffiffi

π
p

��
; ð5:9Þ

where CiðxÞ ¼ −
R
∞
x

cosðtÞ
t dt and SiðxÞ ¼ R

x
0

sinðtÞ
t dt are

the cosine and the sine integral functions respectively.
Hence, we can conclude that for any two solutions E1ðtÞ
and E2ðtÞ with E0 ¼ E01 and E0 ¼ E02 respectively, the
relation

RQðtÞ¼
jEQ1ðtÞ−EQ2ðtÞj
jEQ1ðtÞjþ jEQ2ðtÞj

¼ jE01−E02j
jE01jþ jE02j

¼RC; ð5:10Þ

is always satisfied. Although this result was derived for
the asymptotically constant profile (5.1), it holds for any
classical current of the form JC ¼ −E0gðtÞ.

2. Massive spin-12 field

We next study the relationship between the behavior of
RQ, the mass of the spin-1

2
field, and the value of E0 in

TABLE I. A table organizing the various cases and subcases that are investigated in the paper. Included are figure
references for ease of use. Note that cases withm2 ≫ qE0 are not included; they are discussed in the main text on the
basis of the decoupling mechanism.

Quantum Field Classical Profile Mass Cases Figure Reference

Spin 1=2 Asymptotically m2 ≪ qE0ðorm → 0Þ 6, 7
Constant m2 ∼ qE0 5, 6, 7, 9

Sauter Pulse
m2 ≪ qE0ðorm → 0Þ N=A

m2 ∼ qE0 10

Complex Scalar Asymptotically m2 ≪ qE0ðorm → 0Þ 8
Constant m2 ∼ qE0 8, 9

Sauter Pulse
m2 ≪ qE0ðorm → 0Þ N=A

m2 ∼ qE0 10
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Eq. (5.1). As illustrated in our numerical results below, the
most important effect on RQ comes from the size of the

dimensionless quantity qE0

m2 . We distinguish between three

different cases: (i) qE0

m2 ≫ 1 in which the mass is relatively
small compared to the electric field and there is a lot of
particle production, (ii) the intermediate case qE0

m2 ∼ 1 where
there is a significant amount of particle production,
and (iii) qE0

m2 ≪ 1 in which the mass is relatively large
compared to the electric field and there is very little particle
production.
The beginning of the transition from intermediate to

large effective masses is shown in Fig. 5 where various
quantities, such as the electric field, are plotted for
E0=q ¼ 1 and m2

q2 ¼ 1 and m2

q2 ¼ 2. As expected, the amount

of particle production that occurs decreases significantly
as qE0

m2 decreases and thus as the effective mass increases.
Note that the time scale on which backreaction effects

occur increases significantly with an increase in the
effective mass.
In the very-large-mass limit qE0

m2 → 0, the electric field
will not have enough energy to create particles, so one
expects that hJQiren → 0 and E → EC. This is in agreement
with the decoupling theorem in perturbative quantum field
theory [54]. Heavy masses decouple in the low-energy
description of the theory, which in this case is purely
classical electrodynamics for m2 → ∞, with E0 fixed.
In the intermediate cases shown in Fig. 5 where qE0

m2 ∼ 1,
there is a significant amount of particle production and
once enough particle production has occurred the value of
RQ starts to increase rapidly, possibly exponentially for
qE0

m2 ¼ 1. This rapid rise continues until the backreaction of
the particles on the background electric field is strong
enough that the electric field has stopped increasing and has
begun to noticeably decrease in size. Thus in the inter-
mediate case it appears that our criterion for the validity of

FIG. 6. Results obtained from numerical solutions to the semiclassical backreaction equation for spin-1
2
fields and the asymptotically

constant classical profile are shown for E0=q ¼ 1. The masses are chosen so that qE0

m2 ≥ 1. The structure of the figure is the same as in
Fig. 5.

