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We revise the cosmological bounds on Hořava gravity, taking into account the stringent constraint on the
speed of propagation of gravitational waves from GW170817 and GRB170817A. In light of this, we also
investigate the degeneracy between massive neutrinos and Hořava gravity. We show that a luminal
propagation of gravitational waves suppresses the large-scale cosmic microwave background (CMB)
radiation temperature anisotropies, and the presence of massive neutrinos increases this effect. On the
contrary, large neutrinos mass can compensate the modifications induced by Hořava gravity in the lensing,
matter, and primordial B-mode power spectra. Another degeneracy is found, at a theoretical level, between
the tensor-to-scalar ratio r and massive neutrinos, as well as with the model’s parameters. We analyze these
effects using CMB, supernovae type Ia (SNIa), galaxy clustering, and weak gravitational lensing
measurements, and we show how such degeneracies are removed. We find that the model’s parameters
are constrained to be very close to their general relativity limits, and we get a 2 orders of magnitude
improved upper bound, with respect to the big bang nucleosynthesis constraint, on the deviation of the
effective gravitational constant from the Newtonian one. The deviance information criterion suggests that
in Hořava gravity, Σmν > 0 is favored when CMB data only are considered, while the joint analysis of all
datasets prefers zero neutrinos mass.
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I. INTRODUCTION

Theoretical [1–6] and observational [7–15] issues are
challenging the cosmological standard model or Λ-cold-
dark-matter (ΛCDM). Alternative proposals usually
include an additional dynamical scalar degree of freedom
(d.o.f.), thus entering in the realm of modified gravity (MG)
theories [3,16–25]. The additional d.o.f. can be, among
others, the result of breaking the Lorentz invariance (LI).
Hořava gravity [26,27] is a Lorentz violating (LV) theory
that breaks the LI by adding geometrical operators with
higher order spatial derivatives to the action without
including higher order time derivatives. The theory is then
invariant under the more restricted foliation-preserving
diffeomorphisms, t → t̃ðtÞ and xi → x̃iðt; xiÞ, and it is
power-counting renormalizable [28,29]. As such, it is a
candidate for an ultraviolet completion of general relativity
(GR). The general action is characterized by a potential
Vðgij; NÞ that depends on the spatial metric gij and lapse
function, N, of the Arnowitt-Deser-Misner (ADM) metric
and their spatial derivatives. The power counting renorma-
lizability allows the potential to contain only those oper-
ators, which are at least a sixth order in spatial derivatives in
a four-dimensional space-time.

Different versions of Hořava gravity correspond to
various forms of the potential (see Ref. [30] for a review).
One can impose the lapse function to be only a function of
time, N ¼ NðtÞ, obtaining the so-called projectable version
[27]. On the contrary, if the lapse is a function of both space
and time, one has the nonprojectable version. Another
option is that of detailed balance, which requires the
potential to be derived from a superpotential [27]. Both
the projectable and detailed balance versions limit the
proliferation of operators allowed by the symmetry of
the theory, but their assumption is not based on any
fundamental principle, and, in some cases, they can lead
to instabilities and strong coupling at low energies [30–39].
In the following, we will consider the low-energy cosmol-
ogy of the nonprojectable version of the theory [40], which
is free from these pathologies and shows a rich phenom-
enology compared to ΛCDM [41–49]. For instance,
Hořava gravity induces a rescaling of the gravitational
constant at the background level [45]. This impacts the relic
abundance of elementary particles in the Universe [41] and
enhances the growth of matter perturbations compared to
ΛCDM [42,43]. LValso induces modification in the cosmic
microwave background (CMB) power spectra through the
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lensing, the integrated Sachs-Wolfe (ISW) effects, and a
modified propagation of primordial gravitational waves
(GWs) [42,47,48,50].
Hořava gravity is largely constrained by several probes,

which span from local tests to astrophysical and cosmo-
logical ones. These include big bang nucleosynthesis
(BBN) bounds [41,51]; vacuum Cherenkov bounds, which
exclude subluminal propagation for both tensor and scalar
polarizations to a very high accuracy [52]; post-Newtonian
tests on the preferred-frame effects [48,53–57]; binary
pulsars that can constrain the modification on the orbital
dynamics due to the emission of dipolar radiation [58];
cosmological data [42,47,48] such as CMB, baryon acous-
tic oscillations (BAO), galaxy power spectrum, and super-
novae Ia (SNIa) measurements; and by the time delay
between the gamma-ray burst GRB170817A and the
gravitational wave event GW170817 [59,60]. The latter
sets a tight bound on the deviation of the speed of
propagation of tensor modes, c2t , from the speed of light,
c, of order 10−15. It implies that one of the free parameters
of Hořava gravity is found to be Oð10−15Þ, leading to a
revision of the allowed parameter space [61].
In this work, we aim to revisit previous cosmological

analysis on Hořava gravity by considering the GWs bound
and providing updated bounds. Previous cosmological
analyses take into account constraints from other sources
(e.g., post-Newtonian tests, BBN, Cherenkov radiation) but
not the tightest one from GWs. Thus, as a novelty, we
assume the GWs constraint in its stringent form, i.e., c2t ¼ 1
(in unit of c ¼ 1). Moreover, wewill extend previous works
by including in the analysis massive neutrinos (with a
varying mass) and investigating the degeneracy between
Hořava gravity and massive neutrinos. It is well known that
MG models can mimic the effects of massive neutrinos on
observables and impact the constraints on their mass
[62–70].
The paper is organized as follows. In Sec. II, we

introduce the low-energy action of Hořava gravity and
provide an overview of the current observational con-
straints on the model’s parameters and stability relations.
In Sec. III, we outline the methodology adopted and
introduce the formalism and the numerical tools used. In
Sec. IV, we discuss the degeneracy between massive
neutrinos and Hořava gravity by looking at the scalar
angular power spectra and matter power spectrum, as well
as the primordial B-mode spectrum. In Sec. V, we present
the cosmological constraints using the most updated data-
sets. Finally, we conclude in Sec. VI.

