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We present IMRPhenomXPHM, a phenomenological frequency-domain model for the gravitational-wave
signal emitted by quasicircular precessing binary black holes, which incorporates multipoles beyond the
dominant quadrupole in the precessing frame. The model is a precessing extension of IMRPhenomXHM,
[C. García-Quirós et al., Phys. Rev. D 102, 064002 (2020)] based on approximatemaps between aligned-spin
waveform modes in the coprecessing frame and precessing waveform modes in the inertial frame, which is
commonly referred to as “twisting up” the nonprecessingwaveforms. IMRPhenomXPHM includes IMRPhenomXP

as a special case, the restriction to the dominant quadrupole contribution in the coprecessing frame. We
implement two alternative mappings, one based on a single-spin post-Newtonian approximation, as used in
IMRPhenomPv2 [M. Hannam et al., Phys. Rev. Lett. 113, 151101 (2014).], and one based on the double-spin
multiple scale analysis approach of [K. Chatziioannou et al., Phys. Rev. D 95, 104004 (2017).]. We include a
detailed discussion of conventions used in the description of precessing binaries and of all choices made in
constructing the model. The computational cost of IMRPhenomXPHM is further reduced by extending the
interpolation technique of [C. García-Quirós et al., Classical Quant. Grav. 38, 015006 (2021).] to the Euler
angles. The accuracy, speed, robustness, and modularity of the IMRPhenomX family will make these models
productive tools for gravitational wave astronomy in the current era of greatly increased number and diversity
of detected events.
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I. INTRODUCTION

We have recently presented IMRPhenomXAS [1], a phe-
nomenological model for the l ¼ jmj ¼ 2 dominant quad-
rupole spherical harmonic modes of the gravitational wave
signal emitted by coalescing black holes in quasicircular
orbits, and with spin vectors orthogonal to the orbital plane.
This model improves over the IMRPhenomD model [2,3] that
is routinely used in gravitational wave data analysis. The
improvements include modifications of the phenomeno-
logical ansatz, a systematic approach to modeling the
dependence of phenomenological parameters on the
three-dimensional parameter space of nonprecessing qua-
sicircular binaries of black holes [4,5], extending the set of
numerical relativity (NR) waveforms our model is cali-
brated to from 19 to 461, incorporating additional numeri-
cal perturbative waveforms for mass ratios up to 1000 into
the calibration dataset, and calibrating to a more accurate
description of the inspiral [6].

Building on IMRPhenomXAS, we have also presented
IMRPhenomXHM [7], which extends the model to the leading
subdominant harmonics, in particular the ðl; jmjÞ ¼
ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ modes, and includes
mode mixing effects in the l ¼ 3; jmj ¼ 2 harmonics as
described in [7]. This extension is aimed to supersede the
IMRPhenomHM model [8], where the subdominant harmonics
are not calibrated to NR waveforms, and instead an approxi-
mate map from the (2,2) to the subdominant harmonics is
employed.
These models are formulated in the frequency domain,

which is typically employed in matched filter calculations,
in order to reduce the computational cost of gravitational
wave data analysis. In order to accelerate the evaluation of
the waveform model, which is particularly important for
computationally expensive applications such as Bayesian
inference [9,10], we have further developed the multi-
banding interpolation method of [11] as described in [12].
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Phenomenological waveform models for nonprecessing
systems have been extended to precessing systems [13–15]
by a construction that is based on an approximate map
between precessing and nonprecessing systems, and is
commonly referred to as “twisting up” [13,16,17]. The
aim of the present paper is to revisit the twisting-up
procedure, first by documenting it in detail and deriving
the equations that define themodel in the frequency domain,
and then to extend IMRPhenomXAS and IMRPhenomXHM

to precession, resulting in the IMRPhenomXP and
IMRPhenomXPHM models, which are publicly available as
implemented in the LALSuite [18] library for gravitational
wave data analysis.
Approximate maps between the gravitational wave

signals of precessing and nonprecessing systems can be
constructed based on the fact that the orbital timescale is
much smaller than the precession timescale, and corre-
spondingly the amount of gravitational waves (GW)
emitted due to the precessing motion is relatively small
and contributes little to the phasing of the gravitational
wave signal when observed in a noninertial coprecessing
frame. Rather, the dominant effect of precession is an
amplitude and phase modulation that can be approximated
in terms of a time-dependent rotation of a nonprecessing
system [16,17].
We will describe this rotation in terms of three time-

dependent Euler angles, and our nonprecessing gravitational
wave signal will be described by the IMRPhenomXHM model
(or IMRPhenomXAS for the dominant quadrupole modes). The
waveform for precessing binaries can thus be approximated
by interpreting a nonprecessing waveform as an approxi-
mation to the precessing waveform observed in a noninertial
frame that tracks the precession of the orbital plane [16]. This
map is greatly simplified by the approximate decoupling
between the spin components parallel and perpendicular to
the orbital angular momentumL [17]. See, however, [19] for
an instability for approximately opposite spins that can result
in breaking this assumption in a small part of the param-
eter space.
In addition to the time-dependent rotation, the approxi-

mate map also requires a second element, which is to
modify the final spin of the merger remnant, which is in
general different from the nonprecessing case, essentially
due to the vector addition of the individual spins and
angular momentum. The final mass of the remnant is much
less affected by precession, since the scalar quantity of
radiated energy is not significantly affected by the precess-
ing motion due to its slower timescale compared to the
orbital motion.
An important shortcoming of this construction as pre-

sented here is that it does not include the asymmetries in the
ðl; jmjÞ ¼ ð2; 2Þ modes that are responsible for large
recoils; see, e.g., [20]. For brevity we will refer to the
approximations that are used in the twisting-up procedure
as the “twisting approximation.” For a recent detailed

discussion of the effect of these approximations, with
special consideration of the effect on subdominant har-
monics, see [21,22].
Our model currently uses two alternative descriptions for

the Euler angles that characterize the approximate map: the
one used previously in [13,23] assumes that the spin of the
smaller black hole vanishes, while the one developed in
[24] and previously used in [14,15] describes double-spin
systems. The code we have developed as part of the LALSuite

[18] is modular and allows one to independently update
different components, such as the calibrations of particular
regions (inspiral, merger, or ringdown) for particular
spherical harmonics, or the precession Euler angles, and
supports calling particular versions of these components.
In a previous study of waveform systematics [25] it

was found that while models such as IMRPhenomD and
IMRPhenomPv2 were sufficiently accurate for the first detec-
tion of GW [26], further improvements in accuracy were
called for. The IMRPhenomX family of waveform models
addresses this, and the present work completes the
IMRPhenomX family of waveform models to serve as a tool
for gravitational wave data analysis that models quasicir-
cular systems, and to serve as a basis for extensions: e.g., to
address eccentricity and model fully generic mergers of
black holes in general relativity, to address remaining
shortcomings in describing quasicircular systems, and to
use as a basis for tests of general relativity.
The paper is organized as follows: We first discuss our

notation and conventions in Sec. II and the basic concepts
of the modeling of precessing binaries in Sec. III. We then
present the construction of the model in Sec. IV and our
tests of quality and computational efficiency in Sec. V. This
also includes Bayesian inference results with the new
model on real gravitational wave data. We conclude the
paper in Sec. VI.
Several appendixes provide further technical details: In

Appendix A we list the Wigner-d matrices we use to
express rotations. In Appendix B we summarize conven-
tions regarding nonprecessing waveforms. In Appendix C
we discuss frame transformations and the effect in the
gravitational wave polarizations. In Appendix D we discuss
how our choice of polarization relates to other choices in
the literature. In Appendix E we spell out the derivation of
the frequency domain gravitational waveform. Appendix F
contains details of the LALSuite implementation. In
Appendix G 1 we write out the explicit post-Newtonian
expressions for the next-to-next-to-leading order (NNLO)
Euler-angle descriptions that we use here. Finally in
Appendix G 2 we write out the coefficients of the post-
Newtonian approximation we use for the orbital angular
momentum.
We define the mass ratio q ¼ m1=m2 ≥ 1, total mass

M ¼ m1 þm2, and symmetric mass ratio η ¼ m1m2=M2.
We use geometric units G ¼ c ¼ 1 unless explicitly stated
(in particular when using seconds, hertz, or solar masses
as units).
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II. NOTATION AND CONVENTIONS

For nonprecessing systems we have recently provided a
detailed discussion of our conventions in [1,7]. Our work
here is consistent with these conventions, but we drop the
restriction to spins orthogonal to the orbital plane. As the
twisting construction is based on mapping nonprecessing
waveforms to precessing ones, the properties of nonpre-
cessing waveforms, in particular the consequences of
equatorial symmetry with respect to the orbital plane,
are still relevant for the map, and we summarize these
conventions in Appendix B.
As our primary coordinate system we use a standard

inertial spherical coordinate system ðt; r; θ;φÞ, where t is
the inertial time coordinate of distant observers, r is the
luminosity distance to the source, and θ and φ are polar
angles in the sky of the source. Associated with this
spherical coordinate system will be a Cartesian coordinate
system with axes ðx̂J; ŷJ; ẑJÞ. We will take the ẑJ axis to be
the direction of the total angular momentum J, and we will
refer to this inertial coordinate system as the J-frame. In
most binaries, the orbital and spin angular momenta will
precess around the J [27,28]. Here we will take the
direction of J to be fixed, i.e., ĴðtÞ ≃ Ĵt→−∞. This is a
limitation of the model and excludes special cases, such as
transitional precession, where there is no fixed precession
axis and the direction of J will evolve.
Our final result will be the calculation of the observed

gravitational wave polarizations in a frame where the
z-axis corresponds to the direction N̂ of the line of sight
toward the observer, which we will refer to as the
N-frame. The observer of the gravitational wave signal
will be located at the sky position θ ¼ θJN and φ ¼ ϕJN in
the J-frame.
We will use a third coordinate system to describe

precession in terms of a rotating orbital plane, which is
orthogonal to the Newtownian orbital angular momentum
LN ¼ μn × v, where μ is the Newtonian reduced mass, n
the vector from the position of the secondary black hole to
the primary, and v the relative velocity. In the presence of
spin precession, the direction of the actual orbital angular
momentum L will in general differ from the direction of
LN due to the presence of spin components in the orbital
plane, orthogonal to LN [see, e.g., the discussions in [16]
related to Eq. (4.6) of that paper]. These corrections enterL
at the first post-Newtonian order and modulate the rotation
of the orbital axis. In our present implementation of the
twisting-up approximation, we will neglect the influence of
this effect on the final waveform, as has been done in
previous implementations [13–15,23]. We will refer to a
coordinate system where the z-axis is chosen asL orLN as
the L-frame, and will discuss different choices for approxi-
mating L in Sec. IV C.
When setting up initial data for NR simulations, it is

common to choose spin components for the initial dataset

in the L-frame, where approximations for L may or may
not be applied. We will refer to the inertial coordinate
frame, which corresponds to the L-frame at some initial
reference time as the L0-frame.
Our setup in this paper is constructed to be consistent

with [29], which discusses conventions for relating the N-
frame (referred to as the wave frame) and the L0-frame
(referred to as the source frame), which have been adopted
by the LALSuite [18] framework for gravitational wave data
analysis, where we have implemented our model as open
source code. Appendix C discusses how we use the
remaining freedom to fix the J, N, and L (or equivalently
L0) frames, which corresponds to fixing the freedom of
rotating around the z-axes of each frame, and to the three
Euler angles that rotate a given coordinate frame into
another.
We will perform the twisting-up construction of the

gravitational-wave signal in terms of its decomposition into
spin-weighted spherical harmonics in the J-frame [30],

hJ ¼ hJþ − ihJ× ¼
X
l≥2

Xl
m¼−l

hJlm−2Ylmðθ;φÞ; ð2:1Þ

where

−2Ylmðθ;φÞ ¼ YlmðθÞeimφ ð2:2Þ

are the spin-weighted spherical harmonics of spin weight
−2 [31], defined as in [32].
We adopt the LALSuite conventions for the Fourier

transform of a signal hðtÞ and its inverse

h̃ðfÞ ¼ FT½h�ðfÞ ¼
Z

hðtÞe−2πiftdt; ð2:3Þ

hðtÞ ¼ IFT½h̃�ðtÞ ¼
Z

h̃ðfÞe2πiftdf: ð2:4Þ

With this definition of the Fourier transform we can convert
Eq. (2.1) that defines the two gravitational wave polar-
izations in terms of the real and imaginary parts of the time
domain gravitational wave strain to expressions in the
frequency domain,

h̃þðfÞ ¼ FT½ReðhðtÞÞ� ¼ 1

2
½h̃ðfÞ þ h̃�ð−fÞ�; ð2:5Þ

h̃×ðfÞ ¼ −FT½ImðhðtÞÞ� ¼ i
2
½h̃ðfÞ − h̃�ð−fÞ�: ð2:6Þ
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III. MODELING PRECESSING BINARIES

A. The twisting construction in terms of Euler angles

One of the key breakthroughs in the modeling of precess-
ingbinarieswas the insight that suchmodels can be simplified
by formulating them in a noninertial frame that tracks the
approximatemotion of the orbital plane, and that the resulting
waveform approximately resembles some corresponding
aligned-spin waveform [16]. In particular, one finds that a
mode hierarchy consistent with nonprecessing binaries is
restored, allowing one to define an approximate mapping
between the seven-dimensional space of generic precessing
binaries and the three-dimensional space of nonprecessing
binaries [17]. This identification immediately implies that
the inverse procedure can be used to approximate the wave-
form modes of a precessing binary in the inertial frame
[13,17], namely to apply a time-dependent rotation to the
aligned-spin waveform modes.
In the conventions adopted in this paper, we define

ðα; β; γÞ as the Euler angles that describe an active rotation
from the inertial J-frame to the precessing L-frame in the
ðz; y; zÞ convention. The angles α and β are spherical angles
that approximately track the direction of the Newtonian
angular momentum. The third angle can be gauge fixed by
enforcing the minimal rotation condition [33], demanding
the absence of rotation in the precessing frame about the
orbital angular momentum1

_γ ¼ − _α cos β: ð3:1Þ
In the conventions adopted here, α will typically increase
during the inspiral, while γ will typically decrease. The
gravitational-wave modes between these two frames can be
related via the transformation of a Weyl scalar under a
rotation R ∈ SOð3Þ [16,31]

hJlm ¼
Xl

m0¼−l

Dl�
mm0 ðα; β; γÞhLlm0 ; ð3:2Þ

hLlm0 ¼
Xl
m¼−l

Dl
mm0 ðα; β; γÞhJlm; ð3:3Þ

where Dl
mm0 are the Wigner D-matrices2

Dl
mm0 ðα; β; γÞ ¼ eimαeim

0γdlmm0 ðβÞ ð3:4Þ

and dlmm0 are the real-valued Wigner-d matrices and are
polynomial functions in cosðβ=2Þ and sinðβ=2Þ, as detailed

in Appendix A. Note that Eq. (3.3) follows from inverting
Eq. (3.2). We provide a Mathematica [36] notebook as
supplementary material, which allows one to conveniently
check key conventions, such as those related to the Wigner-
d matrices.
Schematically, we construct precessing waveform

models using the following “twisting” algorithm:
(i) Model waveform modes in the precessing non-

inertial L-frame, in our case these models are
IMRPhenomXAS and IMRPhenomXHM.

(ii) Perform an active rotation from the precessing L-
frame to the inertial J-frame using a given model for
the precession dynamics, as encoded in ðα; β; γÞ. The
inertial frame is defined such that zJ ¼ J, where J is
approximately constant, and a full discussion of the
relation between different frames and the conven-
tions chosen to represent precessing motion is given
in Appendix C. In order to achieve closed form
expressions in the Fourier domain, the stationary
phase approximation (SPA) is used, with the result
stated in Sec. III B, and a full derivation deferred to
Appendix E.

(iii) Project gravitational-wave polarizations into the
N-frame as discussed in Appendix C.