FIG. 5. Results obtained from numerical solutions to the semiclassical backreaction equation for spin-1
2
fields and the asymptotically

constant classical profile are shown for E0=q ¼ 1. The masses are chosen so that qE0

m2 ≤ 1. The electric field and the induced electric
current hJQi=q2 for each case are plotted in the left panels. Plots for the corresponding number of particles, hNi, are shown in the middle
panel and plots of the quantity RQ appear in the right panel. For the latter, the values E01=q ¼ 1 and E02=q ¼ 1þ 10−3 have been chosen
for the two solutions that are subtracted. The values ofm2=q2 for each case are shown along with the type of curve for that solution in the
legend in the right panel.
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the semiclassical approximation is not satisfied due to the
rapid and significant growth in RQ at relatively early times.
The transition from the intermediate case to the small-

effective-mass case when E0=q ¼ 1 is shown in Fig. 6.
Comparison with Fig. 5 shows that the intermediate case
extends to m2

q2 ¼ 0.1, but not to m2

q2 ¼ 0.01 which has a

qualitatively different behavior. In particular for the rela-
tively small-mass and zero-mass cases the particle produc-
tion is more rapid and backreaction effects on the electric
field are significant after a much smaller amount of time
than for intermediate masses. Examination of the behavior
of RQ shows that it does not grow rapidly in time for the
small-mass case and, as mentioned above, is constant in
the massless case. Thus our criterion for the validity of the
semiclassical approximation is satisfied by the homo-
geneous approximate solutions that we consider in the
relatively small-mass case.
In the above analysis the value of the ratio qE0

m2 has been
shown to dictate the different types of qualitative behaviors
the solutions have. Of course one can change the values
of qE0 and m2 in ways that keep the ratio fixed. In Figs. 5
and 6, E0=q ¼ 1. In Fig. 7, E0=q ¼ 10 is chosen along with

several masses that lead to small and intermediate values of
qE0

m2 . Comparison with Fig. 6 shows that while the details of
the various curves are different, they are qualitatively the
same when the ratio qE0

m2 is the same.

3. Scalar field

Unlike the case of the spin-1
2
field, there is no clear limit

that we have found as m → 0 for a scalar field coupled to
the electromagnetic field. However, our numerical results
shown in Fig. 8 indicate that, as for the spin-1

2
field, RQ

grows significantly at early times for qE0

m2 ∼ 1 but grows

much less rapidly in time for larger values of qE0

m2 . Thus our

criterion is violated for qE0

m2 ∼ 1 but, at least for the
homogeneous approximate solutions that we consider, it
appears to be satisfied for qE0

m2 ≫ 1.
We have found that the behaviors of solutions to the

semiclassical backreaction equation when a scalar field is
present are in many ways qualitatively similar to the
corresponding ones for the spin-1

2
field for cases in which

the ratio qE0

m2 is not too large. This is illustrated in Fig. 9 for

FIG. 8. Results obtained from numerical solutions to the semiclassical backreaction equation for scalar fields and the asymptotically
constant classical profile are shown for E0=q ¼ 10. The masses are chosen so that qE0

m2 ≥ 1. The structure of the figure is the same as in
Fig. 5. We have chosen E01=q ¼ 10 and E02=q ¼ 10þ 10−3 to represent the function RQ.

FIG. 7. Results obtained from numerical solutions to the semiclassical backreaction equation for spin-1
2
fields and the asymptotically

constant classical profile are shown for E0=q ¼ 10. The masses are chosen so that qE0

m2 > 1. The structure of the figure is the same as in
Fig. 5. Here, the values E01=q ¼ 10 and E02=q ¼ 10þ 10−3 have been chosen for the representation of the function RQ.
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qE0

m2 ¼ 1 and 10. The main difference occurs for the latter
case where a larger ratio results in more particle production
for the scalar field than for the spin-1

2
field due to Pauli

blocking. Even in that case the early-time behaviors of RQ

are similar for the two fields.
For the large-mass limit, we expect that, as for the spin-1

2
case, the semiclassical approximation will approach the
classical limit as qE0

m2 → 0.

B. Sauter pulse classical profile

While our results relating to the validity of the semi-
classical approximation are the same for the scalar and
spin-1

2
fields for the asymptotically constant classical

profile, one might be concerned that there could be
significant differences for other classical profiles. To test
this we have also investigated the validity of the semi-
classical approximation for the Sauter pulse classical
profile given in Eq. (5.4) with the classical current (5.3).
Unlike the asymptotically constant classical profile, the
classical current in this case is a C∞ function so there is
no extraneous particle production due to the sudden
approximation.

