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In this work we derive the junction conditions for the matching between two spacetimes at a separation
hypersurface in the perfect-fluid version of fðR; TÞ gravity, not only in the usual geometrical representation
but also in a dynamically equivalent scalar-tensor representation. We start with the general case in which a
thin shell separates the two spacetimes at the separation hypersurface, for which the general junction
conditions are deduced, and the particular case for smooth matching is considered when the stress-energy
tensor of the thin shell vanishes. The set of junction conditions is similar to the one previously obtained
for fðRÞ gravity but features also constraints in the continuity of the trace of the stress-energy tensor Tab

and its partial derivatives, which force the thin shell to satisfy the equation of state of radiation σ ¼ 2pt.
As a consequence, a necessary and sufficient condition for spherically symmetric thin shells to satisfy all
the energy conditions is the positivity of its energy density σ. For specific forms of the function fðR; TÞ, the
continuity of R and T ceases to be mandatory but a gravitational double layer arises at the separation
hypersurface. The Martinez thin-shell system and a thin shell surrounding a central black hole are provided
as examples of application.
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I. INTRODUCTION

As one searches for solutions to the Einstein’s field
equations in general relativity (GR) or the modified field
equations in modified gravity, one might encounter a
situation in which a hypersurface separates the whole
spacetime into two regions described by different metric
tensors expressed in two different coordinate systems.
The junction conditions are the conditions the two space-
times must satisfy in order for them to be matched at the
separation hypersurface and correspond to a full solution of
the field equations.
In general relativity, for the matching between the two

spacetimes to be smooth one needs to guarantee that the
induced metric at the separation hypersurface and the
extrinsic curvature are continuous [1–5]. These conditions
were used numerous times to derive new solutions for the
Einstein’s field equations in GR, e.g., constant density fluid
stars with Schwarzschild exteriors, the Oppenheimer-
Snyder stellar collapse [6], and the matching between
Friedmann-Lemaître-Robertson-Walker spacetimes with
Vaidya exteriors [7].
The matching between the two regions can still be done

even if the extrinsic curvature is not continuous, but it
implies the existence of a thin shell of matter at the
separation hypersurface [3,8,9]. These thin shells have
been extensively studied from a thermodynamic point of
view [10] and the shell’s entropy has been computed in

numerous situations e.g., rotating [11,12] and electrically
charged [13,14] shells. Collisions of thin shells have also
been studied numerically [15] and, more recently, it was
shown that stable extensions of the Schwarzschild fluid
sphere with thin shells provide physically relevant models
for exotic compact objects [16].
In the context of modified gravity, different theories of

gravity will feature their own sets of junction conditions,
deduced from their respective equations of motion, includ-
ing not only the modified field equations but also the
equations of motion of any extra fields the theory is based
upon. The junction conditions have been obtained for
various theories e.g., fðRÞ gravity with [17] and without
[18,19] torsion and in the Palatini formalism [20], scalar-
tensor theories [21,22], Gauss-Bonnet gravity [23], and
more recently the hybrid metric-Palatini extension of fðRÞ
[24]. The derivation of the junction conditions of these
theories is not only important to allow for the development
of new solutions but it is also an essential step to extend
their applicability range to the rising field of exotic compact
objects [25].
Theories like fðRÞ [26–28], where the action depends on

an arbitrary function of the Ricci scalar R, have risen in a
cosmological context to address the late-time cosmic
acceleration period of the Universe [29,30] without the
necessity for dark energy sources [31,32]. These theories
have also succeeded in modeling the dynamics of self-
gravitating systems without requiring the presence of dark
matter [33,34]. Despite these successes, extensions to the
fðRÞ theories are necessary as they also present important*joaoluis92@gmail.com
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drawbacks. In particular, the equivalent scalar-tensor rep-
resentation of the theory allows one to verify that, in order
to satisfy local observational constraints, it is necessary to
recur to chameleon mechanisms [35,36], which give rise to
undesirable cosmological effects.
The fðR; TÞ arises as a generalization of fðRÞ gravity by

allowing the action to depend on an arbitrary function of the
Ricci scalar R and the trace of the stress-energy tensor T
[37]. This theory was extensively studied in a wide range
of fields, from alternatives to dark matter in galactic
scales [38], cosmological solutions [39] including
reconstruction methods [40–42], stability analysis using
energy conditions [43], and in the Palatini formulation [44],
to astrophysical systems e.g., white dwarfs [45], isotropic
[46] and anisotropic exotic compact objects [47,48], and
atmospheric models [49]. More recently, this theory was
shown to provide relevant solutions for wormhole space-
times [50–53], a context where the junction conditions
of other theories were proven to be particularly useful [24].
In this work, we aim not only to deduce the junction
conditions of this theory to extend its applicability range,
but also to provide an alternative dynamically equivalent
scalar-tensor representation, which was proven useful in a
wide variety of topics in other theories of gravity. In
particular, the dependency of the action in two scalar
quantities, namely R and T, will be responsible for a strong
similarity between the scalar-tensor representation of the
fðR; TÞ gravity and the fðR;RÞ, see e.g., [24,54–58].
This paper is organized as follows. In Sec. II we

introduce the action and equations of motion of the theory,
and we introduce a dynamically equivalent scalar-tensor
representation; in Sec. III we compute the junction con-
ditions in the geometrical representation of the theory for
both the matching with a thin shell and a smooth matching;
in Sec. IV we repeat the analysis of the junction conditions
but now considering the scalar-tensor representation and
we use the results to emphasize the equivalence between
the two approaches; in Sec. V we provide three examples
of application, namely to study the energy conditions of
spherically symmetric thin shells, a matching considering
the well-known Martinez shell in vacuum, and a the
matching of a shell surrounding a central black hole;
and finally in Sec. VI we trace our conclusions.

A. Notation and assumptions

Before proceeding, let us clearly specify the notation that
will be used in the following sections, more specifically in
Secs. III–V. We define Σ as a hypersurface that separates
the spacetime V into two regions, Vþ and V−. Let us
consider that the metric gþab, expressed in coordinates x

aþ, is
the metric in region Vþ and the metric g−ab, expressed in
coordinates xa−, is the metric in region V−, where the latin
indexes run from 0 to 3. Let us assume that a set of
coordinates yα can be defined in both sides of Σ, where
greek indexes run from 0 to 2. The projection vectors

from the 4-dimensional regions V� to the 3-dimensional
hypersurface Σ are eaα ¼ ∂xa=∂yα. We define na to be the
unit normal vector on Σ pointing in the direction from V−

to Vþ. Let l denote the proper distance or time along the
geodesics perpendicular to Σ and choose l to be zero at Σ,
negative in the region V−, and positive in the region Vþ.
The displacement from Σ along the geodesics parametrized
by l is dxa ¼ nadl, and na ¼ ϵ∂al, where ϵ is either 1 or −1
when na is a spacelike or timelike vector, respectively, i.e.,
nana ¼ ϵ. Furthermore, we will be working in the formal-
ism of distribution functions. For any quantity X, we define
X ¼ XþΘðlÞ þ X−Θð−lÞ, where the indexes � indicate
that the quantity X� is the value of the quantity X in the
region V�, and ΘðlÞ is the Heaviside distribution function,
with δðlÞ ¼ ∂lΘðlÞ the Dirac distribution function. We also
denote ½X� ¼ XþjΣ − X−jΣ as the jump of X across Σ,
which implies by definition that ½na� ¼ ½eaα� ¼ 0.

II. ACTION AND FIELD EQUATIONS

A. Geometrical representation

The fðR; TÞ theory of gravity is described by an action S
of the form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p
fðR; TÞd4xþ

Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð1Þ

where κ2 ≡ 8πG
c4 , G is the gravitational constant, c is the

speed of light, Ω is the spacetime manifold, g is the
determinant of the spacetime metric gab, R≡ GabRab is
the Ricci scalar of the metric gab, where Rab is the Ricci
tensor, T ≡ gabTab is the trace of the stress-energy tensor
Tab, fðR; TÞ is a well-behaved function of R and T, and Lm
is the matter Lagrangian, considered to be minimally
coupled to the metric gab.
A variation of the action in Eq. (1) with respect to the

metric gab yields the modified field equations for the
fðR; TÞ theory in the form

∂f
∂RRab −

1

2
fðR; TÞgab − ð∇a∇b − gab□Þ ∂f∂R

¼ 8πTab −
∂f
∂T ðTab þ ΘabÞ; ð2Þ

where ∇a is the covariant derivative and □≡∇c∇c is the
D’Alembert operator, both defined in terms of the metric
gab, the stress-energy tensor Tab is defined in terms of the
variation of the matter Lagrangian Lm with respect to the
metric gab in the usual way as

Tab ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgab

; ð3Þ

and the tensor Θab is defined in terms of the variation of the
stress-energy tensor Tab with respect to the metric gab as
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Θab ¼ gcd
δTcd

δgab
: ð4Þ

An explicit calculation of the tensorΘab requires a previous
knowledge of the form of the stress-energy tensor Tab or,
equivalently, of the matter Lagrangian Lm. In this work, we
shall assume that matter is described by an isotropic perfect
fluid with an energy density ρ, a pressure p, and a four-
velocity ua. Under these assumptions, the stress-energy
tensor Tab takes the form

Tab ¼ ðρþ pÞuaub − pgab; ð5Þ

where the four-velocity ua satisfies the normalization
property uaua ¼ 1, and for which the matter Lagrangian
can be written in the form Lm ¼ −p. Consequently, in this
particular case Eq. (4) becomes

Θab ¼ −2Tab − pgab: ð6Þ

The result in Eq. (6) allows us to rewrite the field
equations in Eq. (2) in the more convenient form

fRRab −
1

2
fðR; TÞgab − ð∇a∇b − gab□ÞfR

¼ ð8π þ fTÞTab þ fTpgab; ð7Þ

where the subscripts R and T denote partial derivatives with
respect to these variables. Considering that the function f is
a function of the two variables R and T, then one can make
use of the chain rule to write the partial derivatives ∂afX,
and the covariant derivatives ∇a∇bfX, where X represents
generically R or T, as

∂afX ¼ fXR∂aRþ fXT∂aT; ð8Þ

∇a∇bfX ¼ fXR∇a∇bRþ fXT∇a∇bT þ fXRR∂aR∂bR

þ fXTT∂aT∂bT þ 2fXRT∂ðaR∂bÞT: ð9Þ

The results in Eqs. (8) and (9), along with the D’Alembert
operator □ ¼ ∇c∇c which can be obtained via a contrac-
tion of Eq. (9), allow us to expand the differential terms of
the function f in Eq. (7) and write them as differential terms
of both R and T. We do not show the resultant equations
explicitly due to their size.

B. Equivalent scalar-tensor representation

The action expressed in Eq. (1) can be recast in a
dynamically equivalent scalar-tensor representation which
has been proven useful in other modified theories of
gravity. This can be achieved via the introduction of two
auxiliary fields α and β as

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p �
fðα; βÞ þ ∂f

∂α ðR − αÞ þ ∂f
∂β ðT − βÞ

�
d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x: ð10Þ

The action in Eq. (10) is now a function of three
independent variables, namely the metric gab and the
two auxiliary fields α and β. The equations of motion
for the fields α and β can be obtained from a variation of
Eq. (10) with respect to these fields, respectively, and read

fααðR − αÞ þ fαβðT − βÞ ¼ 0; ð11Þ

fβαðR − αÞ þ fββðT − βÞ ¼ 0; ð12Þ

where we have introduced the subscript notation α and β to
represent partial derivatives of the function f with respect
to these variables, respectively. The system of Eqs. (11)
and (12) can be rewritten in a matrix form Mx ¼ 0 as

Mx ¼
�
fαα fαβ
fβα fββ

��
R − α

T − β

�
¼ 0: ð13Þ

Assuming that the function fðα; βÞ satisfies the Schwartz
theorem, i.e., its crossed partial derivatives are the same,
fαβ ¼ fβα, the solution for the system of Eqs. (11) and (12)
will be unique if and only if the determinant of the matrix
M does not vanish. The condition detM ≠ 0 yields the
relationship fααfββ ≠ f2αβ. Whenever this relationship is
satisfied, the solution for Eqs. (11) and (12) is unique and is
given by α ¼ R and β ¼ T. Inserting these results into
Eq. (10) one recovers Eq. (1), thus proving that the two
representations of the theory are equivalent.
Let us now define two dynamical scalar fields φ and ψ

and a scalar interaction potential Vðφ;ψÞ as

φ ¼ ∂f
∂R ψ ¼ ∂f

∂T ; ð14Þ

Vðφ;ψÞ ¼ −fðα; βÞ þ αφþ βψ ; ð15Þ

one can rewrite the action in Eq. (10) in the equivalent
scalar-tensor representation

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p ½φRþ ψT − Vðφ;ψÞ�d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x: ð16Þ

Similarly to what happens in the metric representation of
fðRÞ theories of gravity, the scalar field φ is analogous to a
Brans-Dicke scalar field with a parameter ωBD ¼ 0, and
with an interaction potential V. In addition to this scalar
field, the second scalar degree of freedom of the theory
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associated to the arbitrary dependence of the action in T is
also represented by a scalar field ψ .
The action in Eq. (16) is a function of three independent

variables, the metric gab and the two scalar fields φ and ψ .
Performing a variation of Eq. (16) with respect to these
variables yields the equations of motion

φRab −
1

2
gabðφRþ ψT − VÞ − ð∇a∇b − gab□Þφ

¼ 8πTab − ψðTab þ ΘabÞ; ð17Þ

Vφ ¼ R; ð18Þ

Vψ ¼ T; ð19Þ

where the subscripts φ and ψ represent partial derivatives of
V with respect to these variables, respectively. Note that
Eq. (17) could be obtained directly from Eq. (2) via the
direct introduction of the definitions in Eqs. (14) and (15).
We emphasize that in this work we shall assume that

matter is well described by an isotropic perfect fluid with an
energy density ρ and a pressure p. The stress-energy tensor
is again given by Eq. (5). In this case, one can write the
matter Lagrangian as Lm ¼ −p and the tensor Θab as in
Eq. (6). Introducing these considerations into Eq. (17), one
obtains the more convenient form of the field equations as

φRab −
1

2
gabðφRþ ψT − VÞ − ð∇a∇b − gab□Þφ

¼ ð8π þ ψÞTab þ pψgab: ð20Þ

III. JUNCTION CONDITIONS IN THE
GEOMETRICAL REPRESENTATION

A. Matching with a thin shell at Σ
Let us now derive the junction conditions of the theory

using the distribution formalism. For the spacetime V to be
equipped with a metric on both sides of the hypersurface Σ,
this has to be properly defined throughout the entire
spacetime. In the distribution formalism, one writes the
metric in the form

gab ¼ gþabΘðlÞ þ g−abΘð−lÞ: ð21Þ

The partial derivatives of the metric defined above will take
the form ∂cgab ¼ ∂cg

þ
abΘðlÞ þ ∂cg−abΘð−lÞ þ ϵ½gab�ncδðlÞ.