II. HOŘAVA GRAVITY

Let us consider the low-energy action of Hořava gravity
[40] in the presence of matter fields, which can bewritten as
follows:

S ¼ 1

16πGH

Z
d4x

ffiffiffiffiffiffi
−g

p ðKijKij − λK2 − 2ξΛ̄þ ξR

þ ηaiaiÞ þ Sm½gμν; χi�; ð1Þ

where gμν is the metric tensor and g its determinant,R is the
Ricci scalar of the three-dimensional spacelike hypersur-
faces, Kij is the extrinsic curvature, K is its trace, and
ai ¼ ∂i lnN is the three-vector defined in terms of the lapse
function, N, of the ADM metric. The three free parameters
fλ; ξ; ηg are dimensionless running coupling constants, and
Λ̄ is the so-called “bare” cosmological constant. We define
Sm as the matter action for all matter fields, χi. We further
define GH ¼ ξð1 − η

2ξÞGN [40] as the coupling constant,
where GN is the Newton gravitational constant. The GR
limit is recovered when λ ¼ 1, ξ ¼ 1 and η ¼ 0.
Action (1) propagates one scalar and two tensor modes,

which have to satisfy some stability conditions. These
require the avoidance of ghost instabilities and positive
speeds of propagation for both scalar and tensor modes,
which translate into the following requirements [40]:

0 < η < 2ξ; λ > 1: ð2Þ

Additional constraints on the model parameters can be
found considering the bounds on the two parametrized
post-Newtonian (PPN) parameters associated with the
preferred frame effects, which are jα1j≲ 3 × 10−4 and
jα2j ≲ 7 × 10−7 at 99.7% C.L. [53,54]. These can be
written in terms of the free parameters of the theory as
follows [55–57]:

α1 ¼ 4ð2ξ − η − 2Þ; ð3Þ

α2 ¼ −
ðη − 2ξþ 2Þðηð2λ − 1Þ þ λð3 − 4ξÞ þ 2ξ − 1Þ

ðλ − 1Þðη − 2ξÞ :

ð4Þ

From that, one can infer log10ðλ − 1Þ < −4.1 at 99.7% C.L.
[48]. Usually, the bounds in Eqs. (3)–(4) translate in

η ¼ 2ðξ − 1Þ; ð5Þ

and the parameter space reduces to a two-dimensional
plane.
Assuming a flat Friedmann-Lemaître-Robertson-Walker

(FLRW) background with line element

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð6Þ

where aðtÞ is the scale factor and ft; xig are, respectively,
the time and spatial coordinates, the variation of the Action
(1), with respect to the metric, provides the modified
Friedmann equation, which reads
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H2 ¼ Gc

GN
H2

0

�
Ω0

m

a3
þ Ω0

r

a4
þ 8πGN

3H2
0

ρν þ Ω0
DE − 1þ GN

Gc

�
;

ð7Þ

where H ≡ 1
a
da
dt is the Hubble parameter, and H0 is its

present time value; Ω0
i ≡ 8πGNρ

0
i =3H

2
0 are the dimension-

less density parameters, and the subscript 0 stands for their
present day values, where ρi stands for the density of
baryonsþ cold dark matter (m), radiation (r), and massive
neutrinos (ν); and the dark energy (DE) density parameter
at present time, i.e., Ω0

DE, is defined from the flatness
condition as follows [48]:

Ω0
DE ¼ 2ξ

2ξ − η

Λ̄
3H2

0

þ 1 −
3λ − 1

2ξ − η
: ð8Þ

This definition allows us to express Λ̄ in terms of Ω0
DE and

to rewrite the Friedmann equation only in terms of the
parameters that will be sampled. Additionally, the effective
gravitational constant is [40,71]

Gc ¼
ðη − 2ξÞ
1 − 3λ

GN: ð9Þ

The BBN constraint on the helium abundance [72–74] sets
a bound on Gc, which is [41,51]

���� Gc

GN
− 1

���� < 1

8
; ð10Þ

and it can be used to further place bounds on the parameters
of the theory. A combination of cosmological data, such as
the CMB, local Hubble measurements, SNIa, galaxy power
spectrum, and BAO measurements, sets an improved upper
limit on the deviation of the cosmological gravitational
constant from the local Newtonian one [48], which is
Gc=GN − 1 < 0.028 (at 99.7% C.L.) and even stronger
when the PPN bounds are enforced, with Gc=GN − 1 <
6.1 × 10−5 (99.7% C.L.).
The strongest constraint on the theory comes from the

joint observations of the GW signal from a binary neutron
star merger (GW170817) [59] and its gamma ray emission
(GRB170817A) [60], which set a bound on the speed of
propagation of tensor modes of −3 × 10−15 ≤ ct − 1 ≤ 7 ×
10−16 [60]. In the case of Hořava gravity, it implies
jξ − 1j ≲ 10−15. The latter is several orders of magnitude
stronger than the PPN bounds, and as such, it has been
shown that the two-dimensional plane identified by the
relation in Eq. (5) has to be substituted with the more
informative two-dimensional plane fη; λg, characterized by
ξ ¼ 1 [61]. In the present analysis, we will only impose
a priori the GWs bound in the form ξ ¼ 1, and we will not
consider the condition in Eq. (5) in the following. In doing
so, we aim to investigate the power in constraining of

cosmological datasets when compared to other bounds,
specially those from solar system.
Finally, let us note that the bare cosmological constant Λ̄

can be substituted with the dark energy density parameter at
present time in Eq. (8) [48]. Therefore, Λ̄ will not be
considered as a free parameter in the following analysis.