We find for the Sauter pulse classical profile for both the
scalar and spin-1

2
cases, that RQ grows significantly at early

times for qE0

m2 ∼ 1, as it does for the asymptotically constant

classical profile, and it is bounded for qE0

m2 ≫ 1. Thus we
find that our criterion for the validity of the semiclassical
approximation is violated for qE0

m2 ∼ 1while, for the approxi-
mate homogeneous solutions that we consider, our criterion
appears to be satisfied for qE0

m2 ≫ 1.
Not surprisingly, given the difference between the

Sauter pulse and asymptotically constant classical pro-
files, there are significant qualitative differences in the
solutions for the electric field and in the time dependence
of the number of particles that have been created. These
results are illustrated in Fig. 10 for both the scalar field
and spin-1

2
field cases. It is clear from the plots that for the

values qE0

m2 ¼ 1 and 10 the backreaction effects start to be
relevant before the classical pulse ends. After the effect of
the classical current subsides, plasma oscillations are
expected to occur because of the current created by the
produced particles. There is evidence for this in the plots
of the electric field. In the case qE0

m2 ¼ 1, backreaction
effects are relatively weak and the particle creation

FIG. 9. Results obtained from numerical solutions to the semiclassical backreaction equation for both spin-1
2
fields and scalar fields

when the asymptotically constant classical profile is used are shown. For all of the plots the solid curve (blue) corresponds to the scalar
field, the dashed curve (orange) corresponds to the spin-1

2
field, and the dotted curve (yellow), when shown, corresponds to the classical

solution when no quantum fields are coupled to the electromagnetic field. In the upper tier qE0

m2 ¼ 1 andm2=q2 ¼ 1while in the lower tier
qE0

m2 ¼ 10 andm2=q2 ¼ 1. For each tier the left panels show plots of the electric field and the induced electric current hJQi=q2, the middle
panel shows plots of the number of particles hNi, and the right panel shows the quantity RQ. For the latter the values E01=q ¼ E0=q and
E02=q ¼ E0=qþ 10−3 have been chosen for the two solutions that are subtracted.
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essentially ceases once the pulse in the electric field has
ended. However, for qE0

m2 ¼ 10 the initial plasma oscillation
is large enough that particles are created in the scalar field
case after the pulse ends.

VI. CONCLUSIONS AND FINAL COMMENTS

Numerical solutions to the semiclassical backreaction
equation for quantum electrodynamics in 1þ 1D have been
obtained for models of the Schwinger effect where particle
production occurs due to the presence of a strong electric
field. The particle production results from the coupling of
either a quantized massive charged scalar field or spin-1

2

field to a classical electric field. In each case the homo-
geneous electric field is zero initially, as it would be in a
laboratory setting, and is generated by a classical current.
We have also used a renormalization scheme for the electric
current and for the energy density of the quantum fields that
is consistent with what would be used in a curved space
background. This is different from previous backreaction
calculations where the electric field was nonzero ini-
tially [7,8,34].
In agreement with the previous backreaction calcula-

tions, it was found that if the electric field becomes large
enough so that qEm2 ≳ 1 then a significant amount of particle
production occurs. Subsequently, the produced particles
create a current which generates an electric field in the
opposite direction which begins to cancel the background

electric field. After the initial damping of the background
electric field, both the electric field and the current
generated by the particles oscillate.
The particle creation process has been discussed in detail

for background electric fields in Refs. [16–18]. It was
found that individual modes undergo a quasilocal particle
creation event at roughly the time when ðk − qAÞ2 ≈m2.
Here we have found that when backreaction effects are
taken into account the same type of particle creation events
occur. What is different is that, because of the oscillations
in the vector potential at late times, there are modes that
undergo multiple particle creation events. Furthermore,
once a given mode has undergone a particle creation event,
it is possible for it to also undergo a particle destruction
event although this does not always happen.
The total number of particles was obtained using the

standard definition of a time-dependent particle number
[16,17]. For all three profiles considered it was found that
the total particle number never decreases by any significant
amount but that it is approximately constant for periods of
time. This is compatible with previous calculations of the
total particle number when the electric field is turned on
suddenly by a classical current that is proportional to δðtÞ in
3þ 1D using canonical quantization [10] and in both
1þ 1D and 3þ 1D using lattice simulations [13,14].
The energy density of the quantum field was computed

for a classical current that is proportional to δðtÞ and is thus
zero for t > 0. The total energy of the system is then