The apparition of a term proportional to δðlÞ in these
derivatives is problematic. Upon the construction of the
Christoffel symbols associated to the metric gab in the
distribution formalism, these terms would cause products
of the form ΘðlÞδðlÞ to arise, which are undefined in
the distribution formalism. To avoid the presence of
these pathological terms, one has to impose ½gab� ¼ 0.

Furthermore, the metric hαβ induced on Σ by gab can be
written as hαβ ¼ gabeaαebβ , and consequently the induced

metric from the exterior is hþαβ ¼ gþabe
a
αebβ , and the induced

metric from the interior is h−αβ ¼ g−abe
a
αebβ . Since ½gab� ¼ 0,

we must have hþαβ − h−αβ ¼ 0 to preserve the continuity
of the metric at Σ. We thus obtain the first junction
condition as

½hαβ� ¼ 0: ð22Þ

This junction condition corresponds also to the first
junction condition in general relativity, and it does hold
generically for numerous theories of gravity. Imposing
Eq. (22) into the partial derivatives of Eq. (21), one obtains

∂cgab ¼ ∂cg
þ
abΘðlÞ þ ∂cg−abΘð−lÞ: ð23Þ

Using Eq. (23), one can now construct the Christoffel
symbols associated with the metric gab without giving rise
to undefined terms, and from these one is also able to
construct the Ricci tensor Rab and the Ricci scalar R. In
general, Rab and R can be written in the distribution
formalism in the forms

Rab ¼Rþ
abΘðlÞþR−

abΘð−lÞ− ðϵeαaeβb½Kαβ� þnanb½K�ÞδðlÞ;
ð24Þ

R ¼ RþΘðlÞ þ R−Θð−lÞ − 2ϵ½K�δðlÞ; ð25Þ

where Kαβ ¼ ∇αnβ is the extrinsic curvature of the hyper-
surface Σwhere nβ ¼ ebβnb, and K ¼ Kα

α is the correspond-
ing trace. The field equations in Eq. (7) have an explicit
dependence on the function fðR; TÞ and its derivatives,
which will in general feature products and power laws of R
and T. Given the presence of terms proportional to δðlÞ in
the Ricci scalar R [see Eq. (25)], the function fðR; TÞ will
in general feature products of the form ΘðlÞδðlÞ, which are
undefined in the distribution formalism, or of the form
δ2ðlÞ, which are singular. To avoid the presence of these
products, one has thus to force the δðlÞ term in Eq. (25) to
vanish, from which one obtains the second junction
condition of the theory as

½K� ¼ 0: ð26Þ

Although this junction condition does not appear in general
relativity, it appears to be quite common in theories of
gravity where the action can be a general function of the
Ricci scalar R, like fðRÞ or hybrid metric-Palatini gravity.
The forms of the Ricci tensor Rab and the Ricci scalar R
from Eqs. (24) and (25) thus simplify to

Rab ¼ Rþ
abΘðlÞ þ R−

abΘð−lÞ − ϵeαae
β
b½Kαβ�δðlÞ; ð27Þ
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R ¼ RþΘðlÞ þ R−Θð−lÞ; ð28Þ

respectively.
Given the presence of differential terms ∇a∇bfR and

□fR in the field equations in Eq. (7), one must also look
into the first- and second-order derivatives of the Ricci
scalar R. Taking the partial derivative of Eq. (28) one
obtains

∂aR ¼ ∂aRþΘðlÞ þ ∂aR−Θð−lÞ þ ϵ½R�naδðlÞ: ð29Þ

According to the expansion of the differential terms shown
in Eq. (9), the field equations will feature products of partial
derivatives of R, i.e., terms of the form ∂aR∂bR. Due to the
existence of terms proportional to δðlÞ in ∂aR, as can be
seen in Eq. (29), the terms ∂aR∂bR will also feature
products of the form ΘðlÞδðlÞ and δ2ðlÞ, which are
undefined and singular in the distribution formalism,
respectively. Thus, to avoid the presence of these terms,
one has to impose a third junction condition of the form

½R� ¼ 0: ð30Þ

This junction condition is also not present in general
relativity, but it does appear in modified theories of gravity
with an extra dynamical scalar degree of freedom asso-
ciated with a function of the Ricci scalar, e.g., the metric
formulation of fðRÞ. Equation (30) allows us to simplify
Eq. (29) to

∂aR ¼ ∂aRþΘðlÞ þ ∂aR−Θð−lÞ; ð31Þ

and finally we are able to compute the second-order
covariant derivatives of the Ricci scalar ∇a∇bR, which
take the general form

∇a∇bR ¼ ∇a∇bRþΘðlÞ þ∇a∇bR−Θð−lÞ þ ϵna½∂bR�δðlÞ:
ð32Þ

Let us now turn to the matter sector of the theory. In
the previous paragraphs, more specifically in Eqs. (27)
and (32), we have shown that the Ricci tensor Rab and the
second-order derivatives∇a∇bR feature terms proportional
to δðlÞ, which will consequently be present in the left-hand
side of the field equations in Eq. (7). These terms can be
associated with the presence of a thin shell of matter at the
separation hypersurface Σ. To find the properties of this
thin shell, let us write the stress-energy tensor Tab as a
distribution function of the form

Tab ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ þ δðlÞSab; ð33Þ

where Sab is the four-dimensional stress-energy tensor of
the thin shell, which can be written as a three-dimensional
tensor at Σ as

Sab ¼ Sαβeαae
β
b: ð34Þ

Taking the trace of Eq. (33) one finds that the trace T of the
stress-energy tensor also features a term proportional to
δðlÞ, as T ¼ TþΘðlÞ þ T−Θð−lÞ þ δðlÞS, where S ¼ Saa is
the trace of the stress-energy tensor of the thin shell.
Following the same argument that lead to Eq. (26), i.e., the
fact that the field equations will in general depend on
products and power laws of T through the function fðR; TÞ
and its partial derivatives, we conclude that this function
will in general depend on products of the forms ΘðlÞδðlÞ
and δ2ðlÞwhich are undefined or singular in the distribution
formalism. To avoid the presence of these products, one has
thus to force the trace of the stress-energy tensor of the thin
shell to vanish, and we obtain the fourth junction condition

S ¼ 0: ð35Þ

This junction condition also does not appear in general
relativity and it does not appear in other well-known
theories as fðRÞ, as is is associated with an extra scalar
degree of freedom associated with an arbitrary dependence
of the action in T. Equation (35) allows us to write the trace
of the stress-energy tensor T in the simplified form

T ¼ TþΘðlÞ þ T−Θð−lÞ: ð36Þ

The presence of the differential terms □fR and ∇a∇bfR in
the field equations in Eq. (7) imply that one must also take
into account the first and second covariant derivatives of T
in the distribution formalism. Taking the partial derivative
of Eq. (36), one obtains

∂aT ¼ ∂aTþΘðlÞ þ ∂aT−Θð−lÞ þ ϵ½T�naδðlÞ: ð37Þ

Provided the expansion of the differential terms in Eq. (9),
one verifies that the field equations in Eq. (7) will feature
products of the partial derivatives of T in the form ∂aT∂bT.
Due to the presence of terms proportional to δðlÞ in
Eq. (37), the terms ∂aT∂bT will feature products of the
forms ΘðlÞδðlÞ and δ2ðlÞwhich are undefined or singular in
the distribution formalism. To avoid the presence of these
terms, one has to impose a fifth junction condition as

½T� ¼ 0: ð38Þ

Again, this junction condition does not appear in general
relativity of fðRÞ theories. Equation (38) allow us to rewrite
Eq. (37) in the simplified form

∂aT ¼ ∂aTþΘðlÞ þ ∂aT−Θð−lÞ: ð39Þ

Finally, we are able to compute the second-order covariant
derivatives of the trace T, ∇a∇bT, which can be written in
the distribution formalism as
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∇a∇bT ¼ ∇a∇bTþΘðlÞ þ∇a∇bT−Θð−lÞ þ ϵna½∂bT�δðlÞ:
ð40Þ

We are now in conditions of determining the stress-
energy tensor Sαβ of the thin shell. To do so, one introduces
the distribution formalism representations given in
Eqs. (21), (27), (28), (31), (32), (33), (36), (39), and (40)
into the field equations in Eq. (7) and project the result into
the hypersurface Σ using eaαebβ. The result is as follows:

ð8πþfTÞSαβ¼−ϵfR½Kαβ�þϵhαβncðfRR½∂cR�þfRT ½∂cT�Þ:
ð41Þ

Taking the trace of Eq. (41), inserting the result into Eq. (35),
and using the second junction condition given in Eq. (26)
allows us to rewrite the fourth junction condition in the
more convenient form ncðfRR½∂cR� þ fRT ½∂cT�Þ ¼ 0, from
which we realize that the second term on the right-hand side
of Eq. (41) must vanish.
To summarize, the complete set of junction conditions

for the fðR; TÞ gravity in the general case of a matching
with a thin shell at Σ is thus composed of the following six
equations:

½hαβ� ¼ 0;

½K� ¼ 0;

½R� ¼ 0;

½T� ¼ 0;

ncðfRR½∂cR� þ fRT ½∂cT�Þ ¼ 0;

ð8π þ fTÞSαβ ¼ −ϵfR½Kαβ�: ð42Þ

B. Smooth matching at Σ
In the previous section, we have considered a matching

between two spacetime regions V� at a separation hyper-
surface Σ with the presence of a matter thin shell at Σ
described by a tress-energy tensor Sαβ. In the particular case
where Sαβ vanishes, the matching between the two space-
time regions is smooth, i.e., no thin shell is needed at Σ.
A different set of junction conditions can be obtained in this
particular case. As the presence of the thin shell is
associated with the terms proportional to δðlÞ in the field
equations in Eq. (7), the smooth matching case can be
obtained by forcing these terms to vanish. We now pursue
such analysis.
Let us start again with the metric gab. The form of the

metric provided in Eq. (21) in the distribution formalism is
the same for the smooth matching, as it does not depend
on δðlÞ. Following the same reasoning as in Sec. III A,
we conclude that the induced metric hαβ at Σ must be
continuous, and the first junction condition reads

½hαβ� ¼ 0: ð43Þ
Similarly as before, one can now compute the Christoffel
symbols, the Ricci Tensor Rab and the Ricci scalar R
associated with this metric. The Ricci tensor and the Ricci
scalar will still have the same general forms as given in
Eqs. (24) and (25), respectively, where Kαβ ¼ ∇αnβ is the
extrinsic curvature of the hypersurface Σ. From Eq. (7), one
verifies that the field equations have a term proportional
to Rab, which according to Eq. (24) presents terms propor-
tional to δðlÞ. As these terms must not be present for the
matching to be smooth, one must impose that the extrinsic
curvature Kαβ is continuous at Σ, i.e., we obtain the second
junction condition

½Kαβ� ¼ 0: ð44Þ
This junction condition also appears in general relativity for
the particular case of smooth matching and, along with
Eq. (44), is a common junction condition to appear in metric
theories of gravity. As Eq. (44) imposes directly that ½K� ¼ 0,
this latter equation does not have to be imposed separately.
TheRicci tensorTab and theRicci scalarR thus take the forms

Rab ¼ Rþ
abΘðlÞ þ R−

abΘð−lÞ; ð45Þ
R ¼ RþΘðlÞ þ R−Θð−lÞ: ð46Þ

Note that the resultant form of R in Eq. (46) already
guarantees that the products and power -laws in R arising
from the terms proportional to fðR; TÞ and its partial
derivatives in the field equations in Eq. (7) are regular.
Turning now to the differential terms ∇a∇bfR and □fR

in Eq. (7), we have to analyze the first and second-order
covariant derivatives or the Ricci scalar R. As the form of R
in Eq. (46) is the same as in Eq. (28), the partial derivatives
of R are still of the form given in Eq. (29). Thus, following
the same arguments as in Sec. III A, we conclude that the
Ricci scalar must be continuous across Σ, and the third
junction condition becomes

½R� ¼ 0: ð47Þ
Given this condition, one is again able to write the partial
derivatives ∂aR to the simplified form in Eq. (31). Taking
the covariant derivative of Eq. (31), one again obtains the
second-order derivatives ∇a∇bR in the form of Eq. (32).
In Sec. III A, the presence of the terms proportional to δðlÞ
in∇a∇b were not pathological as we admitted the existence
of a thin shell of matter at Σ. However, since these terms
are present in the field equations in Eq. (7) through the
differential terms [see Eq. (9)], one has to force the
continuity of ∂aR. We thus obtain the fourth junction
condition for smooth matching as

½∂cR� ¼ 0: ð48Þ
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This junction condition appears commonly for the smooth
matching in theories of gravity with a scalar degree of
freedom associated with an arbitrary function of R in the
action, e.g., in fðRÞ and hybridmetric-Palatini. Equation (48)
allows us to write ∇a∇bR in the simplified form

∇a∇bR ¼ ∇a∇bRþΘðlÞ þ∇a∇bR−Θð−lÞ: ð49Þ
Let us now turn to the matter sector of the theory. For the

matching between the two spacetime regions to be smooth,
one must avoid the presence of terms proportional to δðlÞ in
the field equations in Eq. (7). Thus, the stress-energy tensor
Tab and its trace T must be forcefully of the forms