III. METHODOLOGY

The investigation of Hořava gravity at linear cosmological
scales will be performed within the effective field theory
(EFT) approach for dark energy and modified gravity
[25,75–79], using the Einstein-Boltzmann code EFTCAMB

[80–82]. The EFT formalism describes the evolution of MG
theories with one additional scalar d.o.f. both at background
and linear cosmological scales through a number of functions
of time known as EFT functions. In this work, wewill follow
the methodology developed in Ref. [48], where the Hořava
gravity model has been implemented in EFTCAMB, and we
will use the resulting patch, which is publicly available.1

The EFT action for Hořava gravity with c2t ¼ 1, up to
second order in perturbations, reads

SEFT ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

0

2
ð1þ ΩÞRþ ΛðtÞ − cðtÞδg00

−
cðtÞ
4

ðδg00Þ2 − M̄2
2

2
ðδKÞ2

þm2
2h

μν∂μðg00Þ∂νðg00Þ
�
þ Sm½gμν; χi�; ð11Þ

where m2
0 is the Planck mass, R is the 4D Ricci scalar,

δg00; δK are the perturbations, respectively, of the upper
time-time component of the metric and the trace of the
extrinsic curvature, and hμν ¼ ðgμν þ nμnνÞ is the induced
metric, with nμ being the unit vector perpendicular to the
time slicing. Ω; c;Λ; M̄2

2; m
2
2 are the EFT functions. We

note thatΛ and c can be expressed in terms ofΩ,H, and the
densities and pressures of matter fluids by using the
background field equations (see Refs. [75,76] for details)
and the remaining three EFT functions are [48,83]

1þΩ ¼ 2

ð2 − ηÞ ; ð12Þ

M̄2
2 ¼ −2

m2
0

ð2 − ηÞ ð1 − λÞ; ð13Þ

m2
2 ¼

m2
0η

4ð2 − ηÞ : ð14Þ

We refer the reader to Ref. [48] for further details about the
background and linear perturbation equations implemented
in EFTCAMB.

1Web page: http://www.eftcamb.org.
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The first part of our analysis will be the study of the
impact of massive neutrinos on the cosmological observ-
ables and any degeneracy that might arise between massive
neutrinos and the modifications of gravity induced by LV.
In detail, we list in Table I the values of the parameters for
Hořava gravity for the cases H1, H2, and H3 without
massive neutrinos and H1þ ν, H2þ ν and H3þ ν with
the summed neutrino mass

P
mν ¼ 0.85 eV. These values

are bigger than the observational constraints wewill present
in Sec. Vand PPN bounds, and they serve only to visualize
and quantify the modifications. As a reference, in our
analysis, we always include the ΛCDM model.
Finally, we will perform a Markov Chain Monte Carlo

(MCMC) analysis using the EFTCosmoMC code [81] and the
datasets employed are listed in Sec. VA.

IV. DEGENERACY BETWEEN MASSIVE
NEUTRINOS AND HOŘAVA GRAVITY: A
PHENOMENOLOGICAL DESCRIPTION

Massive neutrinos have extended and measurable effects
on the distributionof the large-scale structures, theCMB, and
the expansion history [84–86]. Their impact depends strictly
on the value of their mass. The latest measured value of the
summed neutrino mass from the CMB Planck 2018 release
sets the upper bound at Σmν < 0.12 eV (95% C.L. with
Planck TT;TE;EEþ lowE þ lensingþ BAO) in the con-
text of a flat standard cosmological model [15], while the
latest direct measurement from KATRIN experiment sets a
higher upper limit of 1.1 eV at 90% C.L. [87].
In detail, massive neutrinos can change the height of the

first acoustic peak of the CMB temperature-temperature
power spectrum due to the early integrated Sachs Wolfe
(ISW) effect, suppress the weak lensing effect, and dump
the growth of structure on small scales [88]. Similar effects
are also characteristic of DE and MG models, and, as such,
a degeneracy between massive neutrinos and those models
exists that strictly depends on the DE and MG models
considered [62–70].

In the following, we show the imprint massive neutrinos
leave on the dynamics of linear scalar and tensor perturba-
tions in the context of Hořava gravity, and we investigate the
degeneracy between massive neutrinos and the modified
cosmological model under consideration. To this purpose,
we also include the case without massive neutrinos and, for
comparison, the ΛCDM model. For a complete overview of
the cosmological effects of Lorentz violations, we refer the
reader to [41–44,46,48,49,89] and to [45,47] for details about
the effects of dark matter coupling with the aether.

A. Scalar angular power spectra and matter power
spectrum

We discuss the impact of the nonzero massive neutrino
component on the scalar angular power spectra of CMB
anisotropy and the matter power spectrum. The results are
in Fig. 1, where, in the top left panel, we show the low-l tail
of the CMB temperature-temperature power spectrum. We
note that Hořava gravity models with a luminal propagation
of GWs predict a suppressed ISW tail for l < 30, with
respect to ΛCDM, which can be up to 16%. The H1 model
is the closer one to ΛCDM, then, the H2 characterized by a
larger value of λ (and same η), and finally, the H3, which
has the largest value of η and the same value of λ as in H1.
This feature is due to the late time ISW effect, i.e., a
modification of the time derivative of the lensing potential,
_Ψþ _Φ (where Φ and Ψ are the gravitational potentials). In
the specific case of Hořava gravity, _Ψþ _Φ results to be
enhanced at a late time, with respect to ΛCDM. We note
that the MG effect goes in the same direction of those of
massive neutrinos. The latter indeed emphasizes the sup-
pression. In H1þ ν, massive neutrinos reduce the ISW tail
of an additional ∼3.8%, with respect to the same model
without massive neutrinos; in H2þ ν, it is ∼6%, and in
H3þ ν, it is ∼5.5%. In ΛCDMþ ν, massive neutrinos also
lower the low-l tail, with respect to the case without
massive neutrinos of a factor up to 3.2%. Thus, in the case
of Hořava gravity, the combined effects of massive neu-
trinos and modifications of gravity enhance the suppres-
sion. For 30 < l < 50, the TT power spectra of H1; H2
(þν) strictly follow ΛCDM or are slightly suppressed,
while the one of H3 model is enhanced. At these angular
scales, the enhancement of H3 is lowered when massive
neutrinos are included, compensating the MG effects.
At high l in the TT power spectrum, the MG effects are

different than those of massive neutrinos. The former act on
the height of the CMB peaks; e.g., we note a lower
amplitude of the first and second peaks compared to
ΛCDM for larger values of λ (H2) or larger value of η

