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Teukolsky equations for |s| = 2 provide efficient ways to solve for curvature perturbations around Kerr
black holes. Imposing regularity conditions on these perturbations on the future (past) horizon corresponds
to imposing an ingoing (outgoing) wave boundary condition. For exotic compact objects (ECOs) with
external Kerr spacetime, however, it is not yet clear how to physically impose boundary conditions for
curvature perturbations on their boundaries. We address this problem using the membrane paradigm, by
considering a family of zero-angular-momentum fiducial observers (FIDOs) that float right above the
horizon of a linearly perturbed Kerr black hole. From the reference frame of these observers, the ECO will
experience tidal perturbations due to ingoing gravitational waves, respond to these waves, and generate
outgoing waves. As it also turns out, if both ingoing and outgoing waves exist near the horizon, the
Newman-Penrose (NP) quantity y, will be numerically dominated by the ingoing wave, while the NP
quantity w4 will be dominated by the outgoing wave—even though both quantities contain full information
regarding the wave field. In this way, we obtain the ECO boundary condition in the form of a relation
between y, and the complex conjugate of y,, in a way that is determined by the ECO’s tidal response in the
FIDO frame. We explore several ways to modify gravitational-wave dispersion in the FIDO frame and
deduce the corresponding ECO boundary condition for Teukolsky functions. Using the Starobinsky-
Teukolsky identity, we subsequently obtain the boundary condition for y4 alone, as well as for the Sasaki-
Nakamura and Detweiler functions. As it also turns out, the reflection of spinning ECOs will generically
mix between different £ components of the perturbation fields, and it will be different for perturbations with
different parities. It is straightforward to apply our boundary condition to computing gravitational-wave

echoes from spinning ECOs, and to solve for the spinning ECOs’ quasinormal modes.

DOI: 10.1103/PhysRevD.103.104054

I. INTRODUCTION

A black hole (BH) is characterized by the event horizon,
a boundary of the spacetime region within which the future
null infinity cannot be reached. The existence of a horizon
has led to the simplicity of black-hole solutions in general
relativity and modified theories of gravity, although the
notion of a horizon has also led to technical and conceptual
problems. First of all, at the classical level, the event
horizon has a teleological nature: its shape at a particular
time slice of a spacetime depends on what happens to the
future of that slice. Even if we are provided with a full
numerical solution of the Einstein equation (e.g., in the
form of all metric components in a particular coordinate
system), it is much harder to determine the location of the
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event horizon than it is to find trapped surfaces, whose
definitions are more local.

In classical general relativity, it has been shown that a
singularity (or singularities) should always exist inside the
event horizon [1]; this requires that quantum gravity be
used to study the spacetime geometry inside black holes.
Naively, one expects corrections when spacetime curvature
is at the Planck scale. However, the unique causal structure
of the horizon already leads to nontrivial quantum effects—
e.g., Hawking radiation [2,3]. Besides, quantum gravity
may play an important role both inside and outside
horizons of black holes in order to resolve the so-called
information paradox [4-T7]. It has been proposed that
spacetime geometry near the horizon can be modified,
even at scales larger than the Planck scale [5—17]. It has also
been conjectured that a phase transition might occur during
the formation of black holes, leading to nonsingular, yet
extremely compact objects [18,19]. All these considera-
tions (or speculations) lead to a similar class of objects:
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their external spacetime geometries mimic those of black
holes except very close to the horizon. We shall refer to
these objects as exotic compact objects (ECOs).

Followed by the unprecedented discovery of gravita-
tional waves from the binary BH merger event GW150914
[20] and follow-up observations of an order of ~100 binary
black-hole merger events [21,22], we now know that dark
compact objects do exist in our Universe, and that their
spacetime geometry and dynamics are consistent with those
of black holes in general relativity to better than order unity,
and at scales comparable to the sizes of the black holes.
Observations by the Event Horizon Telescope (EHT)
provide yet another avenue toward developing the near-
horizon physics of black holes [23-30].

Since the horizon is defined as the boundary of the
unreachable region and hence ‘“absorbs” all radiation,
instead of asking whether the horizon exists, a more
testable question might be how absorptive the horizon
is: any potential modifications to classical general relativity
near the surface of an ECO, be it quantum or not, may
impose a different physical boundary condition near the
horizon. That is, for any incoming gravitational radiation, it
not only can fall into the dark object, but also may get
reflected, and then propagate to infinity. In the context
of a point particle orbiting a black-hole candidate, this
was studied as a modified tidal interaction [31-33].
Alternatively, a stronger probe of the reflectivity is pro-
vided by waves that propagate toward the horizon of the
final (remnant) black hole after the merger of two black
holes—in the form of repeated GW echoes at late times in
the ringdown signal of a binary merger event [34—45].
Following this line of thought, the gravitational echoes
have been extensively studied in different models of near-
horizon structures [46—53]. Even though the idea of ECOs
might be speculative, one can always regard the search for
ECOs as one to quantify the darkness of the final objects in
binary merger events, and in this way its importance cannot
be overstated.