B. Gravitational-wave polarizations
in the frequency domain

The frequency-domain expressions for the gravitational-
wave polarizations in the inertial J-frame h̃Jþ;×ðfÞ in terms
of spherical harmonic modes h̃LlmðfÞ in the coprecessing
L-frame are derived in Appendix E, starting from Eq. (3.2),
and performing Fourier transformations with the SPA
[37–39]. The result for the gravitational-wave polarizations
in terms of modes in the precessing L-frame reads

h̃Jþðf > 0Þ ¼ 1

2

X
l≥2

Xl

m0>0

h̃Ll−m0 ðfÞeim0γ

×
Xl
m¼−l

½Al
m−m0 þ ð−1ÞlAl�

mm0 �; ð3:5Þ

h̃J×ðf > 0Þ ¼ i
2

X
l≥2

Xl
m0>0

h̃Ll−m0 ðfÞeim0γ

×
Xl
m¼−l

½Al
m−m0 − ð−1ÞlAl�

mm0 �; ð3:6Þ

where we have introduced mode-by-mode transfer
functions

Al
mm0 ¼ e−imαdlmm0 ðβÞ−2Ylm: ð3:7Þ

The modes in the precessing L-frame can be approximated
with nonprecessing waveform modes [13,16,17]. Here we

1Note that ϵ ¼ −γ is sometimes used in the literature,
e.g., [23].

2Note that the convention for the Wigner d-matrices adopted
here implies [34,35]

Dl
mm0 ðα; β; γÞ ¼ Dl;ABFO

m0m ðα; β; γÞ:
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use IMRPhenomXHM [1,7], which contains the ðl; jmjÞ ¼
ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ modes. Note that, as dis-
cussed in [21], our treatment of mode mixing in the
nonprecessing case does not strictly carry over to preces-
sion, as one would need to consider mode mixing in the
inertial frame, and not in the coprecessing frame corre-
sponding to the aligned-spin waveform. An analysis of
the shortcomings of our treatment of mode mixing and
further improvements of the model will be the subject of
future work.

IV. CONSTRUCTING THE MODEL

A core ingredient in modeling precessing binaries is a
description for the precession dynamics in terms of the
three Euler angles fα; β; γg describing the active trans-
formation from the precessing to the inertial frame. For
IMRPhenomXPHM, we have implemented two different pre-
scriptions for the precession angles. The first model,
described in Sec. IVA, is based on the NNLO single-spin
post-Newtonian (PN) expressions used in IMRPhenomPv2

[13,23]. The second model, described in Sec. IV B, is
based on the 2PN expressions from [24], derived using a
multiple scale analysis (MSA). Such modularity will help
us to gauge systematics in modeling precession and its
implications for gravitational-wave data analysis.

A. Post-Newtonian NNLO Euler angles

The single-spin description of the Euler angles is based
on a post-Newtonian reexpansion setting S2 ¼ 0, and
restricting to spin-orbit interactions [23]. This frame-
work was implemented in IMRPhenomPv2 [13,23] and
has been actively used in the analysis of gravitational-
wave data [40].
In the PN framework, we first solve for the evolution

equations of the moving triad fn; λ;lg at a given PN order
in the conservative dynamics before reintroducing radia-
tion-reaction effects. The angular momentum J, neglecting
radiation reaction effects, is approximately conserved and
can be used to define a fixed direction z. Completed with
two constant unit vectors x and y, this forms an ortho-
normal triad. We can define a separation vector n between
the two black holes such that r ¼ rn with r ¼ r1 − r2. The
unit normal to the instantaneous orbital plane, l, is defined
by l ¼ n × v=jn × vj, where v ¼ v1 − v2 is the relative
velocity. Finally, the orthonormal triad is completed by
λ ¼ l × n. The evolution of the triad is given by [41,42]

dn
dt

¼ ωλ; ð4:1aÞ

dλ
dt

¼ −ωnþ ω̄l; ð4:1bÞ

dl
dt

¼ −ω̄λ; ð4:1cÞ

where ω̄ is the precession angular frequency. Introducing
an orthonormal basis such that the z-axis points along J, as
we do in Appendix C, we can introduce the Euler angles
fα; β; γg to track the position of L with respect to this fixed
basis. The evolution of the Euler angles follows from
Eqs. (4.1):

dα
dt

¼ −
ω̄

sin β
Jnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2n þ J2λ

q ; ð4:2aÞ

dβ
dt

¼ ω̄
Jλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2n þ J2λ

q ; ð4:2bÞ

dγ
dt

¼ − _α cos β: ð4:2cÞ

The only assumption made in deriving these equations
is that the direction of the total angular momentum is
approximately constant and that we may neglect radiation
reaction effects [41].
In the regime of simple precession, in which the total

angular momentum is not small compared to the orbital and
spin angular momenta, the opening angle β of the pre-
cession cone is approximately constant and is constrained
by the minimal rotation condition [33], as in Eq. (3.1).
Under the approximation that the direction of the total
angular momentum, Ĵ, is constant throughout the evolu-
tion, the angle β can be determined using the closure
relation J ¼ Lþ S1, yielding

cos β ¼ l ·
J
jJj ¼

Jlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ J2n þ J2λ

q : ð4:3Þ

With a PN reexpansion of the right-hand side and
decomposing the spin into contributions parallel and
perpendicular to the orbital angular momentum, S ¼
Sk þ S⊥, the expression for β reduces to [23]

cos β ¼ Lþ Skffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ SkÞ2 þ S2⊥

q ¼ �ð1þ s2Þ−1=2; ð4:4Þ

where s ¼ S⊥=ðLþ SkÞ and the overall sign is dependent
on the sign of Lþ Sk. This approximation was used in
IMRPhenomPv2, coupled with a 2PN nonspinning approxi-
mation of the orbital angular momentum L [28]. In [43] we
discuss the use of a numerical fit to the orbital angular
momentum in a nonprecessing merger, and here we use
different alternative post-Newtonian approximations as
discussed in Sec. IV C.
The dynamics for _α are determined using the results

obtained in [41] together with the NNLO spin-orbit
contributions derived in [42]:
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dα
dt

¼ −
ω̄

sin β
Jnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2n þ J2λ

q ; ð4:5Þ

where ω̄ is defined by Eq. (4.1). The right-hand side of
Eq. (4.5) is PN reexpanded and orbit averaged in order to
reexpress the spin components S1;λ and S1;n in terms of an
effective spin parameter χp [44]. Radiation reaction effects
can be incorporated by using the evolution of the frequency,
_ω=ω2, to reexpress Eq. (4.5) as

dα
dω

¼ 1

_ω

dα
dt

: ð4:6Þ

In IMRPhenomPv2, corrections up to 3.5PN in both the orbital
and the spin-orbit sectors were used for the evolution of ω.
Equation (4.6) is reexpanded as a PN series in ω and is
integrated term by term to yield a closed-form expression
for αðωÞ, up to an overall constant of integration. A similar
strategy is employed for deriving γðωÞ using the relation in
Eq. (3.1). The constants of integration arising when solving
Eqs. (4.1) are fixed by the orientation of the spins at a given
reference frequency fref as discussed in Appendix C.
The effective spin precession parameter χp [44] provides

a mapping from the four in-plane spin degrees of freedom
to a single parameter that captures the dominant effect of
precession. As discussed in [44], the magnitudes of the in-
plane spins Si;⊥ will oscillate about a mean value, with the
relative angle between the spin vectors changing continu-
ously. Averaging over many precession cycles, the average
magnitude of the spins can be written as [44]

Sp ¼ 1

2
ðA1S1;⊥ þ A2S2;⊥ þ jA1S1;⊥ − A2S2;⊥jÞ

¼ max ðA1S1;⊥; A2S2;⊥Þ; ð4:7Þ

where A1 ¼ 2þ 3=ð2qÞ. For most binaries, the spin of the
larger black hole will dominate and Sp reduces to A1S1;⊥.
As the in-plane spin of the smaller black hole will become
increasingly negligible at higher mass ratios, the dimen-
sionless effective precession parameter is defined by
assigning the precession spin to the larger black hole [44]

χp ¼ Sp
A1m2

1

: ð4:8Þ

In IMRPhenomPv2, a choice was made to calculate the PN
Euler angles by placing all of the spin on the larger black
hole, i.e., χ2 ¼ 0. IMRPhenomXPHM inherits this choice in
this first prescription for the Euler angles.

B. MSA Euler angles

The second formulation of the precession angles that we
implement is based on the application of multiple scale
analysis [45] to the post-Newtonian equations of motion

[19,24,46–49]. This approach employs a perturbative
expansion in terms of the ratios of distinct characteristic
scales in the system. For precessing binaries, a natural
hierarchy of timescales can be identified with the orbital
timescale being shorter than the precessing timescale,
which is again shorter than the radiation reaction timescale.
In [24], the time-domain PN precession equations are
solved by incorporating radiation reaction effects through
the multiple scale analysis. The resulting time domain
waveforms are then transformed to the frequency domain
using shifted uniform asymptotics (SUA) [50], helping to
overcome a number of limitations and failures in the more
conventional SPA approach. By decomposing the wave-
form into Bessel functions, the resulting Fourier integral
can be evaluated term by term using SPA and resummed
using the exponential shift theorem. The concomitant
frequency domain inspiral waveforms contain spin-orbit
and spin-spin effects at leading order in the conservative
dynamics and up to 3.5PN order in the dissipative dynam-
ics, neglecting spin-spin terms. The MSA formulation of
the post-Newtonian Euler angles enables double-spin
effects, as recently first incorporated into the phenomeno-
logical framework in [14,15]. The SPA treatment used
here corresponds to the leading order, local-in-frequency
correction and is equivalent to the zeroth order of the
SUA [34,50].
The precession angles are given in terms of a PN series

plus an additional MSA correction. The full solution for α
in the MSA approach is [24]3

α ¼ α−1 þ α0 þOðϵÞ; ð4:9Þ

where

α−1 ¼
X5
n¼0

hΩαiðnÞαðnÞ þ α0−1 ð4:10Þ

is the leading order MSA correction given in Eq. (66) of
[24] and α0 is the first-order correction to theMSA given by
Eq. (67) of [24]. A similar approach is taken for γ, with the
leading order MSA correction given by Eq. (F5) of [24] and
the first-order MSA correction given in Eq. (F19) of
Appendix F of [24].
Again, the Euler angles are fixed by the orientation of the

spins at a given reference frequency fref as discussed in
Appendix C. Similar to the PN reexpanded results used in
IMRPhenomPv2, the identification of Ĵ as an approximately
conserved quantity leads to the preferred coordinate frame
in which ẑ ¼ Ĵ with the angle β defining the precession
cone, as in Eq. (8) of [24]:

3Note that [24] adopts the notation ϕz → α, ζ → −γ, and
cos θL → cos β.
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cos β ¼ Ĵ · L̂ ¼ J2 þ L2 − S2

2JL
: ð4:11Þ

Together with the expressions for α and γ, this defines the
complete set of equations describing the Euler angles in the
MSA framework.
The MSA expressions are series expansions in terms of

the orbital velocity or, equivalently, the GW frequency
f−4=3þn=3, where n ∈ ½1; 6� denotes the order of the series.
As discussed in [14,24], γ is fully PN reexpanded, whereas
α involves both PN reexpanded and unexpanded terms.
This choice was motivated by solutions to the exact
precession-averaged equations h _αipr leading to α−1 being
ill-behaved in the equal mass ratio limit and divergences
when the total spin angular momentum is (anti)aligned with
the orbital angular momentum [24]. A more detailed
discussion can be found in Sec. IV D 1 and Appendix E
of [24]. The order towhichwe retain terms in theMSA series
can be controlled and, as in [14], by default we drop the
highest-order terms in the expansion, working toOð5Þ. The
impact of the expansion order on the Euler angles is high-
lighted in Fig. 1 where the NNLO angles from Sec. IVA are
shown for comparison.
The subset of equal-mass binaries present a number of

qualitative features that distinguish them from the generic
unequal mass ratio cases. In particular, by setting q ¼ 1 in
the MSA framework we find that the expressions lead to
singular behavior in various aspects of the model
[19,24,48]. Of particular note is the singular behavior of
the precession-averaged spin couplings [24], which are
used in the construction of the final spin estimate detailed in
Sec. IV D. These terms must be regularized in the equal-
mass limit to avoid singular behavior.
As discussed above, the MSA system of equations is

known to result in numerical instabilities when S and L are
nearly misaligned. Such instabilities result in a failure at the
waveform generation level. In order to help alleviate these
situations, we have opted to use the NNLO angles
described in Sec. IVA as a fallback in the default
LALSuite implementation, though the end user can still
demand a terminal error for these cases.

C. Post-Newtonian orbital angular momentum

In order to calculate the orbital angular momentum, we
use an aligned-spin 4PN approximation [52–57]

L ¼ ηffiffiffi
x

p ½L0 þ L1xþ L2x2 þ L3x3 þ L4x4

þ LSO
1.5x

3=2 þ LSO
2.5x

5=2 þ LSO
3.5x

7=2�; ð4:12Þ

where La are the orbital coefficients at a-PN order, LSO are
the spin-orbit contributions, and we neglect spin-spin
terms. The coefficients are given in Appendix G 2. This
is in contrast to IMRPhenomPv2, which used a nonspinning
2PN approximation to the orbital angular momentum

L2PN ¼ ηffiffiffi
x

p
�
1þ

�
3

2
þ η

6

�
xþ

�
27

8
−
19η

8
þ η2

24

�
x2
�
:

ð4:13Þ

Our implementation in the LALSuite code also supports
dropping various terms in the 4PN expression of Eq. (4.12),
including reducing the approximation to Eq. (4.13). In
addition, we have also implemented the option to incor-
porate spin effects at leading post-Newtonian order at all
orders in spin [58–60], as given in Appendix G 2. Note that,

FIG. 1. The Euler angles α and γ obtained by solving the MSA
system of [24] and the NNLO PN equations for a binary of mass
M ¼ 20 M⊙, q ¼ 10, χ1 ¼ ð0.4; 0; 0.4Þ, and χ2 ¼ ð0.3; 0;−0.3Þ,
with a starting frequency of 10 Hz. The vertical dashed lines
correspond to the minimum energy circular orbit [51], innermost
stable circular orbit, and ringdown frequency in increasing order.
The multiple shaded lines denote the Euler angles evaluated using
the NNLO angles and different orders for the MSA correction
used in the MSA system where the default order is Oð5Þ.
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consistent with our approximation of the coprecessing
dynamics and waveform with the corresponding aligned-
spin quantities, we neglect contributions to the angular
momentum of the spin components in the orbital plane.
Modeling of the orbital angular momentum is most relevant
for calculating the opening angle β. The impact of different
orders for LPN is shown in Fig. 2, where we observe
significant differences between the nonspinning 2PN
approximation used in [23] and higher-order PN approx-
imants that incorporate aligned-spin contributions.

D. Modeling the final state

In our twisting construction, approximating a precessing
waveformwith a nonprecessing one implies that the radiated
energy and the radiated angularmomentumorthogonal to the
orbital plane are identical to the nonprecessing values.
Indeed, comparisons of the final mass from precessing
NR simulations with fits for the final mass resulting from
nonprecessing mergers (see, e.g., [61,62]) show only a weak
dependence of the final mass on precession.
We do, however, need to take into account the depend-

ence of the final spin on precession, which is essentially
due to the vector addition of the individual spins and
angular momentum, as will be discussed below. A surro-
gate model for the final spin of precessing mergers for a
limited range in mass ratio and spins has been produced
recently [62]. Here, however, we will proceed differently in
order not to compromise the simplicity and domain of
validity of our model and employ a simple estimate for the
final spin magnitude based on accurate fits for the final spin
of nonprecessing mergers, simple geometric arguments,
and our assumptions related to those underlying the twist-
ing approximation.