(H3) due to a suppression of _Ψþ _Φ at early times. This
suppression is more pronounced for the H2 case as
modifications in the early ISW can be spotted already at
a ∼ 10−3. The shift to higher multipoles in the position of
the first two peaks is due to a different background

TABLE I. Tablewith the values of λ and η parameters for Hořava
gravity thatwe consider in Sec. IV.Wenote that in thiswork, ξ ¼ 1.
Correspondingly, we include also the caseswithmassive neutrinos.
The cosmological parameters are Ω0

bh
2 ¼ 0.0226, Ω0

ch2 ¼ 0.112,
with h ¼ H0=100, and H0 ¼ 70 km=s=Mpc. These cases study
have been chosen to quantify the modification, with respect to
ΛCDM, and the degeneracy with massive neutrinos.

Model λ − 1 η Σmν (eV)

H1 0.004 0.01 −
H1þ ν 0.004 0.01 0.85
H2 0.04 0.01 −
H2þ ν 0.04 0.01 0.85
H3 0.004 0.1 −
H3þ ν 0.004 0.1 0.85
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expansion, which is more pronounced in the H2 model,
having Gc ¼ 0.94GN . On the contrary, massive neutrinos
impact the position of the peaks by shifting the spectrum to
lower multipoles for l > 200, due to a change in the
background expansion history. Thus, a nonzero neutrinos
mass can compensate the shift to higher l in the CMB
temperature anisotropy spectrum introduced by large value
of the Hořava gravity parameters.
Hořava gravity models have an enhanced amplitude in

the lensing power spectrum, with respect to ΛCDM at all
multipoles, as shown in the left central panel in Fig. 1. The
deviation is larger for H2 (∼90%), then it follows H3
(∼75%), and finally, H1 (12%). Massive neutrinos, as
expected, lower the amplitude for l > 20 and, as in the case
of the TT power spectrum, the effect is larger for H2þ ν
and H3þ ν compared to both H1þ ν and ΛCDMþ ν.
In the right central panel in Fig. 1, we show the EE-

power spectrum. H1 model does not show any sizable

effect due to MG, with respect to ΛCDM. A larger value of
λ (H2) introduces an enhancement for l < 200, which is
≲20%, with respect to ΛCDM, and then a suppression of
the same order up to l < 500. A larger value of η, as it is
the case of H3, instead modifies the shape of the peaks and
troughs for l > 400 of about 10%. Massive neutrinos shift
the overall spectrum to lower multipoles. In the TE-power
spectra, the effects of MG are present for l < 500; see left
bottom panel in Fig. 1. These include both a shift of the
position of the peaks to high l, with respect to ΛCDM and
in the height of peaks and troughs. The difference is larger
for H2 and H3, reflecting the effects in both the TT and EE
power spectra. For the same reason, massive neutrinos shift
the spectrum to lower multipoles. The recent Planck data
2018 show an improved treatment on foregrounds and
systematic effects on both TT and polarization spectra at
high multipole, and also on EE spectra at low l, which can
help in constraining these effects [90,91].

FIG. 1. Power spectra of different cosmological observables for the Hořava gravity models in Table I and ΛCDM. Top panels: CMB
temperature-temperature power spectrum at low l (left) and high l (right). Central panels: Lensing potential autocorrelation power
spectrum (left) and E-modes power spectra (right). Bottom panels: Cross-power spectra of the temperature anisotropies and E-mode
polarization (left) and matter power spectra (right).
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Finally, in the right bottom panel in Fig. 1, we show the
matter power spectrum. The latter is enhanced for all
Hořava gravity models, with respect to ΛCDM. The larger
deviation is for H2, while massive neutrinos suppress the
growth of structures as expected [88]. Thus, the resulting
effect is to mitigate the modifications due to large values of
the Hořava parameters.
Let us stress that the large deviations, with respect to

ΛCDM, are a consequence of the big values of the
parameters we have selected for H1, H2, and H3. While
these are larger than actual bounds, these are very useful to
amplify the effect on the spectra and visualize the degen-
eracy. Thus, the entity of the modifications that have been
described in this section are specific to the choice of
parameters, but the overall directions of the modifications
with respect to ΛCDM and impact of massive neutrinos,
hold for viable values of the parameters within the PPN and
cosmological bounds.