The key problem for calculating the echoes from spin-
ning ECOs is how to apply boundary conditions near the
horizon for curvature perturbations obtained from the
Teukolsky equation. This was discussed by Nakano et al.
[54] and Wang and Afshordi [48], but for Kerr there are still
more details to fill in—even though Kerr echoes have
already been studied by several authors [39—43]. This is the
main problem we would like to address in this paper.

Imposing a near-horizon boundary condition is
more straightforward in Schwarzschild spacetime. The
Schwarzschild metric perturbations can be fully con-
structed from solutions of the Regge-Wheeler equation
[55] and the Zerilli equation [56], both of which are wave
equations that have regular asymptotic behaviors at the
horizon and infinity. These metric perturbations can then be
used to connect the response of the ECO to external
perturbations. In the Kerr spacetime, perturbations are

most efficiently described by the s = 42 Teukolsky equa-
tions [57] for curvature components that are projected
along null directions, and therefore they are less directly
connected to tidal perturbations and responses of an ECO.
Furthermore, the Teukolsky equations for the s = 42 cases
do not have short-range potentials, and they result in
solutions that do not have the standard form of incoming
and outgoing waves, leading to certain difficulties in
finding numerical solutions.

To solve the second issue, the Teukolsky equations can
be transformed into wavelike equations with short-ranged
potentials—namely, the Sasaki-Nakamura (SN) equations,
via the Chandrasekhar-Sasaki-Nakamura (CSN) transfor-
mation [58-60]. In order to define the near-horizon
reflection of waves in the Kerr spacetime, it was proposed
that the reflection should be applied to the SN functions—
as has been widely used in much literature regarding
gravitational-wave echoes [32,39-42,46,61,62]. Despite
the short-ranged-ness of the SN equation, the physical
meanings of SN functions are less clear than those of
Teukolsky functions, especially in the Kerr case.

For the Kerr spacetime, Thorne, Price, and MacDonald
introduced the “membrane paradigm” (MP) [63] by con-
sidering a family of fiducial observers (FIDOs) with zero
angular momentum. World lines of the collection of these
observers form a “membrane,” which can be used as a
proxy to think about the interaction between the black hole
and the external Universe. In order to recover the pure
darkness of the black hole, the membrane must have the
correct complex (in fact, purely resistive) impedance for
each type of flux/current, so that nothing is reflected. For
example, the membrane must have the correct specific
viscocity in order for gravitational waves not to be
reflected, and the correct (electric) resistivity in order for
electromagnetic waves not to be reflected. Extensive
discussions were made on the physics viewed by the
FIDOs—in particular, tidal tensors measured by these
observers in the presence of gravitational waves. This
picture was more recently used to visualize spacetime
geometry using the tendex and vortex pictures [64—66].

It has been proposed that the reflectivity of ECOs can be
modeled by altering the impedance of the ECO surface
[48,54,67]. In this paper, we generalize this point of view to
ECOs with nonzero spins. It is worth mentioning that the
membrane paradigm point of view has been taken by Datta
et al. [33,68] to study the tidal heating of Kerr-like ECOs,
although the reflection of waves by the ECO was not
described. In this paper, we shall continue along with the
membrane paradigm and propose a physical definition of
the ECO’s reflectivity.

In order to do so, we make a careful connection between
Teukolsky functions, which efficiently describe wave
propagation between the near-horizon region and infinity,
and ingoing and outgoing tidal waves in the FIDO frame
of the membrane paradigm. We then obtain boundary
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conditions for the Teukolsky equations in terms of
tidal responses of the ECO in the FIDO frame. Here
the fundamental assumption that we rely upon—as has
also been made implicitly in previous ECO reflectivity
literature—is that the ECO has a simple structure in the
FIDO frame—for example, as a distribution of exotic
matter that modifies the dispersion relation of gravitational
waves in the FIDO frame.

