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The point-splitting renormalization method offers a prescription to calculate finite expectation values of
quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently
shown by Levi and Ori that when the background metric possesses an isometry, like stationary or
spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of
renormalization that produces efficient numerical calculations. In this paper we show that when the
background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the
above pragmatic regularization technique reduces to the well-established adiabatic regularization method.
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I. INTRODUCTION

Obtaining accurate theoretical predictions from quantum
field theory has become a topic of great interest nowadays
for studies of the early universe and black holes. The naive
calculation of physical observables associated with a
quantum field ϕ, such as hϕ2ðxÞi or hTμνðxÞi, typically
leads to divergent sums or integrals of field modes, thereby
requiring the study of renormalization. While the system-
atics of renormalization in a general curved spacetime has
been known for several decades now [1–5], the imple-
mentation of the standard prescription to get specific results
is still difficult to put in practice even for the most simple
spacetime backgrounds. This is because the regularization
of ultraviolet divergences in a covariant way, and the
construction of the subtraction terms, are based on the
point-splitting technique [6–8], a purely analytical pro-
cedure that involves taking limits of points along geodesics.
However, getting the field modes in a given spacetime
background requires solving complicated differential equa-
tions, which can only be addressed numerically but in
exceptional cases. A procedure to transform the covariant
point-splitting technique into a numerically implementable
method is thus almost mandatory if quantum field theory
aims to produce results of practical interest for most
gravitational scenarios.
The numerical implementation of the point-splitting

regularization method is however a nontrivial task,

specially for black hole backgrounds. In a Schwarzschild
metric, the first important insight was introduced by
Candelas in [9] by proposing an integral representation
of the subtraction terms of point-splitting, allowing the
possibility of subtracting the ultraviolet divergences within
the integral of field modes, thereby yielding a formally
finite result upon which the limit of points could be taken in
advance. However, the numerical implementation of these
integrals was still a difficult task and this idea was not
pursued further. An alternative way to address the problem
was proposed in [10], which did not involve the numerical
evaluation of integrals, but which required an analytic
WKB-type approximation of the field and a Wick rotation
to analytically extend the metric to the Euclidean space.
This method was successful in the Schwarzschild back-
ground and it was later extended for a general static and
spherically symmetric metric in [11].
Unfortunately, these analytical techniques are not avail-

able for time-dependent backgrounds, as for instance in
gravitational collapse, and thus this approach could not be
extended to dynamical settings, that are of great interest in
astrophysics. This problem recently motivated Levi and Ori
[12,13] to develop what they called the pragmatic mode-
sum method of regularization, which bypasses any analytic
approximation, and that can be applied to any background
metric as long as it displays an isometry. Their approach
recovers the first insight proposed by Candelas of finding
integral representations of the point-splitting subtraction
terms, and proposes a successful method to implement
numerically the integration over the field modes, based on
the concept of generalized integrals. The technique has
been proven to be useful in computing numerically hϕ2ðxÞi
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and hTμνðxÞi in black hole backgrounds in different
complementary ways [14–20].
The importance of this new approach is that it can be

applied to any metric provided that it has some symmetry.
For instance, in order to calculate hϕ2ðxÞi one splits the
points as hϕðxÞϕðx0Þi, which is well defined, and then,
after subtracting the necessary DeWitt-Schwinger term
GDSðx; x0Þ, one takes the limit in which the two points
x, x0 merge: hϕ2ðxÞi ¼ limx0→xðhϕðxÞϕðx0Þi −GDSðx; x0ÞÞ.
Following the proposal in [12], in a stationary background
there is a preferred direction for which this splitting
could be taken, which is the direction of the time-
translational Killing vector field, i.e., x ¼ ðt; r; θ;φÞ and
x0 ¼ ðtþ ϵ; r; θ;φÞ in the usual Boyer-Lindquist coordi-
nates. Furthermore, the field ϕðxÞ can be expanded in
modes of well-defined frequency. Then, the point-splitting
in the symmetric direction allow us to write the subtraction
term GDSðx; x0Þ as integrals in the field-mode frequencies,
by Fourier-transforming each term with respect to the
splitting parameter ϵ. The resulting expression for the
difference hϕðxÞϕðx0Þi −GDSðx; x0Þ is an integral in
frequencies which is formally finite in the limit x0 → x,
so this limit can be safely taken inside the integral. This is
specially appropriate for numerical implementation, since
only an integration is required to get the desired final
result. It is important to stress that for the whole procedure
to be well defined the time-translational symmetry is
fundamental. Similar reasonings can be applied with
spherical symmetry (implemented via angular splitting),
or only axial symmetry (implemented via azimuthal point-
splitting) [12–16].
So far the pragmatic mode-sum regularization method

