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The Schrödinger equation with a harmonic potential coupled to the Poisson equation, called the
Schrödinger-Newton-Hooke (SNH) system, has been considered in a variety of physical contexts, ranging
from quantum mechanics to general relativity. Our work is directly motivated by the fact that the SNH
system describes the nonrelativistic limit of the Einstein-massive-scalar system with negative cosmological
constant. With this paper we begin the investigations aiming at understanding solutions of the SNH system
in the energy supercritical spatial dimensions d ≥ 7, where we expect to observe interesting short
wavelength behaviors due to the confinement of waves by the trapping potential. Here we study spherically
symmetric stationary solutions and prove the existence of one-parameter families of nonlinear ground and
excited states. The frequency of the ground state as the function of the central density is shown to exhibit
different qualitative behaviors in dimensions 7 ≤ d ≤ 15 and d ≥ 16, which is expected to affect the
stability properties of the ground states in these dimensions. Our results bear many similarities to the
analogous problem that has been studied for the Gross-Pitaevskii equation.

DOI: 10.1103/PhysRevD.103.104062

I. INTRODUCTION

In this paper, we consider the system

i∂tψ ¼ −Δψ þ Ω2jxj2ψ þ ψv; ð1aÞ

Δv ¼ jψ j2; ð1bÞ

for a complex-valued function ψðt; xÞ and a real-valued
function vðt; xÞ, where x ∈ Rd, and Ω is a real number.
Solving the Poisson equation (1b) using Green’s function
for the Laplace operator and substituting the result into
Eq. (1a) yields the Hartree-type equation

i∂tψ ¼ −Δψ þΩ2jxj2ψ − Ad

�Z
Rd

jψðt; yÞj2
jx − yjd−2 dy

�
ψ ; ð2Þ

where Ad ¼ Γðd=2Þ=2πd=2ðd − 2Þ. Following the tongue-
in-cheek terminology of [1], we shall refer to Eq. (2) as
the Schrödinger-Newton-Hooke (SNH) equation. This
equation has been considered in three dimensions as a
mean-field limit of a nonrelativistic bosonic system with
two-body interactions, confined in a harmonic trap [2–5].
Also, description of the Bose-Einstein condensates with
1=r interatomic attraction leads to the similar system with
the additional local cubic nonlinearity [6–8].
Our interest in the SNH equation is motivated by the fact

that it arises as a nonrelativistic limit of the Einstein-Klein-
Gordon system with negative cosmological constant Λ [1].

The consistency of this limit requires the product −Λc2 to
approach a positive constant Ω2 as the speed of light
c → ∞, yielding the coefficient of the harmonic potential
in Eq. (2). Thus, the confinement of waves in asymp-
totically anti–de Sitter (AdS) spacetimes due to the
gravitational potential translates in the nonrelativistic
limit to the trapping by the harmonic potential. From
this perspective, it is interesting to see whether solutions
of the SNH equation exhibit a behavior analogous to
the instability of the AdS spacetime [9]. We remark in
passing that the corresponding nonrelativistic limit of the
Einstein-Klein-Gordon system with zero cosmological
constant (i.e., for asymptotically flat rather than asymp-
totically AdS spacetimes), resulting in the Schrödinger-
Newton (SN) equation [i.e., Eq. (2) with Ω ¼ 0], has been
considered (under the names of the Hartree, Schrödinger-
Poisson, or Choquard equation) in various physical
contexts, for example, in modeling boson stars [10,11]
and in attempts to envisage the wave function collapse as
a gravitational phenomenon [12,13]. For more applica-
tions of SN and SNH systems in two- and three-
dimensional cases, including nonlinear propagation of
optical beams and dynamics of ultralight axion dark
matter, we refer to [14].
For physical reasons, most of the above-mentioned

studies were restricted to three spatial dimensions; how-
ever, from the mathematical and AdS related viewpoints, it
is interesting to consider the SNH equation in higher
dimensions, in particular for d ≥ 6. To see why d ¼ 6 is
distinguished, let us recall that the SNH equation preserves
the mass and energy defined, respectively, as*filip.ficek@doctoral.uj.edu.pl
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MðψÞ ¼
Z

jψ j2dx;

EðψÞ ¼ 1

2

Z
j∇ψ j2dxþ Ω2

2

Z
jxj2jψ j2dx

−
Ad

4

Z �Z jψðt; yÞj2
jx − yjd−2 dy

�
jψ j2dx:

The SN equation enjoys the scaling symmetry

ψðt; xÞ ↦ ψλðt; xÞ ≔ λ−2ψðt=λ2; x=λÞ;

under which the mass and energy corresponding to Ω ¼ 0
transform as follows:

MΩ¼0ðψλÞ ¼ λd−4MΩ¼0ðψÞ;
EΩ¼0ðψλÞ ¼ λd−6EΩ¼0ðψÞ;

hence the SN equation is mass critical for d ¼ 4 and energy
critical for d ¼ 6. Although the scaling symmetry is broken
in Eq. (2) by the harmonic term, these critical dimensions
demarcate different behaviors of solutions of the SNH
equation as well.
Our long-term goal is to understand the dynamics of

solutions of the SNH equation in supercritical dimensions.
As the first step, here we consider stationary solutions,
as they are expected to play the role of attractors in the
dynamics. Stationary solutions are obtained with the ansatz
ψðt; xÞ ¼ e−iωtfðxÞ, where fðxÞ is a real-valued function
and ω is a real number called the frequency. Substituting
this ansatz into Eq. (2) yields

−Δf þ Ω2jxj2f − Ad

�Z
Rd

jfðyÞj2
jx − yjd−2 dy

�
f ¼ ωf: ð3Þ

This nonlinear elliptic equation has been thoroughly
studied in subcritical dimensions (we refer to [15] for a
comprehensive review of mathematical results). In particu-
lar, it was proved in [16] for d < 6 that for eachω < d there
exists a positive, radially symmetric and decreasing to zero
solution (such solution will be called a ground state). The
proofs in [16] and related works [17–19] are based on
variational methods. Unfortunately, these methods are not
available in supercritical dimensions (technically, the rel-
evant Sobolev embeddings needed to prove existence of
critical points of certain functionals cease to be compact).
Probably for this reason, to the best of our knowledge,
solutions of Eq. (3) for d > 6 have not been studied in the
literature. The goal of this work is to fill this gap under
the assumption of spherical symmetry. For f ¼ fðrÞ, where
r ¼ jxj, Eq. (3) reduces to (hereafter, we set Ω ¼ 1 by the
choice of units)