In order to incorporate precession into the final spin
prediction, we can argue as follows (compare also to [63]):
we first write the total angular momentum J as the sum of
individual spins Si and orbital angular momentum L:

J ¼ S1 þ S2 þL:

We can now apply this equation to compute the final
angular momentum Sfin of the remnant black hole, inter-
preting the quantities ðS1;S2;LÞ as the values at merger,
where the further emission of angular momentum effec-
tively shuts off. We split the spin vectors of the individual
black holes into their orthogonal components parallel (or
antiparallel) and orthogonal to the unit vector in the
direction of the orbital angular momentum L̂, and intro-
duce the quantities (for i ¼ 1, 2):

Si;jj ¼ Si · L̂; Sjj ¼ S1;jj þ S2;jj; ð4:14Þ

Si;⊥ ¼ Si − Si;jjL̂; S⊥ ¼ S1;⊥ þ S2;⊥: ð4:15Þ

We can now compute the magnitude of the final angular
momentum in terms of the vector-sum of 2 orthogonal
components, and then the magnitudes of the final spin Sfin
and final Kerr parameter afin are given as

jSfinj≡M2
finjafinj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S⊥2 þ ðSjj þ LfinÞ2

q
: ð4:16Þ

Here, Mfin is the final mass, and Lfin is defined in terms of
the final mass and spin as

Sjj þ Lfin ¼ M2
fina

jj
fin; ð4:17Þ

where ajjfin is the final Kerr parameter in the corresponding

nonprecessing configuration. We compute akfin and Mfin as
functions of the symmetric mass ratio and the spin
projections in the direction of L, using the same fit to
NR data [4] that was used in the nonprecessing
IMRPhenomXAS and IMRPhenomXHM models. Note that the

fit for akfin is, in fact, constructed as a fit for Lfin, and afin is
then computed using Eq. (4.17).
In the twisting approximation we assume that in a

comoving frame the waveform is well approximated by
a twisted-up nonprecessing waveform. In addition, one
usually assumes for simplicity that the total spin magni-
tudes, as well as the magnitudes of the projections of
S1 þ S2 ontoL (Sjj) and orthogonal to it (S⊥) are preserved
as well.
The spin components S⊥ and Sjj that enter the final spin

estimate in Eq. (4.16) can now be computed in different
ways. The simplest choice is to use the nonprecessing value
for Sjj, and the appropriately averaged value of S⊥, which
enters our inspiral descriptions. For the NNLO angle

FIG. 2. Comparison of the NNLO Euler angle cos β against the
MSA version [Oð5Þ], for the same binary as shown in Fig. 1. We
show the impact of different PN orders for the orbital angular
momentum L on the determination of the opening angle for the
NNLO prescription.
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description summarized in Sec. IVA, which is an effective
single spin description, the quantity χp (4.7) and (4.8) acts
as an average in-plane spin, and can be used to estimate S⊥
at merger. This is the choice that has been made for the
IMRPhenomP [13] and IMRPhenomPv2 [23] models, and it will
be the default choice we have implemented when using one
of the NNLO angle descriptions. For the double spin MSA
description outlined in Sec. IV B, one can rely on the
precession-averaged spin couplings of Eqs. (A9)–(A11) in
[24]. This can be best seen by rewriting Eq. (4.16) more
explicitly as

S2fin ¼ S21 þ S22 þ 2S1 · S2 þ L2
fin

þ 2LfinðS1 · L̂þ S2 · L̂Þ: ð4:18Þ

Averaging over one precession cycle, the above equation
can be rewritten as

hS2finipr ¼ S2av þ L2
fin þ 2LfinðhS1 · L̂ipr þ hS2 · L̂iprÞ:

ð4:19Þ

This will serve as our default choice when using the MSA
formulation to compute the Euler angles.
Assuming that the spin components at merger are equal

to the average quantities during the inspiral has the
advantage of providing unambiguous values. However,
this neglects the two facts that the averaged quantities
do not predict the value of the spin components at any
particular time, and that they do not accurately describe the
spin dynamics shortly before and at merger. We therefore
also discuss alternative descriptions, which contain addi-
tional freedom to approximately account for the unmodeled
information about the spin components at merger.
We will first discuss the simpler single-spin case,

assuming that only the larger black hole, labeled with
index i ¼ 1, carries spin, and the spin of the smaller black
hole vanishes. We first rewrite Eq. (4.16) in the form

jSfinj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ L2

fin þ 2S1;jjLfin

q
: ð4:20Þ

We assume that the total spin S1 does not change during the
coalescence process, and that Lfin is given by the non-
precessing value as in Eq. (4.17), where for Sjj we take its
initial value, i.e., the value we have used during the inspiral.
In previous work [13,23] this initial value of Sjj has also
been used in the final spin estimate of Eq. (4.20), consistent
with the approximation that S⊥ and Sjj are approximately
preserved during the inspiral. Because of the strong spin
interaction close to merger, this approximation may, how-
ever, not be accurate, and alternatively we may only assume
that the spin magnitude is preserved and treat the value of
S1;jj as unknown. We can then determine the value of S1;jj
that best fits a given precessing waveform subject to the

condition 0 ≤ jS1;jjj ≤ S. We currently do not provide this
option in our LALSuite code, in order to avoid bookkeeping
of extra parameters that are not typically used in parameter
estimation (PE).
Instead, we provide a toy model solution for the single-

spin case, where χp is replaced by χ1x, i.e., the x-component
of the spin of the larger black hole. This particular choice of
toy model has been implemented to facilitate comparisons
with an earlier version of the IMRPhenomPv3HM model [15].4

The rotational freedom in the in-plane spin then allows one
to vary the in-plane spin component that enters the final
spin estimate between zero and the magnitude of the
in-plane spin.
Note that in [13,23] a free parameter λ was introduced as

jafinj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
S2⊥

λ

M2
fin

�
2

þ ajjfin
2

s
ð4:21Þ

and was set to the ad hoc value λ ¼ M2
fin, consistent with

[63], in order to reduce the residuals of the final spin
estimate when comparing with NR datasets.
We now consider the double-spin case, where we also

have to take into account the time-dependent angle between
the in-plane components of the spins. We can write
Eq. (4.16) in a form similar to Eq. (4.20) as

S2fin ¼ ðS1;⊥ þ S2;⊥Þ2 þ ðS1;jj þ S2;jj þ LfinÞ2 ð4:22aÞ

¼ S21 þ S22 þ L2
fin þ 2S1;⊥S2;⊥ cosϕ12 ð4:22bÞ

þ 2S1;jjS2;jj þ 2LfinðS1;jj þ S2;jjÞ: ð4:22cÞ

One could now choose the unmodeled parameters in this
equation and fit them to the best values in a given dataset:
e.g., one could leave the parallel components free analo-
gous to Eq. (4.20), or simply neglect the tilt of the spins at
merger and use cosϕ12 as a free parameter. We reserve
these options for future work, as they would require one to
perform a Bayesian PE with a different parametrization
than usual within LALSuite. Instead, we provide the option to
model S⊥ as

S2⊥ ¼ ðS1;⊥ þ S2;⊥Þ2; ð4:23Þ

which provides the freedom for cancellations between the
two spin components.
Following the discussion above, in our LALSuite code we

currently provide four options to set the magnitude of the
final spin; see also Appendix F. We proceed in analogy with

4This earlier version of IMRPhenomPv3HM with χ1x passed to
the final spin function was introduced in version
2f1596262c3af9832dfe2a52944472cb3be81e0a of the https://
git.ligo.org/lscsoft/lalsuite/ repository and changed to χp in
b60bec3aef3be3c346fd349ddd738e55a2af4b6d.
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Eq. (4.21) and either set

jafinj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χ̄2p

m2
1

ðm1 þm2Þ2
�

2

þ ajjfin
2

s
; ð4:24Þ

where χ̄p can be chosen as one of three alternatives,

χ̄p ¼ χp; ð4:25Þ

χ̄p ¼ χ1x; ð4:26Þ

χ̄p ¼ S⊥ðm1 þm2Þ2
m2

1

; ð4:27Þ

or set

jafinj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS2finipr

q
M2

; ð4:28Þ

where S⊥ in Eq. (4.27) is defined as in Eq. (4.23) and for
Eq. (4.28) we have used Eq. (4.19). Here Eq. (4.25)
corresponds to the choice of IMRPhenomP [13] and
IMRPhenomPv2 [23] and is the default choice when using
the NNLO description of the Euler angles, Eq. (4.26) has
been implemented to compare with a previous version of
IMRPhenomPv3HM, and Eq. (4.28) is the default choice when
using the MSA description of the Euler angles.
In Sec. V we will provide results for different final spin

choices. A detailed investigation of the differences between
final spin estimates is beyond the scope of the present paper
and will be investigated in future work, along with further
improvements.
Note that so far we have only discussed estimates for the

final spin magnitude and not its direction. It is well known
that when the precession cone (i.e., the Euler angle β) is
sufficiently small, then the final spin will point approx-
imately in the direction of the initial total angular momen-
tum J. For larger mass ratios, however, the situation can
become more complicated when the orbital angular
momentum becomes smaller than the (sum of the) compo-
nent spins. In this situation J andL may end up pointing in
opposite directions (i.e., their scalar product becomes
negative), and J may end up pointing in the opposite
direction compared with its initial value. The latter situation
is also known as transitional precession [17,27,28], as
opposed to simple precession, when J at least approxi-
mately maintains its direction.
The final spin of the remnant is then the final value of the

total angular momentum J, and it is thus possible that it
“flips over” with respect to the direction of the initial total
angular momentum. In the context of our twisting-up
procedure we need to track the sign of the final spin with
respect to the L-frame, where it corresponds to the sign of
the final spin of the corresponding nonprecessing wave-
form. We thus proceed as follows: We estimate the

magnitude of the final spin as described above, and we
determine the sign of the final spin with respect to the
L-frame to coincide with the sign of the nonprecessing final
spin. This signed value of the final spin is used to determine
the complex ringdown frequency of our waveform in the L-
frame, which is then rotated into the inertial frame by our
“twisting up” procedure. Situations when J “flips over” or
the precession cone angle β becomes large are, however,
challenging to model: First, the approximate constancy of
J or a small precession cone are standard assumptions for
post-Newtonian expansions. Second, such configurations
have not yet been well explored by NR. When our model is
used in PE and significant support for the posterior
distribution is obtained for a “flipped J” configuration,
or a value of β that comes close to or is larger than π=2, we
thus suggest to proceed with caution and test the robustness
of results by comparing the NNLO and MSA angles for the
precession implementation, and the different approxima-
tions for the magnitude of the final spin, and if possible
with the results for other waveform models. Future work
will aim to improve the robustness of our model for such
situations.

V. MODEL PERFORMANCE AND VALIDATION

In this section, we perform various tests of our model,
ranging from comparisons against NR to real-world PE
applications.

A. Comparison of Euler angles
with NR

Both descriptions for the precession angles implemented
in our model, and described in Secs. IVA and IV B, are
based on PN analytical approximations to the solution of
the angular momenta evolution equations and therefore
are expected to lose accuracy when the assumptions of
the PN formalism start to fail as the frequency becomes
too high. A full systematic understanding of the limi-
tations of both descriptions is out of the scope of this
work, but to illustrate the differences between both
descriptions, in Fig. 3 we compare them with two
precessing simulations from the SXS catalog [64,65]: a
single-spin simulation [SXS:binary black holes
(BBH):0094 with mass ratio q ¼ 1.5 and initial dimen-
sionless spin vectors χ 1 ¼ ð0.5; 0; 0Þ and χ 2 ¼ ð0; 0; 0Þ]
and a double-spin simulation [SXS:BBH:0053 with
q ¼ 3, χ 1 ¼ ð0.5; 0; 0Þ and χ 2 ¼ ð−0.5; 0; 0Þ].
Here the Euler angles of the NR simulations are

computed with the “quadrupole alignment” procedure;
see [16,21,33] for a recent discussion in the context of
waveform modeling. For the NNLO description outlined in
Sec. IVA, the in-plane spin is described by the single
constant quantity χp defined in Eq. (4.8). In contrast, the
MSA description (summarized in Sec. IV B) contains
information about both individual spins and is able to
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predict the evolution of the norm of the total spin
S ¼ S1 þ S2, which allows it to capture the time/frequency
dependent oscillations of the Euler angles on the precession
timescale caused by the evolution of the norm of the
total spin.
For the single-spin simulation shown in the left panel of

Fig. 3, both descriptions present a very similar behavior for
the opening angle β and for the inspiral cycles in the
precessing angle α, though the MSA description seems to
remain closer to NR as the end of the inspiral is
approached. For the double-spin case in the right panel
of Fig. 3, one can see that the behavior of the precessing
angle α during the inspiral is better reproduced by the MSA
description, and the MSA opening angle β can also
reproduce the oscillatory structure observed in the NR
simulation. The oscillations due to double-spin effects
dephase, however, relative to NR as the end of the inspiral
is approached, which can even lead to a worse description
of the late inspiral than the one provided by the NNLO
single-spin description, as seen in the example for the
precessing angle α. Strategies to improve the behavior of
the PN precessing angle descriptions in the high-frequency
regime will be addressed in future work.

B. Time domain waveforms

To best appreciate the differences between precessing
waveforms constructed using NNLO and MSA Euler angle
prescriptions, we have generated time-domain waveforms
with IMRPhenomXPHM for both versions of the twisting-up
angles and compared with the precessing surrogate model
NRSur7dq4 [66]. In Fig. 4 we plot the cross polarization for a
double-spin configuration with high in-plane spins, varying
the mass ratio and aligning them in time and phase. For

increasing q, the MSA description tends to stay closer to
NRSur7dq4. The differences between the two descriptions
become particularly strong for high mass-ratio systems, as
shown in Fig. 5, with the MSA description appearing to be
more stable in this regime. This is particularly evident in the
lower panels, where we show a q ¼ 12 and a q ¼ 16
configuration. Notice that the nonsmoothness of the NNLO
angles in some regions of the parameter space led us to
impose a more stringent threshold on the multibanding of
the Euler angles for this precession version (see Sec. V D
for a detailed discussion).

C. Match calculations for precessing waveforms

In order to check the agreement between our waveform
model and other descriptions we follow standard practice
and compute matches between waveforms across a portion
of the parameter space. In Sec. V C 1 we present matches
between our model and NR waveforms, and in Sec. V C 2
we compare with other waveform models. As in our
previous work [1,7] we use the standard definition of
the inner product (see, e.g., [38]),

hh1; h2i ¼ 4ℜ
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

; ð5:1Þ

where SnðfÞ is the one-sided power spectral density of the
detector noise. The match is defined as this inner product
divided by the norm of the two waveforms and maximized
over relative time and phase shifts between both of them,

Mðh1; h2Þ ¼ max
t0;ϕ0

hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1i
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh2; h2i

p : ð5:2Þ

FIG. 3. Comparison of Euler angles with NR. Left: SXS:BBH:0094 [q ¼ 1.5, χ 1 ¼ ð0.5; 0; 0Þ, χ 2 ¼ ð0; 0; 0Þ]. Right: SXS:BBH:0053
[q ¼ 3, χ 1 ¼ ð0.5; 0; 0Þ, χ 2 ¼ ð−0.5; 0; 0Þ]. Solid blue line: Quadrupole-aligned Euler angles extracted from NR simulation. Dashed
orange line: NNLO implementation (version 102). Dashed green line: MSA implementation (version 223).
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FIG. 4. We compare the relative performance of NNLO and MSA angles against NRSur7dq4, by plotting the plus polarization returned
by the different models for a double-spin configuration with high in-plane spins. Each panel refers to the same spin configuration, but we
allow the mass ratio to vary from 1 to 4, which is the upper limit of the calibration region of NRSur7dq4. Overall NNLO angles perform
well, although we do observe some disagreement with respect to NRSur7dq4 as we increase the mass ratio (lower panels).

FIG. 5. We compare the behavior of the two twisting-up methods implemented in IMRPhenomXPHM for the same spin configuration
chosen in Fig. 4, varying the mass ratio between 4 and 16. For q ¼ 4 we observe good agreement between the two angle descriptions,
especially during the inspiral. However, as the mass ratio increases the agreement degrades and NNLO angles tend to produce
nonsmooth features in the waveform.