has been only applied for stationary black hole space-
times. Can one implement this procedure for other, possibly
dynamical, symmetric spacetimes? Friedmann-Lemaitre-
Robertson-Walker (FLRW) spacetimes, which are of interest
in studies of cosmology, have three spatial Killing vector
fields associated with spatial translations. Consequently, it is
natural to use those symmetries to upgrade the point-splitting
method and rewrite the subtraction term GDSðx; x0Þ as an
integral in modes of momentum k⃗ (i.e., the constants of
motion associated with the spatial translation symmetries).
The goal of this work is to carry out this simple idea. As a
result, we shall find that the subtraction integrals match
the expressions offered by the method of adiabatic regulari-
zation [21].
The paper is organized in the following way. In Sec. II

we outline the main idea of the pragmatic mode-sum
regularization method. To this end we restrict the presen-
tation to a stationary background and evaluate the renor-
malized two-point function hϕ2ðxÞi by splitting the points
in the associated timelike direction. In Sec. III we extend
the method to provide a numerically implementable for-
mula for hϕ2ðxÞi in a spatially flat FLRW spacetime using
the spatial translational symmetry of the metric. We end the

section generalizing the method by considering an arbitrary
renormalization point μ. In this work we follow the
conventions in [4]; in particular we use the metric signature
ðþ;−;−;−Þ.

II. PRAGMATIC MODE-SUM REGULARIZATION
METHOD IN A STATIONARY BACKGROUND:

t-SPLITTING

In this section we outline the idea underlying the
pragmatic mode-sum regularization method introduced in
[12], emphasizing those aspects that are relevant for our
purposes. The method takes advantage of the symmetries of
the spacetime metric to rewrite the renormalization sub-
tractions in the point-splitting method into a numerically
efficient way. In order to illustrate the procedure, let us
focus on the computation of the two-point function of a
scalar field by exploiting the stationary symmetry.
Let ϕðxÞ be a scalar field of massm living in a stationary

spacetime of metric gμν that obeys the field equation
ð□þm2 þ ξRÞϕ ¼ 0, where ξ is the coupling constant
to the scalar curvature R. To formulate a quantum descrip-
tion of this field, one must construct a Hilbert space of
states. As is well known, in a general curved spacetime
there is no preferred prescription to do this. However, if the
spacetime is stationary one can define creation and anni-
hilation operators, A†

ω and Aω, by decomposing the field
operator into positive and negative frequency parts,

ϕðxÞ ¼
Z

∞

m
dω½AωfωðxÞ þ A†

ωf�ωðxÞ�; ð1Þ

and define the vacuum state using the annihilation oper-
ators. The notion of field modes fω, f�ω of positive and
negative frequency ω can be introduced in a natural way by
the conditions LKfω ¼ −iωfω, LKf�ω ¼ iωf�ω, where K is
the infinitesimal generator of the isometry (i.e., the Killing
vector field) [5]. Then, using this set of field modes there is
a preferred prescription to decompose the field operator as
above [22]. We have omitted the additional quantum
numbers required to specify a basis of modes, since they
do not play any fundamental role in the following dis-
cussion. Choosing now a natural coordinate system ft; xkg
such that K ¼ ∂=∂t, the above conditions imply

fωðxÞ ¼ e−iωtψωðx⃗Þ; ð2Þ

where x⃗ is a shorthand for the three spatial coordinates xk.
The determination of the spatial functions ψωðx⃗Þ is achieved
by solving numerically the Klein-Gordon equation.
The naive calculation of hϕ2ðxÞiwill produce a divergent

expression, as expected, so a renormalization method is
needed at this point. The DeWitt-Schwinger point-splitting
method consists in taking the product of the field operator
at two separated points x, x0; subtracting to this two-point
function the corresponding asymptotic DeWitt-Schwinger
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proper-time expansion up to the last divergent term; and
finally taking the coincident limit x → x0 along a geodesic
that connects the two points. The result of this procedure is
what defines the renormalized two-point function:

hϕ2ðxÞiren ¼ lim
x0→x

½hfϕðxÞ;ϕðx0Þgi −Gð1Þ
DSðx; x0Þ�; ð3Þ

where fϕðxÞ; ϕðx0Þg ≡ 1
2
½ϕðxÞϕðx0Þ þ ϕðx0ÞϕðxÞ�, and

Gð1Þ
DSðx; x0Þ is the symmetric part of the DeWitt-Schwinger

subtraction term (Hadamard function). Following [7], it is
possible to obtain an expansion for the symmetric two-point
function in terms of covariant quantities evaluated at x and
the geodesic distance between x and x0. Including only the
relevant terms needed in the calculation of the renormalized
two-point function (i.e., up to second-order derivatives of the
metric), the subtraction term yields

Gð1Þ
DSðx; x0Þ ¼

1

8π2

�
−
1

σ
þ ðm2

þ ðξ − 1=6ÞRÞ
�
γ þ 1

2
log

�
m2jσj
2

��

−
m2

2
þ 1

12
Rαβ

σ;ασ;β

σ

�
; ð4Þ

whereR is the scalar curvature andRαβ is theRicci tensor. γ is
the Euler constant and σðx; x0Þ ¼ 1