Tab ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ; ð50Þ
T ¼ TþΘðlÞ þ T−Θð−lÞ: ð51Þ

Note that the form of T in Eq. (51) guarantees that the
products and power laws of T arising in the function
fðR; TÞ and its derivatives are regular. Similarly as before,
the presence of the differential terms ∇a∇bfR and □fR in
Eq. (7) imply that we also have to analyze the first and
second derivatives of the trace of the stress-energy tensor T.
Since the form of T in Eq. (51) is the same as in Eq. (36),
the partial derivatives ∂aT will also be of the same form as
in Eq. (37). Thus, following the same arguments as in
Sec. III A, we conclude that T must be continuous across Σ,
and the fifth junction condition becomes

½T� ¼ 0: ð52Þ
Under Eq. (52) one is again able to write ∂aT in the form of
Eq. (39). Finally, taking a covariant derivative of Eq. (39),
we obtain the second-order derivatives ∇a∇bT in the same
form of Eq. (40). Similarly to what happens for ∇a∇bR, in
the case of a smooth matching at Σ the terms proportional to
δðlÞ in Eq. (40) must vanish, as otherwise we would have
terms proportional to δðlÞ in the field equations due to the
expansion in Eq. (9). Thus, one must impose continuity in
∂aT, and we obtain the sixth junction condition in the form

½∂cT� ¼ 0: ð53Þ

To summarize, the complete set of junction conditions
for the fðR; TÞ gravity in the particular case of a smooth
matching at Σ is composed of the following six equations:

½hαβ� ¼ 0;

½Kαβ� ¼ 0;

½R� ¼ 0;

½T� ¼ 0;

½∂cR� ¼ 0;

½∂cT� ¼ 0: ð54Þ

C. Double gravitational layers at Σ

1. Matching with ½R� ≠ 0 and ½T� ≠ 0

In Sec. III A, we have derived the general set of junction
conditions that must be satisfied in order to match two
spacetimes V� at a given separation hypersurface Σ for a
general function fðR; TÞ. In particular, the junction con-
ditions given in Eqs. (30) and (38) were imposed to avoid
the presence of products of the form ΘðlÞδðlÞ and δ2ðlÞ in
the field equations, arising from the expansions of the
differential terms of f in Eq. (9).
There is, however, an alternative way of avoiding the

presence of these terms without having to impose Eqs. (30)
and (38), which is the selection of particular forms of the
function fðR; TÞ for which the products ∂aR∂bR, ∂aT∂bT,
and ∂aT∂bR are not present in the field equations. As
can be seen from Eq. (9) with fX ¼ fR, these products
can be removed from the field equations via the choice
of a function fðR; TÞ which satisfies the conditions
fRRR ¼ fRRT ¼ fRTT ¼ 0. The most general function that
satisfies these properties is given by

fðR; TÞ ¼ Rð1þ γTÞ − 2Λþ αR2 þ gðTÞ; ð55Þ

where γ, Λ and α are arbitrary constants and gðTÞ is a well-
behaved function of the trace of the stress-energy tensor T.
Inserting Eq. (55) into the field equations in Eq. (7) yields
the field equations for this particular case as

ð1þ γT þ 2αRÞRab − ð∇a∇b − gab□Þð2αRþ γTÞ

−
1

2
gab½Rð1þ γTÞ − 2Λþ αR2 þ gðTÞ�

¼ 8πTab þ ½γRþ g0ðTÞ�ðTab þ pgabÞ: ð56Þ

At this point it is important to state a few remarks
regarding the parameters α, γ and Λ. As can be seen from
Eq. (55), the coefficient of R in the function fðR; TÞ is
effectively ð1þ γTÞ. In order to preserve the positivity of
the Einstein-Hilbert term in the action, one must impose
that γT > −1, and thus the relevant parameter space for γ
will have to be verified case by case depending on the form
of T. Furthermore, although there are no constraints on the
sign of the quadratic term, positive values for α have been
shown to provide useful results in the context of cosmol-
ogy. In particular, the Starobinski inflation model can be
attained with α ¼ 1=m2, wherem is a constant with units of
mass. Finally, the convenient definition of Λ implies that
this parameter plays the role of a cosmological constant
and mainly controls the asymptotics of the models, which
will be asymptotically de Sitter (Λ > 0), anti–de Sitter
(Λ < 0), or Minkowski (Λ ¼ 0).
Let us now analyze the consequences of choosing a

function fðR; TÞ in the form of Eq. (55). In this case, the
metric gab and its partial derivatives ∂agab are still given by
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the forms of Eqs. (21) and (23), respectively, the Ricci
tensor Rab is given by Eq. (27), the Ricci scalar R is given
by Eq. (28), and the partial derivatives of the Ricci scalar
∂aR are given by Eq. (29). Thus, the analysis that leads to
the junction conditions in Eqs. (22) and (26) is the same,
i.e., the first and second junction conditions remain as

½hαβ� ¼ 0; ð57Þ

½K� ¼ 0; ð58Þ

In the matter sector, since the function fðR; TÞ given in
Eq. (55) depends on an arbitrary function gðTÞ, which in
general can depend on power laws of T, one concludes that
T must not have any dependence on δðlÞ, as otherwise
undefined products ΘðlÞδðlÞ and singular products δðlÞ2
would appear in the field equations in Eq. (56). Thus, the
trace T and its partial derivative ∂aT are given by Eqs. (36)
and (37), respectively, and whichever terms proportional to
δðlÞ arise in Tab must vanish upon tracing.
The differences in comparison with the general case

of Sec. III A arise only at the level of the second-order
derivatives of R and T, i.e., the terms ∇a∇bR and ∇a∇bT,
which now take the forms

∇a∇bR ¼ ð∇2RÞab þ ϵ∇að½R�δðlÞnbÞ; ð59Þ

∇a∇bT ¼ ð∇2TÞab þ ϵ∇að½T�δðlÞnbÞ; ð60Þ

where ð∇2RÞab and ð∇2TÞab collectively denote the right-
hand sides of Eqs. (32) and (40), respectively. Thus,
although the junction conditions ½R� ¼ 0 and ½T� ¼ 0 can
be discarded in this particular situation, as a consequence
new terms will arise in the stress-energy tensor Sαβ of the
thin shell. The second terms on the right-hand sides of
Eqs. (59) and (60) are also present in particular forms of
fðRÞ and hybrid metric-Palatini theories of gravity, and can
be rewritten as

∇að½R�δðlÞnbÞ ¼ ΔR
ab þ δðlÞðKab − ϵKnanb þ nbhca∇cÞ½R�;

ð61Þ

∇að½T�δðlÞnbÞ ¼ ΔT
ab þ δðlÞðKab − ϵKnanb þ nbhca∇cÞ½T�;

ð62Þ

where the distribution functions ΔR
ab and ΔT

ab are defined asZ
Ω
ΔR

abY
abd4x ¼ −ϵ

Z
Σ
½R�nanbnc∇cYabd3x; ð63Þ

Z
Ω
ΔT

abY
abd4x ¼ −ϵ

Z
Σ
½T�nanbnc∇cYabd3x; ð64Þ

for a given test function Yab. Inserting Eqs. (61) and (32)
into Eq. (59), inserting Eqs. (62) and (40) into Eq. (60), and
finally inserting the results into the field equations in
Eq. (56), one verifies that in this case the stress-energy
tensor Tab must be written in the form

Tab ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ
þ δðlÞðSab þ 2SðanbÞ þ SnanbÞ þ sabðlÞ; ð65Þ

where Sab is the stress-energy tensor of the thin shell, Sa is
the external flux momentum whose normal component
measures the normal energy flux across Σ and spacial
components measure tangential stresses, S is the external
normal pressure or tension supported on Σ, and sab is the
double-layer stress-energy tensor distribution. These vari-
ables can be written in terms of the geometrical quantities in
the forms

κ2effSab ¼ −ð1þ γTΣ þ 2αRΣÞϵ½Kab�
þ ϵhabncð2α½∇cR� þ γ½∇cT�Þ
− ϵKΣ

abð2α½R� þ γ½T�Þ; ð66Þ

κ2effSa ¼ −ϵhca∇cð2α½R� þ γ½T�Þ; ð67Þ

κ2effS ¼ KΣð2α½R� þ γ½T�Þ; ð68Þ

κ2effsabðlÞ ¼ 2αϵΩRðlÞ þ γϵΩTðlÞ; ð69Þ

where we have defined κ2eff ¼ 8π þ γRΣ þ g0ðTΣÞ, we have
defined RΣ, TΣ and KΣ

ab as the average values of these
quantities at the hypersurface Σ, i.e., 2RΣ ¼ Rþ þ R− and
similarly to the other quantities. The distributions ΩR

abðlÞ
and ΩT

abðlÞ in Eq. (69) are defined as ΩX
ab ¼ habΔX − ΔX

ab,
where X denotes either R or T and ΔX is the trace of ΔX

ab.
According to these definitions, the double-layer stress-
energy tensor distribution can be written explicitly as

Z
Ω
κ2effsabY

abd4x ¼ −
Z
Σ
ϵhabð2α½R� þ γ½T�Þnc∇cYabd3x:

ð70Þ

To preserve the regularity of the function gðTÞ in Eq. (55)
we had to force the trace of the stress-energy tensor T to be
written as in Eq. (36). Let us now check which conditions
arise from imposing this restriction into Eq. (65). Taking
the trace of Eq. (65), using Eqs. (58), (66), (67), and (68),
and noting that nahba ¼ 0, one obtains

T ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ
þ 3ϵδðlÞncð2α½∇cR� þ γ½∇cT�Þ þ saaðlÞ: ð71Þ
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A comparison between Eqs. (71) and (36) reveals that both
the terms proportional to δðlÞ and the distribution saaðlÞ
must vanish identically to preserve the regularity of the
function gðTÞ. Consequently, one deduces the third and
fourth junction conditions for this particular case as

2α½∇cR� þ γ½∇cT� ¼ 0; ð72Þ

2α½R� þ γ½T� ¼ 0; ð73Þ

where Eq. (72) corresponds to fifth equation in the
system of Eq. (42) in the particular case for which the
function fðR; TÞ is given by the explicit form provided in
Eq. (55). Inserting Eqs. (72) and (73) into Eqs. (66)–(68),
and Eq. (70), one verifies that Sa, S and sabðlÞ vanish
completely and Sab reduces to the term proportional to the
jump of the extrinsic curvature.
To summarize, the full set of junction conditions in the

geometrical representation of the fðR; TÞ for the particular
case where the function is given by the explicit form of
Eq. (55) is composed of the following five equations:

½hαβ� ¼ 0;

½K� ¼ 0;

2α½R� þ γ½T� ¼ 0;

2α½∇cR� þ γ½∇cT� ¼ 0;

½8π þ γRΣ þ g0ðTΣÞ�Sab ¼ −ð1þ γTΣ þ 2αRΣÞϵ½Kab�:
ð74Þ

Similarly to what happens in fðRÞ gravity and other similar
theories, it is possible to consider particular forms of the
function fðR; TÞ for which some of the junction conditions,
namely ½R� ¼ 0 and ½T� ¼ 0, can be discarded from the
final set of equations. However, as one needs to preserve
the regularity of products and power laws of T, this
situation does not give rise to a gravitational double layer
at Σ. Instead, an extra junction condition arises constraining
[R] to be proportional to [T]. Forcing ½R� ¼ 0 and ½T� ¼ 0
in Eq. (146), one recovers the general system of Eq. (42) in
the particular case of Eq. (55), as expected.

2. Matching with a double layer at Σ
In the previous example, we were able to discard the

junction conditions ½R� ¼ 0 and ½T� ¼ 0 from the full set of
junction conditions in Eq. (42) via the choice of a particular
form of the function fðR; TÞ. Even though the form chosen
in Eq. (55) is the most general form of fðR; TÞ that allows
for this simplification to happen, it is still not enough to
raise the appearance of a gravitational double layer at Σ, as
the regularity of the products RT and possible power laws
of T in gðTÞ force the double-layer terms to vanish. Thus,
for the gravitational double layer to appear, one needs to
constraint further the function fðR; TÞ in such a way that

the products RT do not appear and gðTÞ is at most linear
in T, i.e., we now consider

fðR; TÞ ¼ R − 2Λþ αR2 þ γT; ð75Þ

where Λ, α, and γ are arbitrary constants. Inserting Eq. (75)
into the field equations in Eq. (7) yields the field equations
for this particular case

ð1þ 2αRÞRab −
1

2
gabðR − 2Λþ αR2 þ γTÞ

− 2αð∇a∇b − gab□ÞR ¼ ð8π þ γÞTab þ γpgab: ð76Þ

Similarly to the previous case of Sec. III C 1, in this case
the metric gab and its partial derivatives ∂agab are again
given by the forms in Eqs. (21) and (23), respectively, the
Ricci tensor Rab is given by Eq. (27), the Ricci scalar R is
given by Eq. (28), and the partial derivatives of the Ricci
scalar ∂aR are given by Eq. (29). Following the same
analysis as in the previous sections, one arrives to the first
and second junction conditions as

½hαβ� ¼ 0; ð77Þ

½K� ¼ 0: ð78Þ

The main difference between this case and the one in
Sec. III C 1 is that, since we have chosen fðR; TÞ to be
linear in T, the second-order differential terms in fR are
now independent of T. Therefore, we only have to take into
consideration the second-order derivatives of R, which take
the form of Eq. (59) and lead to Eq. (61). Inserting these
results into the field equation in Eq. (76) one again verifies
that the stress-energy tensor Tab must be written in the form
of Eq. (65). In this case however, the field equations depend
explicitly on the trace of the stress-energy tensor T which is
not anymore restricted to have vanishing contributions from
δðlÞ and sabðlÞ. Tracing Eq. (65) one finds

T ¼ TþΘðlÞ þ T−Θð−lÞ þ δðlÞðSaa þ ϵSÞ þ saaðlÞ; ð79Þ

where we have used the result naSa ¼ 0. Inserting these
considerations into the field equations, one verifies that all
the independent projections of the singular part of the
stress-energy tensor Tab in the distribution formalism, i.e.,
the quantities Sab, Sa and S, and the distribution sabðlÞ, are
now given by

ð8π þ γÞSab þ
1

2
habγðScc þ ϵSÞ

¼ −ð1þ 2αRΣÞϵ½Kab� þ 2αϵhabnc½∇cR� − 2αϵKΣ
ab½R�;
ð80Þ

ð8π þ γÞSa ¼ −2αϵhca∇c½R�; ð81Þ
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ð8π þ γÞS ¼ 2αKΣ½R�; ð82Þ

ξabðlÞ≡ ð8π þ γÞsabðlÞ þ
1

2
habγsccðlÞ ¼ 2αϵΩRðlÞ; ð83Þ

where the distribution function ξabðlÞ just defined can also
be written in an explicit form for some test function Yab asZ

Ω
ξabYabd4x ¼ −

Z
Σ
2αϵhab½R�nc∇cYabd3x: ð84Þ

As we have chosen the function fðR; TÞ wisely to avoid
any further restrictions in the trace of the stress-energy
tensor Tab, in this case a gravitational double layer will be
present at the hypersurface Σ and it is described by the set
of Eqs. (80) to (83). These equations, along with Eqs. (77)
and (78) constitute the full set of junction conditions of the
fðR; TÞ gravity in the particular case of a function of the
form of Eq. (75), and it is the most general case for which
the gravitational double layers arise. Every extra term
arising in this situation is proportional to [R] as expected.
The general results from Sec. III A can thus be obtained by
taking the limit ½R� ¼ ½T� ¼ 0. A similar set of conditions
has also been obtained in fðRÞ gravity for the particular
case of timelike hypersurfaces and our results can be
matched to those in fðRÞ by taking ϵ ¼ 1 and γ ¼ 0.