− f00 −
d − 1

r
f0 þ r2f

−
1

d − 2

�Z
∞

0

jfðsÞj2
maxfr; sgd−2 dy

�
f ¼ ωf; ð4Þ

where we have used the Newton formula [20]Z
Rd

jfðyÞj2
jx − yjd−2 dy ¼

Z
Rd

jfðyÞj2
maxfjxjd−2; jyjd−2g dy

¼ 2πd=2

Γðd=2Þ
Z

∞

0

jfðsÞj2sd−1
maxfrd−2; sd−2g ds: ð5Þ

To prove existence, uniqueness, and various properties of
solutions of Eq. (4), we shall employ techniques coming
from the theory of ordinary differential equation, in par-
ticular, the shooting method. Similar methods were used for
various supercritical nonlinear elliptic equations on bounded
domains [21–24] and for the supercritical Gross-Pitaevskii
equation with the harmonic potential [25,26]. We remark
that, in the case of ground states (i.e., positive f), the
assumption of spherical symmetry does not lead to the loss
of generality. This follows from Theorem 1 in [27], which
states that positive, decaying to zero solutions of semilinear
elliptic equations in Rd must be spherically symmetric,
provided they satisfy some additional conditions, which are
easy to verify.
The rest of the paper is organized as follows. In Sec. II

we prove that for every central value b ¼ fð0Þ there exists a
unique ground state with frequency ω0. We also show that
for each b there exists a sequence ωn (n ¼ 1; 2;…) such
that the corresponding solutions, called excited states, have
exactly n zeros and decay to zero at infinity. Section III is
devoted to singular solutions, i.e., solutions that diverge at
the origin. We prove the existence of the singular ground
state and infinitely many excited states. These results are
used to determine the asymptotic behavior of regular
stationary states for large values of b. Section IV inves-
tigates the function ωðbÞ for the ground state. We prove that
this function is continuous and determine its behavior
for small and large values of b, observing a qualitatively
different behavior in dimensions 7 ≤ d ≤ 15 and d ≥ 16.
The paper is concluded with Sec. V, where we summarize
the results and discuss open problems that we plan to
address in future work. While the paper focuses on
supercritical dimensions, along the way we mention rel-
evant results in the critical case d ¼ 6.

II. EXISTENCE OF STATIONARY SOLUTIONS

It is routine to show that Eq. (4) has a one-parameter
family of smooth local solutions near the origin

fðrÞ ¼ bþOðr2Þ;
where b > 0 is a free parameter. For each b we want to find
the value(s) of ω for which the local solution extends to a
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global smooth solution decaying to zero at infinity. Such
solution will be called a ground state if fðrÞ is positive and
an excited state if it has zeros.
Reinstating the potential vðrÞ, we can rewrite Eq. (4) as

the system

− f00 −
d − 1

r
f0 þ r2f þ fv ¼ ωf; ð6aÞ

v00 þ d − 1

r
v0 ¼ f2: ð6bÞ

It is convenient to remove ω from Eq. (6a) by defining
hðrÞ ¼ −vðrÞ þ ω, as was also done in [14]. Then system
(6) becomes

f00 þ d − 1

r
f0 − r2f þ fh ¼ 0; ð7aÞ

h00 þ d − 1

r
h0 þ f2 ¼ 0: ð7bÞ

This system has a two-parameter family of local solutions

fðrÞ ¼ bþOðr2Þ; hðrÞ ¼ cþOðr2Þ; ð8Þ

where c is the second free parameter. We will use c as
the shooting parameter; i.e., for a given value of the
parameter b, we will adjust the parameter c, so the local
solution (8) extends to a global smooth solution for which
ðfðrÞ; hðrÞÞ → ð0; hð∞ÞÞ as r → ∞. From this we shall
recover the frequency as ω ¼ hð∞Þ. Note that hðrÞ is
monotonically decreasing as follows immediately from
integration of Eq. (7b).
One can show that the only possible behaviors of fðrÞ

are that it either diverges to�∞ (for a finite or infinite r) or
converges to zero. To prove this trichotomy, let us assume
that the solution exists for all r. Since hðrÞ is a decreasing
function, we have hðrÞ < hð0Þ ¼ c; hence for r >

ffiffiffiffiffijcjp
the

term hðrÞ − r2 is negative, which implies in turn that fðrÞ
cannot have a positive maximum nor a negative minimum.
Thus, from some point on fðrÞ is monotone and therefore
there exists a limit fð∞Þ ¼ limr→∞ fðrÞ (finite or infinite).
If fð∞Þ is finite, then it must be zero, since otherwise the
integral on the right-hand side of

f0ðrÞ ¼ 1

rd−1

Z
∞

0

½s2 − hðsÞ�fðsÞsd−1ds

diverges and l’Hôpital’s rule gives us jf0ðrÞj → ∞ as
r → ∞, in contradiction with assumed convergence of f.
This reasoning greatly limits possible behaviors of the
solution, telling us that, once the solution approaches a
positive minimum or negative maximum, it diverges to
infinity. Also, from the same line of thought it follows that,

while f is positive and decreasing (or analogously, negative
and increasing), it cannot have an inflection point.

A. Ground states

We are going to prove that for every b > 0 there exists c
for which fðrÞ is positive and monotonically decays to
zero, while hðrÞmonotonically decays to a constant. We do
it in three steps.
Step 1. Let us fix c ¼ 0 and assume that in this case f

crosses zero at some R > 0. Then, multiplying Eq. (7a) by
frd−1 and f0rd, respectively, and Eq. (7b) by hrd−1 and
h0rd, respectively, and integrating over the interval ½0; R�
yields four identities

−
Z

R

0

f02rd−1dr −
Z

R

0

r2f2rd−1drþ
Z

R

0

f2hrd−1dr ¼ 0;

ð9aÞ

f0ðRÞ2Rd þ ðd − 2Þ
Z

R

0

f02rd−1dr

−
Z

R

0

f2h0rddrþ ðdþ 2Þ
Z

R

0

r2f2rd−1dr − d

×
Z

R

0

f2hrd−1dr ¼ 0; ð9bÞ

h0ðRÞhðRÞRd−1 −
Z

R

0

h02rd−1drþ
Z

R

0

f2hrd−1dr ¼ 0;

ð9cÞ

h0ðRÞ2Rd þ ðd − 2Þ
Z

R

0

h02rd−1drþ 2

Z
R

0

f2h0rddr ¼ 0:

ð9dÞ

Taking the combination ðdþ 2Þ × ð9aÞ þ 2 × ð9bÞ þ ðd −
2Þ × ð9cÞ þ ð9dÞ yields

ðd− 6Þ
Z

R

0

f02rd−1drþ ðdþ 2Þ
Z

R

0

r2f2rd−1dr

þ 2f0ðRÞ2Rd þ ðd− 2ÞhðRÞh0ðRÞRd−1 þ h0ðRÞ2Rd ¼ 0:

ð10Þ

Since hðrÞ is decreasing and hð0Þ ¼ c ¼ 0, we have
hðRÞ < 0 and h0ðRÞ < 0. Hence, for d ≥ 6 each term in
the identity (10) is positive, which gives a contradiction. As
a result, we see that solution fðrÞ is positive for c ¼ 0.
Step 2. We now focus on large positive c values and

introduce y ¼ ffiffiffi
c

p
r, f̃ðyÞ ¼ fðrÞ, and h̃ðyÞ ¼ hðrÞ=c. In

these variables, system (7) translates to

(
f̃00 þ d−1

y f̃0 − y2

c2 f̃ þ f̃ h̃ ¼ 0;

h̃00 þ d−1
y h̃0 þ 1

c2 f̃
2 ¼ 0;
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with initial conditions

f̃ðyÞ ¼ bþOðy2Þ; h̃ðyÞ ¼ 1þOðy2Þ:

In the limit c → ∞, the exact solution is

f̃∞ðyÞ ¼ bΓ
�
d
2

�
2

d
2
−1

y
d
2
−1

Jd
2
−1ðyÞ; h̃∞ðyÞ ¼ 1;

where JqðyÞ is a Bessel function of the first kind. Since
Jd

2
−1ðyÞ is an oscillating function and f̃ðyÞ tends uniformly

to f̃∞ðyÞ on every compact interval as c → ∞, it follows
that if c is sufficiently large, then the solution fðrÞ crosses
zero arbitrarily many times.
Step 3. Let us define

I0 ¼ fc ≥ 0j ∃ r0 > 0∶fðr0Þ ¼ 0while

fðrÞ > 0; f0ðrÞ < 0 for r ∈ ð0; r0Þg:

It follows from step 2 that I0 is nonempty, while step 1
gives us a lower bound for this set, since 0 ∉ I0. Hence, we
may define c0 ¼ inf I0 ≥ 0. Let f0ðrÞ be the solution with
c ¼ c0. We first show that f0ðrÞ cannot cross zero. Assume
otherwise that fðr0Þ ¼ 0 for some r0. Then, by the
continuous dependence of solutions on the initial condition,
solutions with c close to c0 also cross zero near r0 [the
potentially problematic situation when f0ðr0Þ ¼ fðr0Þ ¼ 0
is excluded because then fðrÞ≡ 0]. As there cannot be an
inflection point in ð0; r0Þ, the function stays decreasing for
these c and we have a contradiction with c0 being an
infimum of I0. Now assume that f0ðrÞ → ∞ as r → ∞.
Since f0ðrÞ is initially decreasing and positive, there must
exist a single positive minimum r1. From the continuous
dependence of solutions on the initial conditions, it follows
that there exists a small neighborhood of c0 with no
elements in I0. This again contradicts that c0 is an infimum
of I0. Because of the trichotomy, we conclude that
f0ðrÞ > 0, f0ðrÞ < 0, and limr→∞ f0ðrÞ ¼ 0. The latter
implies that the nonlinear term in Eq. (4) is negligible
for large r and therefore fðrÞ decays exponentially for
large r. This and integration of Eq. (7b) implies that
limr→∞ hðrÞ is finite.
Having this result and taking ω ¼ hð∞Þ, we recover the

ground state solution of Eq. (6) with vðrÞ ¼ ω − hðrÞ,
where v vanishes in infinity as one could expect from
a potential. This gives us one-to-one correspondence
between the formulations (6) and (7). Finally, let us point
out that since step 1 holds also for d ¼ 6 and other results
used in the proof do not depend on dimension d, this
theorem holds also in the critical case d ¼ 6.

B. Uniqueness of ground states

Ground states found in the previous subsection are
unique in the sense that for any value of b > 0 there exists

exactly one value of c as described. To show it, we use the
argument coming from a proof of Proposition 1.1 in [28].
Let us assume that system (7) has two positive solutions, f1
and f2, such that

fið0Þ ¼ b; hið0Þ ¼ ci; f0ið0Þ ¼ h0ið0Þ ¼ 0;

where i ∈ f1; 2g. Since fi > 0, we may define ρðrÞ ¼
f1ðrÞ=f2ðrÞ. Then ρð0Þ ¼ 1 and ρ0ð0Þ ¼ 0. It is convenient
to introduce μðrÞ ¼ rd−1f2ðrÞ2ρ0ðrÞ, then one may show
that

μ0ðrÞ ¼ rd−1f2ðrÞ2ρðrÞ½h2ðrÞ − h1ðrÞ�:

Without the loss of generality, we may assume that c1 > c2.
As μ0ð0Þ ¼ 0, then there exists r0 > 0 such that μ0ðrÞ < 0
for r∈ ð0;r0Þ. Since μð0Þ ¼ 0, also μðrÞ < 0 in r ∈ ð0; r0Þ;
hence ρ is initially decreasing.
Let us now look into hi. If we define δ ¼ h2 − h1, we

have δð0Þ ¼ c2 − c1 < 0 and δ0ð0Þ ¼ 0. This function
satisfies the equation

ðrd−1δ0Þ0 þ rd−1f22ð1 − ρ2Þ ¼ 0:

It means that as long as ρ < 1, e.g., for r ∈ ð0; r0Þ, δ is
decreasing. Hence, if for some interval beginning in zero it
holds ρ < 1, then also h1 > h2 in it.
Let us now assume that at some point ρ0ðrÞ > 0 and

define r1 ≔ inffr > 0jρ0ðrÞ ¼ 0g. Then for r ∈ ð0; r1Þ we
have ρðrÞ < 1, h1ðrÞ > h2ðrÞ, and μ0ðrÞ < 0. It contradicts
the fact that μðrÞ < 0 in this interval, while μðr1Þ ¼ 0.
Hence, ρ0 < 0 everywhere and μ is a decreasing function.
From the monotonicity of μ for r > 1, we have

rd−1f2ðrÞ2ρ0ðrÞ < f2ð1Þ2ρ0ð1Þ < 0, so for such r

ρ0ðrÞ < f2ð1Þ2ρ0ð1Þ
rd−1f2ðrÞ2

< 0:

Since ρ > 0 and ρð1Þ < 1, we have

−1 < lim
r→∞

ρðrÞ − ρð1Þ ¼
Z

∞

1

ρ0ðrÞdr

< f2ð1Þ2ρ0ð1Þ
Z

∞

1

dr
rd−1f2ðrÞ2

< 0:

Hence, the right-hand side integral is finite. Since f2 decays
exponentially, there is

∞ ¼
Z

∞

1

dr ¼
Z

∞

1

rd−1f2ðrÞ2
1

rd−1f2ðrÞ2
dr

≤
�Z

∞

0

rd−1f2ðrÞ2dr
�

1=2
�Z

∞

0

dr
rd−1f2ðrÞ2

�
1=2

< ∞:
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This contradiction means that c1 ¼ c2 and the solution
is unique.
This result does not depend on dimension d; hence it

works also in the critical case. Together with one-to-one
correspondence between c andω, it lets us define a function
ωðbÞ. We will investigate its properties in Sec. IV.