2
τðx; x0Þ2, τðx; x0Þ being

the proper distance along the geodesic connecting x to x0
(for sufficiently close points this geodesic is unique [23]).
The expansion (4) contains all the divergences of the two-
point function. As a remark, expression (4) finds its origin in
the integral expression for the Feynman Green function

GDSðx; x0Þ ¼
Δ1=2ðx; x0Þ

ð4πÞ2
Z

∞

0

ds
ðisÞ2 e

−iðm2sþ σ
2sÞ

×
X∞
n¼0

anðx; x0ÞðisÞn; ð5Þ

where anðx; x0Þ are the DeWitt coefficients, which can be
solved recursively from the field equations using the input
a0ðx; x0Þ ¼ 1 [5], and Δðx; x0Þ is the Van Vleck-Morette
determinant defined as

Δðx; x0Þ ¼ −jgðxÞj−1=2 det½−∂μ∂ν0σðx; x0Þ�jgðx0Þj−1=2: ð6Þ

The above expression can be written in terms of Hankel
functions which, after expanding in an asymptotic series,
give rise to (4). Aswewill see in Sec. III A, Eq. (5) will be the
key starting point to generalize the subtraction terms in order
to deal with the infrared divergence whenm → 0 (by means
of the introduction of an arbitrary renormalization point μ).
To implement the renormalization prescription with the

pragmatic mode-sum regularization we just need (4), so
we will forget about (5) for the moment.
At this point it becomes evident that, if the mode

functions in (2) are to be solved numerically, the explicit
calculation of (3) with (4) using numerical methods is far
from obvious. Here is where the pragmatic mode-sum
method comes into play. Following [12], we have to split
the points x and x0 in the direction associated with the
symmetry, i.e., such that the metric has the same value in
both points. Choosing x ¼ ðt; x⃗Þ and x0 ¼ ðtþ ϵ; x⃗Þ with
ϵ > 0 an infinitesimal parameter, the mode expansion of the
symmetric two-point function formally reads

hfϕðxÞ;ϕðx0Þgi ¼
Z

∞

m
dω cos ðωϵÞjψωðx⃗Þj2: ð7Þ

On the other hand, expanding σ in a Taylor series around

ϵ ¼ 0 one finds that the general form of Gð1Þ
DSðx; x0Þ has the

form

Gð1Þ
DSðx; x0Þ ¼ aðx⃗Þ 1

ϵ2
þ cðx⃗Þðlog ðmϵÞ þ γÞ þ dðx⃗Þ þOðϵÞ;

ð8Þ

where aðx⃗Þ, cðx⃗Þ, and dðx⃗Þ are real functionals of the
metric. The key point now is to express the ϵ-dependent
terms as integrals in ω by using the following integral
transforms:

Z
∞

m
dωω cosðωϵÞ ¼ −

1

ϵ2
−
m2

2
þOðϵÞ; ð9Þ

Z
∞

m

dω
ωþm

cosðωϵÞ ¼ −ðlogðmϵÞ þ γÞ − log 2þOðϵÞ:

ð10Þ

These integrals have to be understood as generalized
integrals in the distributional sense. Inserting all these
expressions in (3) one finds the following expression for the
renormalized two-point function:

hϕ2ðxÞiren ¼ lim
ϵ→0

Z
∞

m
dω

�
jψωðx⃗Þj2 þ aðx⃗Þω

þ cðx⃗Þ 1

ωþm

�
cos ðωϵÞ − d̄ðx⃗Þ; ð11Þ

where d̄ðx⃗Þ ¼ dðx⃗Þ − aðx⃗Þ m2

2
− cðx⃗Þ log 2. The integral is

now expected to be convergent since the original point-
splitting subtraction terms have been designed to cancel
the divergences of the two-point function. Then, the limit
and the integration can be interchanged and we finally
obtain the following result for the renormalized two-point
function:
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hϕ2ðxÞiren ¼
Z