B. Primordial B-mode spectrum

In this section, we discuss the Hořava gravity phenom-
enology and that of massive neutrinos on the primordial B
spectrum of the CMB.
The Hořava gravity evolution for tensor modes hTij, with

ξ ¼ 1 in Fourier space, is given by the following equation:

ḧTij þ 3H _hTij þ
k2

a2
hTij þ

2 − η

2m2
0

δTT
ij ¼ 0; ð15Þ

where dots are derivatives, with respect to cosmic time, and
δTij is the linear perturbation of the tensor component of
anisotropic stress, which contains the neutrinos and pho-
tons contribution. The above equation is directly modified,
with respect to the one for ΛCDM, because of the 2 − η
coefficient, which regulates the coupling between tensor
modes and matter perturbations. Let us also note that
although the friction term, 3H, is not directly modified, the
evolution of the Hubble parameter in the Hořava gravity
model is rescaled by Gc, with respect to ΛCDM, thus
affecting the amplitude of tensor modes. The combination
of these effects leads to the features shown in Fig. 2. While
the BB-power spectrum for H1 mostly overlaps with the
ΛCDM one, both the H2 and H3 models show a general
suppression of the peaks and troughs and a shift toward
small l. The overall differences are within 5% and are
larger for theH2model because it has the smaller values of
Gc (for H1, Gc ¼ 0.99GN , for H2, Gc ¼ 0.94GN , and for
H3, Gc ¼ 0.95GN). The inclusion of massive neutrinos
further suppresses the first peak, and for larger multipoles
(l < 300), the BB spectra are enhanced, a peculiar char-
acteristic of massive neutrinos. They shift further the
spectra toward smaller multipoles.
The total spectra including lensing are shown in Fig. 3.

As already discussed in the previous section, the lensing
potential is modified, resulting in an enhancement of the

BB spectra for the Hořava gravity models, with respect to
ΛCDM. The inclusion of massive neutrinos suppresses the
tensor modes at high l, reducing the effects of MG. We can
infer that deviations due to large values of the Hořava
gravity parameters can be compensated by the inclusion of
massive neutrinos. Thus, in the BB-power spectrum, a
degeneracy between massive neutrinos and the parameters
of Hořava gravity also exists. Furthermore, we notice that
the modified total BB-spectra can accommodate the

FIG. 2. The tensor contribution to the primordial BB power
spectra for the Hořava gravity models in Table I and ΛCDM. We
have set r0.002 ¼ 0.05. We define DBB

l ¼ lðlþ 1ÞCBB
l =2π and

the relative difference as ΔDBB
l =DBB

l , i.e., the difference between
the Hořava gravity model and ΛCDM, divided by the standard
cosmological model.

FIG. 3. The primordial total BB spectra, including lensing for
the Hořava gravity models in Table I andΛCDM.We also include
the data points from BICEP2 and Keck Array (BK15) [92]. We
have set r0.002 ¼ 0.05.
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BICEP2/Keck data points at high multipoles better than
ΛCDM. In particular, the case of ΛCDM seems to worsen
the fit to data at small angular scales, even though it stays
within the error. We will show in Sec. V B that, indeed, this
is the case. The joint analysis with CMB data shows a
slightly better fit to data for Hořava gravity with a nonzero
neutrinos mass.
Finally, we investigate the degeneracy between the

tensor-to-scalar ratio r and the Hořava gravity parameters.
r has indeed been proven to be degenerate with modifi-
cations of gravity, as it is the case of modifications due to a
nonstandard friction term [93]. In Fig. 4, we show the
impact of this parameter on the total BB-power spectrum.
Regardless of the cosmological model, changing the value
of r at the pivot scale k� ¼ 0.002 h=Mpc from r0.002 ¼
0.05 to r0.002 ¼ 0.1 leads to an overall enhancement of the
total BB-power spectra at all angular scales. However, the
largest impact is for l < 150. Such enhancement is not
only degenerate with the parameters of Hořava gravity as
they can also lead to a larger amplitude of the BB-power
spectrum at these angular scales, but also with massive
neutrinos. The latter, indeed, can compensate a larger value
of r as their effect is to dampt the BB-power spectrum
amplitude. BICEP2/Keck data at low l can, in principle,
disentangle the degeneracy with r.

V. COSMOLOGICAL CONSTRAINTS

A. Datasets

In the present analysis, we consider the following
datasets:

(i) Measurements of the B-modes CMB power spec-
trum from the BICEP2 and Keck Array experiments,

including the 2015 observing season [92] (here-
after, “BK15”);

(ii) CMBmeasurements, through the Planck (2018) data
[91], using “TT;TE;EEþ lowE” data by combina-
tion of temperature power spectra and cross-corre-
lation TE and EE over the range l ∈ ½30; 2508�, the
low-l temperature Commander likelihood, and the
low-l SimAll EE likelihood. We refer to this data set
as “Plk18”;

(iii) The lensing reconstruction power spectrum from the
latest Planck satellite data release (2018) [91,94],
hereafter, indicated with “lens”;

(iv) Supernovae Type Ia data from the Joint Light-curve
“JLA” sample [95], constructed from supernova
legacy survey (SNLS) and Sloan digital sky survey
(SDSS), and consisting of 740 data points covering
the redshift range 0.01 < z < 1.3. It is worth men-
tioning that JLA sample, compared to other recent
SNIa compilations, has the advantage of allowing
the light-curve recalibration with the model under
consideration, which is an important issue when
testing alternative cosmologies [96,97].

(v) Pantheon compilation [98] of 1048 SNIa in the
redshift range 0.01 < z < 2.3. This is a larger
sample than JLA that combines the subset of 276
newPan-STARRS1 SNIa with useful distance esti-
mates of SNIa from SNLS, SDSS, low z, and
Hubble space telescope (HST) samples. It provides
accurate relative luminosity distances. Hereafter, we
indicate this dataset with “Pth”;

(vi) Dark energy survey year one (DES-1Y) results that
combine galaxy clustering and weak gravitational
lensing measurements, using 1321 square degrees of
imaging data [99]. We refer to this dataset as “DES.”