IV. JUNCTION CONDITIONS IN THE
SCALAR-TENSOR REPRESENTATION

A. Matching with a thin shell at Σ
Let us now turn to the scalar-tensor representation of the

theory derived in Sec. II B. The method to derive the first
junction condition in this representation is completely
analogous to the one followed in the geometrical repre-
sentation of the theory. We start by writing the metric in the
distribution formalism as

gab ¼ gþabΘðlÞ þ g−abΘð−lÞ: ð85Þ

The partial derivatives of Eq. (85) are thus ∂cgab¼
∂cg

þ
abΘðlÞþ∂cg−abΘð−lÞþϵ½gab�ncδðlÞ. When one defines

the Christoffel symbols associated to this metric, one
again needs to avoid the presence of products in the
form ΘðlÞδðlÞ, as they are undefined in the distribution
formalism. As a consequence, one imposes ½gab� ¼ 0.
Furthermore, as gab induces a metric on Σ given by
hαβ ¼ eaαebβgab, to preserve the continuity of the metric
at Σ, the same result must hold for the induced metric hαβ,
i.e., the first junction condition takes again the form

½hαβ� ¼ 0: ð86Þ

This result is consistent with the geometrical representa-
tion, as Eq. (86) is the same as Eq. (22). Taking Eq. (86)

into account, the partial derivatives of the metric gab
become

∂cgab ¼ ∂cg
þ
abΘðlÞ þ ∂cg−abΘð−lÞ: ð87Þ

Using Eq. (87), one can now construct the Christoffel
symbols for the metric gab in the distribution formalism
without undefined terms, and consequently one is also able
to compute the Ricci tensor Rab and the Ricci scalar R.
These two quantities can be written in the distribution
formalism generally as

Rab ¼ Rþ
abΘðlÞ þR−

abΘð−lÞ− ðϵeαaeβb½Kαβ� þ nanb½K�ÞδðlÞ;
ð88Þ

R ¼ RþΘðlÞ þ R−Θð−lÞ − 2ϵ½K�δðlÞ; ð89Þ

where Kαβ ¼ ∇αnβ is the extrinsic curvature of the hyper-
surface Σwhere nβ ¼ ebβnb, and K ¼ Kα

α is the correspond-
ing trace.
Let us now turn to the matter sector of the theory. In the

previous paragraphs, more specifically in Eqs. (88) and
(89), we have shown that the Ricci tensor Rab and the Ricci
scalar R present terms proportional to δðlÞ, which will
appear in the left-hand side of the field equations in
Eq. (17). These terms can be associated with the presence
of a thin shell of matter at the separation hypersurface Σ. To
find the properties of the thin shell, let us write the stress-
energy tensor Tab as a distribution function of the form

Tab ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ þ δðlÞSab; ð90Þ

where Sab is the four-dimensional stress-energy tensor of
the thin shell, which can be written as a three-dimensional
tensor at Σ as

Sab ¼ Sαβeαae
β
b: ð91Þ

The field equations in Eq. (17) and the scalar field equation
in Eq. (19) also depend explicitly in the trace of the stress-
energy tensor T ¼ gabTab. Taking the trace of Eq. (90), we
find that T becomes

T ¼ TþΘðlÞ þ T−Θð−lÞ þ δðlÞS; ð92Þ

where we have defined S ¼ Saa. Up to this point there are
still no restrictions in the divergent terms of the Ricci tensor
and scalar Rab and R or the stress-energy tensor Tab and its
trace T.
Consider now the contribution of the scalar fields φ

and ψ . In the distribution formalism, one writes the scalar
fields in the usual way as

φ ¼ φþΘðlÞ þ φ−Θð−lÞ; ð93Þ
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ψ ¼ ψþΘðlÞ þ ψ−Θð−lÞ: ð94Þ

As the scalar fields φ and ψ are defined with no dependency
in the δðlÞ distribution, it is already guaranteed that the
potential function Vðφ;ψÞ will be regular and well defined,
as products of the formΘðlÞδðlÞ or δ2ðlÞ will not arise. As a
consequence, the same regularity will be also guaranteed
in any of the partial derivatives of V. In particular, the
left-hand side of Eqs. (18) and (19), which are Vφ and Vψ

respectively, will not have any dependency on δðlÞ.
Consequently, from Eqs. (18) and (19), one concludes that
the Ricci scalar R and the trace of the stress-energy tensor T
must not have any dependence on δðlÞ. Considering the
explicit forms of these two variables in Eqs. (89) and (92)
respectively, one derives the second and third junction
conditions:

½K� ¼ 0; ð95Þ

S ¼ 0: ð96Þ

These results are consistent with the ones previously
obtained in the geometrical representation of the theory,
as they were also derived in Eqs. (26) and (35). The Ricci
scalar R and the trace of the stress-energy tensor T
become thus

R ¼ RþΘðlÞ þ R−Θð−lÞ; ð97Þ

T ¼ TþΘðlÞ þ T−Θð−lÞ; ð98Þ

and the Ricci tensor Rab simplifies to

Rab ¼ Rþ
abΘðlÞ þ R−

abΘð−lÞ − ϵeαae
β
b½Kαβ�δðlÞ: ð99Þ

As the field equations in Eq. (17) depend on second-
order derivatives of the scalar field φ, one has to examine
these terms in the distribution formalism as well. Taking the
partial derivative of Eq. (93), one obtains

∂aφ ¼ φþΘðlÞ þ φ−Θð−lÞ þ ϵ½φ�naδðlÞ: ð100Þ

In a general scalar-tensor theory of gravity with a scalar
field ϕ, e.g., Brans-Dicke theory with a parameter ωBD ≠ 0,
it is the presence of a kinetic term that forces the scalar
fields to be continuous, due to the presence of undefined
terms of the form ΘðlÞδðlÞ and divergent terms δ2ðlÞ in the
products ∂aϕ∂bϕ. However, in the absence of a kinetic
term, there are no reasons a priori for the condition ½φ� to be
mandatory. However, in this work we are not considering
a general scalar-tensor theory represented by the action
in Eq. (16), but rather with an equivalent scalar-tensor
representation of the fðR; TÞ theory described by the action
in Eq. (1). As explained in Sec. II B, this representation is
only defined whenever the determinant of the matrix M in

Eq. (13) does not vanish. This property implies that it must
be possible to write the scalar fields φ and ψ explicitly in
terms of R and T, i.e., φ ¼ φðR; TÞ and ψ ¼ ψðR; TÞ, and
vice-versa, i.e., R ¼ Rðφ;ψÞ and T ¼ Tðφ;ψÞ. Taking
these arguments into consideration, one can write the
first and second-order covariant derivatives of the scalar
field φ as

∂aφ ¼ φR∂aRþ φT∂aT; ð101Þ

∇a∇bφ ¼ φR∇a∇bRþ φT∇a∇bT þ φRR∂aR∂bR

þ φTT∂aT∂bT þ 2φRT∂ðaR∂bÞT; ð102Þ

where the subscripts R and T denote partial derivatives with
respect to these quantities, respectively. Taking the partial
derivatives of R and T from Eqs. (97) and (98) respectively,
one obtains in the distribution formalism

∂aR ¼ ∂aRþΘðlÞ þ ∂aR−Θð−lÞ þ ϵ½R�naδðlÞ; ð103Þ

∂aT ¼ ∂aTþΘðlÞ þ ∂aT−Θð−lÞ þ ϵ½T�naδðlÞ: ð104Þ

Thus, the presence of products of the form ∂aR∂bR,∂aT∂bT and ∂aR∂bT in the expression for ∇a∇bφ in
Eq. (102) implies that these differential terms will depend
on products of the form ΘðlÞδðlÞ and δðlÞ2, which are
undefined and singular, respectively. To avoid the presence
of these terms, one must force the δðlÞ terms in Eqs. (103)
and (104) to vanish, i.e., ½R� ¼ 0 and ½T� ¼ 0. Since both
the scalar fields are well-behaved functions of R and T by
the definition of the equivalent scalar-tensor representation
as explained earlier in this section, the conditions ½R� ¼ 0
and ½T� ¼ 0 imply the fourth and fifth junction conditions:

½φ� ¼ 0; ð105Þ

½ψ � ¼ 0: ð106Þ

Junction conditions of this form are common in general
scalar-tensor theories of gravity as long as the action
features a kinetic term for the scalar field. However, here
they arise even though the action in Eq. (16) does not have a
kinetic term for either φ and ψ , due to the very definition of
the equivalent scalar-tensor representation. A similar sit-
uation arises in the metric formalism of fðRÞ gravity and
the hybrid metric-Palatini gravity. As a consequence, the
first-order derivative of φ in Eq. (100) becomes

∂aφ ¼ φþΘðlÞ þ φ−Θð−lÞ; ð107Þ

and we are finally able to compute the second-order
derivatives of the scalar field φ which become generally
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∇a∇bφ ¼ ∇a∇bφ
þΘðlÞ þ∇a∇bφ

−Θð−lÞ þ ϵna½∂bφ�δðlÞ:
ð108Þ

We are now in conditions of deriving the stress-energy
tensor of the thin shell Sαβ. To do so, one introduces
the representations of the various quantities in the distri-
bution formalism given by Eqs. (85), (90), (93), (94), (97),
(98), (99), and (108) into the field equations in Eq. (20) and
project the result into the hypersurface Σ with eaαebβ .
Defining φjΣ ¼ φΣ and ψ jΣ ¼ ψΣ as the values of the
scalar fields at Σ, one obtains

ð8π þ ψΣÞSαβ ¼ −ϵφΣ½Kαβ� þ ϵhαβnc½∂cφ�: ð109Þ

Taking the trace of Eq. (109), inserting the result into
Eq. (96) and simplifying the outcome with Eq. (95) yields a
more convenient form of the third junction condition as
½∂aφ� ¼ 0, which can then be reinserted into Eq. (109) to
force the second term on the right-hand side to vanish.
To summarize, the complete set of junction conditions

for the equivalent scalar-tensor representation of the
fðR; TÞ gravity for the general matching in the presence
of a thin shell at Σ is composed of a total of six equations of
the form

½hαβ� ¼ 0;

½K� ¼ 0;

½φ� ¼ 0;

½ψ � ¼ 0;

½∂aφ� ¼ 0;

ð8π þ ψΣÞSαβ ¼ −ϵφΣ½Kαβ�: ð110Þ

Note that this set of junction conditions could be derived
directly from the system in Eq. (42) via the introduction
of the definitions φ ¼ fRðR; TÞ and ψ ¼ fTðR; TÞ, which
emphasizes the equivalence between the two representa-
tions of the theory.

B. Smooth matching at Σ
In the previous section we have extended the analysis of

Sec. III A to the equivalent scalar-tensor representation of
the fðR; TÞ theory. In particular, we have considered the
matching of two spacetimes V� at a separation hypersur-
face Σ allowing for a thin shell of matter described by a
stress-energy tensor Sαβ to exist at Σ. Similarly as before, if
one is interested in a smooth matching instead, one has to
pursue the same analysis but for a vanishing Sαβ, for which
a new set of junction conditions will arise. The vanishing of
Sαβ is guaranteed by forcing all the terms proportional to
δðlÞ that could possibly appear in the field equations of
Eq. (20) to vanish.