C. Excited states

The proof of existence of ground states in critical and
supercritical dimensions can be generalized to give us also
spherically symmetric excited states. More precisely, we
will see that for every natural number n there exists a value
of c such that the solution f of Eq. (7) crosses zero exactly
n times. We begin by defining a set similar to I0, this time
with at least two zeros separated by a minimum,

I1 ¼ fc ≥ 0j ∃ r0; r1; r2 > 0∶r0 < r1 < r2; f0ðr1Þ ¼ 0;

fðr0Þ ¼ fðr2Þ ¼ 0; f0ðrÞ < 0 for r ∈ ð0; r1Þ;
and f0ðrÞ > 0 for r ∈ ðr1; r2Þg:

From the behavior of solutions for large c, we know
that I1 is nonempty. The definition implies I1 ⊂ I0, so
c1 ≔ inf I1 ≥ c0. Let f1 be a solution for this c ¼ c1.
The solution cannot be tangent to the zero line at any

moment, so as c changes, the only way for new zeros to
appear is to come from infinity. From the proof of
trichotomy, we know that if the solution crosses zero at
r >

ffiffiffi
c

p
, it must blow up to infinity then, so new zeros

appear individually. Knowing this and using the fact that
there can be no inflection point while the solution is
negative and increasing, we conclude that f1 crosses zero
at least once. Then we can repeat the reasoning from the
previous proof; i.e., by using the continuous dependence of
the solution on the initial conditions, we see that f1 cannot
cross zero for the second time, so it either monotonically
converges to some nonpositive value or it bends down at
some point r2 such that fðr2Þ < 0 and f0ðr2Þ ¼ 0. The
second option contradicts c1 being the infimum, so the
trichotomy gives limr→∞ f1ðrÞ ¼ 0. Defining In for higher
values of n in a similar manner, one can repeat this
deduction.
Even though the numerical results suggest that spheri-

cally symmetric excited states are unique, one cannot
employ the method used for ground states to show it
formally. In fact, uniqueness of excited states is, in general,
a rather complicated problem, unsolved even in the case of
simpler systems than SNH (cf. [29]).
Let us point out that the reasoning used in both proofs of

existence is based on some rather general presumptions.
The main roles were played by three observations: tri-
chotomy of limr→∞ fðrÞ, positivity of the solution for
c ¼ 0, and existence of oscillations in the limit c → ∞.
It suggests that this proof may be easily modified to show
the existence of the ladder of solutions in case of some

other nonlinear problems. The examples of such problems
are the singular solution of SNH, considered in the next
section, and the Gross-Pitaevskii equation.

III. SINGULAR SOLUTIONS

In this section, we consider singular solutions of Eq. (7),
i.e., solutions for which limr→0 fðrÞ ¼ ∞. Although such
solutions are unphysical per se, their properties will prove
useful in Sec. IV D, where we study behavior of regular
solutions in the limit b → ∞. We begin with an introduc-
tion of rescaled variables ρ ¼ ffiffiffi

b
p

r, FðρÞ ¼ b−1fðrÞ, and
HðρÞ ¼ b−1hðrÞ. Then,

(
F00 þ d−1

ρ F0 − b−2ρ2F þ FH ¼ 0;

H00 þ d−1
ρ H0 þ F2 ¼ 0:

For a fixed value of ρ, we may perform a limit b → ∞
obtaining a system of two equations possessing a synchron-
ized solution F ¼ H, satisfying a quadratic Lane-Emden
equation in d dimensions,

F00 þ d − 1

ρ
F0 þ F2 ¼ 0: ð11Þ

It has a singular solution FðρÞ ¼ 2ðd−4Þ
ρ2

, which can be

converted back to f∞ðrÞ ¼ 2ðd−4Þ
r2 , suggesting introduction

of new functions such that

fðrÞ ¼ 2ðd − 4Þ
r2

f̃ðrÞ; hðrÞ ¼ 2ðd − 4Þ
r2

h̃ðrÞ; ð12Þ

satisfying

f̃00 þ d − 5

r
f̃0 þ 2ðd − 4Þ

r2
ðf̃ h̃−f̃Þ − r2f̃ ¼ 0; ð13aÞ

h̃00 þ d − 5

r
h̃0 þ 2ðd − 4Þ

r2
ðf̃2 − h̃Þ ¼ 0: ð13bÞ

This procedure lets us factor out the singular behavior. In
the next subsection, we investigate the behavior of f̃ and h̃
near zero.

A. Asymptotic behavior near zero

Let us transform system (13) by an introduction of
t ¼ ln r [30] (so we now focus on t → −∞), η ¼ f̃ − 1, and
ξ ¼ h̃ − 1. We get

η̈þ ðd − 6Þ_ηþ 2ðd − 4Þξ ¼ e4tð1þ ηÞ − 2ðd − 4Þηξ;
ð14aÞ

̈ξþ ðd − 6Þ_ξþ 2ðd − 4Þð2η − ξÞ ¼ −2ðd − 4Þη2: ð14bÞ
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The linear system on the left-hand side has four eigenvalues,

λ�1 ¼ −dþ 6�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − 20dþ 68

p

2
;

λ�2 ¼ −dþ 6�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4d − 28

p

2
:

In supercritical cases (d ≥ 7), the real parts of λ�1 are always
negative. For d < 2ð5þ 2

ffiffiffi
2

p Þ ≈ 15.66, they have a nonzero
imaginary part, while for larger d they are real numbers. On
the other hand, for d ≥ 7 eigenvalues λ�2 are a pair of real
numbers, one negative and one positive. In the following, we
will often be using λþ2 , so for future convenience, let us
denote it as λ and point out that for d ≥ 7 there is 3 ≤ λ < 4.
The considered linear system is hyperbolic and the stable
manifold theorem [31] tells us that there exists a one-
dimensional unstable manifold with solutions behaving
like eλt as t → −∞. The existence of this manifold is a
feature significantly distinguishing our system from the