We organize the paper as follows. In Sec. II, by
considering individual FIDOs, we introduce the modified
boundary conditions in Teukolsky equations based on the
tidal response of the ECO and obtain input-output relations
for Teukolsky equations in terms of that tidal response. In
Sec. III, we more specifically consider a Rindler coordinate
system near the horizon, and we put our discussion on
firmer ground by relating the Teukolsky functions to
Riemann tensor components in this coordinate system.
We further consider modified gravitational-wave dispersion
relations in the Rindler frame, we and relate these relations
to the ECO’s tidal response. In Sec. IV, we translate our
reflection model into a model which fits most literature on
gravitational-wave echoes, in particular making connec-
tions to the SN formalism. In Sec. V, we apply our method
to obtain the echo waveform as well as the quasinormal
modes (QNMs) of the ECOs, showing that even- and odd-
parity waves will generate different echoes, and general-
izing the breaking of QNM isospectrality found by Maggio
et al. [67] to the spinning case. In Sec. VI, we summarize
all results and propose possible future works.

Notation.—We choose the natural units G = ¢ = 1 and
set the black-hole mass M = 1. The following symbols are
also used throughout the paper:

A=rr=2r+d2, (1)
Y =r?+ a*cos? 0, (2)
p=—(r—iacosf)!. (3)

Here (¢, r, 0, ¢) are the Boyer-Lindquist coordinates for Kerr
black holes, and a is the black-hole spin. The Kerr horizons
are at the Boyer-Lindquist radius r; = 1 + V1 — a?, while
the inner horizons are at ro = 1 — V1 — a®>. The angular
velocity of the horizon is given by Qy = a/(2ry). The
tortoise coordinate is defined by

n 2ry In r=ru\ 2rc In r—rc @)
ry —re 2 ry —re 2

II. THE REFLECTION BOUNDARY
CONDITION FROM TIDAL RESPONSE

Ina (3 4 1) splitting of the spacetime, the Weyl curvature
tensor C,,.q naturally gets split into an “electric” part,

ry=r

which is responsible for the fidal effect, and a “magnetic”
part, which is responsible for the frame-dragging effect.
From now on, we will focus on the electric part, as it gives
rise to the gravitational stretching and squeezing—i.e., the
tidal force—which drives the geodesic deviations of par-
ticles that are slowly moving with respect to that slicing.

In the MP, a relation is established between the Newman-
Penrose quantity y near the future horizon and compo-
nents of the tidal tensors in the FIDO frame. In this section,
we will extend this to include waves “originating from the
past horizon,” which really are waves in the vicinity of the
horizon but propagating toward the positive-r direction; see
Fig. 2. More specifically, we seek to derive the relation
among the tidal tensor components, the incoming waves,
and the “reflected” (outgoing) waves due to the tidal
response. This will establish our model of near-horizon
reflection for the Teukolsky equations.

A. FIDOs

Starting from the Boyer-Lindquist coordinate system
(1, 1,0, @), FIDOs in the MP are characterized by constant r
and 60, but ¢ = const + w,t, with

2ar
Wy =—- (5)
and
E=(r* + a*)* — a*Asin®0. (6)

Each FIDO carries an orthonormal tetrad of"

with

ZA

Here ¢, is the four-velocity of the FIDO. The FIDOs have

zero angular momentum (and hence are also known as
zero-angular-momentum observers, or ZAMOs), since E()
has zero inner product with 545. Here a is called the redshift
factor, also known as the lapse function, since it relates the
proper time of the FIDOs and the coordinate time .

Near the horizon, we have a — 0; FIDO’s tetrads are
related to the Kinnersly tetrad [69] via

'Note that the MP uses different notations for the p and .
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S . . . Aéy—é;
lz\/g(e()—i-e?), nz\/; 5

eiﬂ(29 + ié’(})

A

acosd
= —tan™! .
g o < ' )

B. Tidal tensor components

>
m=

where

(10)

Let us now introduce the electric-type tidal tensor £ as
viewed by FIDOs, which can be formally defined as [65]

(11)

Here U = ¢; is the four-velocity of FIDOs as in Eq. (7),
and h;* = 6, + U,;U“ is the projection operator onto the
spatial hypersurface orthogonal to U. In particular, we look
at the mm component of the tidal tensor, as the gravita-
tional-wave stretching and squeezing will be along these
directions. Near the horizon, the tidal tensor component is
then given by

5;‘_/' — hi“hj"CabL.dU” Ud.

A z

gmm = Cﬁmémz_EWO_KW& (12)

For convenience, let us define a new variable (Y, which

is the solution to the Teukolsky equation with spin weight
s. For s = 42, we have

LY =ptyy, LT =y, (13)

We briefly review the Teukolsky formalism in the

Appendix A. For perturbations that satisfy the linearized

vacuum Einstein equation (in this case, the Teukolsky

equation) at r, - —oo, in general we can decompose ;Y

using the spin-weighted spheroidal harmonics ,S,,,,(6)

and write

dw —iw im
,zT(t, Iy, 95 ¢) = ;n:/z_ﬂ'e t_szmw(g)e ¢

hole A2 ,—ikr, refl ikr,
X [mewA € + mewe ]’

(14)

do . .
AYer0.4) =3 [, 0
‘m

hole A —2 ,—ikr, efl ikr,
X [Yfma)A e +ermwe ]’

(15)

where k= —mQy. We use the shorthand > ,, =
Se, > ¢, in which ¢ is the multipolar index, and
m is the azimuthal quantum number. Note that this m here
should not be confused with the label m in the Kinnersly
tetrad basis. Here, Z,,,, and Y,,,, are amplitudes for the

radial modes, with “hole” labeling the left-propagation
modes into the compact object (in this paper, “left” means
the direction with decreasing r)* and “refl” labeling the
right-propagation (reflected) modes (in this paper, “right”
means the direction with increasing r).