GERAINT PRATTEN et al. PHYS. REV. D 103, 104056 (2021)

104056-12



It is advantageous to visualize deviations between wave-
forms in terms of the mismatch rather than the match,
where the mismatch is defined as

MMðh1; h2Þ ¼ 1 −Mðh1; h2Þ: ð5:3Þ

We use the Advanced-LIGO [67] design sensitivity zero-
detuned-high-power power spectral density (PSD) [68]
with a lower cutoff frequency for the integrations of
20 Hz and an upper cutoff at 2048 Hz. We analytically
optimize over the template polarization angle, following
[69], and numerically optimize over reference phase and
rigid rotations of the in-plane spins at the reference
frequency. We do this rather than optimizing over the
reference frequency as suggested in [15], as this allows one
to set unambiguous bounds for the parameters involved in
the optimization. In order to perform the numerical opti-
mization we use the dual annealing algorithm as imple-
mented in the SciPy PYTHON package [70].

1. Matches against SXS NR simulations

We have computed mismatches for IMRPhenomXPHM

against 99 precessing SXS waveforms [64,65], picking
for each binary configuration the highest resolution avail-
able in the lvcnr catalog [29]. As a lower cutoff for the
match integration, we took the minimum between 20 Hz
and the starting frequency of each NR waveform. We
repeated the calculation for three representative inclinations
between the orbital angular momentum and the line of sight
ð0; π=3; π=2Þ and total masses ranging from 64 M⊙ to
250 M⊙. As low matches tend to be correlated with low
signal-to-noise ratio (SNR) and, therefore, with a lower
probability for the signal to be observed, we compute here
the SNR-weighted match Mw [71],

Mw ¼
�P

iM
3
i hhi;NR; hi;NRi3=2P

ihhi;NR; hi;NRi3=2
�

1=3

; ð5:4Þ

where the subscript i refers to different choices of polari-
zation and reference phase of the source, i.e., in our case of
the NR waveform. The results are shown in Fig. 6. The
large majority of the cases considered here resulted in
mismatches between 10−3 and 10−2, with a consistent
number of cases below 10−3 for face-on sources.
We observed, however, three cases for which matches are

below 95% for at least one value of the inclination
(SXS:0057, SXS:0058, SXS:0062) and one case
where this happens for all the inclinations (SXS:0165).
These all correspond to high mass ratio, strongly precessing
binaries: SXS:0057, SXS:0058, SXS:0062 are q ¼
5 simulations with χp ≥ 0.4 and SXS:0165 is a q ¼ 6

simulation with χp ¼ 0.78. For this type of systems, the
complex interaction between different waveform multi-
poles can result in a nontrivial dependence of the SNR on

the orientation of the source, with face-on configurations
not being necessarily favored (see, for instance, [72] for a
related discussion). We observe this in SXS:0057,
SXS:0062, SXS:0165, for which the highest values

FIG. 6. The SNR-weighted mismatch 1 −Mw of IMRPhe-

nomXPHM against 99 SXS precessing waveforms of the lvcnr
catalog, in order of ascending inclination. A dashed line and
a dotted line mark the 5% and 10% mismatch thresholds,
respectively.
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of SNR do not necessarily concentrate around zero incli-
nation. This explains why for these simulations the match
increases, rather than decreases, with the inclination of the
source.

2. Matches against other models

We now turn to computing the mismatch with other
waveform models. In contrast to the comparison with NR
waveforms shown in Sec. V C 1, where SNR-weighted
mismatches are presented, we show “raw” mismatches
between models, without weighting them. We compute
matches in the calibration regime of the NRSur7dq4 model,
1 ≤ m1=m2 ≤ 4 and dimensionless spin magnitudes up
to 0.8.
We compare against a number of other waveform

models, which are routinely used for gravitational wave
data analysis:

(i) Previous models from the phenomenological
waveform family including IMRPhenomD [2,3], IMRPhe-

nomHM [8], IMRPhenomPv3 [14], and IMRPhenomPv3HM

[15], and the spin-aligned basis waveforms of the
new IMRPhenomX family: IMRPhenomXAS [1] and
IMRPhenomXHM [7].

(ii) A NR surrogate model NRSur7dq4 [66] that interpo-
lates between NR waveforms, calibrated for precess-
ing simulations up to mass ratios of q ¼ 4 and spin
magnitudes up to 0.8.

(iii) A similar nonprecessing surrogate model NRHyb-

Sur3dq8 [73], calibrated to aligned-spin hybrid
waveforms up to mass ratios of q ¼ 8 and spin
magnitudes up to 0.8.

(iv) A nonprecessing, higher-modes model
SEOBNRv4HM_ROM [74] which is a reduced order
model of SEOBNRv4HM [6,75], an effective-one-body
model calibrated to NR waveforms.

We choose NRSur7dq4 as the reference model for high
mass precessing waveforms, where higher-mode contribu-
tions are significant, since this is still the only precessing
model calibrated to precessing NR waveforms. Because of
the limited length of the NR waveforms used to calibrate
the model (4000 total mass units), we restrict to large
masses above 90 solar masses and compute the mismatch
for random values of the total mass taken from the list
ð90; 126; 177; 249; 350ÞM⊙. Note that for large masses, the
impact of higher-mode effects and precession effects in the
strong field regime on the waveform is more pronounced.
In Fig. 7 we show mismatches with both the precessing
NRSur7dq4 [66] and the nonprecessing NRHybSur3dq8 [73].
The comparisons with the latter allow one to put the
mismatches we see for precessing higher-mode models
into the context of mismatches in the nonprecessing case,
where waveform models are significantly more mature.
In the upper panel of Fig. 7 we also show the comparison

of models that only contain the l ¼ jmj ¼ 2 modes with
NRHybSur3dq8. One can see that while IMRPhenomXAS is

significantly more accurate than IMRPhenomD as discussed
in [1], this only yields a small advantage when comparing
raw mismatches with a higher-modes model. A model that
does include higher modes, even when those are not
calibrated to NR, such as IMRPhenomHM, gains significant
accuracy. The relative gain from calibrating higher modes
is, however, comparable. The difference between the
IMRPhenomXHM and SEOBNRv4HM_ROM [74] models is
small, in particular considering that they do not describe
the same set of subdominant harmonics, with
IMRPhenomXHM having a larger fraction of very accurate
waveforms. We have also included a variant of our
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FIG. 7. In the upper panel we compare the nonprecessing
models IMRPhenomD, IMRPhenomXAS, IMRPhenomHM, IMRPhe-
nomXPHM, SEOBNRv4HM_ROM and the precessing IMRPhe-
nomXPHM and NRSur7dq4 models with the nonprecessing
NRHybSur3dq8 model as discussed in the main text. In the lower
panel we compare two versions of our IMRPhenomXPHM model
(NNLO-based version 102 with final spin version 0 and MSA-
based version 223 with final spin version 3; see Table III), and
IMRPhenomPv3HM with NRSur7dq4, as discussed in the main text.
For comparison we show also the mismatch between NRHyb-
Sur3dq8 and SEOBNRv4HM_ROM as displayed in the upper panel.
The number of samples for each comparison is indicated in the
legend.
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precessing IMRPhenomXPHM model (variant 102 based on
NNLO angles and final spin version 0; see Table III). One
can see that results are consistent with the manifestly
nonprecessing model IMRPhenomXHM (up to sampling
errors), which provides an end-to-end test of consistent
behavior of our new model in the aligned-spin limit. A
number of more stringent tests of the appropriate aligned-
spin limit have been carried out as part of the LALSuite code
review. Finally, NRSur7dq4 is most consistent with
NRHybSur3dq8, but the advantage is not very pronounced
and is likely to be significantly reduced by adding further
harmonics to IMRPhenomXPHM, in particular the l ¼ jmj ¼
5 modes already present in SEOBNRv4HM_ROM and the
l ¼ 4; jmj ¼ 3 modes present in IMRPhenomHM.
In the lower panel of Fig. 7 we finally show mismatches

against the precessing NRSur7dq4 model. One can see
that the distributions of mismatches are roughly similar to
the nonprecessing case, but with a tail of high mismatches,
which is similar to IMRPhenomPv3HM. The tail of small mis-
matches is similar to that when comparing the two non-
precessing models SEOBNRv4HM_ROM and NRHybSur3dq8,
while in the bulk IMRPhenomXPHM clearly outperforms
IMRPhenomPv3HM, which is not calibrated to numerical data
for subdominant harmonics.

D. Multibanding and Euler angles

In [12] we have discussed our implementation of an
algorithm to accelerate waveform evaluation by first
evaluating the waveform on a coarse unequispaced grid,
before linear interpolation to an equispaced fine grid,
following [11]. The grid spacing on the coarse grid is
chosen to satisfy a given error threshold for linear interpo-
lation (a different criterion to set the grid spacing has
previously been used in [11]). An iterative expression can
then be used to accelerate the evaluation of computationally
expensive trigonometric expressions, such as those required
to compute the strain from the phase (and amplitude).
In [12] we derived simple estimates to set the grid

spacing in terms of the phase errors and relative amplitude
errors as a function of the grid spacing, and we have
implemented a conservative default threshold of 10−3

radians of local phase error and of relative amplitude
error 10−3.
Here we apply the same idea to the Euler angles. For the

inspiral, in [12]we have derived the required grid spacing for
accurate linear interpolation from the leading singular termof
the TaylorF2 phase expression for the gravitational wave
phase of spherical harmonic mode hlm, which reads [76]

Φlm ¼ m
2

3

128η

�
2πf
m

�
−5=3

; ð5:5Þ

where η is the symmetric mass ratio and constants of
integration that do not affect the second derivative, and thus
the error estimate, have been dropped. The leading term for
the NNLO angles α and ϵ is the same

α¼
�
−

5δ

64m1

−
35

192

�
ðπfÞ−1þhigher order terms; ð5:6Þ

see Appendix G 1. Similar to the evaluation of the inspiral
gravitational wave phase, we need to evaluate expressions of
the type

eimαð2πf=mÞ; ð5:7Þ

for spherical harmonic modes hlm (see Appendix E), and we
thus have to apply multibanding interpolation to the argu-
ments of the complex exponentials of the type in Eq. (5.7).
The ratio of the maximal allowed step sizes for achieving the
same interpolation error for the gravitational wave phase
and Euler angles is thus given by the (inverse) ratio of
second derivatives with respect to the frequency f, which
evaluates to

dfΦ
dfα

¼
����mα00ð2πf=mÞ

Φ00
lm

����¼ðπfÞ2=3ð13 ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p þ7Þηffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p þ1
; ð5:8Þ

which is smaller than unity during the inspiral (f ≤ 0.1) and
vanishes in both the low-frequency and the extreme-mass-
ratio limits. The third Euler angle β is a regular function
during the inspiral, and thus does not require high resolution
for accurate interpolation.
During the merger and ringdown the angles have a

simpler functional form than the gravitational wave phase,
which is characterized by a Lorentzian. The exponential
falloff of the mode amplitudes in the ringdown phase also
requires significant resolution. The Euler angles in turn
carry significant systematic errors, e.g., due to applying the
SPA approximation for the whole waveform. Note that
the MSA prescription for the angles causes oscillations in
the angle β; however, the angle prescriptions still broadly
agree with the NNLO description.
Future work will attempt to calibrate the angle descrip-

tions to NR and better understand the phenomenology
during the merger and ringdown, which in turn will require
improved estimates for the required grid spacing in order to
not lose accuracy due to multibanding.
At the current level of accuracy produced from the

precession angle models, it does not seem necessary to
attempt more precise prescriptions to apply multibanding to
the Euler angles. For simplicity we thus use the same coarse
grid for each spherical harmonic mode that we have utilized
in [12]. To quantitatively assess the impact that multibanding
of the Euler angles has on the precessing waveforms, we
compute matches between the original waveform, generated
without angle multibanding, and waveforms produced with
the identical parameters except with multibanding, varying
the multibanding threshold between 0.1 and 0.0001.
The results of this comparison are shown in Fig. 8 for

waveforms twisted up using the MSA angles (top panel)
and the NNLO angles (bottom panel). They are generated
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over a broad parameter space range with 1 ≤ m1;2 ≤ 500
and dimensionless spin magnitudes up to unity, corre-
sponding to the extreme Kerr limit. The frequencies span
from 10 to 1024 Hz and the grid spacing df ranges from
0.01 to 0.3 Hz. In typical Bayesian inference applications,
the value of df is not chosen randomly but adjusted to the
segment length of the data to be analyzed, which is itself
adjusted to the time a signal is observable in the sensitive
band of the detector. Here we have chosen to use a random
df which could lead to downsampled waveforms and hence
worse matches; however, the random df allows us to stress
test the robustness of the multibanding algorithm and check
that any kind of uniform frequency grid is supported.
The results in Fig. 8 show that indeed the lower the

threshold the better is the match (at the expense of losing
speed). There is a tail of very low mismatches which is
much more pronounced for version 102 than for 223; this
tail corresponds to cases where the multibanding was

switched off automatically by the code, and hence the
match is close to machine precision. The multibanding is
automatically switched off in the following cases:

(i) For total mass Mtot higher than 500 M⊙. This cutoff
is already present in the nonprecessing model
IMRPhenomXHM and is motivated by the short length
of the waveform in the frequency band of the
detector for these massive systems, which renders
multibanding less efficient but also unnecessary.

(ii) When using MSA angles: for q > 50 and
Mtot > 100M⊙. This corner of the parameter space
corresponds to cases where the MSA angles do not
have a mild behavior and lead to “noisy”waveforms.
Applying multibanding to these cases would am-
plify errors, and is thus switched off.

(iii) When using NNLO angles: for q > 8. It is well
known that the NNLO angles can behave badly for
high mass ratios and can even be pathological; see,
e.g., our discussion in Sec. V B. Once again the
multibanding would not properly work for these
cases and is switched off.

The veto for the multibanding in the NNLO angles is much
broader than for MSA, leading to the more pronounced tail
of lower mismatches.
We also perform a PE study with different multibanding

thresholds, to test the effect on recovered posterior dis-
tributions. We perform the same NR injections as described
in Sec. V F 3 with version 223 for the MSA angles and
compare the results between thresholds of 0, 10−1, 10−2,
10−3, 10−4. As seen in Fig. 9 the results are highly
consistent. Considering these results together with the
benchmarking results shown in Fig. 10 and discussed in
the next section, we, however, make a conservative choice
for the default multibanding threshold for the Euler angles
and set the value to 10−3. This can be changed as described
in Appendix F.