FIG. 10. Results obtained from numerical solutions to the semiclassical backreaction equation for both spin-1
2
fields and scalar fields

and the Sauter pulse classical profile are shown. The structure of the figure, including the initial values and the parameters of the fields, is
the same as in Fig. 9.
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constant and one can unambiguously track the transfer of
energy between the particles and the electric field. It was
found that a significant amount of energy is permanently
transferred to the particles during the first damping phase of
the electric field. More is then permanently transferred to
the particles upon subsequent oscillations of the electric
field. This is also consistent with previous calculations in
1þ 1D using lattice simulations [13] and in 3þ 1D using
canonical quantization [10] and classical statistical field
theory techniques [11].
Correlations between the energy density of the particles,

the current due to the particles, and the total particle number
were found. In particular, timeswhen the number of particles
grows directly correspond to times when the current is
changing, and times when the total number is not growing
significantly correspond to times when the current is approx-
imately constant. However, the current keeps oscillating even
after the particle number stops growing significantly.
Since semiclassical electrodynamics is an approximation

to quantum electrodynamics, an important question is
whether this approximation is a good one for a given
solution to the semiclassical backreaction equation. We
have addressed this question by adapting a criterion devel-
oped for semiclassical gravity and modified for chaotic
inflation models, that should be satisfied if the semiclassical
approximation is valid. It is therefore a necessary but not
sufficient condition. The condition is based upon the fact
that the retarded two-point function for the current appears in
the linear response equations for semiclassical electrody-
namics. If this correlation function grows significantly in
time and therefore solutions to the linear response equation
grow significantly, then one expects that quantum fluctua-
tions are significant. We have approximated homogeneous
solutions to the linear response equation by taking two
solutions to the semiclassical backreaction equation which
are nearly the same at early times and plotting a relative
difference between them which we call RQ, defined in
Eq. (4.12). In caseswhere this difference grows significantly
in time one expects that the corresponding solution to the
linear response equation will also do so.
We have investigated the validity of the semiclassical

approximation for both the scalar and spin-1
2
fields using

two different classical current profiles which are shown
along with the resulting electric field (if backreaction
effects are ignored) in Fig. 4.
In the zero-mass limit for the spin-1

2
field, the solutions to

the semiclassical backreaction equations are completely
determined by the axial anomaly. In this case, there is no
growth whatsoever in the relative difference RQ, and thus,
for the approximate homogeneous solutions to the linear
response equation that we considered, our criterion appears
to be satisfied. We have investigated the behaviors of
solutions in the small-mass case, i.e.,m2 ≪ qE0, and found
that they smoothly approach those found in the zero-mass
limit. Thus, for the same type of solutions to the linear

response equation, our criterion appears to be satisfied in the
small-mass limit aswell.Note that in this limit there is a great
deal of particle production and backreaction effects are very
strong (see Figs. 6 and 7). Although there is no solvable
massless limit for a spin-0 field, we have also checked
numerically that there is less growth in RQ with time as we
decrease the mass of the created particles (see Fig. 8).
The intermediate casem2 ∼ qE0 is very different. In both

the asymptotically constant and Sauter pulse models and for
both the scalar and spin-1

2
fields, once the amount of particle

production has become significant, there is a rapid and
significant growth in the ratio RQ. Thus in this case our
criterion is not satisfied because of this growth. This is similar
to the breakdown of the semiclassical approximation found
in Ref. [20] for the preheating phase of chaotic inflation.
In the large-mass limit where qE0

m2 → 0, particle produc-
tion does not occur and the behavior of the electric field can
be predicted by classical electrodynamics. This is in
agreement with the decoupling theorem [54].
It is very likely that the first experimental verification of