Gross-Pitaevskii equation and similar nonlinear
Schrödinger equations [25,26,32]. As we will see, its para-
metrization will serve us as a suitable shooting parameter.
We may obtain it using reasoning similar to the proof of
Lemma 3.1. in Ref. [32].
For clarity of the presentation, let us focus on the case

d ≥ 16 (if 7 ≤ d ≤ 15, the analysis is analogous with some
minor changes discussed at the end of this subsection). It is
convenient to introduce

xðtÞ ¼ e4t½1þ ηðtÞ� − 2ðd − 4ÞηðtÞξðtÞ;
yðtÞ ¼ −2ðd − 4ÞηðtÞ2;

and also define α1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd2 − 20dþ 68j

p
, α2 ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4d − 28

p
, and β ¼ − d

2
þ 3 (so λ ¼ β þ α2). Then

using the method of variation of parameters, one can write
the solutions of system (14) implicitly as

ηðtÞ ¼ −ceλt þ 1

3α1

Z
t

−∞
½2xðsÞ þ yðsÞ�eβðt−sÞ sinh α1ðt − sÞdsþ 1

3α2

Z
t

−∞
½xðsÞ − yðsÞ�eβðt−sÞ sinh α2ðt − sÞds; ð15aÞ

ξðtÞ ¼ 2ceλt þ 1

3α1

Z
t

−∞
½2xðsÞ þ yðsÞ�eβðt−sÞ sinh α1ðt − sÞds − 2

3α2

Z
t

−∞
½xðsÞ − yðsÞ�eβðt−sÞ sinh α2ðt − sÞds; ð15bÞ

where c is some parameter. We discarded all terms coming
from the homogenous part, other than ones proportional to
eλt, as we are interested in solutions decaying in −∞.
Also from the decay of η and ξ, we know that for every

ε > 0 one may find such T that for all t < T the following
boundaries exist:

j2xðtÞ þ yðtÞj ¼ 2je4t½1þ ηðtÞ� þ ðd− 4ÞηðtÞ½ηðtÞ þ 2ξðtÞ�j
≤ 4e4t þ εjηðtÞj;

jxðtÞ− yðtÞj ¼ je4t½1þ ηðtÞ� þ 2ðd− 4ÞηðtÞ½ηðtÞ− ξðtÞ�j
≤ 2e4t þ εjηðtÞj:

Plugging them into Eq. (15) and evaluating necessary
integrals lets us constrain one of the solutions as

jηðtÞj ≤ jcjeλt þ A1e4t þ εA2eλt
Z

t

−∞
e−λsjηðsÞjds; ð16Þ

with A1 and A2 being some positive constants. In a similar
way, one gets a constraint on jξðtÞj. We may multiply both
of these bounds by e−λt and then use the integral Grönwall’s
inequality to get

jηðtÞj ≤ jcjeλt þ B1e4t; jξðtÞj ≤ j2cjeλt þ B2e4t;

for sufficiently small t values, where B1 and B2 also denote
positive constants. Then definitions of x and y result, for
sufficiently small t, in

xðtÞ ¼ e4t þOðe2λtÞ; yðtÞ ¼ Oðe2λtÞ;

where we used the fact that for d ≥ 7 it holds λ < 4 < 2λ.
In the end, plugging these results into Eq. (15) and
integrating yields

ηðtÞ ¼ −ceλt þOðe4tÞ; ξðtÞ ¼ 2ceλt þOðe4tÞ ð17Þ

or, returning to the previous variables,

f̃ðrÞ ¼ 1 − crλ þOðr4Þ; h̃ðrÞ ¼ 1þ 2crλ þOðr4Þ:
ð18Þ

For 7 ≤ d ≤ 15 the proof is almost identical, with the
main difference being negativity of the quadratic expres-
sion present in α1. To take it into account one needs to
change hyperbolic sines present in Eq. (15) into sines.
Since sine is a bounded function, one can obtain Eq. (16)
and the latter bounds as well.
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B. Existence of singular solutions

The just found parametrization of the unstable manifold
will play a role of a shooting parameter in our proof of the
fact that in d ≥ 7 for each nonnegative integer n there exists
a solution of system (13) with behavior near −∞ given by
Eqs. (17) and with function f̃ crossing zero exactly n times
before decaying to zero in infinity. After returning to the
initial variables (12) such solutions give the whole ladder of
singular solutions of system (7), beginning with the ground
state. We perform this proof in four steps, where steps 1–3
follow the steps of the proof of existence of regular ground
states, while the last step covers excited states.
Step 1.We fix c < 0. Then in some neighborhood of zero

solutions of system (13) satisfy f̃0 > 0 and h̃0 < 0; hence it
holds f̃ > 1 and h̃ < 1 as long as signs of the derivatives do
not change. From Eq. (13a) it is clear that f̃0 cannot change
its sign if h̃0 did not change its earlier. An analogous
conclusion can be made for h̃0 with Eq. (13b). As a result,
we see that, for any c < 0, function f is a strictly positive,
increasing solution.
Step 2. Following the proof from Sec. II A, we now look

for solutions with large positive c. Thus we introduce a
new independent variable s ¼ lnðc1=λrÞ, so that in a limit
c → ∞ Eq. (13) becomes an autonomous system,

̈f̃ þ ðd − 6Þ _̃f þ 2ðd − 4Þðf̃ h̃−f̃Þ ¼ 0; ð19aÞ

̈h̃þ ðd − 6Þ _̃hþ 2ðd − 4Þðf̃2 − h̃Þ ¼ 0; ð19bÞ

with solutions behaving near −∞ as

f̃ðsÞ ¼ 1 − eλs þOðe4sÞ; h̃ðsÞ ¼ 1þ 2eλs −Oðe4sÞ:

We define an energy E of this system as

E ¼ _̃f
2 þ 1

2
_̃h
2 − 2ðd − 4Þf̃2 − ðd − 4Þh̃2 þ 2ðd − 4Þh̃f̃2:

One can easily show that such quantity is decreasing
with s and lims→−∞ EðsÞ ¼ −ðd − 4Þ. Hence, for any s
we have −ðd − 4Þ > ðd − 4Þð−2f̃2 − h̃2 þ 2h̃f̃2Þ and so
ðh̃ − 1Þðh̃þ 1 − 2f̃2Þ > 0. Initially h̃ is increasing, starting
from 1, so in some interval ð−∞; s0Þ it holds h̃þ 1 > 2f̃2.
It implies f̃2 − h̃ < 1