E. Benchmarking

In Fig. 10 we show benchmarking results for one
precessing case in a frequency range from 10 to
2048 Hz comparing the previous precessing PHENOM

models with different settings of IMRPhenomXP and
IMRPhenomXPHM. The timing is carried out with the execut-
able GENERATESIMULATION (included in LALSuite/
LALSimulation), averaging over 100 repetitions. In the
top panel we show the dependency on total mass. The
frequency grid spacing df is computed automatically by
the SimInspiralFD interface to take into account the
length of the waveform in the time domain for the given
parameters. In the bottom panel instead we show the
dependency on the frequency grid spacings a function of
the total mass, where the frequency spacing is computed as
df ¼ 1=T, where T is a simple estimate of the duration of
the signal (see the discussion of Fig. 5 in [12]). In the labels
for IMRPhenomXP and IMRPhenomXPHM, the numbers between
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FIG. 8. Histograms of a mismatch calculation for hþ between
versions of IMRPhenomXPHM without using multibanding for the
Euler angles, and with four different levels of multibanding
threshold: 10−1, 10−2, 10−3, 10−4. The top panel shows the results
for the MSA prescription (version 223) and the bottom panel
shows the result for NNLO angles (version 102). The 106

waveforms were generated across a parameter space as described
in the main text. The threshold 10−3 (MB3 in the plot) has been
chosen as the default value in the LALSuite implementation.
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brackets refer to the version of Euler angles: 102 uses the
NNLO description, while 223 uses the MSA description
(for a complete list of options see Table III). For
IMRPhenomXPHM we also show the result without applying
multibanding in the Euler angles (MB0) and when using
multibanding with threshold 10−3 (MB3).
For both plots the conclusion is the same:

IMRPhenomXPHM without multibanding in the Euler angles
is already faster than its counterpart IMRPhenomPv3HM, and
when multibanding is included, it is even faster than the
“22-mode only” version IMRPhenomPv3. The threshold of the
multibanding used here is the default 10−3; however,
the user can modify this parameter at will. Higher values
of the threshold will accelerate the evaluation further at the
price of decreased accuracy, which may be found accept-
able based on the signal-to-noise ratio of a given event that
is analyzed.
We have also estimated the efficiency of our models

IMRPhenomXP and IMRPhenomXPHM compared to other pre-
cessing models by computing their mean likelihood evalu-
ation time in the LALInference Bayesian PE code [9]. To

perform this test, we have chosen an equal-mass con-
figuration, 100 different total masses in the range
½Mmin; 100�M⊙ with Mmin ¼ 20, except for the precessing
surrogate model NRSur7dq4, where we have set a higher
minimum total mass of Mmin ¼ 60 M⊙, due to its limi-
tations in start frequency. Dimensionless spin magnitudes
are distributed randomly between [0, 0.99] with a random
isotropic distribution of spin vectors, and a reference
frequency of 20 Hz. Two different segment lengths of
ΔT ¼ 4 s, 8 s are studied as they are typical for the
currently detected BBH GW signals [40]. As for our match
calculations in Secs. V C 1 and V C 2 the Advanced LIGO
zero detuned power spectral density [68] is used here for
likelihood evaluations. For each total mass we perform 100
likelihood evaluations with randomly chosen spin configu-
rations. The average of these 104 likelihood evaluations for
each model is shown in Table I.
The results confirm that the IMRPhenomXPHM model is

the most efficient precessing waveform model with higher
harmonics: ∼5 times faster than IMRPhenomPv3HM [15] for
ΔT ¼ 4 s and ∼133 times faster than SEOBNRv4PHM for

(102)
(223)

_MB0 (223)
_MB3 (223)

IMRP enomPv2
IMRP enomPv3
IMRP enomPv3HM
IMRP enomXP
IMRP enomXP
IMRP enomXPHM
IMRP

h
h
h
h
h
h
henomXPHM

NRSur7dq2

5 10 50 100
0.001

0.010

0.100

1

10

(102)
(223)

_MB0 (223)

IMRPhenomPv2
IMRPhenomPv3
IMRPhenomPv3HM
IMRPhenomXP
IMRPhenomXP
IMRPhenomXPHM
IMRPhenomXPHM_MB3 (223)

0.001 0.010 0.100 1
0.001

0.010

0.100

1

10

FIG. 10. Mean evaluation time for different precessing models as a function of the total mass (left panel) and as a function of the
spacing of the frequency grid (right panel). The NRSur7dq4 model cannot be evaluated for such low frequencies as the PHENOM models;
hence it only appears in the left panel for high masses, but not in the right panel, where we are using a total mass of 50 M⊙.

FIG. 9. Injection recovery results for SXS:BBH:0143 for IMRPhenomXPHM without multibanding in the Euler angles and with
four different thresholds (10−1, 10−2, 10−3, 10−4) for multibanding in the angles. No appreciable differences arise in the posteriors,
meaning that a more relaxed threshold than the default of 10−3 could be used in PE studies, reducing even more the computational cost
of the runs.

COMPUTATIONALLY EFFICIENT MODELS FOR THE DOMINANT … PHYS. REV. D 103, 104056 (2021)

104056-17



ΔT ¼ 4 s. SEOBNRv4PHM [77] is a precessing extension
to the SEOBNRv4HM model [75] and is predicated on the
numerical integration of computationally expensive ordi-
nary differential equations, making the waveform slow to
evaluate, though we note that there has been significant
work on improving waveform generation costs of effective
one body models, such as the postadiabatic scheme
introduced in [78] or reduced order models [79].
Regarding precessing models including only the ð2;�2Þ
mode in the coprecessing frame, IMRPhenomXP is slightly
slower than IMRPhenomPv2 as a trade-off of the inclusion of
the double-spin effects in the Euler angles, although it is
much faster than the other phenomenological and spinning
effective one body models: ∼3.4 times faster than
IMRPhenomPv3 for ΔT ¼ 4 s and ∼312 times faster than
SEOBNRv4P for ΔT ¼ 4 s. While an increase of the segment
length increases the mean evaluation time for all models,
the relative differences in evaluation costs at ΔT ¼ 8 s are
still similar to those at 4 s. The numbers reported in Table I
illustrate the huge impact in efficiency that our new
precessing models may have on data analysis studies such
as PE, where millions of likelihood evaluations are per-
formed per run.
Finally, we note that the computational cost of Bayesian

inference can be significantly reduced through the use of
reduced order quadratures [80–82]. This framework has
been applied to a number of waveform models, including
IMRPhenomPv2 [83]. We note that our model is amenable to
such an approach following the methodology detailed
in [83].

F. Parameter estimation

We use coherent Bayesian inference methods to deter-
mine the posterior distribution pðθjdÞ for the parameters θ
that characterize a binary, given some data d. From Bayes’
theorem, we have

pðθjdÞ ¼ LðdjθÞπðθÞ
Z

; ð5:9Þ

where LðdjθÞ is the Gaussian noise likelihood [9,84,85],
πðθÞ the prior distribution for θ, and Z the evidence

Z ¼
Z

dθLðdjθÞπðθÞ: ð5:10Þ

For the analysis here, we use both the nested sampling [86]
algorithm implemented in LALInference [9] and the nested
sampling algorithm DYNESTY [87] implemented in BILBY

[10] and PARALLEL BILBY [88]. We use the public strain
data from the Gravitational Wave Open Science Center
(GWOSC) [89–92]. Following [40], we marginalize over
the frequency-dependent spline calibration envelopes that
characterize the uncertainty in the detector amplitude and
strain [93–95].

1. GW150914

As a prototypical example of the application of
IMRPhenomXPHM to GW data analysis we reanalyze
GW150914, the first direct observation of GWs from the
merger of two black holes [26]. For GW150914 we use the
nested sampling algorithm implemented in LALInference
[9]. Our PE uses 2048 live points and coherently analyzes
8s of data. We use priors as detailed in Appendix C of [40]
and use the PSDs [92] and detector calibration envelopes
[91] as available on GWOSC [89].
Using the inherent modularity of IMRPhenomXPHM, we

can try to gauge the impact of systematics arising from the
modeling of spin-precession effects by performing coherent
Bayesian PE using the different prescriptions for the Euler
angles discussed in Sec. IV. The final spin descriptions used
here are the ones based on averaged in-plane spin for the
NNLO and MSA Euler angle formulations, i.e., final spin
version 0 for model version 102 (NNLO) and final spin
version 3 for model version 223 (MSA); see Appendix F
for details.
As can be seen in Figs. 11 and 12, constraints on

parameters such as the effective aligned-spin parameter χeff
and mass ratio q are consistent between the different
waveform models, whereas the effective precessing spin
χp is not meaningfully constrained. This is in agreement
with studies detailing the impact of waveform systematics
on the analysis of GW150914 [25], which conclude that
systematic errors and biases are small compared to stat-
istical errors.

TABLE I. Mean likelihood evaluation time in milliseconds for several precessing models for equal masses. The numbers represent
averages over a mass range of ½Mmin; 100�M⊙ with Mmin ¼ 20, 60 M⊙ and random spin orientations and magnitudes. The first column
indicates the data analysis segment length in seconds.

Mmin
½M⊙� ΔT IMRPhenomXP IMRPhenomPv2 IMRPhenomPv3 SEOBNRv4P IMRPhenomXPHM IMRPhenomPv3HM SEOBNRv4PHM NRSurd7q4

20 4 s 8.6 5.7 29.1 2691.4 31.8 160.3 4259.9 � � �
8 s 16.8 11.2 56.4 2976.6 52.8 311.7 4540.9 � � �

60 4 s 5.8 4.1 29.4 1492.1 21.4 161.7 3016.2 60.5
8 s 11.4 8.0 56.6 1483.9 36.3 312.8 2951.5 59.9

GERAINT PRATTEN et al. PHYS. REV. D 103, 104056 (2021)

104056-18



2. GW170729

We now turn our attention to the analysis of GW170729,
the BBH GW signal with the highest mass detected during
the O1 and O2 LIGO-Virgo observing runs [40]. Both the
high mass and the significant posterior support for a mass
ratio different from unity makes it a good candidate to test
the impact of higher-order modes on the estimation of its
parameters.

This fact has motivated several studies of this event in the
literature with nonprecessing higher-order modes models
[96,97] such as the phenomenological IMRPhenomHM [8], the
effective-one-body SEOBNRv4HM [75], and the NR surro-
gate [73]. We also reanalyzed this event with the upgraded
version of the phenomenological nonprecessing models
IMRPhenomXHM in [12] and found consistency with the
results in [96]. Furthermore, there have been investigations
of this event with precessing waveform models, in [40]
with IMRPhenomPv2 and in [14,15] with IMRPhenomPv3 and
IMRPhenomPv3HM.
Here we report on the analysis of GW170729 with our

new precessing IMRPhenomXPHM model, which upgrades
IMRPhenomPv3HM. For our analysis we use 4 s of the
publicly available strain data from the GWOSC [89,90]
with a lower cutoff frequency of 20 Hz. These data are
calibrated by a cubic spline, and we use the same PSDs
utilized in [40]. We analyze the strain with the PYTHON-
based Bayesian inference framework PARALLEL BILBY [88],
which uses a parallel version of the nested sampling code
DYNESTY [87]. We carry out the PE runs using 4096 live
points, choose the maximum number of Markov chain
Monte Carlo steps to take as 104, and require 10 autocor-
relation times (ACT) before accepting a point. We merge
results from four different seeds in order to get a single
posterior distribution. The simulations are performed for
the default options of the LALSuite implementation of
IMRPhenomXPHM (the precessing version 223, final spin
version 3, and convention 1; see Appendix F). The priors
are the same as used in [96] but adapted to precessing
models.
We have analyzed this event with the nonprecessing

IMRPhenomXAS and IMRPhenomXHM models in [7], where
we have also compared with results available in the

FIG. 11. Bayesian inference results for GW150914: one-dimensional posterior probability distributions for the effective precessing
spin parameter χp and the mass ratio q. (Here q is the inverse of our definition in Sec. I, following the LALInference convention.) We show
results for IMRPhenomXPHM with and without higher modes, using NNLO and MSA angles, respectively, as discussed in Sec. IV. For
comparison, we also show results for IMRPhenomPv3 and IMRPhenomPv3HM. The labels of the different versions of IMRPhenomXPHM are
explained in Appendix F.

FIG. 12. Bayesian inference results for GW150914: posterior
probability distributions for the effective spin parameters χeff and
χp with two-dimensional 90% credible intervals. Here we show
results for IMRPhenomXPHM with and without higher modes, using
NNLO and MSA angles, respectively, as discussed in Sec. IV.
For comparison, we also show results for IMRPhenomPv3 and
IMRPhenomPv3HM.
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literature and obtained with other nonprecessing models.
Our results based on the MSAversions of IMRPhenomXP and
IMRPhenomXPHM are shown in Fig. 13, and compared with
the IMRPhenomPv2 model that is routinely used for PE, but
lacks higher modes. We show posteriors for the effective
spin parameters χeff and χp, the component masses, the
distance DL, and the angle θJN between total angular
momentum and line of sight.
The results show agreement between the new IMRPhenomXP

model and the old IMRPhenomPv2 model, although small
differences in the shape of the posterior distributions are due
to the inclusion of double-spin effects in IMRPhenomXP.
The inclusion of higher-order modes produces a shift in
the posterior distributions of some quantities such as the
primary component mass. These changes in some para-
meters due to the inclusion of precessing higher-order modes

are consistent with those observed in [15] for this particu-
lar event.

3. NR injections

We investigate PE biases that might affect Bayesian
inference analyses with IMRPhenomXPHM by perform-
ing a zero-noise injection of a public binary black hole
numerical relativity simulation from the first SXS wave-
form catalogue [65]. We use SXS:BBH:0143, a mass
ratio 2 simulation with positive χeff and small χp, broadly
consistent with the population of BBHs observed to
date [98,99]. We set the total mass of the injected signal
to be 100 M⊙ and its luminosity distance at 430 Mpc,
yielding a signal-to-noise ratio of 52. We analyze a 4 s
segment of data with a lower cutoff frequency of 20 Hz.

FIG. 13. Bayesian inference results for GW170729: Posterior probability distributions for the effective spin parameters χeff and χp, the
component massesm1 andm2, distanceDL, and the angle θJN between angular momentum and line of sight. The 90% credible intervals
are represented by vertical (contour) lines in the 1D (2D) plots.
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The parameters of the injected waveform are listed in
Table II, together with their estimated values, as dis-
cussed below.
As for our analysis of GW170729 above, we use the

PARALLEL BILBY code [88] with the DYNESTY [87] nested
sampler. We perform these runs using 2048 live points
and 5 ACTs without any kind of marginalization and
4 independent seeds that are then merged together. The
noise spectral density used for evaluating the likelihood
function is the projected sensitivity for Advanced LIGO
obtained from simulations of O4 data [100]. The orienta-
tion of the detector at the time of injection is specified
through the injection time (within 3 min of the event
GW150914) and at right ascension and declination angles
α ¼ 1.375 rad and δ ¼ −1.2108 rad (consistent with
GW150914 [26]). We specify the line of sight relative to

the binary at the reference frequency of 20 Hz through the
angles ι ¼ 1.077 and ϕ ¼ 0, relative to the direction of the
initial orbital angular momentum, as required by the
LALSuite infrastructure for numerical relativity injections
[29]. Note that these angles are actually strongly time
dependent due to the precessing motion of the orbital
angular momentum. For strongly precessing systems
results will in general depend significantly on the line of
sight and on the polarization (in addition to the sky
location). While this is partially accounted for in our
SNR-weighted match calculation (see Sec. V C 2), a
realistic assessment of the systematic errors for PE with
a precessing waveform model would require a much more
detailed study discussing such dependencies that would go
beyond the scope of this work. Finally, we choose the
polarization angle to be ψ ¼ 0.33 rad.

TABLE II. Black hole binary recovered parameters for the injected NR waveform from Fig. 14. The values correspond to the mean
recovered values with their 90% credible interval. The first column shows the identifier of the injected NR waveform, and then we
specify the version of the IMRPhenomXPHM model, the component masses (m1,m2), chirp massMc, mass ratio qð¼ m2=m1Þ, luminosity
distanceDL, effective spin parameter χeff, effective precessing spin parameter χp, and the angle between the total angular momentum and
the line of sight, θJN. The injected values are also displayed.