the Schwinger effect will be for the intermediate-mass case.
Thus it is worth examining the predictions for that case
more carefully. First, there is no observed growth in RQ at
very early times before backreaction effects become sig-
nificant. Therefore our criterion appears to be initially
satisfied. However, given the difficulty in creating a strong
enough electric field for the Schwinger effect to be observed
in the laboratory (the field strength required being on the
order of Ecrit ∼ 1018 V=m), the focus of the initial experi-
ments is likely to be on the detection of particles rather than
their backreaction effects. Thus the semiclassical approxi-
mation should be able to give a good description of the
particle production process at such early times. Second, once
backreaction effects become significant, a relatively large
number of particles is likely to have been created. In
previous work on the study of the validity of the semi-
classical approximation for preheating in chaotic inflation
[20] it was found that in one case that could be compared
there was good qualitative agreement with calculations that
used a random phase approximation [55–57] even though
the semiclassical approximation broke down early in the
process. Similarly, the backreaction calculations in [13]
using classical statistical field theory techniques in 1+1Dare
in qualitative agreement with our calculations of the electric
field, energy density, and total particle number. Thus the
semiclassical approximation can, at least in some cases,
provide reasonable qualitative predictions even when its
quantitative predictions cannot be trusted.
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APPENDIX: DERIVATION OF THE
LINEAR RESPONSE EQUATION

1. Scalar field

The mode equation for a massive complex scalar field
can be obtained by substituting Eq. (2.6) into Eq. (2.5) with
the result

½−∂2
t þ∂2

x−2iqAðtÞ∂x−q2A2ðtÞ−m2�Ukðt;xÞ¼ 0: ðA1Þ

If one perturbs the vector potential about some solution to
the semiclassical backreaction equation AðtÞ such that
AðtÞ → AðtÞ þ δAðtÞ and writes for the mode function
Ukðt; xÞ → Ukðt; xÞ þ δUkðt; xÞ, then to leading order

½−∂2
t þ ∂2

x − 2iqAðtÞ∂x − q2A2ðtÞ −m2�δUkðt; xÞ
¼ 2qδAðtÞði∂xUkðt; xÞ þ qAðtÞUkðt; xÞÞ: ðA2Þ

For a massive scalar field, the retarded Green’s
function [5]

GRðt; x; t0; x0Þ ¼ iθðt − t0Þh½ϕðt; xÞ;ϕ†ðt0; x0Þ�i; ðA3Þ

is a solution to the inhomogeneous equation

½−∂2
t þ ∂2

x − 2iqAðtÞ∂x − q2AðtÞ2 −m2�GRðt; x; t0; x0Þ
¼ −δðt − t0Þδðx − x0Þ: ðA4Þ

Thus the solutions to Eq. (A2) can be written in the form

δUkðt; xÞ ¼ δUH
k ðt; xÞ − 2q

Z
∞

−∞
dt0

×
Z

∞

−∞
dx0GRðt; x; t0; x0Þ½i∂x0 þ qAðt0Þ�

×Ukðt0; x0ÞδAðt0Þ; ðA5Þ

where δUH
k is a solution to the homogeneous part of

Eq. (A2).
The explicit form ofGRðx; x0Þ can be found using Eq. (A3)

with Eq. (2.9) evaluated in the vacuum state, which yields

GRðt;x;t0;x0Þ¼
i
2π

θðt− t0Þ
Z

∞

−∞
dk½fkðtÞf�kðt0Þ−fkðt0Þf�kðtÞ�

×eikðx−x0Þ: ðA6Þ

Restricting attention to spatially homogeneous perturbations
we have

δUkðt; xÞ ¼ δfkðtÞeikx: ðA7Þ

Substituting Eqs. (A6) and (A7) into Eq. (A5) and integrating
yields

δfkðtÞ ¼ δfHk ðtÞ þ 2iq
Z

t

−∞
dt0ðk − qAðt0ÞÞ½fkðtÞf�kðt0Þ

− fkðt0Þf�kðtÞ�fkðt0ÞδAðt0Þ: ðA8Þ

The perturbation of the renormalized current (2.21) yields

δhJQiren ¼
q
π

Z
∞

−∞
dk

�
ðk−qAðtÞÞ½fkðtÞδf�kðtÞþδfkðtÞf�kðtÞ�

−qjfkðtÞj2δAðtÞþ
qm2

2ω3
δAðtÞ

�
: ðA9Þ

SubstitutingEq. (A8) and its complex conjugate into Eq. (A9)
yields

δhJQiren ¼
q
π

Z
∞

−∞
dk

�
ðk − qAðtÞÞ½fkðtÞδf�Hk ðtÞ þ f�kðtÞδfHk ðtÞ� −

�
jfkðtÞj2 −

m2

2ω3

�
qδAðtÞ

�

−
4q2

π

Z
∞

−∞
dk

Z
t

−∞
dt0ðk − qAðtÞÞðk − qAðt0ÞÞImffkðtÞ2f�kðt0Þ2gδAðt0Þ: ðA10Þ

Our goal is to show that the above linear response equation can be written in terms of the two-point correlation function
for the current, h½JQðt; xÞ; JQðt0; x0Þ�i. To accomplish this we next calculate the two-point correlation function using the
symmetrized current density (2.18) and the scalar field mode expansion (2.9) evaluated in the vacuum state. After
integrating over the spatial coordinate one finds
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Z
∞