2
ð1 − h̃Þ and results in negativity of the

last term of Eq. (19b) in such interval. It means that h̃
cannot have local maximum and, consequently, is an
increasing function. In conclusion, Eq. (19a) is a damped
linear oscillator with increasing frequency and f̃ oscillates
with decreasing amplitude.
Step 3. The asymptotic behavior (19) translates to h as

h0ðrÞ ¼ −
4ðd − 4Þ

r3
þ 4cðd − 4Þð2 − λÞrλ−3 þOðrÞ:

Since d > 6 and 3 ≤ λ < 4, function h0rd−1 tends to zero as
r → 0. Then we have

h0ðrÞ ¼ −
1

rd−1

Z
r

0

ρd−1fðρÞ2dρ

and so h is decreasing also in the singular case. As a result,
h̃=r2 is bounded from above and the reasoning similar to the
one that gave us a trichotomy in the regular case also works
here (giving us the secondary results connected to extrema
and inflection points as well). These results, together with
outcomes of steps 1 and 2, let us repeat the proof of existence
of a ground state in the exact same way.
Step 4. Since solution f̃ cannot be tangent to the zero line

(or otherwise it is zero), as c variates new zeros may only
appear by coming from infinity. This observation, together
with results mentioned in step 3 (after a positive minimum,
or negative maximum, f̃ blows up to infinity; there are no
positive decreasing, or negative increasing, inflection
points) is all we need to recreate the proof of existence
of excited states.
We can also easily show uniqueness of just found ground

states, i.e., uniqueness of a value of c for which the solution
f̃ is positive and decays to zero in infinity. To prove this
fact, it suffices to repeat the reasoning used in a case of
regular solutions, with just a change of appropriate expo-
nents from d − 1 to d − 5. Here the assumption c1 > c2
also translates to existence of an interval ð0; r0Þ, where
ρ < 1 and δ < 0. The second observation comes from
considerations of the equation

ðrd−5δ0Þ0 ¼ 2ðd − 4Þrd−7½f̃22ðρ2 − 1Þ þ δ�:

Analogously, we get negativity of ρ0 and monotonicity of μ.
In the limit r → ∞ we have f̃ → 0 and the third term in
Eq. (13a) is negligible, giving us an exponential decay and
convergence of appropriate integrals. In effect, we may
repeat the last part of the proof obtaining contradiction and
in conclusion uniqueness of c.
If we rewrite Eq. (13b) using variable t ¼ ln r, we get

̈h̃þ ðd − 6Þ _̃hþ 2ðd − 4Þðf̃2 − h̃Þ ¼ 0:

For every interval ð−∞; t0Þ one can choose sufficiently
large c, that h is increasing there. Since f̃ converges to
zero, we can pick such large values of t and c that this
equation can be approximated there by a linear equation
̈h̃þ ðd − 6Þ _̃h − 2ðd − 4Þh̃ ¼ 0. The dominant behavior of
its solution for large t is e2t, which translates to h̃ ∼ r2 in the
original independent variable. It means that the function h
converges to some fixed value ω∞ ≔ limr→∞ hðrÞ. If we
shift function h by this value, as in the regular case, we
obtain a system of singular solutions of system (6) with a
potential vanishing in infinity and a frequency equal to ω∞.
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Table I gives values of ω∞ (for ground states) obtained this
way and Fig. 1 plots them.
Analysis presented in this section works only for

supercritical dimensions of SNH, since in critical dimen-
sion the considered linear system loses its hyperbolicity and
our reasoning ceases to work.

IV. BEHAVIOR OF FUNCTION ωðbÞ
Knowing that for every b > 0 there exists a unique

frequency of a ground state ω, we may define a function
ωðbÞ. It is defined for each dimension d separately and
some exemplary plots for various d (including critical and
supercritical cases) are shown in Fig. 2. In the critical
dimension, it is a decreasing function approaching zero in
infinity. For d ¼ 7 it is oscillating around ω∞, a frequency
of the singular ground state, with decreasing amplitude,
meaning that there exists an infinite number of ground
states with frequency ω∞. As d gets bigger, these oscil-
lations become smaller and finally at d ¼ 16 they com-
pletely vanish, restoring monotonicity of ωðbÞ. We now
aim to analytically explain some of these behaviors.

A. Allowed range

Let us denote by e0 the function

e0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Γðd=2Þ

s
e−r

2=2:

TABLE I. Values of a frequency ω∞ of a singular ground state
in various supercritical dimensions d.

d 7 8 9 10 11 12 13
ω∞ 5.504 6.885 8.161 9.363 10.515 11.623 12.717

d 14 15 16 17 18 19 20
ω∞ 13.783 14.834 15.873 16.903 17.926 18.945 19.955

FIG. 1. Dependence of a difference d − ω∞ on dimension d. Up
to numerical errors, there exists an empiric relation d − ω∞ðdÞ ¼
Ae−γd, where A ≈ 9.64 and γ ≈ 0.271.

FIG. 2. Plots of relations between b and ω for ground state of
SNH in critical (top) and supercritical (remaining plots) cases.
For d ¼ 15 the oscillations have so small amplitude that, in order
to resolve them, the inset of the plot needed to be enlarged.
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Then it is a normalized ground state of a quantum linear
oscillator −Δe0 þ r2e0 ¼ de0. We have

0 ¼ ðe0;Δf − r2f þ ωf − fvÞ
¼ ðΔe0 − r2e0; fÞ þ ωðe0; fÞ − ðe0; fvÞ
¼ ðω − dÞðe0; fÞ − ðe0; fvÞ;

where ð·;−Þ is a standard scalar product: ðf; gÞ ¼R
∞
0 fðrÞgðrÞrd−1dr. The norm induced by this product will
be denoted by k·k. Since e0 and f are positive functions,
while v is negative, we get ω < d. This simple result gives
us an upper bound on ω value.
The lower bound comes from the Pohozaev-type iden-

tities. In a manner similar to step 1 of the proof of existence
of ground states, we multiply Eq. (6a) by fðrÞrd−1. We may
perform integration by parts, with boundary terms vanish-
ing due to the fast decay of f, and get

−kf0k2 − krfk2 þ ωkfk2 −
Z

∞

0

fðrÞ2vðrÞrd−1dr ¼ 0:

ð20Þ

Analogously, multiplying by f0ðrÞrd and integrating gives

d − 2

2
kf0k2 þ dþ 2

2
krfk2 þ d

2

Z
∞

0

fðrÞ2vðrÞrd−1dr

þ 1

2

Z
∞

0

fðrÞ2v0ðrÞrddr − ωdkfk22 ¼ 0: ð21Þ

We perform in an almost identical manner with Eq. (6b);
i.e., we multiply by vðrÞrd−1 or v0ðrÞrd and integrate,
obtaining

kv0k2 þ
Z

∞

0

fðrÞ2vðrÞrd−1dr ¼ 0; ð22Þ

d − 2

2
kv0k2 −

Z
∞

0

fðrÞ2v0ðrÞrddr ¼ 0: ð23Þ

Asymptotic behavior of the solutions assures
convergence of all these integrals. Using Eqs. (20)–(23)
to eliminate terms including kv0k2, R∞

0 fðrÞ2vðrÞrd−1dr,
and

R∞
0 fðrÞ2v0ðrÞrddr gives us a so-called Pohozaev

identity,

ðd − 6Þkf0k2 þ ðdþ 2Þkrfk2 ¼ ωðd − 2Þkfk2:

It follows that for d ≥ 6 it holds ω ≥ 0, giving us a range
of possible ground state frequencies ω ∈ ½0; d�. Numerical
results (Fig. 2) show that critical case saturates this range.
The key assumption in this reasoning is d ≥ 6. In fact,
in subcritical dimensions this result does not hold and for
every ω < d there exists a ground state [15,16,19].

Interestingly, for d > 6 we may strengthen the lower
limit on ω even further. By keeping

R∞
0 fðrÞ2vðrÞrd−1dr

and removing kf0k2 from Eqs. (20)–(23), we obtain the
alternative Pohozaev identity

8krfk2 − ðd − 6Þ
Z

∞

0

fðrÞ2vðrÞrd−1dr ¼ 4ωkfk2: ð24Þ

Let us recall that d is the lowest eigenvalue of a linear
operator −Δþ r2 (realized by the eigenfunction e0).
Hence, by expressing function f in a base of this operator
eigenstates and then using Eq. (20), we obtain

dkfk2 ≤ kf0k2 þ krfk2 ¼ ωkfk2 −
Z

∞

0

fðrÞ2vðrÞrd−1dr:

Now we may get rid of the last integral with Eq. (24),

dkfk2 ≤ ωkfk2 þ 4ω

d − 6
kfk2 − 8

d − 6
krfk2:

Eventually it gives us

ω ≥ d −
4d

d − 2
þ 8

d − 2

krfk2
kfk2 ;

so for d > 6 we get improved lower bounds: ω ∈ ½d−6d−2 d; d�.
From the derivation, it is clear that they are not optimal.

B. Continuity

One may show continuity of ωðbÞ pretty easily, using
some of the already mentioned tools. Let us consider the
space ðb;ωÞ ∈ Λ ≔ Rþ × ½0; d�, where Rþ ¼ ð0;∞Þ is the
open interval. All values of b and ω from this set compose a
valid pair of initial condition and parameter for Eq. (6) to
have a locally defined solution. Hence, we may decompose
set Λ into a disjoint union of three sets,

Jþ ¼ fðb;ωÞ ∈ Λj ∃ r0 > 0∶f0ðr0Þ ¼ 0

while fðrÞ > 0 for r ∈ ð0; r0Þg;
J− ¼ fðb;ωÞ ∈ Λj ∃ r0 > 0∶fðr0Þ ¼ 0

while f0ðrÞ < 0 for r ∈ ð0; r0Þg;
J0 ¼ fðb;ωÞ ∈ ΛjfðrÞ > 0 and

f0ðrÞ < 0 for all r > 0g:

Continuous dependence on the initial condition and param-
eter means that sets Jþ and J− are open in Λ; hence J0 is
closed as a complement of Jþ ∪ J−. We already know that
not only for each b > 0 there exists exactly one value of ω
such that ðb;ωÞ ∈ J0, but also such ω ∈ ½0; d�. Hence, J0 is
a graph of ωðbÞ function in Λ. It means that ωðbÞ as a
function from Rþ to ½0; d� is continuous since its graph is
closed and codomain is compact.
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C. Small b behavior

For b ¼ 0 there exists a unique trivial solution f ≡ 0,
regardless of the choice of ω. From this line in the ðb;ωÞ
plane there bifurcates a branch of our ground states ωðbÞ.
To show this and investigate the initial shape of this branch,
it is more convenient to consider the SNH system in the
form of Eq. (3). Then we may define a functional F as

F ðω; fÞ ¼ −Δfþ jxj2f − Ad

�Z
Rd

jfðyÞj2
jx− yjd−2 d

dy

�
f −ωf:

It satisfies F ðω; 0Þ≡ 0 and F fðω; 0Þ½u� ¼ −Δuþ jxj2u−
ωu. For F fðω; 0Þ to be noninvertible, ω has to be an
eigenvalue of this linear operator (i.e., ω ¼ dþ 4n
with n ∈ N). As ground states have frequency ω ∈ ½0; d�,
let us fix ω ¼ d as the only admissible bifurcation point
with e0 being an eigenfunction of F fðd; 0Þ. At this point,
we have

Fω;fðd; 0Þ½u� ¼ −u;

F f;fðd; 0Þ½u�2 ¼ 0;

F f;f;fðd; 0Þ½u�3 ¼ −6Ad

�Z
Rd

juðyÞj2
jx − yjd−2 d

dy

�
u:

The standard local bifurcation theory [33] thus gives us a
subcritical bifurcation with solutions of Eq. (3) given by

u ¼ �ð6ðd − ωÞ ðe0;Fω;fðd; 0Þ½e0�Þ
ðe0;F f;f;fðd; 0Þ½e0�3Þ

Þ
1=2

e0 þOðjω − djÞ

for ω values close to d. As we are interested in positive
solutions, we focus on the branch with the plus sign.
Obviously ðe0;Fω;fðd; 0Þ½e0�Þ ¼ −1, while with the use of
the Newton formula (5) one gets

ðe0;F f;f;fðd; 0Þ½e0�3Þ ¼ −
6

2
d
2
−1ðd − 2ÞΓðd=2Þ ;

concluding in

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
d
2
−1ðd − 2ÞΓðd=2Þ

q
ðd − ωÞ1=2e0 þOðjω − djÞ:

As uð0Þ ¼ b, this result gives us the explicit expression for
ωðbÞ in the limit of small b,

ωðbÞ ¼ d −
b2

2d=2ðd − 2Þ þOðb3Þ: ð25Þ

We show this curve in Fig. 3.