Let us start from the metric gab again. In this situation,
the metric provided in Eq. (85) in the distribution formal-
ism does not vary when one considers a smooth matching,
once it does not have any dependence in δðlÞ.
Consequently, one can follow the same reasoning as in
Sec. IVA to conclude that the induced metric hαβ must
remain continuous across Σ, and the first junction condition
becomes

½hαβ� ¼ 0: ð111Þ

One can now proceed to the calculation of the Christoffel
symbols, the Ricci tensor Rab and the Ricci scalar R
associated to this metric, which are given by the general
forms provided in Eqs. (88) and (89), respectively, where
Kαβ ¼ ∇αnβ represents the extrinsic curvature of the
hypersurface Σ. Given the presence of a term proportional
to Rab in the field equations in Eq. (20), the term propor-
tional to δðlÞ in Eq. (88) must be forced to vanish for the
matching to be smooth, from which one concludes that Kαβ

must be continuous across Σ, i.e., the second junction
condition becomes

½Kαβ�; ð112Þ

which is consistent with what was already obtained in the
geometrical representation of the theory in Eq. (44). As
Eq. (112) features ½K� ¼ 0 as a consequence, the latter does
not have to be imposed separately. The Ricci tensor Rab and
the Ricci scalar R thus become

Rab ¼ Rþ
abΘðlÞ þ R−

abΘð−lÞ; ð113Þ

R ¼ RþΘðlÞ þ R−Θð−lÞ: ð114Þ

Turning now to the matter sector of the theory, and since
we are interested in matching the two spacetimes smoothly
at Σ, the stress-energy tensor Tab must not have any
dependence on δðlÞ. Similarly as before, this situation
forces Tab and its trace T to take the forms

Tab ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ; ð115Þ

T ¼ TþΘðlÞ þ T−Θð−lÞ: ð116Þ

Finally, let us now analyze the contribution of the scalar
fields. Again, one writes the scalar fields φ and ψ in the
distribution formalism in the same forms as provided in
Eqs. (93) and (94), respectively. These scalar fields are
defined with no dependencies in δðlÞ, and thus the potential
Vðφ;ψÞ is already guaranteed to be well defined and
regular. This regularity is preserved upon partial derivatives
of V with respect to the scalar fields φ and ψ . Consequently,
the equations of motion for φ and ψ , i.e., Eqs. (18) and (19),
whose left-hand sides depend on Vφ and Vψ respectively,
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are automatically satisfied at the hypersurface Σ, as the
regularity of R and T is forced by Eqs. (114) and (116).
To analyze the contribution of the differential terms

∇a∇bφ and□φ in the field equations in Eq. (20), one takes
the derivatives of the scalar field φ, which will be of the
same form as provided in Eq. (100). Following the same
arguments of Sec. IVA, i.e., the fact that the scalar fields
are not arbitrary functions but must be constrained by the
condition for which the scalar-tensor representation of the
theory is defined (see Sec. II B for more details), and
the fact that, as a consequence of this condition, the scalar
fields φ and ψ must be well-behaved functions of R and T,
one concludes that to avoid the presence of undefined
products ΘðlÞδðlÞ or singular products δðlÞ2 in the second-
order derivatives of φ given in Eq. (102) one must impose
that ½R� ¼ 0 and ½T� ¼ 0. Therefore, following that
φ ¼ φðR; TÞ and ψ ¼ ψðR; TÞ, one recovers the third
and fourth junction conditions as

½φ� ¼ 0; ð117Þ

½ψ � ¼ 0: ð118Þ

Again, we emphasize that junction conditions of this form
are common in scalar-tensor theories featuring kinetic
terms for the scalar fields, but in the case of the scalar-
tensor representation of fðR; TÞ these conditions are
imposed by the constraints on the scalar fields needed
for the scalar-tensor representation to be well defined.
Let us now turn to the second-order differential terms

∇a∇bR and ∇a∇bT in Eq. (102). Taking the second-order
covariant derivatives of R and T in Eqs. (114) and (116),
and taking into consideration that ½R� ¼ 0 and ½T� ¼ 0, one
obtains the same results as in Eqs. (32) and (40), respec-
tively. These forms feature terms proportional to δðlÞ,
which consequently will be present in ∇a∇bφ via
Eq. (102). In the previous section, where we have consid-
ered a matching with a thin shell at Σ, these terms were not
problematic as they could be absorbed into the stress-
energy tensor Sab of the thin shell. In this section however,
we are interested in guaranteeing a smooth matching
between the two spacetimes, and thus these terms propor-
tional to δðlÞ must not be present in the field equations in
Eq. (20). Thus, we have to force ½∂aR� ¼ 0 and ½∂aT� ¼ 0.
Since the scalar fields φ and ψ must be well-behaved
functions of R and T for the scalar-tensor representation of
the theory to be well defined, their first-order partial
derivatives are

∂aφ ¼ φR∂aRþ φT∂aT; ð119Þ

∂aψ ¼ ψR∂aRþ ψT∂aT; ð120Þ

from which it becomes clear that, if the first-order deriv-
atives of R and T are continuous, so must be the first-order

derivatives of φ and ψ . These considerations thus translate
into the fifth and sixth junction conditions of the form

½∂aφ� ¼ 0; ð121Þ

½∂aψ � ¼ 0: ð122Þ

To summarize, the complete set of junction conditions
for the equivalent scalar-tensor representation of the
fðR; TÞ gravity in the particular case of a smooth matching
between two spacetimes at Σ is thus composed of the
following six equations:

½hαβ� ¼ 0;

½Kαβ� ¼ 0;

½φ� ¼ 0; ð123Þ

½ψ � ¼ 0;

½∂aφ� ¼ 0;

½∂aψ � ¼ 0: ð124Þ

Note that this set of junction conditions could be derived
directly from the system in Eq. (54) via the introduction
of the definitions φ ¼ fRðR; TÞ and ψ ¼ fTðR; TÞ, which
emphasizes the equivalence between the two representa-
tions of the theory.

C. Double gravitational layers at Σ

1. Matching with ½ψ� ≠ 0

In Sec. IVA we derived the general set of junction
conditions necessary to match two spacetimes V� at a
separation hypersurface Σ in the presence of a thin shell.
This analysis was done for a general form of the potential
Vðφ;ψÞ, which is associated to a general function fðR; TÞ
via Eq. (15). In particular, the junction conditions in
Eqs. (121) and (122) were derived as a consequence of
the dependence of φ and ψ in R and T and the fact that
½R� ¼ 0 and ½T� ¼ 0. However, in Sec. III C 1, we have
shown that there are particular forms of the function
fðR; TÞ for which the latter conditions can be discarded.
Analogously, one expects that for some particular forms
of the potential Vðφ;ψÞ the junction conditions ½φ� ¼ 0
and ½ψ � ¼ 0 can be discarded.
Since the scalar-tensor representation derived in Sec. II B

is only well defined when the determinant of the matrixM
defined in Eq. (13) is nonvanishing, this condition will
impose a constraint in the function fðR; TÞ to be used in
this section. Taking the second-order partial derivatives
with respect to R and T of the function provided in Eq. (55)
and computing the determinant of M, one verifies that
the parameters α, γ and the function gðTÞ are constrained by
the condition
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2αg00ðTÞ − γ2 ≠ 0: ð125Þ

The form of the potential Vðφ;ψÞ associated to the
function fðR; TÞ in Eq. (55) can be obtained by computing
the partial derivatives of fðR; TÞ, using the definitions of
the scalar fields φ and ψ in Eq. (14) to invert these relations
and obtain Rðφ;ψÞ and Tðφ;ψÞ, and finally introducing the
results into Eq. (15). We thus obtain

Vðφ;ψÞ ¼ −Rðφ;ψÞ½1þ γTðφ;ψÞ� þ 2Λ − αRðφ;ψÞ2
− g½Tðφ;ψÞ� þ φRðφ;ψÞ þ ψTðφ;ψÞ; ð126Þ

Rðφ;ψÞ ¼ 1

2α
ðφ − 1Þ − γ

2α
h−1
�
ψ −

γ

2α
ðφ − 1Þ

�
; ð127Þ

Tðφ;ψÞ ¼ h−1
�
ψ −

γ

2α
ðφ − 1Þ

�
; ð128Þ

where h−1 is the inverse of a function hðTÞ defined as

hðTÞ ¼ g0ðTÞ − γ2

2α
T: ð129Þ

Note that, given the constraint provided in Eq. (125),
the function hðTÞ is also constrained to satisfy h0ðTÞ ≠ 0,
which is a necessary condition to guarantee its invertibility.
These results are true for any well-behaved function gðTÞ.
Choosing an explicit form of the function gðTÞ will thus set
an explicit form for the function hðTÞ via Eq. (129), which
consequently allows us to find R and T from Eqs. (127)
and (128), respectively, and finally an explicit form of the
potential from Eq. (126).
Let us now turn to the junction conditions arising from a

theory with a potential described by Eq. (126). The metric
gab and its partial derivatives are still given in the form
of Eqs. (85) and (87) respectively, and the Ricci scalar and
its partial derivatives are given by Eqs. (89) and (103)
respectively. The analysis that leads to Eqs. (86) and (95)
can be followed integrally and thus the first and second
junction conditions remain as

½hαβ� ¼ 0; ð130Þ

½K� ¼ 0: ð131Þ

In the matter sector, since the potential Vðφ;ψÞ given in
Eq. (126) depends on an arbitrary function g½Tðφ;ψÞ�,
which can depend generally power laws of T, and also in
products of Rðφ;ψÞTðφ;ψÞ, one concludes that T cannot
have any dependence on δðlÞ, otherwise undefined prod-
uctsΘðlÞδðlÞ or singular products δðlÞ2 would appear in the
potential and, consequently, in the field equations in
Eq. (17). Thus, the trace of the stress-energy tensor T
must be written in the form of Eq. (98), and whichever
terms proportional to δðlÞ that arise in Tab must vanish

upon tracing. Also, since the potential V depends in general
on products and power laws of φ and ψ , one must guarantee
that φ and ψ are still given by Eqs. (93) and (94),
respectively, as to avoid the same problematic products
in the field equations. These considerations guarantee the
regularity of the potential V and its partial derivatives with
respect to φ and ψ , and the equations of motion for the
scalar fields deduced in Eqs. (18) and (19) are automati-
cally well behaved at Σ.
The procedure to find the remaining junction conditions

in this case are the same up until the contribution of the
second-order derivatives of φ, i.e., the terms ∇a∇bφ and
□φ. In this case the scalar fields φ and ψ can be written
in terms of R and T as φ ¼ fR ¼ 1þ γT þ 2αR and
ψ ¼ γRþ g0ðTÞ, which implies that the second-order
derivatives of φ given in Eq. (102) become

∇a∇bφ ¼ 2α∇a∇bRþ γ∇a∇bT: ð132Þ

In the general case of Sec. IVA, the continuity of R and T
was mandatory due to the existence of products between
∂aR and ∂aT in ∇a∇vφ, which are now absent since
φRR ¼ φTT ¼ φRT ¼ 0. Thus, the particular case in study
allows for ½R� ≠ 0 and ½T� ≠¼ 0. Since the scalar fields φ
and ψ are written in terms of R and T, this result implies
that the junction conditions ½φ� ¼ 0 and ½ψ � ¼ 0 from the
full set of Eq. (110) can be discarded. The first- and second-
order covariant derivatives of the scalar field φ thus become

∂aφ ¼ ∂aφ
þΘðlÞ þ ∂aφ

−Θð−lÞ þ ϵna½φ�δðlÞ; ð133Þ

∇a∇bφ ¼ ð∇2φÞab þ ϵ∇að½φ�δðlÞnbÞ; ð134Þ

where ð∇2φÞab collectively denotes the right-hand side of
Eq. (108). Similarly to what happens in the geometrical
representation of the theory, the scalar-tensor representation
allows for one to discard a couple of junction conditions, in
this case ½φ� ≠ 0 and ½ψ � ≠ 0 are allowed at this point, but
at the cost of extra terms in the stress-energy tensor Sαβ of
the thin shell. The second term in the right-hand side of
Eq. (134) can be written explicitly as

∇að½φ�δðlÞnbÞ ¼ Δφ
ab þ δðlÞðKab − ϵKnanb þ nbhca∇cÞ½φ�;

ð135Þ

where the distribution function Δφ
ab is defined as

Z
Ω
Δφ

abY
abd4x ¼ −ϵ

Z
Σ
½φ�nanbnc∇cYabd3x; ð136Þ

for a given test function Yab. Inserting Eqs. (135) and (108)
into Eq. (134) and inserting the result back into the field
equations in Eq. (17), one verifies that the stress-energy
tensor Tab can be recast into the form
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Tab ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ
þ δðlÞðSab þ 2SðanbÞ þ SnanbÞ þ sabðlÞ; ð137Þ

where the stress-energy tensor of the thin shell Sab, the
external momentum flux Sa, the external normal pressure S,
and the double-layer stress-energy tensor distribution sab
are written in terms of the geometrical quantities in the
forms

ð8π þ ψΣÞSab ¼ −ϵφΣ½Kab� þ ϵhabnc½∇cφ� − ϵKΣ
ab½φ�

ð138Þ

ð8π þ ψΣÞSa ¼ −ϵhca∇c½φ� ð139Þ

ð8π þ ψΣÞS ¼ KΣ½φ� ð140Þ

ð8π þ ψΣÞsabðlÞ ¼ habΔφ − Δφ
ab; ð141Þ

where we have defined φΣ and ψΣ as the average values of
the scalar fields at the hypersurface Σ, i.e., 2φΣ ¼ φþ þ φ−

and 2ψΣ ¼ ψþ þ ψ−, and Δφ is the trace of Δφ
ab. One can

thus express the double-layer stress-energy tensor distri-
bution explicitly asZ
Ω
ð8π þ ψΣÞsabYabd4x ¼ −

Z
Σ
ϵhab½φ�nc∇cYabd3x:

ð142Þ

Previously, to guarantee the regularity of the potential
VðφψÞ, we have forced the trace of the stress-energy tensor
T to be written as in Eq. (98). This condition will impose
constraints on Eq. (137). Taking the trace of Eq. (137),
simplifying the result using Eqs. (131), (139)–(141), and
using the result nahba ¼ 0, we obtain

T¼Tþ
abΘðlÞþT−

abΘð−lÞþ3ϵδðlÞnc½∇cφ�þsaaðlÞ: ð143Þ

We can now compare Eq. (143) with Eq. (98) to conclude
that both the terms proportional to δðlÞ and proportional to
sabðlÞ must vanish identically to guarantee the regularity of
the potential V. From these considerations, the third and
fourth junction conditions arise as

½∇cφ� ¼ 0; ð144Þ

½φ� ¼ 0: ð145Þ

These two junction conditions also arise in the general
case of an arbitrary potential V or, in other words, for an
arbitrary function fðR; TÞ, as can be seen in the full system
of junction conditions for that case in Eq. (110). Inserting
Eqs. (144) and (145) into Eqs. (138)–(140) and (142), one
verifies that the quantities Sa, S and sabðlÞ vanish and Sab

reduces to a single term proportional to the jump of the
extrinsic curvature.
Summarizing, the full set of junction conditions for the

scalar-tensor representation of the fðR; TÞ gravity for the
particular case where the potential is written in the form of
Eq. (126) is composed of the following five equations:

½hαβ� ¼ 0;

½K� ¼ 0;

½φ� ¼ 0;

½∇cφ� ¼ 0;

½8π þ ψΣ�Sab ¼ −ϵφΣ½Kab�: ð146Þ

It is thus possible to consider particular forms of the potential
Vðφ;ψÞ for which the junction condition ½ψ �¼0 can be
discarded from the final set of equations. However, as the
potential depends on general functions of T, the preservation
of regularity of these terms does not allow for a gravitational
double layer to arise at Σ. Instead, the junction conditions
½φ� ¼ 0 and ½∇cφ� ¼ 0 are recovered.