∞

m
dω

�
jψωðx⃗Þj2 þ aðx⃗Þωþ cðx⃗Þ 1

ωþm

�

− d̄ðx⃗Þ: ð12Þ

Thus, with these manipulations the quantity hϕ2ðxÞiren
can, at least in principle, be computed using ordinary
numerical techniques.1 In practice, however, there is
one last issue that must be addressed, at least in
some cases. To give an example, in a Schwarzschild
background and for a massless field m ¼ 0 one
gets [12] a ¼ −ð4π2ð1 − 2M=rÞÞ−1, c ¼ 0, d ¼ M2 ×
ð48π2r4ð1 − 2M=rÞÞ−1, which agrees with the result origi-
nally introduced in [9]. The point is that, when trying to
implement the above integration numerically, one finds that
it fails to converge. This is because when performing the
integration between 0 and ω, increasing oscillations in ω
appear. As pointed out in [12], the origin of these
oscillations comes from the fact that black holes admit
null geodesics connecting x and x0, i.e., geodesics that start
at some spatial point and after making one or several round
trips around the black hole return to the same point with a
delay time given by ϵ. At the values of ϵ corresponding to
these geodesics the term hϕðxÞϕðx0Þi presents singularities,
which in Fourier domain is equivalent to oscillations in
jψωðx⃗Þj2 [see Eq. (7)]. The wavelengths of the oscillations
are related to the values of ϵ of these geodesics, that can be
obtained through a straightforward analysis of the geodesic
equation in Schwarzschild spacetime. To solve the issue of
the divergent integration, one can apply a “self-cancella-
tion” numerical method, explained in detail in [12], in order
to cancel the oscillations and obtain the physical finite
value of the renormalized two-point function. Fortunately,
in the case we will study in this work these kinds of
geodesics do not exist, so there will not be any convergence
problem, and then the self-cancellation method will not be
necessary.
As a final remark, for massless fields the term

log ðm2jσj=2Þ in (4) is ill defined. This infrared problem
is usually bypassed by replacing the mass by a new
arbitrary parameter μ in the logarithm. Therefore, in the
massless case (12) actually reads

hϕ2ðxÞiren ¼
Z

∞

0

dω

�
jψωðx⃗Þj2 þ aðx⃗Þωþ cðx⃗Þ 1

ωþ μ

�

− dðx⃗Þ: ð13Þ

We will reconsider this point later on, specially in the
quantization of the field in the FLRW background.

III. PRAGMATIC MODE-SUM REGULARIZATION
METHOD IN A FLRW BACKGROUND:

TRANSLATIONAL-SPLITTING

As pointed out in the Introduction, our aim is to extend
the pragmatic mode-sum method to a cosmological
setting. We shall work out the case of a scalar field in a
FLRW spacetime, and consider a spatially flat universe
with metric ds2 ¼ dt2 − a2ðtÞdx⃗2, for simplicity. This
spacetime is dynamical and t-splitting is no longer useful.
On the contrary, since the background we are considering
now is spatially homogeneous, it is natural to use the
translational symmetry when applying the point-splitting
prescription.
Given the spatial homogeneity of the spacetime back-

ground, the field operator ϕ can now be naturally expanded
in the form

ϕðxÞ ¼
Z

d3k½Ak⃗fk⃗ðxÞ þ A†
k⃗
f�
k⃗
ðxÞ�; ð14Þ

where, again, Ak⃗ and A†
k⃗
are annihilation and creation

operators satisfying canonical commutation relations, and
fk⃗ðxÞ denote a complete orthonormal family of solutions
to the field equation satisfying LKjfk⃗ ¼ ikjfk⃗, where
fKjgj¼1;2;3 denote the three Killing vector fields associated
with spatial translations. Thus, in a canonical coordinate
chart ft; x⃗g where Kj ¼ ∂=∂xj the field modes take the
general form

fk⃗ðxÞ ¼
eik⃗·x⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3aðtÞ3
p hkðtÞ: ð15Þ

These modes are assumed to obey the normalization
condition with respect to the conserved Klein-Gordon
product ðfk⃗; fk⃗0 Þ ¼ δ3ðk⃗ − k⃗0Þ, ðfk⃗; f�k⃗0 Þ ¼ 0. This condition

translates into a Wronskian-type condition for the modes:
h�k _hk − _h�khk ¼ −2i, where the dot means derivative with
respect to time t. The complete specification of the modes
usually requires assuming boundary conditions at early
times. This is however not relevant for renormalization.
Let us now proceed to the regularization of the two-point

function via the point-splitting method. As explained in the
previous section the renormalized two-point function is
defined as

hϕ2ðxÞiren ¼ lim
x0→x

½hfϕðxÞ;ϕðx0Þgi −Gð1Þ
DSðx; x0Þ�; ð16Þ

where the DeWitt-Schwinger subtraction term is given by
(4), now with R ¼ 6ðäa þ _a2

a2Þ; R00 ¼ 3 ä
a ; Rii ¼ −a2ðäa þ 2_a2

a2 Þ
for a FLRW metric.
As illustrated in the previous section the point-splitting

regularization scheme becomes particularly useful when we

1Notice though that the existence of an isometry was funda-
mental. Had the coordinate t failed to be associated with a Killing
vector field, the above procedure could not have been carried out.
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evaluate the two-point function in two points where the
metric has the same value. Therefore, taking advantage of
the translational symmetry of the FLRW spacetime, we
consider equal-time points x≡ ðt; x⃗Þ and x0 ≡ ðt; x⃗þ ϵ⃗Þ to
do the splitting. Then, the equal-time two-point function
reads

hfϕðxÞ;ϕðx0Þgi ¼ 1

2ð2πaðtÞÞ3
Z

d3kjhkðtÞj2 cos ðk⃗ · ϵ⃗Þ:

ð17Þ
One can now express the cosine in terms of exponentials
and easily perform angular integration to reduce it to

hfϕðxÞ;ϕðx0Þgi ¼ 1

4π2aðtÞ3
Z

∞

0

dkk2jhkðtÞj2
sin kϵ
kϵ

; ð18Þ

where k ¼ jk⃗j and ϵ ¼ jϵ⃗j. To achieve an efficient numeri-
cal method of renormalization, the goal now is to rewrite

the DeWitt-Schwinger term Gð1Þ
DSðx; x0Þ in (4) as an integral

in momentum space so that it can be fitted with the previous
expression for the field modes. As in the previous section,
we have to evaluate σ. To this end, it is useful to use the
Riemann normal coordinates yμ with origin at x. In these
coordinates we have σðx; x0Þ ¼ 1

2
yμyμ. Following [24], yμ

can be expanded in terms of Δxμ ¼ x0μ − xμ, and we obtain
(for the first orders)

σ ¼ 1

2
Δt2 −

a2

2
Δx⃗2 −

a _a
2
Δx⃗2Δt −

aä
6
Δx⃗2Δt2

−
a2 _a2

24
Δx⃗4 þ � � � : ð19Þ

Therefore in our case we can write

σ ¼ −
a2

2
ϵ2 −

a2 _a2

24
ϵ4 −

ða2 _a4 þ 3a3 _a2äÞ
720

ϵ6 þOðϵ8Þ:
ð20Þ

The terms involving σ in (4) can be now expanded as
follows [note that σ;α must be calculated from (19)]

1

σ
¼ −

2

a2ϵ2
þ _a2

6a2
þOðϵ2Þ; ð21Þ

Rαβ
σ;ασ;β

σ
¼ 2

ä
a
þ 4

_a2

a2
þOðϵ2Þ: ð22Þ

Introducing these results in (4) we get

Gð1Þ
DSðx; x0Þ ¼

1

4π2

�
1

a2ϵ2
þ 1

2
ðm2 þ ðξ − 1=6ÞRÞ

�
γ

þ log

�
ma
2

ϵ

��
−
m2

4
þ R
72

�
þOðϵÞ; ð23Þ

which turns out to be a function depending on ϵ⃗ only
through its modulus ϵ (this is due to the underlying isotropy
of the FLRW metric). Now we have to rewrite the potential
divergences of this expression as ϵ → 0 in terms of one-
dimensional integrals in momentum space involving sin kϵ

kϵ .
To this end we consider the following integral transforms,
which have to be understood as generalized integrals:

Z
∞

0

dkk
sin kϵ
kϵ

¼ 1

ϵ2
; ð24Þ

Z
∞

0

dk
k2

ω3

sin kϵ
kϵ

¼ −a3
�
γ þ log

�
ma
2

ϵ

��
þOðϵÞ; ð25Þ

where ωðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2ðtÞ þm2

p
. Substituting in (23) the

terms depending on ϵ by these integrals we get

Gð1Þ
DSðx; x0Þ ¼

1

4π2a3

Z
∞

0

dk
sinðkϵÞ
kϵ

×

�
ka −

k2m2

2ω3
þ k2ð1

6
− ξÞR

2ω3

�

−
m2

16π2
þ R
288π2

þOðϵÞ: ð26Þ

Using now the identity

1

4π2a3

Z
∞

0

dk
sinðkϵÞ
kϵ

�
ka −

k2m2

2ω3
−
k2

ω

�
¼ m2

16π2
þOðϵÞ;

ð27Þ

we can simplify the expression of Gð1Þ
DS. Introducing it into

(16) we can finally write

hϕ2iren ¼ lim
ϵ→0

1

4π2a3

Z
∞

0

dkk2
sin kϵ
kϵ

�
jhkj2 −

1

ω
−
ð1
6
− ξÞR
2ω3

�

−
R

288π2
: ð28Þ

The sum of terms inside the parentheses has no ultraviolet
divergences even for ϵ ¼ 0, so we can interchange the
integral and the limit ϵ → 0 to find

hϕ2iren ¼
1

4π2a3

Z
∞

0

dkk2
�
jhkj2 −

1

ω
−
ð1
6
− ξÞR
2ω3

�
−

R
288π2

:

ð29Þ
Note that the above expression can be naturally expressed
in terms of a three-dimensional integral in the k⃗ modes
associated with the three-dimensional translation symmetry

hϕ2iren ¼
1

2ð2πaÞ3
Z

d3k

�
jhkj2 −

1

ω
−
ð1
6
− ξÞR
2ω3

�
−

R
288π2

:

ð30Þ
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This result agrees exactly with the renormalized two-
point function obtained by using the so-called adiabatic
regularization method developed by Parker and Fulling
in the early 1970s for cosmological backgrounds and
scalar fields [21] (see [25] for spin-1=2 fields). One can
check the result with Eq. (A9) in Appendix A. As
explained before, the problem of frequency oscillations
in the Schwarzschild black hole context, pointed out in
[12], does not emerge for FLRW metrics. Therefore,

after solving numerically the Klein-Gordon equation for
the modes hkðtÞ, ordinary numerical integration tech-
niques can be applied directly to calculate the final
expression (29).
It is also straightforward to see that the result can be

extended to the renormalized stress-energy tensor in a
FLRW background. To this end one needs a more complete
form of the DeWitt-Schwinger expansion of the two-point
function [7,26]

Gð1Þ
DSðx; x0Þ ¼

Δ1=2

8π2

�
−
1

σ
þm2

�
γ þ 1

2
ln

���� 12m2σ

����
��

1 −
1

4
m2σ

�
−
1

2
m2 þ 5

16
m4σ

− a1

��
γ þ 1

2
ln

���� 12m2σ

����
��

1 −
1

2
m2σ

�
þ 1

2
m2σ

�
−
1

2
a2σ

�
γ þ 1

2
ln

���� 12m2σ

���� − 1

2

�
þ a2
2m2

	
; ð31Þ

where a1 and a2 are the first DeWitt coefficients. The
renormalized vacuum expectation value of the stress-
energy tensor can be obtained by acting with a nonlocal
operator to the renormalized symmetric part of the two-
point function

hTμνi ¼ lim
x→x0

Dμνðx; x0Þ½hfϕðxÞ;ϕðx0Þgi − Gð1Þ
DSðx; x0Þ�:

ð32Þ

This differential operator Dμνðx; x0Þ contains different
quadratic terms of covariant derivatives [7,26]; therefore,
we need to expand (31) up to and including the orderOðϵ2Þ
because terms proportional to ϵ2 can give rise to finite terms
in hTμνi. Proceeding as before and expanding (31) to order
Oðϵ2Þ we arrive at the expression (B4) (see Appendix B for
details) which contains terms with four derivatives of the
metric. This expression agrees with the subtraction terms of
the two-point function obtained by adiabatic regularization
at fourth adiabatic order (B5). Therefore, the pragmatic
form of the subtraction terms for the stress-energy tensor,
when the translational symmetry is considered, reduces to
the renormalization terms of adiabatic regularization. The
explicit formulas of interest required to do the direct
numerical implementation can be seen, for instance, in
[27]. These results explain the great versatility of the
adiabatic method with numerical calculations [28–31].

A. Massless case and the renormalization scale μ

For massless fields expression (4) is ill defined due to a
logarithmic divergence. The usual approach to bypass this
infrared divergence is to introduce an upper cutoff in the
proper-time integral (5) [5], or to replacem2 by an arbitrary
mass scale μ2 in the problematic logarithmic term. Here we
will follow an alternative strategy based on [32] that
consists in replacing m2 by m2 þ μ2 in the exponent of

the DeWitt-Schwinger integral form (5). The advantage of
this approach is that it leads to a natural decoupling
mechanism of heavy massive fields. Following this idea,
we have

GDSðx; x0Þ ¼
Δ1=2

ð4πÞ2
Z

∞

0

ds
ðisÞ2 e

−iððm2þμ2Þsþ σ
2sÞ
X∞
n¼0

ānðisÞn:

ð33Þ

In order to be consistent with (5), the first DeWitt
coefficients need to be modified in the following way:
ā0ðx;x0Þ¼1;ā1ðx;x0Þ¼a1ðx;x0Þþμ2;ā2ðx;x0Þ¼a2ðx;x0Þ þ
a1ðx;x0Þμ2þ1

2
μ4. Now one can proceed as in the case in

which μ ¼ 0. We can write (33) in terms of Hankel
functions and later expand them in asymptotic series to
finally get the following expression for the subtraction term
of the two-point function in the point-splitting renormal-
ization method:

Gð1Þ
DSðx; x0Þ ¼

1

8π2

�
−
1

σ
þ ðm2 þ ðξ − 1=6ÞRÞ

×

�
γ þ 1

2
log

�
m2 þ μ2

2
jσj

��

−
m2 þ μ2

2
þ 1

12
Rαβ

σ;ασ;β

σ

�
: ð34Þ

Note that the parameter μ2 appears nontrivially in this
expression. Not only does it appear in the logarithmic term
but it also emerges in the constant term, and not in the usual
combination m2 þ ðξ − 1=6ÞR multiplying the logarithm.
This effect is responsible of the decoupling of heavy
particles in the computations of the renormalized energy-
momentum tensor [32].
Considering a FLRW spatially flat spacetime we can

write the generalized subtraction term with integrals in

PAU BELTRÁN-PALAU et al. PHYS. REV. D 103, 105002 (2021)

105002-6



modes of k by using again the translational symmetry. To
do so, we just have to replacem2 bym2

eff ¼ m2 þ μ2 in (25)
and using the integral representations of the divergent terms
[Eqs. (24) and (25)] in (34) we get