NR simulation Version m1=M⊙ m2=M⊙ Mc=M⊙ q DL=Mpc χeff χp θJN (rad)

SXS:BBH:0143 v102 FS0 65.26þ1.98
−2.05 32.78þ1.73

−1.65 39.79þ0.96
−0.89 0.50þ0.03

−0.04 465.32þ72.92
−71.69 0.24þ0.05

−0.04 0.20þ0.05
−0.07 1.02þ0.10

−0.10
v102 FS2 65.17þ1.96

−2.06 32.76þ1.70
−1.71 39.76þ0.95

−0.90 0.50þ0.03
−0.04 463.99þ71.83

−70.47 0.24þ0.05
−0.04 0.20þ0.06

−0.07 1.03þ0.11
−0.09

v223 FS2 65.12þ1.96
−2.05 32.36þ1.70

−1.71 39.48þ0.91
−0.89 0.50þ0.04

−0.04 456.00þ72.82
−70.12 0.23þ0.04

−0.04 0.23þ0.10
−0.11 1.07þ0.11

−0.09

v223 FS3 65.11þ2.01
−2.10 32.36þ1.70

−1.73 39.47þ0.88
−0.91 0.50þ0.04

−0.04 455.17þ72.76
−69.63 0.23þ0.04

−0.04 0.23þ0.09
−0.11 1.07þ0.11

−0.10
Injected 65.77 34.26 40.88 0.52 430.00 0.26 0.20 1.08

FIG. 14. Injection recovery results for SXS:BBH:0143. Top row: From left to right, posterior probability distributions for the mass
ratio (q ¼ m2=m1), total mass in the detector frame, and χeff . Bottom row: From left to right, posterior probability distributions for χp,
luminosity distance, and the angle θJN between the total angular momentum and line of sight. The dashed vertical lines represent 90%
credible intervals, while the thick black lines represent the injected value. The notation for the different versions of IMRPhenomXPHM is
described in Appendix F.
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We set the prior distributions for the source parameters as
follows: uniform prior on the mass ratio up to q ¼ 8 and a
uniform prior on the chirp mass between 30 and 55 M⊙.
The component masses are constrained to be between 10
and 80 M⊙. The luminosity distance prior is uniform in
volume with maximal distance at 2000 Mpc. The dimen-
sionless spin magnitudes are allowed up to the extreme
Kerr limit and the spin orientations are taken to be
isotropically distributed.
In Fig. 14 we show 1D probability distributions for the

main parameters of the injected waveform using different
versions of the IMRPhenomXPHM model as templates. We do
not include all possible combinations of versions but only
the most relevant ones. We also point out that the FS2
version for the final spin is more suitable for massive events
where the merger is more prominent, while the default
versions FS0 and FS3 (respectively, for NNLO and MSA
angles) are more suitable for lower-mass events where the
inspiral region is more relevant. The mean values of the
recovered parameters and their 90% credible interval are
reported in Table II. Note that the figures and table report
the mass ratio as the inverse of our definition in the text for
consistency with the typical choice in publications of the
LIGO and Virgo collaborations to report results for the
mass ratio in the interval (0,1].
In Fig 14, we observe that the differences between

several model versions are small except for χp, where
different prescriptions for the Euler angles (NNLO vs
MSA) deliver sensibly different results. One can appre-
ciate that, even for moderate mass ratio and small χp values,
different modeling strategies can affect the final result
and, most noticeably, our measurement of precession
effects.
Since our model is built in the Fourier domain, we rely

on the stationary phase approximation, which is strictly
valid only in the inspiral regime. This might exacerbate
biases for high total-mass events, for which the merger
portion of the signal is more “visible” in the detector band.
Injecting a lower-mass signal or a longer waveform could
improve the results. There exist some proposals to improve
the description of the Euler angles for Fourier-domain
models, such as an extension of the SPA approximation
through merger [101] or a direct calibration of the Euler
angles to NR simulations [102]. Time-domain models do
not rely on the SPA approximation and are expected to
perform better than their Fourier-domain counterparts. We
foresee that a new precessing time-domain model based on
the recently developed IMRPhenomT waveform family
[43,103] will help to alleviate some of the problems
discussed here. The new model, called IMRPhenomTPHM,
allows one to choose among different final spin and
precession prescriptions, including a fully numerical evo-
lution of the spin evolution equations which goes beyond
the analytical MSA and NNLO approximations available in
IMRPhenomXPHM.

In this example, the choice of priors and sampler settings
were sufficient to obtain a correct recovery of parameters.
However, for more massive events, the short duration of the
signal is expected to introduce degeneracies in the recov-
ered parameters, and the sampler may struggle to find the
correct posterior distribution. For more challenging events,
one will need to perform a deeper study to ensure that the
different PE settings do not affect the result. We performed
a more detailed analysis of PE settings and convergence of
runs in our reanalysis of GW190412 [104].

VI. CONCLUSIONS

With this paper we conclude the construction of a first
version of the IMRPhenomXwaveform family for coalescences
of noneccentric BBH. We have shown that including
subdominant harmonics and precession in awaveformmodel
does not have to come at the expense of evaluation speed.
This opens up the possibility to routinely perform PE for the
larger numbers of events observed as gravitational wave
detector sensitivity increases without neglecting subdomi-
nant harmonics and precession.
Our model and its LALSuite implementation have been

designed with flexibility and modularity as key design
elements, not only to incorporate future improvements but
also to allow awide range of computational experiments—as
a first application we have shown PE studies that compare
different prescriptions for the final spin.
A number of further improvements are foreseen: first, the

increasing number and quality of numerical relativity
waveforms will allow one to calibrate further nonprecess-
ing subdominant harmonics to numerical relativity, e.g., the
(5,5) and (4,3) modes, and to further increase the quality of
the model for nonprecessing waveforms.
Regarding precession, several challenges need to be

addressed (see also [21]): First, it will be desirable to develop
a computationally inexpensive numerical fit for the final spin
of precessing coalescences. Another natural extension will
be to develop a phenomenological ansatz for the Euler angle
description, and calibrate it to numerical relativity. Other
challenges are the development and calibration of a phe-
nomenological description for the complete precessing
waveform for the merger and ringdown, where the SPA
approximation is invalid, and which should also include the
asymmetries responsible for large recoils [20]. Finally, we
note that precession is currently measured in PE in terms of
the parameter χp, which is motivated by the NNLO inspiral
description, and it is likely to be fruitful to also consider other
parameters in the future.
Some of these challenges will be difficult to address in

the frequency domain, and we foresee synergies between
the development of time domain and frequency domain
approaches. As a first step we have constructed
IMRPhenomTP, a time domain version of the ideas underlying
the IMRPhenomXP model, which is aimed to serve as a tool to
better understand and remedy current shortcomings of our
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construction, and is presented in [43]. We expect our code
to be sufficiently flexible to serve as a basis for a future
implementation of the IMRPhenomTP model.
Planned extensions regard the incorporation of eccen-

tricity, and of matter effects along the lines of [105–107].
We note that the acceleration technique of multibanding is
particularly important for lower-mass systems such as
binary neutron star and black hole–neutron star systems.
Finally we note that our code implementation leaves much
room for increasing computational efficiency, e.g., by
utilizing graphics processing units.
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APPENDIX A: WIGNER-d MATRICES

The real-valued Wigner-d matrices are defined
by [31,108]

dlmm0 ðβÞ ¼
Xkmax

k¼kmin

ð−1Þk
k!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþmÞ!ðl −mÞ!ðlþm0Þ!ðl −m0Þ!p
ðlþm − kÞ!ðl −m0 − kÞ!ðk −mþm0Þ!

�
cos

β

2

�
2lþm−m0−2k

�
sin

β

2

�
2k−mþm0

; ðA1Þ

with kmin ¼ max ð0; m −m0Þ and kmax ¼ minðlþm;
l −m0Þ, where analogous expressions for dlm−m0 can be
constructed using the symmetry of the Wigner-d matrices

dl−m−m0 ¼ ð−1Þðm−m0Þdlmm0 ; ðA2Þ

dlmm0 ðβÞ ¼ ð−1Þmþm0
dlm0mðβÞ; ðA3Þ

dlmm0 ðβÞ ¼ dlm0mð−βÞ: ðA4Þ

Here we provide explicit expressions for the Wigner
dlmm0 ðβÞ matrices for all modes involved in the underlying
nonprecessing model. We also include the 43 mode since it
is used by the option that twists IMRPhenomHM.

1. l= 2, m0 = 2

d222ðβÞ ¼ cos4
β

2
;

d212ðβÞ ¼ 2cos3
β

2
sin

β

2
;

d202ðβÞ ¼
ffiffiffi
6

p
cos2

β

2
sin2

β

2
;

d2−12ðβÞ ¼ 2 cos
β

2
sin3

β

2
;

d2−22ðβÞ ¼ sin4
β

2
:
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2. l= 2, m0 = 1

d221ðβÞ ¼ −2cos3
β
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3. l= 3, m0 = 3
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APPENDIX B: CONVENTIONS FOR
NONPRECESSING MODES

In the precessing L-frame we can decompose the
gravitational wave strain into spherical harmonic modes
hlm as

hL ¼
X4;l

l¼2;m¼−l
hLlmðtÞ−2YL

lm; ðB1Þ

where the YL
lm are spherical harmonics in the precessing

L-frame defined in Sec. C. In our twisting approximation
we identify the modes hLlm in the noninertial precessing
frame with the spherical harmonic modes described by the
nonprecessing IMRPhenomXAS and IMRPhenomXHM models,
which are, however, modified by changing the complex
ringdown frequencies in the waveform to be consistent with
the estimate for the precessing final spin, which we have
described in Sec. IV D.
The time domain modes can be written in terms of

positive amplitudes almðtÞ and phases ϕlmðtÞ such that

hLlmðtÞ ¼ almðtÞe−iϕlmðtÞ; ðB2Þ

where we assume that the phase of the aligned-spin modes
is a monotonically increasing function of t,

_ϕlmðtÞ > 0: ðB3Þ

As discussed in detail in [7] there are only two
inequivalent choices of tetrad convention that are consistent
with equatorial symmetry, and for simplicity we adopt the
convention that for low frequencies the time domain phases
satisfy

Φlm ≈
m
2
Φ22: ðB4Þ

This differs from the convention of Blanchet et al. [109] by
overall factors of ð−1Þð−ιÞm in front of the hLlm modes.
The equatorial symmetry of nonprecessing binaries

implies

hLlmðtÞ ¼ ð−1Þlh�Ll−mðtÞ: ðB5Þ

With our conventions for the Fourier transform (2.3), the
time domain relations between modes (B5) that express
equatorial symmetry can be converted to the Fourier
domain, where they read

h̃LlmðfÞ ¼ ð−1Þlh̃�Ll−mð−fÞ: ðB6Þ

The definitions above then also imply that h̃LlmðfÞ (with
m > 0) is concentrated in the negative frequency domain
and h̃Ll−mðfÞ in the positive frequency domain.

The Fourier amplitudes Almðf > 0Þ are then non-neg-
ative functions for positive frequencies, and zero otherwise,
and the Fourier domain phases Φlmðf > 0Þ, defined by

h̃Ll−mðfÞ ¼ AlmðfÞe−iΦlmðfÞ: ðB7Þ

APPENDIX C: FRAME TRANSFORMATIONS
AND POLARIZATION BASIS

We construct our waveform model in terms of a trans-
formation from spherical harmonics hLlm in the precessing
L-frame to spherical harmonics hJlm in the inertial J-frame.
The input to our model consists of intrinsic parameters that
specify the masses and spin vectors of the binary system,
and extrinsic parameters that describe the location of the
source and its spatial orientation relative to the frame of the
observer, which we have chosen to refer to as the N-frame,
where N̂ is the direction from the source to the observer.
We need to guarantee that our model returns an unam-

biguous waveform for given values of the intrinsic and
extrinsic parameters; in particular, we carefully need to
specify in which coordinate system we specify the spin
vectors, as well as how to specify the spatial orientation of
the source as needed to define all extrinsic parameters. To
this end, in this section we will discuss the relation between
the different coordinate frames we are using and identify a
complete set of input parameters.
We will work with three inertial frames, which we have

introduced in Sec. II: theL0-frame, the J-frame, andN-frame
or wave frame. These three frames will have their z-axis
aligned with L0, J, and N̂, respectively, and they do not
evolve in time. The L0-frame will also be referred to as the
source frame, since in accordance with the LALSuite software
infrastructure the IMRPhenomXP and IMRPhenomXPHM models
parametrize the two spin vectors of the black holes by
Cartesian components in this frame.
In addition to the three inertial frames we will consider

the noninertial L-frame that tracks the precession of the
orbital plane and coincides with the L0-frame at a chosen
reference frequency fref. Choosing a different value for fref
while fixing the initial spin components, which we have
chosen to specify with respect to the L0-frame, will thus in
general correspond to a different waveform.
Wewill denote the triads of our frames by fx̂L0

; ŷL0
; ẑL0

g,
fx̂L; ŷL; ẑLg, fx̂J; ŷJ; ẑJg, and fx̂N̂; ŷN̂; ẑN̂g and choose the
z-axes as

ẑL0
¼ L̂0; ẑL ¼ L̂; ẑJ ¼ Ĵ; ẑN̂ ¼ N̂: ðC1Þ

Note that the x̂L0
− ŷL0

plane corresponds to the initial
orbital plane.
For clarity, in what follows we will provide explicit

expressions for the vectors L̂0; N̂; J in the L0- and
J-frames. We will write the components of a generic vector
u in a particular frame as
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u _¼

0
B@

ux;frame

uy;frame

uz;frame

1
CA

frame

; ðC2Þ

e.g., the vector J will have the following components in the
L0 frame:

J _¼

0
B@

Jx;L0

Jy;L0

Jz;L0

1
CA

L0

: ðC3Þ

So far we have characterized our three inertial coordinate
frames by the choice of z-axis, and we have defined the
precessing L-frame as the time evolution of the L0-frame.
We now need to complete our definitions of the three
inertial frames by fixing the freedom of rotations around the
axes, which precisely corresponds to the freedom of
specifying three Euler angles to fix a spatial rotation. In
the L0-frame, which we have chosen as the frame where we
parametrize our input spin components, we choose the line
of sight N̂ to have spherical angles ðι; π

2
− ϕrefÞ, which is

chosen to adapt to the conventions of [16], where this
choice corresponds to Eq. (31c) and setting the angle Φ in
this equation to Φ ¼ ϕref . We call ι the inclination of the
system, and interpret ϕref as fixing the freedom of rotations
in the orbital plane. We treat ι and ϕref as input parameters
that the user specifies when calling the waveform model.
In the L0-frame the components of N̂ are thus

N̂ _¼

0
BB@

sin ι cos
�
π
2
− ϕref

	
sin ι sin

�
π
2
− ϕref

	
cos ι

1
CCA

L0

; ðC4Þ

while the vector J reads

J _¼

0
BB@

m2
1χ1x þm2

2χ2x

m2
1χ1y þm2

2χ2y

L0 þm2
1χ1z þm2

2χ2z

1
CCA

L0

: ðC5Þ

From the above equation it follows that the spherical angles
ðθJL0

;ϕJL0
Þ of J in this frame are given by

θJL0
¼ arccos

Jz;L0

jJj ¼ arccos
L0 þm2

1χ1z þm2
2χ2z

jJj ; ðC6Þ

ϕJL0
¼ arctan

Jy;L0

Jx;L0

¼ arctan
m2

1χ1y þm2
2χ2y

m2
1χ1x þm2

2χ2x
: ðC7Þ

We will now turn to describing the J-frame. We will fix
the orientation of the axes in this frame by requiring that the

line of sight N̂ lies in the x̂J − J plane and has positive
projection on the x̂J-axis. If we denote by θJN the angle
between N̂ and the ẑJ axis, this choice implies

N̂ _¼

0
B@

sin θJN
0

cos θJN

1
CA

J

: ðC8Þ

With the above definition of θJN , and using Eqs. (C4) and
(C5) one has

θJN ¼ arccos

�
J · N̂
jJj

�
ðC9Þ

¼ Jx;L0
sin ι sinϕref þ Jy;L0

sin ι cosϕref þ Jz;L0
cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2x;L0
þ J2y;L0

þ J2z;L0

q :

ðC10Þ

Consequently, in the twisting-up formula (2.1), the spheri-
cal harmonics −2Ylmðθ;ϕÞ will have arguments ðθ;ϕÞ ¼
ðθJN; 0Þ. Having specified our convention regarding the J-
frame, we can determine unambiguously the Euler angles
relating it to the L0-frame. We can identify two of these
angles with θJL0

and ϕJL0
, as two successive rotations

Ryð−θJL0
Þ ·Rzð−ϕJL0

Þ will align Ĵ with the ẑL0
axis, and

we call this intermediate frame as J0-frame. In order to
bring N̂ in the x̂J − ẑJ plane, we need to apply a further
rotation around the ẑL0

-axis by an angle −κ, so that
Eq. (C8) is satisfied. To this end, we first compute