−∞
dx0h½JQðt;xÞ;JQðt0;x0Þ�i¼

4iq2

π

Z
∞

−∞
dkðk−qAðtÞÞðk−qAðt0ÞÞImffkðtÞ2f�kðt0Þ2g: ðA11Þ

Comparing Eqs. (A10) and (A11), it is clear that Eq. (A10) can be written in the form

δhJQiren ¼
q
π

Z
∞

−∞
dk

�
ðk − qAðtÞÞ½fkðtÞδf�Hk ðtÞ þ f�kðtÞδfHk ðtÞ� −

�
jfkðtÞj2 −

m2

2ω3

�
qδAðtÞ

�

þ i
Z

∞

−∞
dx0

Z
t

−∞
dt0h½JQðt; xÞ; JQðt0; x0Þ�iδAðt0Þ: ðA12Þ

Thus δhJQiren for a scalar field has been cast in terms of the current-current two-point correlation function. Note that δfHk ðtÞ
corresponds to a change of state of the quantum field. For the cases considered in this paper the vector potential and its first
time derivative are zero initially so the perturbations do not cause a change in the state of the field so δfHk ðtÞ ¼ 0. Then the
linear response equation (4.1) becomes

d2

dt2
δAðtÞ ¼ −

d
dt

δEðtÞ ¼ δJC −
q2

π
δAðtÞ

Z
∞

−∞
dk

�
jfkðtÞj2 −

m2

2ω3

�
þ i

Z
∞

−∞
dx0

Z
t

−∞
dt0h½JQðt; xÞ; JQðt0; x0Þ�iδAðt0Þ: ðA13Þ

2. Spin-12 field

The mode equation for a massive charged spin-1
2
field can

be obtained by substituting Eq. (2.13) into Eq. (2.12) with
the result

½iγt∂t þ iγx∂x þ qγxAðtÞ −m�ukðt; xÞ ¼ 0: ðA14Þ

If one perturbs the vector potential about some solution to
the semiclassical backreaction equation AðtÞ such that
AðtÞ → AðtÞ þ δAðtÞ and writes for the mode function
ukðt; xÞ → ukðt; xÞ þ δukðt; xÞ then to leading order

½iγt∂tþ iγx∂xþqγxAðtÞ−m�δukðt;xÞ¼−qγxukðt;xÞδAðtÞ:
ðA15Þ

For a massive spin-1
2
field the retarded Green’s function

GRðt; x; t0; x0Þ ¼ iθðt − t0Þhfψðt; xÞ; ψ̄ðt0; x0Þgi; ðA16Þ

is a solution to the inhomogeneous equation

½iγt∂t þ iγx∂x þ qγxAðtÞ −m�GRðt; x; t0; x0Þ
¼ −1δðt − t0Þδðx − x0Þ; ðA17Þ

where 1 is the identity matrix. Thus the solution to
Eq. (A15) can be written in the form

δukðt;xÞ¼ δuHk ðt;xÞþq
Z

∞

−∞
dt0

×
Z

∞

−∞
dx0GRðt;x;t0;x0ÞγxδAðt0Þukðt0;x0Þ: ðA18Þ

whereH represents the homogeneous solution. The explicit
form of GRðt; x; t0; x0Þ can be found using Eq. (A16) with
the Dirac field expansion (2.13) in terms of spinor solutions
(2.14) evaluated in the vacuum state, which yields

GRðt; x; t0; x0Þ ¼
iθðt − t0Þ

2π

Z
dkeikðx−x0Þ

2
64−hIkðtÞhII�k ðt0Þ þ hII�k ðtÞhIkðt0Þ hIkðtÞhI�k ðt0Þ þ hII�k ðtÞhIIk ðt0Þ

hIIk ðtÞhII�k ðt0Þ þ hI�k ðtÞhIkðt0Þ −hIIk ðtÞhI�k ðt0Þ þ hI�k ðtÞhIIk ðt0Þ

3
75: ðA19Þ

Restricting attention to spatially homogeneous perturbations and using Eq. (2.14) gives