Gð1Þ
DSðx; x0Þ ¼

1

4π2a3

Z
∞

0

dk
sinðkϵÞ
kϵ

×

�
ka −

k2m2

2ω3
eff

þ k2ð1
6
− ξÞR

2ω3
eff

�

−
m2

eff

16π2
þ R
288π2

þOðϵÞ; ð35Þ

where ω2
eff ¼ k2

a2 þm2 þ μ2. If we consider the identity (27)
with m2 replaced by m2

eff we can rewrite the expression
above as follows:

Gð1Þ
DSðx; x0Þ ¼

1

4π2a3

Z
∞

0

dkk2
sinðkϵÞ
kϵ

×

�
1

ωeff
þ ð1

6
− ξÞR
2ω3

eff

þ μ2

2ω3
eff

�
þ R
288π2

þOðϵÞ:

ð36Þ

This is the generalized subtraction term for the two-point
function written as an integral in modes of the momentum
k. Note that a new term proportional to μ2 appears. This
result agrees with adiabatic regularization when we intro-
duce the arbitrary parameter μ requiring the same con-
ditions (see Appendix A for details).

IV. CONCLUSIONS

In this work we have applied the pragmatic mode-sum
regularization method proposed by Levi and Ori to study
the numerical implementability of renormalization for
quantum fields in FLRW spacetime backgrounds. This
was possible thanks to the isometry under spatial trans-
lations of the underlying metric. The results obtained are in
agreement with the well-known prescription of adiabatic
regularization, developed by Parker and Fulling in the early
1970s. Adiabatic regularization can now be understood as
the natural renormalization procedure that emerges when
the point-splitting technique is applied using the spatial
isometries of the FLRW metric.
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APPENDIX A: ADIABATIC REGULARIZATION
WITH AN ARBITRARY μ

In this Appendix we provide a very concise presentation
of the adiabatic regularization method. Furthermore we also
introduce the adiabatic procedure in a generalized way
so as to account for the introduction of a renormalization
scale μ. It was first sketched in [33] by replacing m2 by μ2

in the zeroth adiabatic order. However, following [32] a
better, and physically motivated procedure, is to replace
m2 → m2 þ μ2. The underlying reason is to guarantee the
decoupling of heavy massive fields.
Adiabatic renormalization is based on a generalized

WKB-type asymptotic expansion of the modes (15) accord-
ing to the ansatz

hkðtÞ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffi
WkðtÞ

p e−i
R

t Wkðt0Þdt0 ; ðA1Þ

which guarantees the Wronskian condition hk _h
�
k − h�k _hk ¼

−2i. One then expands Wk in an adiabatic series, in which
each contribution is determined by the number of time
derivatives of the expansion factor aðtÞ

WkðtÞ ¼ ωð0ÞðtÞ þ ωð2ÞðtÞ þ ωð4ÞðtÞ þ � � � ; ðA2Þ

where the leading term ωð0ÞðtÞ≡ ωðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2ðtÞ þm2

p
is the usual physical frequency. Higher order contributions
can be univocally obtained by iteration (for details, see [4]),
which come from introducing (A1) into the equation of
motion for the modes. The adiabatic expansion of the
modes can be easily translated to an expansion of the
two-point function hϕðxÞϕðx0Þi≡ Gðx; x0Þ at coincidence
x ¼ x0:

GAdðx; xÞ ¼
1

2ð2πÞ3a3

×
Z

d3k½ω−1 þ ðW−1Þð2Þ þ ðW−1Þð4Þ þ � � ��:

ðA3Þ
As remarked above, the expansion must be truncated to the
minimal adiabatic order necessary to cancel all ultraviolet
divergences that appear in the formal expression of the
vacuum expectation value that one wishes to compute. The
calculation of the renormalized variance hϕ2i requires only
second adiabatic order.
The above process can be repeated now by replacing m2

by m2 þ μ2 in the zeroth adiabatic order ω. Therefore the
expansion for Wk depends now on μ

WkðtÞ ¼ ωð0Þ
eff ðt; μÞ þ ωð2Þ

eff ðt; μÞ þ ωð4Þ
eff ðt; μÞ þ � � � ; ðA4Þ
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where the leading term is ωð0Þ
eff ðtÞ≡ ωeffðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2ðtÞ þm2 þ μ2

p
. The higher orders are univocally recalculated. For the

second order ωð2Þ
eff ðt; μÞ which is enough to renormalize the two-point function, we have

ωð2Þ
eff ¼

5k4 _a2

8ω5
effa

6
−

3k2 _a2

4ω3
effa

4
þ k2a
4ω3

effa
3
þ 3ξ _a2

ωeffa2
þ 3ξä
ωeffa

−
3_a2

8ωeffa2
−

3ä
4ωeffa

−
μ2

2ωeff
: ðA5Þ

The new terms proportional to μ2 serve to remove the divergences, in accordance with the new definition of ωð0Þ
eff ðt; μÞ while

maintaining locality and general covariance. Note that μ2 should be regarded as a parameter of adiabatic order 2.
Therefore, the subtraction term for the two-point function is given by