0
B@
N̂x;J0

N̂y;J0

N̂z;J0

1
CA

J0

¼Ryð−θJL0
Þ ·Rzð−ϕJL0

Þ ·

0
B@
N̂x;L0

N̂y;L0

N̂z;L0

1
CA

L0

; ðC11Þ

and then take

κ ¼ arctan
N̂y;J0

N̂x;J0
: ðC12Þ

The three Euler angles relating the L0- and J-frames are
therefore κ; θJL0

;ϕJL0
. The components of any vector u in

the two frames are related via0
B@
ux;J
uy;J
uz;J

1
CA

J

¼Rzð−κÞ ·Ryð−θJL0
Þ ·Rzð−ϕJL0

Þ ·

0
B@
ux;L0

uy;L0

uz;L0

1
CA

L0

:

ðC13Þ

Equivalently, a generic vector in the J-frame can be rotated
to the L0-frame by applying the inverse transformation
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0
B@

ux;L0

uy;L0

uz;L0

1
CA

L0

¼ RzðϕJL0
Þ ·RyðθJL0

Þ ·RzðκÞ ·

0
B@

ux;J
uy;J
uz;J

1
CA

J

:

ðC14Þ

Notice that, in the J-frame, the initial angular momentum
has components:

L̂0 _¼

0
B@

sin β0 cos α0
sin β0 sin α0

cos β0

1
CA

J

: ðC15Þ

We can compute the initial value of the Euler angles
ðα; β; γÞ introduced in Sec. III, by identifying the product
of rotations in Eq. (C13) with Rzðα0Þ ·Ryðβ0Þ ·Rzðγ0Þ,
whence it follows that

α0 ¼ π − κ; ðC16aÞ

β0 ¼ θJL0
; ðC16bÞ

γ0 ¼ −ϵ0 ¼ π − ϕJL0
: ðC16cÞ

It can be checked that, with the choice of offsets above,
the initial angular momentum in the J-frame is indeed
rotated to the ẑL0

-axis by the transformation of Eq. (C14).
The NNLO and MSA angle prescriptions provide

expressions described in Secs. IVA and IV B for the
Euler angles as functions of frequency. In order to initialize
the angles to prescribed values α0, β0, ϵ0 according to
Eqs. (C16) at a given reference frequency fref, we have to
add an offset to the functional dependence of the NNLO/
MSA angles in the following way:

αðfÞ ¼ αNNLO=MSAðfÞ − αoffset; ðC17aÞ

ϵðfÞ ¼ ϵNNLO=MSAðfÞ − ϵoffset: ðC17bÞ

Here the offsets are constant values that corres-
pond to frequency-independent rotations of the system
into the desired state at the reference frequency, and
a typical example would be to choose the α offset as
−ðαðfrefÞ − α0Þ. Our code offers different options to
compute these offsets, which we discuss in Appendix F
and list in Table IV.
Finally we fix the remaining freedom in theN-frame. We

have previously aligned the ẑN̂ axis with N̂, so we just have
to fix a rotation around N̂. Following the LALSuite con-
vention [29,110] we choose the x̂N̂-axis such that the vector
L0 lies in the x̂N̂ − ẑN̂ plane with positive projection over
x̂N̂ and ŷN̂ so that it completes the triad. Equivalently,

L̂0 · x̂N̂ ¼ sin ι; ŷN̂ ¼ N̂ × x̂N̂

jN̂ × x̂N̂j
: ðC18Þ

In the N-frame the components of L̂0 are then given by

L̂0 _¼ðsin ι; 0; cos ιÞN: ðC19Þ

The x̂N̂ and ŷN̂ axes we have just introduced do not
coincide with the spherical basis vectors orthogonal to N̂
that determine the arguments of the weighted spherical
harmonics in our J-frame. Therefore, we have to compute
the angle ζ that rotates one basis into the other. We will call
the original polarization axes x̂0

N̂
and ŷ0

N̂
. Note that,

geometrically, these vectors can be defined as

TABLE III. Options in the LALSuite implementation to change between different descriptions of the Euler angles.

PrecVersion Explanation

101 NNLO PN Euler angles and a 2PN nonspinning approximation to L.
102 NNLO PN Euler angles and a 3PN spinning approximation to L.
103 NNLO PN Euler angles and a 4PN spinning approximation to L.
104 NNLO PN Euler angles and a 4PN spinning approximation to L augmented with leading PN

order at all order in spin terms.
220 MSA Euler angles and a 3PN spinning approximation to L.

Fall back to NNLO angles with 3PN approximation to L if MSA system fails to initialize.
221 MSA Euler angles and a 3PN spinning approximation to L.

Throw error message if MSA system fails to initialize.
222 MSA Euler angles close to Pv3HM implementation.

Throw error message if MSA system fails to initialize.
223 MSA Euler angles closer to Pv3HM implementation.
(default) Fall back to NNLO with 3PN approximation to L if MSA system fails to initialize.
224 As version 220 but using the ϕz;0 and ζz;0 prescription from 223.
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x̂0
N̂
¼ ŷ0

N̂
× N̂

jŷ0
N̂
× N̂j ; ŷ0

N̂
¼ J × N̂

jJ × N̂j ; ðC20Þ

and are therefore equivalent to the choice made in [28], as
we explain in Appendix D. Under a rotation by an angle ζ,
the polarization basis vectors transform as

x̂0
N̂
¼ cosðζÞx̂N̂ − sinðζÞŷN̂; ðC21aÞ

ŷ0
N̂
¼ sinðζÞx̂N̂ þ cosðζÞŷN̂: ðC21bÞ

Since ζ can vary from 0 to 2π, we will use the C function
atan2 to track the correct quadrant and set

ζ ¼ atan2ðx̂N̂ · ŷ0
N̂
; x̂N̂ · x̂0

N̂
Þ: ðC22Þ

In the code implementation the scalar products above are
computed in the J-frame, where the vectors x̂0

N̂
and ŷ0

N̂
have

components

x̂0
N̂
_¼

0
B@

cos θJN
0

− sin θJN

1
CA

J

; ŷ0
N̂
_¼

0
B@

0

0

1

1
CA

J

: ðC23Þ

The components of x̂N̂ in the J-frame can be computed by
applying the transformation (C13) to x̂N̂ expressed in the
L0-frame, giving

x̂N̂ _¼

0
B@

− cos ι sinϕref

− cos ι cosϕref

sin ι

1
CA

L0

: ðC24Þ

APPENDIX D: CHOICES OF POLARIZATION
VECTORS P AND Q

In the literature it is common to introduce a polarization
basis ðP̂i; Q̂iÞ such that the strain tensor is constructed in
the usual way as [29,35]

hþ ¼ 1

2
ðP̂iP̂j − Q̂iQ̂jÞhij; ðD1Þ

h× ¼ 1

2
ðP̂iQ̂j þ Q̂iP̂jÞhij: ðD2Þ

Different choices of the polarization basis can be
achieved through a rotation around the ẑN̂-axis, i.e., the
line of sight. In the convention followed by Arun et al. [35],
the polarization basis is given by

P̂ABFO ¼ N̂ × J

jN̂ × Jj ; Q̂ABFO ¼ N̂ × P̂ABFO

jN̂ × P̂ABFOj
; ðD3Þ

whereas the basis chosen by Kidder [28] is

P̂Kidder ¼
Q̂Kidder × N̂

jQ̂Kidder × N̂j ; Q̂Kidder ¼
J × N̂

jJ × N̂j : ðD4Þ

Note that, from the above definitions, it follows that

P̂ABFO ¼ −Q̂Kidder; Q̂ABFO ¼ P̂Kidder; ðD5Þ

and, using Eqs. (C21), one can equivalently say that the two
polarization bases are related by a rotation of ζ ¼ π=2. This
translates into an overall sign difference in the gravita-
tional-wave polarizations hþ and h×, since these transform
under a rotation by ζ around the line of sight according to

h0þ ¼ cosð2ζÞhþ − sinð2ζÞh×; ðD6Þ

h0× ¼ sinð2ζÞhþ þ cosð2ζÞh×: ðD7Þ

APPENDIX E: DERIVATION OF THE
FREQUENCY DOMAIN WAVEFORM

The waveform modes in the inertial J-frame and the
precessing L-frame can be related via a time-domain
transformation

hJlmðtÞ ¼ e−imαðtÞ Xl
m0¼−l

eim
0ϵðtÞdlmm0 ðβðtÞÞhLlm0 ðtÞ: ðE1Þ

TABLE IV. The superscript XP means that the initial angle was computed as described in Eqs. (C16) and the superscript Pv2 following
the conventions detailed in [13,23].

Convention αoffset ϵoffset phiRef argument passed to nonprecessing modes

0 αNNLO=MSAðfrefÞ − αXP0 ϵNNLO=MSAðfrefÞ ϕJL0

1 (default) αNNLO=MSAðfrefÞ − αPv20 ϵNNLO=MSAðfrefÞ − ϵXP0 0
5 −αPv20

0 phiRef
6 αNNLO=MSAðfrefÞ − αXP0 ϵNNLO=MSAðfrefÞ − ϵXP0 phiRef

7 −αXP0 0 phiRef
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Performing a Fourier transform, and making use of the SPA, as done in [23], we obtain

h̃JlmðfÞ ¼
Xl

m0¼−l

eim
0ϵð2πf

m0 Þe−imαð2πf
m0 Þdlmm0

�
β

�
2πf
m0

��
h̃Llm0 ðfÞ: ðE2Þ

We now follow the standard paradigm and approximate the precessing frame modes with some equivalent nonprecessing
modes [13,16,17]. In our conventions, the positive m modes are defined with support only for negative frequencies while
the negativemmodes are defined with support for positive frequencies, i.e., h̃Jlm0>0ðf > 0Þ ¼ 0 and h̃Jlm0<0ðf < 0Þ ¼ 0. We
can therefore rewrite the above expression as

h̃Jlmðf > 0Þ ¼
Xl
m0>0

e−im
0ϵð2πf

m0 Þe−imαð2πf
m0 Þdlm−m0

�
β

�
2πf
m0

��
h̃Ll−m0 ðfÞ; ðE3Þ

h̃Jlmðf < 0Þ ¼
Xl
m0>0

eim
0ϵð−2πf

m0 Þe−imαð−2πf
m0 Þdlmm0

�
β

�
−2πf
m0

��
ð−1Þlh̃L�l−m0 ð−fÞ: ðE4Þ

We now wish to construct expressions for the gravitational-wave polarizations hþ and h×. First we start with the
gravitational-wave strain

hJðtÞ ¼ hJþðtÞ − ihJ×ðtÞ ¼
X
l≥2

Xm¼l

m¼−l
hJlmðtÞ−2Ylm: ðE5Þ

The individual polarizations can therefore be written as

hJþðtÞ ¼
1

2

X
l≥2

Xm¼l

m¼−l
ðhJlmðtÞ−2Ylm þ hJ�lmðtÞ−2Y�

lmÞ; ðE6Þ

hJ×ðtÞ ¼
i
2

X
l≥2

Xm¼l

m¼−l
ðhJlmðtÞ−2Ylm − hJ�lmðtÞ−2Y�

lmÞ; ðE7Þ

which, after performing a Fourier transformation, can be written as frequency-domain functions

h̃JþðfÞ ¼
1

2

X
l≥2

Xm¼l

m¼−l
ðh̃JlmðfÞ−2Ylm þ h̃J�lmð−fÞ−2Y�

lmÞ; ðE8Þ

h̃J×ðfÞ ¼
i
2

X
l≥2

Xm¼l

m¼−l
ðh̃JlmðfÞ−2Ylm − h̃J�lmð−fÞ−2Y�

lmÞ: ðE9Þ

Now we insert Eq. (E2) into the above expressions to expand the polarizations in terms of the nonprecessing modes hLlmðfÞ

h̃JþðfÞ ¼
1

2

X
l≥2

Xm¼l

m¼−l

� Xl
m0¼−l

eim
0ϵe−imαdlmm0 ðβÞh̃Llm0 ðfÞ−2Ylm þ

Xl
m0¼−l

e−im
0ϵeimαdlmm0 ðβÞh̃L�lm0 ð−fÞ−2Y�

lm

�
; ðE10Þ

h̃J×ðfÞ ¼
i
2

X
l≥2

Xm¼l

m¼−l

� Xl
m0¼−l

eim
0ϵe−imαdlmm0 ðβÞh̃Llm0 ðfÞ−2Ylm −

Xl
m0¼−l

e−im
0ϵeimαdlmm0 ðβÞh̃L�lm0 ð−fÞ−2Y�

lm

�
: ðE11Þ

We can now use the equatorial symmetry of the nonprecessing modes to relate the positive m and negative m modes via
h̃LlmðfÞ ¼ ð−1Þlh̃L�l−mð−fÞ. Inserting this into the above equations, we find
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h̃JþðfÞ ¼
1

2

X
l≥2

Xm¼l

m¼−l

� Xl
m0¼−l

eim
0ϵe−imαdlmm0 ðβÞh̃Llm0 ðfÞ−2Ylm þ

Xl
m0¼−l

e−im
0ϵeimαdlmm0 ðβÞð−1Þlh̃Ll−m0 ðfÞ−2Y�

lm

�
; ðE12Þ

h̃J×ðfÞ ¼
i
2

X
l≥2

Xm¼l

m¼−l

� Xl
m0¼−l

eim
0ϵe−imαdlmm0 ðβÞh̃Llm0 ðfÞ−2Ylm −

Xl
m0¼−l

e−im
0ϵeimαdlmm0 ðβÞð−1Þlh̃Ll−m0 ðfÞ−2Y�

lm

�
: ðE13Þ

Since the polarizations h̃Jþ;×ðfÞ are Fourier transforms of real functions hJþ;×ðtÞ, they satisfy the property
h̃Jþ;×ðfÞ ¼ h̃J;�þ;×ð−fÞ. This means that we can work with just one of the frequency regimes, i.e., positive or negative.
We opt to work with the positive frequencies, following the standard convention in LALSuite. Restricting the expressions to
positive frequencies, and remembering that only the negative nonprecessing modes are nonzero, we find that Eqs. (E12) and
(E13) reduce to

h̃Jþðf>0Þ¼1

2

X
l≥2

Xm¼l

m¼−l

�Xl
m0>0

e−im
0ϵe−imαdlm−m0 ðβÞh̃Ll−m0 ðfÞ−2Ylmþ

Xl
m0>0

e−im
0ϵeimαdlmm0 ðβÞð−1Þlh̃Ll−m0 ðfÞ−2Y�

lm

�
; ðE14Þ

h̃J×ðf>0Þ¼ i
2

X
l≥2

Xm¼l

m¼−l

�Xl
m0>0

e−im
0ϵe−imαdlm−m0 ðβÞh̃Ll−m0 ðfÞ−2Ylm−

Xl
m0>0

e−im
0ϵeimαdlmm0 ðβÞð−1Þlh̃Ll−m0 ðfÞ−2Y�

lm

�
: ðE15Þ

Rearranging terms and swapping the sums in m and m0 we get

h̃Jþðf > 0Þ ¼ 1

2

X
l≥2

Xl
m0>0

e−im
0ϵh̃Ll−m0 ðfÞ

Xm¼l

m¼−l
ðe−imαdlm−m0 ðβÞ−2Ylm þ eimαdlmm0 ðβÞð−1Þl−2Y�

lmÞ; ðE16Þ

h̃J×ðf > 0Þ ¼ i
2

X
l≥2

Xl
m0>0

e−im
0ϵh̃Ll−m0 ðfÞ

Xm¼l

m¼−l
ðe−imαdlm−m0 ðβÞ−2Ylm − eimαdlmm0 ðβÞð−1Þl−2Y�

lmÞ: ðE17Þ

We define now the transfer function Al
mm0 ðfÞ ¼ e−imαdlmm0 ðβÞ−2Ylm and rewrite the above expressions in a more compact

form,

h̃Jþðf > 0Þ ¼ 1

2

X
l≥2

Xl
m0>0

e−im
0ϵh̃Ll−m0 ðfÞ

Xm¼l

m¼−l
ðAl

m−m0 þ ð−1ÞlAl�
mm0 Þ; ðE18Þ

h̃J×ðf > 0Þ ¼ i
2

X
l≥2

Xl
m0>0

e−im
0ϵh̃Ll−m0 ðfÞ

Xm¼l

m¼−l
ðAl

m−m0 − ð−1ÞlAl�
mm0 Þ; ðE19Þ

which are equivalent to the expressions in Eqs. (3.5) and
(3.6). Note that the Euler angles are evaluated at the SPA
frequencies 2πf=m0.