For the analysis, we consider the following combinations:
BK15þ Plk18, hereafter, BKP, which will be the baseline
dataset; on top of it, we include first lens, DES and Pantheon
(BKPþ lensþ DESþ Pth), and then we consider JLA in
place of Pantheon (BKPþ lensþ DESþ JLA).
For the MCMC likelihood analysis, we use the

EFTCosmoMC code [81]. We consider the Hořava gravity
base model with a fixed ξ ¼ 1 to satisfy GWs constraints
and varying λ and η. For the latter, we consider flat priors:
log10ðλ − 1Þ ∈ ½−13; 0.1� and log10 η ∈ ½−13; 0.1�. The
adopted ranges are consistent with stability conditions,
which, in any case, are automatically enforced by the
stability module of EFTCAMB [83,100,101]. We use a
logarithmic sampler for these parameters following
Ref. [48]. In addition to the model’s parameters, we vary
the physical densities of cold dark matterΩch2 and baryons
Ωbh2, the angular size of the sound horizon at recombi-
nation θMC, the reionization optical depth τ, the primordial
amplitude lnð1010AsÞ and spectral index ns of scalar
perturbations, and the tensor-to-scalar ratio r. We also
consider the additional case of a varying summed neutrino
mass Σmν.

FIG. 4. The primordial total BB spectra, including lensing for
the Hořava gravity models is Table I and ΛCDM. We show the
impact of different values of the ratio of the tensor-to-scalar
power spectra, r, on the total BB spectra. We have chosen at the
pivot scale, k� ¼ 0.002 h=Mpc, two values for r0.002: r0.002 ¼
0.05 and r0.002 ¼ 0.1.
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B. Results

This section is dedicated to the discussion of the
cosmological and model parameters constraints of
Hořava gravity. We consider both the model with and
without massive neutrinos. For reference, we also include
the results for ΛCDM in these two scenarios. We present
the results of a selection of the cosmological parameters
today fΩ0

m;H0; σ08; r0.002;Σmνg in Table II at 68% C.L. In
Table III, we include the constraints on the model param-
eters, the derived constraints on α1, α2, and the deviation of
the effective gravitational constant, Gc, from GN
at 68% C.L.
In Fig. 5, we show the marginalized likelihood of the

cosmological parameters for ΛCDM (top panel) and
Hořava gravity (bottom panel). The cosmological param-
eters of Hořava gravity are consistent with those of the

ΛCDM model (see Table II). In both models, the BKP
dataset prefers a slightly larger central value for Ω0

m, with
respect to the other two combinations (BKPþ lensþ
DESþ Pth; BKPþ lensþ DESþ JLA). Because of the
anticorrelation between Ω0

m and H0, larger values of Ω0
m

select smaller values of H0 and vice versa. We show this
feature in Fig. 6, where we see that the same holds in the
case massive neutrinos are included. In the case of
Hořavaþ ν, we note that the Ω0

m upper limit (at
95% C.L.) is slightly smaller, with respect to ΛCDMþ
ν for the BKP dataset, which, in turn, selects a higher lower
limit forH0. The anticorrelation also explains whyH0 goes
toward smaller values when massive neutrinos are
included. In this case, indeed, a larger value of Ω0

m is
expected. We also note that the extended datasets prefer
lower central values of Ω0

m (and higher values of H0) in

TABLE II. Marginalized constraints on cosmological parameters at 68% C.L.; the upper limits are at 95% C.L.

Model σ08 Ω0
m H0 r0.002 Σmν (eV)

ΛCDM (BKP) 0.826� 0.008 0.310� 0.008 67.80� 0.61 <0.054 −
ΛCDM (BKPþ lensþ DESþ Pth) 0.819� 0.006 0.297� 0.006 68.80� 0.47 <0.061 −
ΛCDM (BKPþ lensþ DESþ JLA) 0.819� 0.006 0.297� 0.006 68.81� 0.47 <0.064 −
ΛCDMþ ν (BKP) 0.811� 0.016 0.319� 0.012 67.11� 0.91 <0.058 <0.211
ΛCDMþ ν (BKPþ lensþ DESþ Pth) 0.809� 0.010 0.303� 0.008 68.31� 0.61 <0.065 <0.139
ΛCDMþ ν (BKPþ lensþ DESþ JLA) 0.809� 0.010 0.303� 0.008 68.28� 0.68 <0.065 <0.149
Hořava (BKP) 0.826� 0.008 0.313� 0.009 67.59� 0.64 <0.055 −
Hořava (BKPþ lensþ DESþ Pth) 0.819� 0.006 0.298� 0.006 68.74� 0.47 <0.063 −
Hořava (BKPþ lensþ DESþ JLA) 0.820� 0.006 0.298� 0.006 68.71� 0.47 <0.063 −
Hořavaþ ν (BKP) 0.818� 0.011 0.319� 0.009 67.09� 0.66 <0.055 <0.125
Hořavaþ ν (BKPþ lensþ DESþ Pth) 0.810� 0.009 0.303� 0.007 68.26� 0.57 <0.060 <0.130
Hořavaþ ν (BKPþ lensþ DESþ JLA) 0.810� 0.011 0.303� 0.008 68.25� 0.66 <0.060 <0.165

TABLE III. The 68% C.L. marginalized posterior bounds on the Hořava and PPN parameters and the deviation of the effective
gravitational constant from GN . Upper limits indicated are at 95% C.L.. We have also included the results for the ΔDIC.