2. Matching with a double layer at Σ
In this section we will show that, although there are

particular forms of the function fðR; TÞ for which two
spacetimes V� can be matched at a separation hypersurface
Σ with a gravitational double layer in the geometrical
representation of the theory, see Sec. III C 2, the same
analysis cannot be reproduced in the scalar-tensor repre-
sentation of the theory, as the equivalence between the two
representations is not well defined for these forms of the
function.
The scalar-tensor representation of the theory was

derived in Sec. II B and was proven to be well-defined
only when the determinant of the matrix M defined in
Eq. (13) is nonvanishing. In Sec. III C 2 we verified that the
gravitational double layers arise only when the function
fðR; TÞ is given in the form of Eq. (75). For this form of the
function, the partial derivatives with respect to R and T
become fR ¼ 1þ 2αR and fT ¼ γ, and the second-order
derivatives are fRR ¼ 2α, fTT ¼ fRT ¼ 0. Consequently,
the determinant of the metric M is fRRfTT − fRT ¼ 0.
This implies that the relationship between R and T with φ
and ψ is not unique, and thus not invertible. One concludes
that the analysis of the gravitational double layers cannot be
pursued in the scalar-tensor representation of the theory, as
it is not well defined.

V. EXAMPLES AND APPLICATIONS

A. Energy conditions of a spherically symmetric
perfect-fluid thin shell

In this section we shall briefly analyze the validity of the
energy conditions for the matter thin shell at the separation
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hypersurface Σ in the particular case where the thin shell is
spherically symmetric and well described by a perfect-fluid
stress-energy tensor, i.e., we can write the mixed indexes
stress-energy tensor Sβα of the shell in the diagonal form

Sβα ¼ diagð−σ; pt; ptÞ; ð147Þ

where σ is the surface energy density and pt is the
transverse pressure of the thin shell. Under these assump-
tions, the energy conditions, more precisely the null energy
condition (NEC), the weak energy condition), the strong
energy condition, and the dominant energy condition, are
given by the following inequalities:

σ þ pt > 0; ð148Þ

σ þ pt > 0; σ > 0 ð149Þ

σ þ 2pt > 0; σ > 0 ð150Þ

σ > jptj; ð151Þ

respectively. In the usual spherical coordinate system
ðt; r; θ;ϕÞ, Eq. (26) becomes ½Kt

t� þ ½Kθ
θ� þ ½Kϕ

ϕ� ¼ 0.

Spherical symmetry implies that Kθ
θ ¼ Kϕ

ϕ, and thus
½Kt

t� ¼ −2½Kθ
θ�. Inserting these considerations and

Eq. (147) into the last of Eq. (42), one obtains a relationship
between σ and pt in the geometrical representation of
fðR; TÞ of the form

σ ¼ 2pt ¼
ϵfR

8π þ fT
½Kt

t�: ð152Þ

Following the same reasoning, the equivalent of Eq. (152)
for the scalar-tensor representation of the theory can be
obtained via the insertion of the previous results for Kab
and Eq. (147) into the last of Eq. (110), yielding

σ ¼ 2pt ¼
ϵφΣ

8π þ ψΣ
½Kt

t�: ð153Þ

The results of Eqs. (152) and (153) allow us to verify the
validity of the energy conditions. Since σ þ pt ¼ 3σ=2 and
jσj > jptj, Eqs. (148)–(151) will be automatically satisfied
whenever σ > 0 and violated otherwise.

B. Martinez thin shell: Matching an interior
Minkowski to an exterior Schwarzschild

Let us now consider the matching with a thin shell
between an interior Minkowski spacetime with an exterior
Schwarzschild spacetime at a given separation hypersur-
face Σ, which stands at a radius rΣ. This situation was
considered for the first time by Martinez in Ref. [10], which
was one of the pioneer works in thin-shell thermodynamics.

The interior and exterior spacetimes are described by the
line elements:

ds2 ¼ −dt2 þ dr2 þ r2dΩ2; ð154Þ

ds2 ¼ −
�
1 −

2M
r

�
αdt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2;

ð155Þ

respectively, where ðt; r; θ;ϕÞ are the usual spherical
coordinates, α is a dimensionless constant that we introduce
for later convenience, M is the mass of the Schwarzschild
solution, and dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the solid angle line
element. Both spacetimes in Eqs. (154) and (155) are
vacuum spacetimes, i.e., the stress-energy tensor Tab ¼ 0
vanishes, and they are also described by vanishing
Ricci tensors Rab ¼ 0 and, consequently, vanishing Ricci
scalars R ¼ 0.
The first two junction conditions for a matching with a

thin shell in the geometrical and the scalar-tensor repre-
sentation of the theory are the same, i.e., ½hαβ� ¼ 0 and
½K� ¼ 0 [see the systems of Eqs. (42) and (110)]. The first
junction condition sets a value for the constant α that
guarantees that the time coordinate of the two spacetimes in
Eqs. (154) and (155) are continuous,

α ¼
�
1 −

2M
rΣ

�
−1
: ð156Þ

Since the two regions V� are spherically symmetric, the
angular components of the extrinsic curvature are the same,
i.e., Kθθ ¼ Kϕϕ. Thus, the trace of the extrinsic curvature
for both regions can be written in the general form
K ¼ Kt

t þ 2Kθ
θ. The second junction condition thus

becomes

½K� ¼ −
2

r
−

3M − 2r

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ¼ 0: ð157Þ

This condition is a constraint on the radius r at which the
matching can be performed. Solving Eq. (157) for r one
finds that the matching is only possible if the hypersurface
Σ has a radius of

rΣ ¼ 9

4
M; ð158Þ

which implies upon replacement into Eq. (156) that α ¼ 9.
This is a major difference between general relativity and
more complicated theories like e.g., fðRÞ, fðR; TÞ and
hybrid metric-Palatini gravity: in general relativity, one can
choose to perform the matching at any radii rΣ as long as
rΣ > 2M to prevent the collapse to a black hole, whereas in
these theories the extra junction condition ½K� ¼ 0 forces
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the matching to be performed at a specific value of rΣ.
This particular value obtained for rΣ in Eq. (158) is
widely known in the literature and it corresponds to the
Buchdahl radius, i.e., the compactness limit for a perfect-
fluid isotropic star with a nonincreasing density. Although
this result is not mandatory in GR, it does arise for the
particular case of thin shells satisfying the equation of state
of radiation, i.e., σ ¼ 2p. Since we have proven in Sec. VA
that in fðR; TÞ gravity all spherically symmetric thin shells
will obey the same equation of state, see Eqs. (152) and
(153), our results seem to indicate that the behavior or
radiation thin shells in this theory is consistent with the
expected result from GR.

1. Matching in the geometrical representation

First of all, it is essential to verify if the metrics given in
Eqs. (154) and (155) are solutions of the field equations in
Eq. (7) and for which forms of the function fðR; TÞ.
Inserting these metrics into the field equations, one verifies
that the function fðR; TÞ is constrained to vanish at R ¼ 0
and T ¼ 0, i.e., fð0; 0Þ ¼ 0.
Let us now analyze the remaining junction conditions in

the geometrical representation of the theory. Since both
spacetimes present identically vanishing stress-energy ten-
sor Tab and Ricci tensor Rab, and consequently vanishing
traces T and R, the junction conditions ½R� ¼ 0 and ½T� ¼ 0
are automatically satisfied. Furthermore, taking the first-
order partial derivatives of R and T, one verifies that the
junction condition fRR½∂cR� þ fRT ½∂cT� ¼ 0 is also auto-
matically satisfied independently of the form of the
function fðR; TÞ, as long as fRR and fRT are nonsingular
at R ¼ 0 and T ¼ 0.
We are thus left with the last junction condition of the set

of Eq. (42). Since we are dealing with spherically sym-
metric spacetimes, the analysis of a thin shell under these
conditions is already done in general in Sec. VA and the
results for the surface energy density σ and transverse
pressure pt of the thin shell are already given in Eq. (152).
Using the spacetimes in Eqs. (154) and (155), and the
matching radius rΣ from Eq. (158), we obtain

σ ¼ 2pt ¼
fR

8π þ fT

M
r2Σ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
rΣ

s !−1

¼ fR
8π þ fT

16

27M
;

ð159Þ

where we have considered ϵ ¼ 1 as the normal vector na to
the hypersurface Σ is a spacetime vector pointing in the
radial direction. From Eq. (159), one concludes that the
energy conditions in Eqs. (148) to (151) will be satisfied
whenever fR > 0 and fT > −8π or fR < 0 and fT < −8π.
The second of these combinations is not ideal as it inverts
the sign of the linear contribution of R in fðR; TÞ, and
thus it shall be discarded. Combining these constraints
with fð0; 0Þ ¼ 0 previously obtained, one concludes that

the function fðR; TÞ can be written in a very general
form as

fðR; TÞ ¼ a1Rþ a2T þOð2Þ; ð160Þ

where ai are constants constrained by the inequalities
a1 > 0 and a2 > −8π, and Oð2Þ collectively denotes all
the possible combinations of products of order 2 or higher
in R and T, i.e., a3R2, a4T2, a5RT, etc., with arbitrary
constants ai.

2. Matching in the scalar-tensor representation

To reproduce the previous results in the scalar-tensor
representation one must first set an explicit form of the
function fðR; TÞ and compute the corresponding potential.
To facilitate the analysis, let us consider one of the simplest
forms of the function fðR; TÞ for which the scalar-tensor
representation is well defined and the constraint fð0;0Þ¼0
is satisfied, as

fðR; TÞ ¼ Rþ T þ RT
R0

; ð161Þ

where R0 is a constant with dimensions of R. The second-
order partial derivatives of Eq. (161) are thus fRR¼fTT ¼0
and fRT ¼ 1=R0, from which we obtain that the
determinant of the matrix M defined in Eq. (13) is
fRRfTT − f2RT ¼ R−2

0 ≠ 0 and the scalar-tensor representa-
tion of the theory is well defined. Thus, we can compute the
scalar fields from Eq. (14) which are

φ ¼ 1þ T
R0

; ψ ¼ 1þ R
R0

: ð162Þ

The relations in Eq. (162) are invertible, and one can write
R and T as functions of φ and ψ as R ¼ R0ðψ − 1Þ and
T ¼ R0ðφ − 1Þ. Using Eq. (15), we can now compute the
potential Vðφ;ψÞ which takes the form

Vðφ;ψÞ ¼ RT
R0

¼ R0ðφ − 1Þðψ − 1Þ: ð163Þ

Taking the partial derivatives of Eq. (163) one verifies
that Vφ ¼ R0ðψ − 1Þ ¼ R and Vψ ¼ R0ðφ − 1Þ ¼ T, and
so the equations of motion for the scalar fields, i.e.,
Eqs. (18) and (19), are not only automatically satisfied
but also allow us to compute the solutions for the scalar
fields in this particular case as φ ¼ 1 and ψ ¼ 1, both
constants. Inserting these considerations into the field
equations in Eq. (17), one verifies that both metrics in
Eqs. (154) and (155) are solutions of these equations.
Let us now analyze the remaining junction conditions in

the scalar-tensor representation. As we have already com-
puted the solutions for the scalar fields φ and ψ in the
particular choice of fðR; TÞ considered and concluded that

JUNCTION CONDITIONS AND THIN SHELLS IN PERFECT- … PHYS. REV. D 103, 104069 (2021)

104069-17



they are constant, the junction conditions ½φ� ¼ 0 and
½ψ � ¼ 0 are automatically satisfied. Furthermore, taking
the first-order partial derivatives, one also verifies that
½∂cφ� ¼ 0 is satisfied.
Finally, we have to settle the last junction condition of

Eq. (110). Again, the analysis of the stress-energy tensor of
the thin shell is already done in Sec. VA and the resultant
surface energy density σ and transverse pressure pt are
given in Eq. (153). Using the metrics in Eqs. (154) and
(155) and rΣ from Eq. (158) we find

σ ¼ 2pt ¼
φΣ

8π þ ψΣ

M
r2Σ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
rΣ

s !−1

¼ 1

8π þ 1

16

27M
;

ð164Þ

where we have used ϵ ¼ 1 since the normal vector na to the
hypersurface Σ points in the radial direction. The result
in Eq. (164) could be obtained directly from Eq. (159) via
the insertion of the particular form of fðR; TÞ chosen in
Eq. (161), which confirms the equivalence between the two
representations of the theory.