ð2ÞGAdðx; xÞ ¼
1

2ð2πÞ3a3
Z

d3k

�
1

ωeff
−
ωð2Þ
eff

ω2
eff

�
: ðA6Þ

After a little bit of algebra the terms in the integral can be written like

ð2ÞGAdðx; xÞ ¼
1

4π2a3

Z
k2dk

�
1

ωeff
þ μ2

2ω3
eff

þ ð1
6
− ξÞR
2ω3

eff

þ
�
m2

eff _a
2

2a2ω5
eff

þ m2
eff ä

4aω5
eff

−
5m4

eff _a
2

8a2ω7
eff

��
: ðA7Þ

The last terms in the parentheses are finite and can be integrated to give

1

4π2a3

Z
k2dk

�
m2

eff _a
2

2a2ω5
eff

þ m2
eff ä

4aω5
eff

−
5m4

eff _a
2

8a2ω7
eff

�
¼ R

288π2
: ðA8Þ

Finally we obtain the same subtraction term as in the pragmatic mode-sum regularization method

ð2ÞGAdðx; xÞ ¼
1

4π2a3

Z
∞

0

dkk2
�

1

ωeff
þ ð1

6
− ξÞR
2ω3

eff

þ μ2

2ω3
eff

�
þ R
288π2

: ðA9Þ

Notice that this result agrees with (36) in the coincidence
limit, ϵ → 0, and both agree with (29) when μ ¼ 0.

APPENDIX B: HIGHER ORDER EXPANSION

In this Appendix we expand the two-point function
GDSðx; x0Þ to order ϵ2. This expansion is enough to compute
the vacuum expectation value of the stress-energy tensor
hTμνi by acting with a nonlocal operator to the symmetric

part of the renormalized two-point function, hTμνi ¼
limx→x0 Dμνðx; x0Þ½hfϕðxÞ;ϕðx0Þgi − Gð1Þ

DSðx; x0Þ� [7,26].
We begin by expanding (5) to linear order in σ and up to

and including four derivatives of the metric, which leads us
to (31). For simplicity we will deal with the case ξ ¼ 1

6
. The

following expansions are enough to build the renormalized
stress-energy tensor (σα ≡ σ;α):

Δ1=2 ¼ 1 −
1

12
Rαβσ

ασβ −
1

24
Rαβ;γσ

ασβσγ þ
�

1

288
RαβRγδ þ

1

360
Rρ

α
τ
βRργτδ −

1

80
Rαβ;γδ

�
σασβσγσδ þ � � � ; ðB1Þ

a1 ¼
�
1

90
RαρRρ

β −
1

180
RρτRρατβ −

1

180
RρτκαRρτκ

β þ
1

120
Rαβ;ρ

ρ −
1

360
R;αβ

�
σασβ þ � � � ; ðB2Þ

a2 ¼ −
1

180
RρτRρτ þ

1

180
RρτκιRρτκι −

1

180
R;ρ

ρ þ � � � ; ðB3Þ

where σα is computed up to order ϵ5 using the expansion (19). Expanding (31) with (B1), (B2), and (B3) we arrive at the
following expansion for the two-point function up to and including the order Oðϵ2Þ:
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Gð1Þ
DSðx; x0Þ ¼

1

4π2ϵ2a2
þ 1

480π2m2

�
10m2

�
ä
a
þ _a2

a2

�
−
�
að4Þ

a
þ ä2

a2

�
þ 3

�
_a2ä
a3

−
að3Þ

a2
_a

�
þ 60m4

�
γ −

1

2
þ log

�
mϵ

2
a

���

þ ϵ2

2880π2

��
3

2
að4Þaþ 6ä2 −

_a4

a2
þ 21

2
að3Þ _aþ 23

2

_a2ä
a

�
þ 30m2ðaäþ 2_a2Þ

�
γ −

1

2
þ log

�
mϵ

2
a

��

þ 45m4a2
�
γ −

5

4
þ log

�
mϵ

2
a

���
þOðϵ3Þ; ðB4Þ

where að4Þ ≡ a⃜ and að3Þ ≡ ⃛a. This expression contains terms with four derivatives of the metric (að4Þ; _a4; _aað3Þ; � � �).
On the other hand, (B4) agrees with

ð4ÞGð1Þ
Adðx; x0Þ ¼

1

4π2a3

Z
∞

0

k2dk
sin kϵ
kϵ

�
1

ω
þ ð1

6
− ξÞR
2ω3

þ m2 _a2

2a2ω5
þ m2ä
4aω5

−
5m4 _a2

8a2ω7
þ ðW−1Þð4Þ

�
; ðB5Þ

when it is expanded at order Oðϵ2Þ. Equation (B5) is the expansion of adiabatic regularization at fourth adiabatic order [4].
The integral on ðW−1Þð4Þ is finite and contains terms with four derivatives of the metric.
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