δukðt; xÞ ¼
eikxffiffiffiffiffiffi
2π

p
�

δhIkðtÞ
−δhIIk ðtÞ

�
: ðA20Þ

Changing the integration variable to k0 in (A19), substituting the result along with (2.14) and (A20) into (A18), and
integrating first over x0 and then over k0 gives
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"
δhIkðtÞ
−δhIIk ðtÞ

#
¼

"
δhIHk ðtÞ
−δhIIHk ðtÞ

#
− iq

Z
t

−∞
dt0

"
hIkðtÞðjhIkðt0Þj2 − jhIIk ðt0Þj2Þ þ 2hII�k ðtÞhIkðt0ÞhIIk ðt0Þ
hIIk ðtÞðjhIIk ðt0Þj2 − jhIkðt0Þj2Þ þ 2hI�k ðtÞhIkðt0ÞhIIk ðt0Þ

#
δAðt0Þ: ðA21Þ

The perturbation of the renormalized current (2.24) yields

δhJQiren ¼
q
2π

Z
∞

−∞
dk

�
hI�k ðtÞδhIkðtÞ þ hIkðtÞδhI�k ðtÞ − hII�k ðtÞδhIIk ðtÞ − hIIk ðtÞδhII�k ðtÞ − qm2

ω3
δAðtÞ

�
: ðA22Þ

Equation (A21) and its complex conjugate can be substituted into Eq. (A22) to yield

δhJQiren ¼
q
2π

Z
∞

−∞
dk

�
hI�k ðtÞδhI;Hk ðtÞ þ hIkðtÞδhI�Hk ðtÞ − hII�k ðtÞδhII;Hk ðtÞ − hIIk ðtÞδhII�Hk ðtÞ − qm2

ω3
δAðtÞ

�

−
4q2

π

Z
∞

−∞
dk

Z
t

−∞
dt0ImfhIðtÞhIIðtÞhI�ðt0ÞhII�ðt0ÞgδAðt0Þ: ðA23Þ

As in the scalar field case, an explicit expression for the two-point correlation function is needed. To calculate the two-
point correlation function we begin by utilizing the antisymmetrized current density (2.23) with the fermion field mode
expansion (2.13) evaluated in the vacuum state. Integrating over the spatial coordinate gives

Z
∞

−∞
dx0h½JQðt; xÞ; JQðt0; x0Þ�i ¼

4iq2

π

Z
∞

−∞
dkImfhIkðtÞhIIk ðtÞhI�k ðt0ÞhII�k ðt0Þg: ðA24Þ

Comparing Eqs. (A23) and (A24), it is clear that Eq. (A23) can be written in the form

δhJQiren ¼
q
2π

Z
∞

−∞
dk

�
hI�k ðtÞδhI;Hk ðtÞ þ hIkðtÞδhI�Hk ðtÞ − hII�k ðtÞδhII;Hk ðtÞ − hIIk ðtÞδhII�Hk ðtÞ − qm2

ω3
δAðtÞ

�

þ i
Z

∞

−∞
dx0

Z
t

−∞
dt0h½JQðt; xÞ; JQðt0; x0Þ�iδAðt0Þ: ðA25Þ

Thus δhJQiren for spin-1
2
particle production has been cast in terms of the current-current two-point correlation function.

Note that δhðI;IIÞHk ðtÞ corresponds to a change of state of the quantum field. As mentioned above, for the cases considered in
this paper the vector potential and its first time derivative are zero initially so the perturbations do not cause a change in the

state of the field so δhðI;IIÞHk ðtÞ ¼ 0. Then the linear response equation (4.1) becomes

d2

dt2
δAðtÞ ¼ −

d
dt

δEðtÞ ¼ δJC −
q2m2

2π
δAðtÞ

Z
∞

−∞

dk
ω3

þ i
Z

∞

−∞
dx0

Z
t

−∞
dt0h½JQðt; xÞ; JQðt0; x0Þ�iδAðt0Þ: ðA26Þ
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