Hořava

Parameters BKP BKPþ lensþ DESþ Pth BKPþ lensþ DESþ JLA

log10ðλ − 1Þ −5.7� 2.9 < − 3.2 < − 3.1
log10 η < − 2.8 < − 2.7 < − 2.9
α1 > − 0.008 > − 0.008 > − 0.010
α2 <67 <1.00 × 106 <2.85 × 106

ðGc=GN − 1Þ <0.35 × 10−2 <0.19 × 10−2 <0.27 × 10−2

ΔDIC 6.1 (Moderate evidence) 3.7 (No evidence) 3.9 (No evidence)
Hořavaþ ν

Parameters BKP BKPþ lensþ DESþ Pth BKPþ lensþ DESþ JLA
log10ðλ − 1Þ −2.6þ0.1

−6.7 < − 2.8 < − 2.8
log10 η −6.9þ3.6

−3.0 −6.0þ3.4
−1.6 −7.0þ3.7

−3.0
α1 > − 0.006 > − 0.008 > − 0.007
α2 <0.18 × 103 <0.48 × 104 <0.28 × 106

ðGc=GN − 1Þ <0.44 × 10−2 <0.22 × 10−2 <0.28 × 10−2

ΔDIC −0.4 (No evidence) 0.7 (No evidence) 4.1 (No evidence)
DICHorþν − DICHor −3.0 (No evidence) 0.5 (No evidence) 3.1 (No evidence)
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both cosmologies. We note that in the case of Hořavaþ ν,
the dataset with JLA shows a higher upper bound for Ω0

m
(< 0.323 at 95% and smaller lower limit for H0 > 66.68 at
95%), with respect to the dataset with Pth (Ω0

m < 0.318 and
H0 > 67.05). The distinction between JLA and Pth is not
present in ΛCDM. This is due to the fact that the Hořava
posterior of massive neutrinos (see central bottom line in
Fig. 5 and Table II) for the dataset with JLA shows a higher
upper limit with respect to ΛCDM. A similar consideration
holds also for the baseline dataset, but, in this case, the

upper limit is smaller than the ΛCDM case as it is the upper
bounds for massive neutrinos in the Hořava gravity case.
Furthermore, in Fig. 7, we show the marginalized 2D

joint distribution for H0 and σ08. We note that the inclusion
of massive neutrinos introduces a correlation between these
two parameters, which is more pronounced in the standard
cosmological model. We note that being that the values of
the cosmological parameters in Hořava gravity are com-
patible with those of ΛCDM within the errors, Hořava
gravity suffers of the H0 [7,9,99,102] and σ08 [103]
tensions, which characterize the standard ΛCDM scenario.
The bounds on the tensor-to-scalar ratio are the same in

Hořava gravity and ΛCDM independently on the presence

FIG. 5. Comparison between the ΛCDM (top panel) and Hořava gravity (bottom panel) marginalized cosmological parameters. Solid
lines indicate the massless neutrino assumption, while dashed lines indicate the massive neutrinos extensions. The 68% C.L. are reported
in Table II.

FIG. 6. H0 − Ω0
m plane for ΛCDM analysis (right panels) and

Horava gravity model (left panels).
FIG. 7. H0 − σ08 plane for ΛCDM analysis (right panel) and
Horava gravity model (left panel).
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of massive neutrinos. The data analysis shows that the
degeneracy between r, Σmν, and the Hořava gravity
parameters discussed in Sec. IV B is removed. This is
due to the fact that the modification introduced by varying
these parameters can go in the same direction or in the
opposite one, depending on the observable considered. In
some cases, they affect a given cosmological observable in
completely different ways, e.g., some shifting the power
spectrum and others affecting its amplitude (see Sec. IV).
The datasets we chose are sensitive to different observables
at different angular scales (lensing signal, T, E, B modes,
galaxy clustering) in such a way that their combination is
able to constrain these peculiar features and disentangle the
degeneracies.
In Fig. 8, we show the marginalized likelihood of the

model parameters log10ðλ − 1Þ and log10 η and the impact

of the different combination of datasets. We note that both
parameters show a well-defined upper limit at 95% C.L. In
the case of the baseline dataset, we note that λ has peaked
posteriors at 68% C.L.: log10ðλ − 1Þ ¼ −2.6þ0.1

−6.7 with
massive neutrinos and log10ðλ − 1Þ ¼ −5.7� 2.9 without
massive neutrinos. This is not the case for the posteriors of
the other datasets. However, the upper limits, in these cases
are stringent: log10ðλ − 1Þ < −3.2 at 95% C.L. for both
datasets without massive neutrinos and log10ðλ − 1Þ <
−2.8 at 95% C.L with massive neutrinos. In top panel
of Fig. 8, we show the posterior of η. In the case without
massive neutrinos, the datasets we considered are only able
to set upper bounds, while, when massive neutrinos are
included, it is also possible to obtain gaussian posteriors. In
particular, for the dataset with Pth, we get log10 η ¼
−6.0þ3.4

−1.6 at 68% C.L.. In Table III, we include the bounds
on the PPN parameters and Gc=GN − 1. The derived
constraints for α1 set a lower limit, which is about 1 order
weaker than the PPN bound. The latter, when ξ ¼ 1, can be
read as a constraint on η: log10 η < −4.1 at 99.7% C.L. It is
clear that such constraint is stronger than the ones we find
using cosmological data (see Fig. 8). For α2, we find an
upper bound, which is several order of magnitude larger
than the PPN constraint. Among the derived constraints on
α2, the ones from BKP seem to be the stringent ones. That
is because for this dataset the bounds on λ include highest
values. From Eq. (4), we can deduce that a larger value of λ
decreases the estimation of α2, as already noted in
Ref. [48]. In this case also, we note that the PPN bound
on log10ðλ − 1Þ is stronger than the cosmological one.
Additionally, we computed the bounds on the deviation of
the effective gravitational constant from GN , and we find
that, in all cases considered, they are 2 orders of magnitude
stronger than the BBN one.
We further analyzed the case in which the additional

PPN bunds are considered as prior, and we find that the
cosmological datasets used in this analysis do not show any
improvement in the constraints.
Finally, to determine whether the Hořava gravity model

is favored with respect to ΛCDM, we use the deviance
information criterion (DIC) [104],