C. A thin shell surrounding an interior
Schwarzschild black hole

Finally, let us consider the matching between two
Schwarzschild spacetimes with different masses with a
thin shell at a given hypersurface Σ with radius rΣ, i.e., this
spacetime represents a Schwarzschild black hole sur-
rounded by a thin shell, as first introduced in Ref. [59].
The interior and exterior spacetimes are described respec-
tively by the line elements

ds2 ¼ −
�
1 −

2Mi

r

�
dt2 þ

�
1 −

2Mi

r

�
−1
dr2 þ r2dΩ2;

ð165Þ

ds2 ¼ −
�
1 −

2Me

r

�
αdt2 þ

�
1 −

2Me

r

�
−1
dr2 þ r2dΩ2;

ð166Þ

where we have considered the usual spherical coordinates
ðt; r; θ;ϕÞ, α is a dimensionless constant introduced to
maintain the continuity of the time coordinates,Mi andMe
are the masses of the interior and exterior Schwarzschild
spacetimes respectively, and dΩ is the solid angle line
element. As both the spacetimes in Eqs. (165) and (166) are
vacuum spacetimes in GR, they feature vanishing stress-
energy tensors Tab ¼ 0, Ricci tensors Rab ¼ 0, and con-
sequently Ricci scalars R ¼ 0.
Similarly to the example in Sec. V B, the first junction

condition of the sets in Eqs. (42) and (110), i.e., ½hαβ� ¼ 0

sets the value of the constant α that guaranteed the

continuity of the time coordinate across the hypersurface
Σ, which is in this case

α ¼ rΣ − 2Mi

rΣ − 2Me
: ð167Þ

As the two regions V� are again spherically symmetric,
the angular components of the extrinsic curvature coincide,
i.e., Kθθ ¼ Kϕϕ, and the corresponding trace simplifies to
K ¼ Kt

t þ 2Kθ
θ. The second junction condition in Eqs. (42)

and (110), i.e., ½K� ¼ 0, thus yields

½K� ¼ 1

r2

0
B@3Mi − 2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Mi
r

q −
3Me − 2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Me

r

q
1
CA ¼ 0: ð168Þ

This condition serves as a constraint to set the value of r at
which the matching can be performed. In this case however,
Eq. (168) features two roots for r, one of which standing in
the range 0 < r < 2Mi independently of the value of Me.
These solutions are nonphysical, as the thin shell would
stand inside the event horizon of the interior black hole and
thus one expects the system to undergo full gravitational
collapse instead of being in an equilibrium static configu-
ration. We thus discard this solution and keep solely the
solution for which the matching occurs ar r > 2Mi inde-
pendently of the value of Me, which is

rΣ ¼ 9

8

"
Me þMi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMe −MiÞ2 þ

4

9
MeMi

r #
: ð169Þ

From this solution one verifies that if Me > Mi, the
matching must occur at R > 3Mi, whereas if Me < Mi
the matching will occur at R < 3Mi. In particular, we verify
that ifMi ¼ 0we recover the limit obtained in Eq. (158) for
the Martinez shell. Finally, after setting the values of Me
andMi, one can replace the value of rΣ from Eq. (169) into
Eq. (167) to compute the value of α.

1. Matching in the geometrical representation

Before proceeding, one should verify if the spacetimes in
Eqs. (165) and (166) are solutions of the field equations
in Eq. (7). As previously demonstrated in Sec. V B, the
Schwarzschild solution is a solution of these field equations
as long as the function fðR; TÞ satisfies the condition
fð0; 0Þ ¼ 0.
Similarly to the previous example, both the interior and

exterior spacetimes considered are vacuum spacetimes in
GR, and thus they present identically vanishing stress-
energy tensors Tab and Ricci tensors Rab. Taking the traces,
one verifies that also T and R vanish identically, and thus
the junction conditions ½R� ¼ 0 and ½T� ¼ 0 are automati-
cally satisfied. Taking the first-order partial derivatives
of R and T, one verifies that the junction condition

JOÃO LUÍS ROSA PHYS. REV. D 103, 104069 (2021)

104069-18



fRR½∂cR� þ fRT ½∂cT� ¼ 0 is also automatically satisfied
provided that fRR and fTT are nonsingular at R ¼ 0
and T ¼ 0.
Finally, the last junction condition in the set of Eq. (42)

must be considered. For spherically symmetric spacetimes,
this analysis was already conducted in general in Sec. VA
and the results for the surface energy density σ and
transverse pressure pt are given in Eq. (152). For the
spacetimes in Eqs. (165) and (166), these results become

σ ¼ 2pt ¼
fR

r2ΣðfT þ 8πÞ

0
B@ Meffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Me
rΣ

q −
Miffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mi

rΣ

q
1
CA; ð170Þ

where rΣ is provided in Eq. (169) and we have considered
ϵ ¼ 1 as the normal vector na to the hypersurface Σ is a
spacelike vector pointing in the radial direction. From
Eqs. (170) and (169), one verifies that the energy conditions
in Eqs. (148) to (151) will be satisfied in four different
situations. If Me > Mi, then one must have fR > 0 and
fT > −8π or fR < 0 and fT < −8π. On the other hand, if
Me < Mi, one must have fR > 0 and fT < −8π or fR < 0
and fT > −8π. These results present a crucial difference
with respect to GR or fðRÞ theories of gravity. In GR, the
choiceMe < Mi prevents completely the energy conditions
to be fulfilled. In fðRÞ, although there are particular forms
of the function fðRÞ that allow for the energy conditions
to be fulfilled, one needs to impose f0ðRÞ < 0, thus
effectively inverting the sign of the linear R contribution
to the function fðRÞ. In fðR; TÞ however, one can chose
Me < Mi and still satisfy both fR > 0 and all the energy
conditions, by imposing the constraint fT < −8π. Similarly
to Sec. V B, these considerations allow the function fðR; TÞ
to have the general form

fðR; TÞ ¼ a1Rþ a2T þOð2Þ; ð171Þ

where ai are constants constrained by the inequalities
a1>0 and a2>−8π if Me>Mi, or a1>0 and a2<−8π
is Me < Mi, and ¼ ð2Þ collectively denotes all possible
combinations of products of R and T of order 2 or higher.

2. Matching in the scalar-tensor representation

Let us now verify that the analysis conducted in the
scalar-tensor representation of the theory yields the same
results. To do so, one must consider a particular form of
the function fðR; TÞ and compute the corresponding
potential and scalar fields. For simplicity, let us chose
the simple form of fðR; TÞ for which the scalar-tensor
representation is well defined and the condition fð0; 0Þ ¼ 0
is satisfied:

fðR; TÞ ¼ a1Rþ a2T þ RT
R0

; ð172Þ

where ai are arbitrary dimensionless constants and R0 is a
constant with units of R. The second-order derivatives of
Eq. (172) are fRR ¼ fTT ¼ 0 and fTR ¼ 1=R0, and thus the
determinant of M in Eq. (13) is R−2

0 ≠ 0 and the scalar-
tensor representation is well defined. The scalar fields can
thus be computed from Eq. (14) and are

φ ¼ a1 þ
T
R0

; ψ ¼ a2 þ
R
R0

: ð173Þ

These relations are invertible and one can write R ¼
R0ðφ − a1Þ and T ¼ R0ðψ − a2Þ. Thus, one can compute
the potential Vðφ;ψÞ from Eq. (15), which is

Vðφ;ψÞ ¼ RT
R0

¼ R0ðφ − a1Þðψ − a2Þ: ð174Þ

Taking the partial derivatives of Vðφ;ψÞ one has Vφ ¼
R0ðψ − a2Þ ¼ R and Vψ ¼ R0ðφ − a1Þ ¼ T, and thus the
equations of motion for the scalar fields are automatically
satisfied and they yield the constant solutions φ ¼ a1 and
ψ ¼ a2. As a consequence, one is then able to verify that
the metrics in Eqs. (165) and (166) are solutions of the field
equations in Eq. (20).
Since the two scalar fields arising from this choice of the

function fðR; TÞ are constant, the third and fourth junction
conditions in Eq. (110), i.e., ½φ� ¼ 0 and ½ψ � ¼ 0 are
automatically satisfied. Furthermore, taking the first deriva-
tive of φ one verifies that the junction condition ½∂cφ� ¼ 0
is also automatically satisfied for a constant φ.
Finally, considering the last junction condition of

Eq. (110), and since the spacetimes considered are spheri-
cally symmetric, the general results for the surface energy
density σ and the transverse pressure pt of the thin shell are
already given in Eq. (153). Using the metrics in Eqs. (165)
and (166), we obtain

σ ¼ 2pt ¼
φΣ

r2ΣðψΣ þ 8πÞ

0
B@ Meffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Me
rΣ

q −
Miffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mi

rΣ

q
1
CA; ð175Þ

where rΣ is given in Eq. (169) and we have used ϵ ¼ 1
since na points in the radial direction. Comparing this
result with Eq. (170), one verifies that Eq. (175) could be
obtained directly from the previous results simply by
introducing the transformation fR ¼ φ and fT ¼ ψ . The
constraints on the constants ai for the energy conditions
in Eqs. (148) to (151) to be satisfied depending on the
relationship betweenMe andMi are the same as obtained in
the geometrical representation of the theory, i.e., a2 > 0
and a2 < −8π for Me < Mi or a1 > 0 and a2 > −8π for
Me > Mi, which emphasizes the equivalence between the
two approaches.
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VI. CONCLUSIONS

In this work we have used the distribution formalism to
derive the junction conditions of the fðR; TÞ theory of
gravity not only in the well-known geometrical represen-
tation but also in a dynamically equivalent scalar-tensor
representation obtained by the introduction of two auxiliary
fields. As expected, the generalization of fðRÞ gravity to
fðR; TÞ gives rise to new junction conditions in both
representations, which implies that solutions matched in
fðRÞ may not necessarily be solutions in this theory.
In the geometrical representation, we verified that all the

junction conditions previously obtained in Ref. [18] for
fðRÞ gravity are also present in this theory. However, the
fact that the field equations depend explicitly in T and its
partial derivatives (via the differential terms in fR) leads to
two extra junction conditions: the trace of the stress-energy
tensor of the thin shell must vanish, i.e., S ¼ 0, and the
trace of the stress-energy tensor Tab must be continuous at
the separation, i.e., ½T� ¼ 0. The first of these conditions
forces the terms proportional to ½∂cR� and ½∂c� to cancel in
Sab and thus, unlike fðRÞ, the thin shell is completely
described by the discontinuity of the extrinsic curvature
Kab. For the particular case of smooth matching, one
recovers that the extrinsic curvature and the partial deriv-
atives of R must be continuous similarly to fðRÞ, which
also forces the partial derivatives of T to be continuous.
If one considers the scalar-tensor representation instead,

one verifies that the action that describes the theory is similar
to a Brans-Dicke action with two scalar fields with a
parameter ωBD ¼ 0 and a potential depending on both
fields. Since this scalar-tensor representation is only defined
when the Hessian matrix of the function fðR; TÞ is invert-
ible, which corresponds also to an invertibility of the
functions φðR; TÞ and ψðR; TÞ, then one verifies that the
scalar fields φ and ψ must be continuous. This result
emphasizes the difference between the scalar-tensor repre-
sentations of fðRÞ and respective extensions, of which
fðR; TÞ is an example, and Brans-Dicke theories with a
potential, as in the latter the continuity of the scalar fields
only arises if the scalar fields feature a kinetic term, i.e.,
when ωBD ≠ 0. The junction condition for the trace S ¼ 0 of
the thin shell forces the partial derivatives of the scalar field φ
to be continuous and one recovers the dependency of Sab
solely in the lump of the extrinsic curvature ½Kab�. For
smooth matching, one recovers the continuity of the extrinsic
curvature and the partial derivatives of the scalar field ψ , thus
proving the equivalence between the two representations.
If the function fðR; TÞ is at most second order in R, and

first order in RT, some of the junction conditions pre-
viously obtained can be discarded, namely the continuity of
R and T. This happens because the terms from which these
junction conditions arise are proportional to second-order
derivatives of fðR; TÞ which vanish in this particular case.
Unlike in fðRÞ, it was shown that these particular cases do
not lead to the appearance of gravitational double layers at

the separation hypersurface due to the condition S ¼ 0,
which imposes a relationship between ½∂cR� and ½∂cT�, as
well as [R] and [T], which effectively cancels the terms
associated to the double layers. The same behavior is found
in the scalar-tensor representation of the theory, in which
one is able to discard the junction condition ½ψ � ¼ 0 for the
corresponding potential Vðφ;ψÞ without giving rise to
gravitational double layers.
Nevertheless, there are still particular forms of the

function fðR; TÞ for which gravitational double layers arise,
associated to forms of the function at most quadratic inR and
linear in T without crossed products. These cases again
allow for R and T to be discontinuous and all the quantities
related to the double layer, i.e., energy and momentum
fluxes, tangential stresses, and the double-layer distribution
function, depend explicitly on [R] and [T]. These particular
cases do not have any counterparts in the scalar-tensor
representation of the theory as, for the forms of the function
fðR; TÞ necessary to conduct this analysis, the scalar-tensor
representation is not well defined and the determinant of the
Hessian matrix of fðR; TÞ vanishes identically.
It is particularly interesting that the extra junction

condition forcing the trace of the stress-energy tensor of
the thin shell to vanish has important consequences in
spacetimes with spherically symmetric thin shells. In
particular, these thin shells are described by an equation
of state of radiation, i.e., σ ¼ 2pt. Consequently, all the
energy conditions (null, weak, strong and dominant) will be
satisfied simultaneously if the surface energy density of the
shell is positive, and violated simultaneously otherwise.
This effectively eases the analysis of physically relevant
thin shells in this framework, as one can focus solely in
guaranteeing that σ is positive, without the need to fine-tune
the parameters in an attempt to verify the energy conditions
for σ and pt simultaneously, as it happens in other theories
e.g., hybrid metric-Palatini gravity [24].
Another possible application of the junction conditions

derived in this work is the construction of thin-shell
wormhole solutions [60,61] via the truncation of two
black-hole solutions at a given radius r > rh, where rh
is the radius of the event horizon. The junction condition
½K� ¼ 0 might prevent this procedure to be applicable to
Schwarzschild black holes, but it is expectable that this task
can be fulfilled with charged black holes [62]. Furthermore,
it has been shown that the condition ½K� ¼ 0 is discarded in
the Palatini approach to fðRÞ gravity [20], which simplifies
the construction of thin-shell wormholes [63]. In this sense,
it would be of major importance to compute the junction
conditions of the fðR; TÞ gravity in the Palatini formalism.
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P. A 9, 179 (1968).

[5] A. H. Taub, Space-times with distribution valued curvature
tensors, J. Math. Phys. (N.Y.) 21, 1423 (1980).

[6] J. R. Oppenheimer and H. Snyder, On continued gravita-
tional contraction, Phys. Rev. 56, 455 (1939).