APPENDIX F: LALSuite IMPLEMENTATION

The IMRPhenomXP and IMRPhenomXPHM models are
implemented as part of the LALSimIMR package of
inspiral-merger-ringdown waveform models as exten-
sions of the nonprecessing models IMRPhenomXAS [1]
and IMRPhenomXHM [7]. The code is implemented in
the C language, and LALSimIMR is part of the
LALSimulation collection of code for gravitational
waveform and noise generation within LALSuite [18].
Online Doxygen documentation is available at

https://lscsoft.docs.ligo.org/lalsuite, with top level informa-
tion for the LALSimIMR package provided through the
LALSimIMR.h header file. Externally callable functions
follow the XLAL coding standard of LALSuite.
Notes about the implementation of the IMRPhenomXPHM

model, and on calling the code through different interfaces,
in particular through PYTHON, GENERATESIMULATION,
LALInference [9], and BILBY [10] can be found in
Appendix C of [7]. Here we extend this documenta-
tion to the specific properties of IMRPhenomXP and
IMRPhenomXPHM. The LALSuite code provides the option
to call the model in the time domain, where an inverse fast
Fourier transformation is applied, in addition to the native
Fourier domain. The SWIG [111,112] software develop-
ment tool is used to automatically create PYTHON interfaces
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to all XLAL functions [113] of our code, which can be used
alternatively to the C interfaces.
In LALSimulation the model is called through the

function ChooseFDWaveform, whose input parameters
f_ref and phiRef are used to define the phase of the 22
mode at some particular reference frequency.
The user is free to specify the spherical harmonic modes

in the coprecessing L-frame, hLlm, that should be used to
construct the waveform. The default behavior is to use all
the modes available: (22, 2-2, 21, 2-1, 33, 3-3, 32, 3-2, 44,
4-4), but subsets can be selected with the ModeArray
option available in LALSimulation. The negative
modes are always included in the twisting-up procedure,
even if not specified in the mode array; thus the list (22, 21,
33, 32, 44) would return the same result as the default
setting. Specifying only negative modes is, however, not
supported, e.g., when only specifying the array (22, 2-1)
only the (22, 2-2) modes would be twisted up.

Furthermore, the model implemented in LALSuite sup-
ports acceleration of waveform evaluation by interpolation
of an unequispaced frequency grid broadly following the
“multibanding” approach of [11]. Our version of the
algorithm is described in [12] to do the evaluation faster
and can also use a custom list of modes specified by the
user. The multibanding algorithm is parametrized by a
threshold, which describes the permitted local interpolation
error for the phase in radians. Lower values thus correspond
to higher accuracy. The default multibanding threshold for
computing the nonprecessing modes is set to a value of
10−3 and, as for IMRPhenomXHM, is modified through the
ThresholdMband option. For multibanding in the Euler
angles, the default threshold is 10−3 for the MSA versions
and 10−4 for all NNLO versions; this can be changed
through the PrecThresholdMband option. The multiband-
ing is only supported in the IMRPhenomXPHM model and not
so in IMRPhenomXP.
The IMRPhenomXP and IMRPhenomXPHM models add

further precession-specific options to those already
documented in Appendix C of [7]. The default values
of these options are set up in the file LALS
imInspiralWaveformParams.c. Available choices
for the Euler angles are listed in Table III and set by a
parameter PrecVersion. The principal choice is between the
NNLO and MSA angle descriptions discussed in Secs. IVA
and IV B. In addition for the NNLO angles different post-
Newtonian orders for the angular momentum can be chosen,
as discussed in Sec. IV C. Different implementation choices
are also available for the MSA angles.
The NNLO and MSA angle prescriptions provide

expressions for frequency-dependent Euler angles. In order
to initialize the angles to prescribed values α0, β0, ϵ0 at a
given reference frequency fref according to Eqs. (C16),

TABLE V. Options for changing the final spin prescription in
the LALSuite implementation of IMRPhenomXP and IMRPhe-
nomXPHM.

FinalSpinMod Explanation

0 Final spin formula based on χp. Default
value for NNLO angles.

1 Final spin formula based on χ1x.
Not recommended, introduced to compare to

IMRPhenomPv3 before bug fix.
2 Final spin formula based on the norm

for the total in-plane spin vector.
3 Final spin formula based on precession-

averaged couplings from MSA analysis.
Default value for MSA angles.

TABLE VI. Extra options in the LALSuite implementation of IMRPhenomXPHM.

Option Values Default Explanation

TwistPhenomHM 0, 1 0 (False) Twist-up IMRPhenomHM instead of IMRPhenomXHM.
With Convention ¼ 5 this produces a
faster implementation of IMRPhenomPv3HM.

PrecModes 0, 1 0 (False) When calling the individual modes functions return the modified
nonprecessing modes before the twist-up.

UseModes 0, 1 0 (False) When computing the polarizations first call all the individual
modes in the J-frame and sum them all.

PrecThresholdMband Float 10−3 Threshold value for the multibanding algorithm
applied to the Euler angles. If 0, then
multibanding for angles is switched off.

MBandPrecVersion 0 0 Control the version for the coarse grid used
for the multibanding of Euler angles. Currently there
is only one implementation and the grid is the same as for
the nonprecessing model.

COMPUTATIONALLY EFFICIENT MODELS FOR THE DOMINANT … PHYS. REV. D 103, 104056 (2021)

104056-31



appropriate offsets need to be added as in Eqs. (C17). Our
code offers different options to compute these offsets,
which we list in Table IV. These conventions are changed
with the option Convention, which also controls how the
argument phiRef enters in the model. The default choice
is set to option 1. Note that option 7 does not set offsets for
a given reference frequency. This option is implemented
for its correspondence to the implementation of the
IMRPhenomPv3HM [15] model, which sets the offset of α
equal to −α0 and the offset of ϵ equal to 0; the argument
phiRef is passed when calling the nonprecessing model.
Several variants are available to compute the final spin,

which are selected with the option FinalSpinMod (see
Table V). By default, the final spin is computed by using
orbit-averaged quantities for the in-plane spin components:
When choosing NNLO angles, the default spin version is
set to 0, corresponding to Eq. (4.25), while for MSA angles,
the default spin version is set to 3, corresponding to
Eq. (4.28). In addition, two nonaveraged options are
provided, which allow for cancellations between spin
components as discussed in Sec. IV D: setting the spin
version to 1 corresponds to Eq. (4.26), while version 2
selects Eq. (4.27).
Finally, in Table VI we summarize further options avail-

able.Wemake some of these options also callable from other
codes that may use the model such as LALInference,
Bilby,PyCBC, orGenerateSimulation. In Table VII
we summarize the options that can be called through the
different codes and the label that is used to specify their value.
Since the released versions of some of these codes do not
support these features yet, we provide dedicated branches
for that:

(i) Bilby: https://git.ligo.org/cecilio.garcia-quiros/
bilby/-/tree/imrphenomx

(ii) Bilby_pipe: https://git.ligo.org/maite.mateu-
lucena/bilby_pipe

(iii) PyCBC: https://github.com/Ceciliogq/pycbc/tree/
imrphenomx/pycbc

Extensive debugging information can be enabled at compile
time with the C preprocessor flag -D PHENOMXHMDEBUG.

APPENDIX G: POST-NEWTONIAN RESULTS

We consider a compact binary with masses m1;2 and
spin angular momenta S1;2. The post-Newtonian results

presented in this section can be expressed in terms of the
following variables:

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
; ðG1Þ

m1 ¼
1þ δ

2
; m2 ¼

1 − δ

2
; ðG2Þ

χi ¼
Si
m2

1

; ðG3Þ

χl ¼ m1χ1l þm2χ2l; ðG4Þ

Sl ¼ m2
1χ1l þm2

2χ2l; ðG5Þ

Σl ¼ χ2lm2 − χ1lm1: ðG6Þ

1. NNLO post-Newtonian Euler angles

For completeness we write out the explicit expressions
for the Euler angles α and ϵ, computed to NNLO accuracy
for single spin systems as used in the single spin version of
our model; see IVA. Both α and ϵ have the same functional
form as functions of the frequency f,

αNNLOðωÞ ¼
X1
i¼−3

αiðπfMÞi=3 þ αlog logðπfMÞ; ðG7Þ

ϵNNLOðωÞ ¼
X1
i¼−3

ϵiðπfMÞi=3 þ αlog logðπfMÞ: ðG8Þ

The coefficients α0 and ϵ0 are determined by Eqs. (C16).
The coefficients for α are listed below as functions of the
intrinsic parameters ðη; χl; χpÞ:

α−3 ¼ −
5δ

64m1

−
35

192
; ðG9aÞ

α−2 ¼ −
5m1χlð3δþ 7m1Þ

128η
; ðG9bÞ

TABLE VII. Labels used to pass IMRPhenomXPHM options to different external codes.

Option LALInference Bilby PyCBC GenerateSimulation

ModesList modeList mode_array mode_array modesList
PrecVersion phenomXPrecVersion phenomXPrecVersion phenomXPrecVersion phenomX

PrecVersion
FinalSpinMod phenomXPFinalSpinMod phenomXPFinalSpinMod � � � � � �
PrecThreshold
Mband

phenomXPHMMband phenomXPHMMband phenomXPHMMband phenomXPHMMband

UseModes � � � � � � � � � phenomXPHMUseModes

GERAINT PRATTEN et al. PHYS. REV. D 103, 104056 (2021)

104056-32

https://git.ligo.org/cecilio.garcia-quiros/bilby/-/tree/imrphenomx
https://git.ligo.org/cecilio.garcia-quiros/bilby/-/tree/imrphenomx
https://git.ligo.org/cecilio.garcia-quiros/bilby/-/tree/imrphenomx
https://git.ligo.org/cecilio.garcia-quiros/bilby/-/tree/imrphenomx
https://git.ligo.org/cecilio.garcia-quiros/bilby/-/tree/imrphenomx
https://git.ligo.org/maite.mateu-lucena/bilby_pipe
https://git.ligo.org/maite.mateu-lucena/bilby_pipe
https://git.ligo.org/maite.mateu-lucena/bilby_pipe
https://git.ligo.org/maite.mateu-lucena/bilby_pipe
https://git.ligo.org/maite.mateu-lucena/bilby_pipe
https://github.com/Ceciliogq/pycbc/tree/imrphenomx/pycbc
https://github.com/Ceciliogq/pycbc/tree/imrphenomx/pycbc
https://github.com/Ceciliogq/pycbc/tree/imrphenomx/pycbc


α−1 ¼ −
5ð824ηþ 1103Þ

3072
−

15δ2η

256m2
1

−
15δm3

1χ
2
p

128η2
−
5δð980ηþ 911Þ

7168m1

−
35m4

1χ
2
p

128η2
; ðG9cÞ

α1 ¼
5ð36ηð85568ηþ 23817Þ þ 8024297Þ

9289728
þ 5m2

1ð3δ2χ2p þ 75δ2χ2l − 112πχlÞ
256η

−
15δm7

1ðχ4p − 4χ2pχ
2
lÞ

512η4

þ 5δm3
1ðð812η − 97Þχ2p þ 20328ηχ2lÞ

14336η2
−
15πδm1χl

16η
−
35m8

1ðχ4p − 4χ2pχ
2
lÞ

512η4
þm4

1ð25ð92ηþ 19Þχ2p þ 52640ηχ2lÞ
6144η2

þ 15δ3η2

1024m3
1

þ 5δ2ηð784ηþ 323Þ
28672m2

1

þ 5δð504ηð7630η − 159Þ þ 5579177Þ
21676032m1

; ðG9dÞ

αlog ¼ −
5

48
ð7π − 3δ2χlÞ −

5δm5
1χ

2
pχl

128η3
þ 5δð7168ηþ 407Þm1χl

21504η
−
35m6

1χ
2
pχl

384η3
þ 5ð4072ηþ 599Þm2

1χl
9216η

−
5πδ

16m1

; ðG9eÞ

ϵ−3 ¼ α−3; ðG9fÞ

ϵ−2 ¼ α−2; ðG9gÞ

ϵ−1 ¼ −
5ð824ηþ 1103Þ

3072
−

15δ2η

256m2
1

−
5δð980ηþ 911Þ

7168m1

; ðG9hÞ

ϵ1 ¼
5ð36ηð85568ηþ 23817Þ þ 8024297Þ

9289728
þ 5m2

1χlð75δ2χl − 112πÞ
256η

þ 1815δm3
1χ

2
l

256η

−
15πδm1χl

16η
þ 1645m4

1χ
2
l

192η
þ 15δ3η2

1024m3
1

þ 5δ2ηð784ηþ 323Þ
28672m2

1

þ 5δð504ηð7630η − 159Þ þ 5579177Þ
21676032m1

; ðG9iÞ

ϵlog ¼ −
5

48
ð7π − 3δ2χlÞ þ

5δð7168ηþ 407Þm1χl
21504η

þ 5ð4072ηþ 599Þm2
1χl

9216η
−

5πδ

16m1

: ðG9jÞ

2. Orbital angular momentum

The orbital angular momentum is estimated using an aligned-spin approximation with orbital terms up to 4PN and spin-
orbit terms up to 3.5 PN. We neglect spin-spin couplings:

L0 ¼ 1; ðG10aÞ

L1 ¼
η

6
þ 3

2
; ðG10bÞ

L2 ¼
η2

24
−
19η

8
þ 27

8
; ðG10cÞ

L3 ¼
7η3

1296
þ 31η2

24
þ
�
41π2

24
−
6889

144

�
ηþ 135

16
; ðG10dÞ

L4 ¼ −
55η4

31104
−
215η3

1728
þ
�
356035

3456
−
2255π2

576

�
η2 þ η

�
−
64

3
logð16xÞ − 6455π2

1536
−
128γ

3
þ 98869

5760

�
þ 2835

128
; ðG10eÞ

LSO
1.5 ¼ −

35

6
Sl −

5

2

δm
m

Σl; ðG10fÞ

LSO
2.5 ¼

�
−
77

8
þ 427

72
η

�
Sl þ

δm
m

�
−
21

8
þ 35

12
η

�
Σl; ðG10gÞ
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LSO
3.5 ¼

�
−
405

16
þ 1101

16
η −

29

16
η2
�
Sl þ

δm
m

�
−
81

6
þ 117

4
η −

15

16
η2
�
Σl; ðG10hÞ

LLO−S∞
2 ¼

�
1

2
þ δ

2
− η

�
χ21l þ 2ηχ1lχ2l þ

�
1

2
−
δ

2
− η

�
χ22l; ðG10iÞ

LLO−S∞
3.5 ¼ χ31l

�
3δη

4
−
3η2

2
þ 3η

4

�
þ χ21lχ2l

�
3δη

4
þ 3η2

2
þ 3η

4

�
þ χ1lχ

2
2l

�
−
3δη

4
þ 3η2

2
þ 3η

4

�
þ χ32l

�
−
3δη

4
−
3η2

2
þ 3η

4

�
:

ðG10jÞ

[1] G. Pratten, S. Husa, C. García-Quirós, M. Colleoni, A.
Ramos-Buades, H. Estellés, and R. Jaume, Phys. Rev. D
102, 064001 (2020).

[2] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X.
Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044006
(2016).

[3] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X.
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Rev. D 94, 024012 (2016).
[72] J. Calderón Bustillo, P. Laguna, and D. Shoemaker, Phys.

Rev. D 95, 104038 (2017).
[73] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E.

Kidder, and H. P. Pfeiffer, Phys. Rev. D 99, 064045 (2019).
[74] R. Cotesta, S. Marsat, and M. Pürrer, Phys. Rev. D 101,

124040 (2020).
[75] R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I.
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