D. Large b behavior

We consider again Eq. (11) and reduce it to an autono-
mous equation with the use of the Emden-Fowler trans-
formation, s ¼ ln ρ, gðsÞ ¼ ρ2FðρÞ, obtaining

g00 þ ðd − 6Þg0 − 2ðd − 4Þgþ g2 ¼ 0:

This equation can be investigated with dynamical systems
methods. It has a nontrivial fixed point g ¼ 2ðd − 4Þ,
corresponding to the solution of Eq. (11): FðρÞ ¼
2ðd − 4Þ=ρ2. Linearization around it [i.e., employing g ¼
2ðd − 4Þ þ ν and preserving only terms linear in ν] gives

ν00 þ ðd − 6Þν0 þ 2ðd − 4Þν ¼ 0: ð26Þ

Reintroducing quantities β ¼ − d
2
þ 3 and α1 ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd2 − 20dþ 68j

p
, this linear system (26) has for

7 ≤ d ≤ 15 eigenvalues of a form β � iα1, while for
d ≥ 16 of β � α1. This change of nature of eigenvalues
at d ¼ 10þ 4

ffiffiffi
2

p
≈ 15.66 carries the change of behavior of

solutions with large b when dimension d changes from
15 to 16. Indeed, for 7 ≤ d ≤ 15 keeping the leading terms
yields

gðsÞ ≈ 2ðd − 4Þ½1þ Aeβs sinðα1sþ δÞ�;

where A and δ are some constants. Going back to the
original variables, we get

fðrÞ ≈ 2ðd − 4Þ
r2

½1þ Að
ffiffiffi
b

p
rÞβ sin ðα1 ln

ffiffiffi
b

p
rþ δÞ�:

This approximation is valid in an intermediate range
1=b ≪ r ≪ b. On the other hand, for large values of r,
when the harmonic term dominates, f behaves like a
solution of a linear harmonic oscillator

FIG. 3. Relation between b and ω for ground state of SNH in
supercritical case d ¼ 7 compared with the approximations: the
blue dashed line is given by Eq. (25), while the red dotted line
comes from Eq. (27).
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fðrÞ ≈ Ce−r
2=2U

�
d − ω

4
;
d
2
; r2

�
;

with C being some constant and U denoting the confluent
hypergeometric function of the second kind. We may
consider some adequately large values of b and fix some
r0 such that in this point both approximations apply. Then
we get two expressions for fðr0Þ, one depending on b
directly, the second one through ω. For large b value, we
may expand the second one into fðr0Þ ≈ C0 þ C1ðω − ω∞Þ,
where C0 and C1 are some constants. Comparing non-
constant terms in both expressions, we get

ωðbÞ ≈ ω∞ þ Ãbβ=2 sin ðα1 ln
ffiffiffi
b

p
þ δ̃Þ: ð27Þ

We compare this approximation with exact numerical results
in Fig. 3.
From these considerations, it is evident that for d ≥ 16

these oscillations vanish and function ωðbÞ becomes
monotone (cf. Fig. 2). An analogous observation was made
for a Gross-Pitaevskii equation, when the dimension
changes from 12 to 13 [26].
In Fig. 4 we plot the mass M of the ground state as a

function of ω. The change from the spiral (for 7 ≤ d ≤ 15)
to the monotone (d ≥ 16) behavior indicates, on the basis
of the Vakhitov-Kolokolov criterion [34,35], that for
7 ≤ d ≤ 15 the ground states are stable if b is small
enough, while for d ≥ 16 they are stable for all b.

A rigorous justification of this assertion requires under-
standing of the spectral properties of the linearized operator
about the ground state. We shall study this problem in the
follow-up paper.

V. SUMMARY

In this article, motivated by connections to the AdS
stability problem, we started investigations of the
Schrödinger-Newton-Hooke equation in supercritical
dimensions (d > 6). As a first step, we concentrated on
spherically symmetric stationary solutions with the main
focus on the ground state. Instead of usually considered
nonlocal Eq. (4) [2–5,16–19,36], our description was based
on the equivalent system (6), which let us use typical tools
from the theory of ordinary differential equations and
dynamical systems, especially the shooting method. With
this method, we proved existence of a whole ladder of
solutions characterized by the number of zeros for any
positive central field value b. We also showed that, for a
fixed b, the ground state is unique, which allowed us to
define its frequency as ωðbÞ. We investigated some proper-
ties of this function in various dimensions and, in particular,
showed its continuity and restricted its possible values. We
also studied its behavior for small b, when the solutions
bifurcate from the linear quantum oscillator ground states,
and for large b, when the solutions tend to the singular
solutions. It turned out that the behavior of ωðbÞ is different
for 7 ≤ d ≤ 15, when it is an oscillating function, than for
d ≥ 16, when it becomes monotonically decreasing.
A quick look into literature reveals that some features of

SNH described here [including the change of shape of ωðbÞ
in higher dimensions] are shared by various different quasi-
linear problems with confinement in their respective super-
critical dimensions. Examples are mostly restricted to
systems confined in the ball-shaped domains with no
potential and include the Gross-Pitaevskii equation [21–24]
and Gelfand problem [37]. To the best of our knowledge,
except for this work, the only results regarding unbounded
systems with confinement achieved by the presence of an
external potential appeared in Refs. [25,26,38,39] and
concerned the Gross-Pitaevskii equation with harmonic trap.
Many similarities between these results suggest that there is a
common framework able to describe these behaviors.
Going back to the main motivation of this paper, results

covered here are just a starting point in the further work into
the understanding of a supercritical SNH system in con-
nection with the AdS stability problem. In the sequel to this
work, we plan to pursue this path by investigating stability
of stationary solutions found here and by looking into
dynamics of this system.

ACKNOWLEDGMENTS

I am very thankful to Piotr Bizoń for his guidance, help,
and many revisions of this work. I would also like to thank

FIG. 4. Plots of relations between the mass M and frequency ω
for ground states of SNH in dimensions d ¼ 7 and d ¼ 16.

SCHRÖDINGER-NEWTON-HOOKE SYSTEM IN HIGHER … PHYS. REV. D 103, 104062 (2021)

104062-11



Dmitry E. Pelinovsky for his remarks on the manuscript.
Together with Szymon Sobieszek, he shared with me
many inspiring ideas during my short stay at McMaster
University. Finally, I acknowledge hospitality and support
showed by the Mittag-Leffler Institute within the General

Relativity, Geometry and Analysis: beyond the first
100 years after Einstein program. This project was funded
by the Polish National Science Centre Grants No. 2020/36/
T/ST2/00323 and No. 2017/26/A/ST2/00530.

[1] P. Bizoń, O. Evnin, and F. Ficek, A nonrelativistic limit
for AdS perturbations, J. High Energy Phys. 107 (2018)
031102.

[2] J. Fröhlich and E. Lenzmann, Mean-field limit of quantum
Bose gases and nonlinear Hartree equation, Séminaire É. D.
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