[7] F. Fayos, J. M. M. Senovilla, and R. Torres, General
matching of two spherically symmetric spacetimes, Phys.
Rev. D 54, 4862 (1996).

[8] K. Lanczos, Bemerkungen zur de Sitterschen Welt, Phys. Z.
23, 539 (1922).

[9] K. Lanczos, Flächenhafte verteiliung der Materie in der
Einsteinschen Gravitationstheorie, Ann. Phys. (Leipzig) 74,
518 (1924).

[10] E. A. Martinez, Fundamental thermodynamical equation of
a self-gravitating system, Phys. Rev. D 53, 7062 (1996).

[11] J. P. S. Lemos, M. Minamitsuji, and O. B. Zaslavskii,
Thermodynamics of extremal rotating thin shells in an
extremal BTZ spacetime and the extremal black hole
entropy, Phys. Rev. D 95, 044003 (2017).

[12] J. P. S. Lemos, M. Minamitsuji, and O. B. Zaslavskii, Uni-
fied approach to the entropy of an extremal rotating BTZ
black hole: Thin shells and horizon limits, Phys. Rev. D 96,
084068 (2017).

[13] J. P. S. Lemos, G. M. Quinta, and O. B. Zaslavskii, Entropy
of an extremal electrically charged thin shell and the
extremal black hole, Phys. Lett. B 750, 306 (2015).

[14] J. P. S. Lemos, G. M. Quinta, and O. B. Zaslavskii, Entropy
of extremal black holes: Horizon limits through charged thin
shells in a unified approach, Phys. Rev. D 93, 084008
(2016).

[15] R. Brito, V. Cardoso, and J. V. Rocha, Interacting shells in
AdS spacetime and chaos, Phys. Rev. D 94, 024003 (2016).

[16] J. L. Rosa and P. Piçarra, Existence and stability of relativ-
istic fluid spheres supported by thin shells, Phys. Rev. D
102, 064009 (2020).

[17] S. Vignolo, R. Cianci, and S. Carloni, On the junction
conditions in fðRÞ-gravity with torsion, Classical Quant.
Grav. 35, 095014 (2018).

[18] J. M. M. Senovilla, Junction conditions for F(R)-gravity and
their consequences, Phys. Rev. D 88, 064015 (2013).

[19] N. Deruelle, M. Sasaki, and Y. Sendouda, Junction con-
ditions in f(R) theories of gravity, Prog. Theor. Phys. 119,
237 (2008).

[20] G. J. Olmo and D. Rubiera-Garcia, Junction conditions in
Palatini fðRÞ gravity, Classical Quant. Grav. 37, 215002
(2020).

[21] C. Barrabes and G. F. Bressange, Singular hypersurfaces in
scalar—tensor theories of gravity, Classical Quant. Grav. 14,
805 (1997).

[22] K. G. Suffern, Singular hypersurfaces in the Brans-Dicke
theory of gravity, J. Phys. A 15, 1599 (1982).

[23] S. C. Davis, Generalized Israel junction conditions for a
Gauss-Bonnet brane world, Phys. Rev. D 67, 024030 (2003).

[24] J. L. Rosa, J. P. S. Lemos, and F. S. N. Lobo, Wormholes in
generalized hybrid metric-Palatini gravity obeying the
matter null energy condition everywhere, Phys. Rev. D
98, 064054 (2018).

[25] V. Cardoso and P. Pani, Testing the nature of dark compact
objects: A status report, Living Rev. Relativity 22, 4 (2019).

[26] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Modified gravity and cosmology, Phys. Rep. 513, 1 (2012).

[27] S. Nojiri and S. D. Odintsov, Unified cosmic history
in modified gravity: From fðRÞ theory to Lorentz non-
invariant models, Phys. Rep. 505, 59 (2011).

[28] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Modified
gravity theories on a nutshell: Inflation, bounce and late-
time evolution, Phys. Rep. 692, 1 (2017).

[29] S. Perlmutter et al. (Supernova Cosmology Project Col-
laboration), Measurements of Omega and Lambda from 42
high redshift supernovae, Astrophys. J. 517, 565 (1999).

[30] A. G. Riess et al. (Supernova Search Team Collaboration),
Observational evidence from supernovae for an accelerated
universe and a cosmological constant, Astron. J. 116, 1009
(1998).

[31] T. P. Sotiriou and V. Faraoni, fðRÞ theories of gravity, Rev.
Mod. Phys. 82, 451 (2010).

[32] A. De Felice and S. Tsujikawa, fðRÞ theories, Living Rev.
Relativity 13, 3 (2010).

[33] C. G. Böhmer, T. Harko, and F. S. N. Lobo, Dark matter as a
geometric effect in fðRÞ gravity, Astropart. Phys. 29, 386
(2008).

[34] C. G. Böhmer, T. Harko, and F. S. N. Lobo, Generalized
virial theorem in fðRÞ gravity, J. Cosmol. Astropart. Phys.
03 (2008) 024.

[35] J. Khoury and A. Weltman, Chameleon Fields: Awaiting
Surprises for Tests of Gravity in Space, Phys. Rev. Lett. 93,
171104 (2004).

[36] J. Khoury and A. Weltman, Chameleon cosmology, Phys.
Rev. D 69, 044026 (2004).

[37] T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov,
fðR; TÞ gravity, Phys. Rev. D 84, 024020 (2011).

[38] R. Zaregonbadi, M. Farhoudi, and N. Riazi, Dark matter
from fðR; TÞ gravity, Phys. Rev. D 94, 084052 (2016).

[39] H. Velten and T. R. P. Caramês, Cosmological inviability of
fðR; TÞ gravity, Phys. Rev. D 95, 123536 (2017).

[40] M. J. S. Houndjo, Reconstruction of f(R, T) gravity describ-
ing matter dominated and accelerated phases, Int. J. Mod.
Phys. D 21, 1250003 (2012).

[41] M. J. S. Houndjo and O. F. Piattella, Reconstructing f(R, T)
gravity from holographic dark energy, Int. J. Mod. Phys. D
21, 1250024 (2012).

[42] M. Jamil, D. Momeni, M. Reza, and R. Myrzakulov,
Reconstruction of some cosmological models in fðR; TÞ
cosmology, Eur. Phys. J. C 72, 1999 (2012).

[43] F. G. Alvarenga, M. J. S. Houndjo, A. V. Monwanou, and
J. B. C. Orou, Testing some f(R,T) gravity models from
energy conditions, J. Mod. Phys. 4, 130 (2013).

[44] J. Wu, G. Li, T. Harko, and S. D. Liang, Palatini formulation
of fðR; TÞ gravity theory, and its cosmological implications,
Eur. Phys. J. C 78, 430 (2018).

JUNCTION CONDITIONS AND THIN SHELLS IN PERFECT- … PHYS. REV. D 103, 104069 (2021)

104069-21

https://doi.org/10.1007/BF02710419
https://doi.org/10.1063/1.524568
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1103/PhysRevD.54.4862
https://doi.org/10.1103/PhysRevD.54.4862
https://doi.org/10.1103/PhysRevD.53.7062
https://doi.org/10.1103/PhysRevD.95.044003
https://doi.org/10.1103/PhysRevD.96.084068
https://doi.org/10.1103/PhysRevD.96.084068
https://doi.org/10.1016/j.physletb.2015.08.065
https://doi.org/10.1103/PhysRevD.93.084008
https://doi.org/10.1103/PhysRevD.93.084008
https://doi.org/10.1103/PhysRevD.94.024003
https://doi.org/10.1103/PhysRevD.102.064009
https://doi.org/10.1103/PhysRevD.102.064009
https://doi.org/10.1088/1361-6382/aab6fe
https://doi.org/10.1088/1361-6382/aab6fe
https://doi.org/10.1103/PhysRevD.88.064015
https://doi.org/10.1143/PTP.119.237
https://doi.org/10.1143/PTP.119.237
https://doi.org/10.1088/1361-6382/abb924
https://doi.org/10.1088/1361-6382/abb924
https://doi.org/10.1088/0264-9381/14/3/021
https://doi.org/10.1088/0264-9381/14/3/021
https://doi.org/10.1088/0305-4470/15/5/021
https://doi.org/10.1103/PhysRevD.67.024030
https://doi.org/10.1103/PhysRevD.98.064054
https://doi.org/10.1103/PhysRevD.98.064054
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1086/307221
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.1016/j.astropartphys.2008.04.003
https://doi.org/10.1016/j.astropartphys.2008.04.003
https://doi.org/10.1088/1475-7516/2008/03/024
https://doi.org/10.1088/1475-7516/2008/03/024
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.94.084052
https://doi.org/10.1103/PhysRevD.95.123536
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500034
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1142/S0218271812500241
https://doi.org/10.1140/epjc/s10052-012-1999-9
https://doi.org/10.4236/jmp.2013.41019
https://doi.org/10.1140/epjc/s10052-018-5923-9


[45] G. A. Carvalho, R. V. Lobato, P. H. R. S. Moraes, J. D. V.
Arbañil, E. Otoniel, R. M. Marinho, Jr, and M. Malheiro,
Stellar equilibrium configurations of white dwarfs in the
fðR; TÞ gravity, Eur. Phys. J. C 77, 871 (2017).

[46] D. Deb, F. Rahaman, S. Ray, and B. K. Guha, Strange stars
in fðR; TÞ gravity, J. Cosmol. Astropart. Phys. 03 (2018)
044.

[47] S. K. Maurya, A. Errehymy, D. Deb, F. Tello-Ortiz, and M.
Daoud, Study of anisotropic strange stars in fðR; TÞ gravity:
An embedding approach under the simplest linear functional
of the matter-geometry coupling, Phys. Rev. D 100, 044014
(2019).

[48] M. Z. Bhatti, Z. Yousaf, and M. Yousaf, Stability of self-
gravitating anisotropic fluids in fðR; TÞ gravity, Phys. Dark
Universe 28, 100501 (2020).

[49] T. M. Ordines and E. D. Carlson, Limits on fðR; TÞ gravity
from Earths atmosphere, Phys. Rev. D 99, 104052 (2019).

[50] P. Sahoo, P. H. R. S. Moraes, M.M. Lapola, and P. K.
Sahoo, Traversable wormholes in the traceless fðR; TÞ
gravity, arXiv:2012.00258.

[51] A. K. Mishra, U. K. Sharma, V. C. Dubey, and A. Pradhan,
Traversable wormholes in fðR; TÞ gravity, Astrophys.
Space Sci. 365, 34 (2020).

[52] P. H. R. S. Moraes and P. K. Sahoo, Modeling wormholes in
fðR; TÞ gravity, Phys. Rev. D 96, 044038 (2017).

[53] A. Banerjee, M. K. Jasim, and S. G. Ghosh, Traversable
wormholes in fðR; TÞ gravity satisfying the null energy
condition with isotropic pressure, arXiv:2003.01545.

[54] J. L. Rosa, S. Carloni, J. P. S. Lemos, and F. S. N. Lobo,
Cosmological solutions in generalized hybrid metric-
Palatini gravity, Phys. Rev. D 95, 124035 (2017).

[55] J. L. Rosa, D. A. Ferreira, D. Bazeia, and F. S. N. Lobo,
Thick brane structures in generalized hybrid metric-Palatini
gravity, Eur. Phys. J. C 81, 20 (2021).

[56] J. L. Rosa, F. S. N. Lobo, and D. Rubiera-Garcia, Sudden
singularities in generalized hybrid metric-Palatini cosmol-
ogies, arXiv:2103.02580.

[57] N. Tamanini and C. G. Bohmer, Generalized hybrid metric-
Palatini gravity, Phys. Rev. D 87, 084031 (2013).

[58] F. Bombacigno, F. Moretti, and G. Montani, Scalar modes in
extended hybrid metric-Palatini gravity: Weak field phe-
nomenology, Phys. Rev. D 100, 124036 (2019).

[59] P. R. Brady, J. Louko, and E. Poisson, Stability of a shell
around a black hole, Phys. Rev. D 44, 1891 (1991).

[60] M. Visser, Traversable wormholes: Some simple examples,
Phys. Rev. D 39, 3182 (1989).

[61] M. Visser, Traversable wormholes from surgically modi-
fied Schwarzschild spacetimes, Nucl. Phys. B328, 203
(1989).

[62] E. F. Eiroa and G. Figueroa Aguirre, Thin-shell worm-
holes with charge in FðRÞ gravity, Eur. Phys. J. C 76, 132
(2016).

[63] F. S. N. Lobo, G. J. Olmo, E. Orazi, D. Rubiera-Garcia, and
A. Rustam, Structure and stability of traversable thin-shell
wormholes in Palatini fðRÞ gravity, Phys. Rev. D 102,
104012 (2020).

JOÃO LUÍS ROSA PHYS. REV. D 103, 104069 (2021)

104069-22

https://doi.org/10.1140/epjc/s10052-017-5413-5
https://doi.org/10.1088/1475-7516/2018/03/044
https://doi.org/10.1088/1475-7516/2018/03/044
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1103/PhysRevD.100.044014
https://doi.org/10.1016/j.dark.2020.100501
https://doi.org/10.1016/j.dark.2020.100501
https://doi.org/10.1103/PhysRevD.99.104052
https://arXiv.org/abs/2012.00258
https://doi.org/10.1007/s10509-020-3743-5
https://doi.org/10.1007/s10509-020-3743-5
https://doi.org/10.1103/PhysRevD.96.044038
https://arXiv.org/abs/2003.01545
https://doi.org/10.1103/PhysRevD.95.124035
https://doi.org/10.1140/epjc/s10052-021-08840-3
https://arXiv.org/abs/2103.02580
https://doi.org/10.1103/PhysRevD.87.084031
https://doi.org/10.1103/PhysRevD.100.124036
https://doi.org/10.1103/PhysRevD.44.1891
https://doi.org/10.1103/PhysRevD.39.3182
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1140/epjc/s10052-016-3984-1
https://doi.org/10.1140/epjc/s10052-016-3984-1
https://doi.org/10.1103/PhysRevD.102.104012
https://doi.org/10.1103/PhysRevD.102.104012