DIC ≔ χ2eff þ 2pD; ð16Þ

where χ2eff is the effective χ
2 corresponding to the maximum

likelihood, and pD ¼ χ̄2eff − χ2eff . The bar stands for the
average of the posterior distribution and can be obtained
from the output chains of the MCMC analysis. The maxi-
mum likelihood is computed employing the BOBYQA
algorithm, implemented in EFTCosmoMC for likelihood
maximization [105]. TheDICaccounts for both the goodness
of fit and the bayesian complexity of the model, or, in other
words, takes into account its average performance (repre-
sented by the mean likelihood). The latter can also be

FIG. 8. The marginalized likelihood of log10ðλ − 1Þ and log10 η.
Solid lines correspond to the case without massive neutrinos,
dashed lines to the case with massive neutrinos.
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considered a measure of the effective number of d.o.f. in
the model.
We then compute

ΔDIC ¼ DICHor − DICΛCDM: ð17Þ

A negative value of ΔDIC means the Hořava gravity model
is supported by data over the ΛCDM one. Let us stress that
both the MCMC analysis and/or the minimization algo-
rithm for the best fit introduce statistical noise, and we must
assume a scale to evaluate the ΔDIC high enough that any
statistical fluke can be considered negligible when assess-
ing the model selection criterion. Here, we consider the
convention based on the Jeffreys’ scale for which ΔDIC >
10 or >5 provide, respectively, strong and moderate
evidence against the Hořava gravity model. We compute
also the ΔDIC between the Hořava gravity model with and
without massive neutrinos. The same Jeffreys’ scale
applies, where, in this case, positive values are against
the presence of massive neutrinos.
We show the results in Table III. We note that the ΔDIC

values between Hořava gravity and ΛCDM indicate gen-
erally a nonpreference for a particular model; i.e., the data
sets considered do not prefer one model over the other.
Even if without a significant statistical reading, it is still of
some interest the case of the analysis with the BKP data, for
which the presence of massive neutrinos slows down the
ΔDIC from 6.1 (moderate preference for the ΛCDM
model) to −0.4. Indeed, this dataset seems to slightly favor
the cosmological dynamics of Hořava gravity with massive
neutrinos; however, the evidence in support of it is not
sufficient to determine a proper preference between the
models.
In conclusion, the model selection analysis with the

considered datasets does not give a definite conclusion for
the preference of one model over the other.

VI. CONCLUSION

We presented the phenomenology and observational
constraints on the Hořava gravity model in Action (1)
with ξ ¼ 1. This model is characterized by a luminal
propagation of gravitational waves in agreement with the
GW170817 and GRB170817A events. We performed a
phenomenological analysis of scalar angular power spectra,
matter power spectrum, and primordial B-mode spectrum,
focusing on the degeneracy between modification of
gravity and massive neutrinos. We find that both massive
neutrinos and Hořava gravity can suppress the ISW tail in
the CMB TT power spectrum with respect to ΛCDM. At
the same time, gravity modification enhances both the
lensing and matter power spectra, while massive neutrinos
mitigate these effects by suppressing the spectra amplitude.
The same behavior is present in the total BB-spectrum also.
In this case, another degeneracy arises among Hořava

gravity parameters, massive neutrinos, and the tensor-to-
scalar ratio. Indeed, large values of both r and Hořava
gravity parameters can enhance the primordial total BB
spectra, while a nonzero massive neutrinos component can
suppress this feature. The effects of a modified background
evolution impact the high-lTT power spectrum in different
ways: by shifting the peaks to high multipoles and in the
height of the CMB peaks, which are suppressed due to an
early ISW effect. Massive neutrinos instead shift the
spectrum to lower multipoles. Thus, a fine-tuning among
the mass of neutrinos and the values of Hořava parameters
can, in principle, compensate. The impact on the tensor
BB-power spectrum are instead peculiar in the two cases;
modification of gravity suppresses peaks and troughs,
while massive neutrinos further suppress the first peak,
but they enhance the spectrum for larger multipoles. We
used CMB, SNIa, galaxy clustering, and weak gravitational
lensing measurements in different combinations, and we
find that they were able to break these degeneracy due to
the power in constraining different features of the model.
We provided observational constraints on model and

cosmological parameters in the Hořava gravity model using
these data. We found that the cosmological parameters are
compatible with those of ΛCDM in both scenarios (with or
without massive neutrinos). As such, the tensions inH0 and
σ08 between low-redshift and CMB data are not alleviated in
Hořava gravity. The models parameters are severely con-
strained to be their GR limits. However, their constraints
are weaker than the ones obtained from the PPN bounds.
We also computed the bounds on the deviation of the
effective gravitational constant,Gc from the Newtonian one
GN , and we found it to be 2 order of magnitude stringent
than the PPN one regardless of the dataset considered.
The model selection analysis using the deviance infor-

mation criterion (DIC) suggests that CMB data from Planck
2018, BICEP2, and Keck Array experiments prefer in the
case of Hořava gravity Σmν ≠ 0 (ΔDIC ¼ −3); the oppo-
site holds for the extended analysis, in particular, for the
combination of data including the JLA dataset. The CMB
data are the only ones which slightly prefer the Hořava
gravity model with massive neutrinos over the ΛCDM
(ΔDIC ¼ −0.4), even though without a significant statis-
tical evidence, in all other cases (with or without massive
neutrinos), there is either a mild preference for ΛCDM
(ΔDIC ¼ 6.1 for BKP without massive neutrinos, ΔDIC ¼
4.1 for BKPþ lensþ DESþ JLA with massive neutrinos)
or a null preference.
In conclusion, the Hořava gravity model can be still

considered a viable candidate to explain the late time
acceleration of the Universe, and it deserves further inves-
tigations particularly once new data will be available from
next generation surveys, such as Euclid [106], DESI [107],
LSST [108], SKA [109,110], COrE [111], and CMB-S4
[112,113]. These surveys will allow one to measure
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cosmological and model parameters with unprecedented
accuracy and can help to definitely discriminate among
the different cosmological models.
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