Note that for outgoing modes of either +2T or _, T, we
have

e—iot pikr, yimg e—i(u(t—r*)eim((/)—QHr*); (16)

therefore, the outgoing modes are functions of the retarded
time u = t — r, and the position-dependent angular coor-
dinate ¢ — Qgr,. Similarly, for ingoing modes, we have
e—iot p=ikr, pimp _ ,—iw(t+r.) pim(p+Qyr.) (17)
indicating that the ingoing modes are functions of the
advanced time v = r + r, and another position-dependent
angular coordinate ¢ + Qgr,. We can then write down
one schematic expression for either ,T or _,T by

decomposing both of them into left- and right-propagation
components:

1
+2T(f’r*’9v¢):+2TR(”79J/’—)+p+2TL(U’97(P+)v (18)

LX(6r.0.0) = TR (u,0,0_)+ A, TH(0,0.90,), (19)
where we have defined
¢—:¢_Qﬂr*v (/7+:¢+QHV*. (20)

Here both the L and R components are finite, and the A
represents the divergence/convergence behaviors of the
components. As we can see here, once we specify these
L and R components on a constant ¢ slice, as functions of
(r.,0,¢), we will be able to obtain their future, or past,
values by inserting .

Here we also note that, while the vacuum/homogeneous
perturbation of spacetime geometry is encoded in both v,
and w4, either of them suffices to describe the perturbation
field [70,71].3 Near the horizon, the numerical value of vy,
is dominated by left-propagating waves, while the numeri-
cal value of y, is dominated by right-propagating waves.
According to Eq. (12), we then have

20f course, here we refer to ECOs instead of black holes; the
label “hole” is for matching the notations from Ref. [70].

One may imagine a very rough electromagnetic analogy: for a
vacuum EM wave (without electro- or magnetostatic fields), both
FE and B fields contain the full information of the wave, since one
can use Maxwell equations to convert one to the other. Never-
theless, when it comes to interacting with charges and currents, E
and B play very different roles, and sometimes it is important to
evaluate both E and B fields.
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1
Epm = _MHTL(U’ 0,¢,)
x4
> .
S (I SO D)

Note that both terms diverge toward r, — —oo and at the
same order. This divergence correctly reveals the fact that
the FIDOs will observe gravitational waves with the same
fractional metric perturbation, but because the frequency of
the wave gets increased, the curvature perturbation will

diverge as a2

C. Linear response theory

Now, suppose we have a surface S at a constant radius
r. = b, (or, in the Boyer-Lindquist coordinates, r = b),
with e+ < 1. Here k = (ry — r¢)/2(r% + a?) is the sur-
face gravity of the Kerr black hole. To the right of the
surface, for r, > b,, we have complete vacuum, and to the
left of the surface, we have matter that is relatively at rest in
the FIDO frame—we shall refer to this as the ECO region.
The ECO is assumed to be extremely compact, and S is
close to the position, viewed as part of its external Kerr
spacetime.

For the moment, let us assume that linear perturbation
theory holds throughout the external Kerr spacetime of the
ECO. On § and to its right, &,,,, will be the sum of two
pieces:

gmm = g%(}:n + 5237}1), (22)
with the first term

A
Emn = =15 2 T (0.0.0,). (23)
a purely left-propagating wave that is sourced by processes
away from the surface—e.g., an orbiting or plunging

particle. The second term can be written as

*4
res 14 ) I *
=LYl )

as the ECO’s response to the incoming gravitational wave.

Now, we are prepared to discuss the reflecting boundary
condition of the Teukolsky equations in terms of the tidal
response of the ECO. According to the linear response
theory, we can assume that the linear tidal response of the
ECO is proportional to the total tidal fields near the surface
of the ECO. That is, we may introduce a new parameter 7,
and write

gr’;;g - 77(17, e)gmm (25)

Here 7 is analogous to the tidal love number. This leads to
the following relation at r, = b,:

[—QTreﬂ(t - b*,9,¢ B QHb*)]* . n e~P

= A2 (26
DTt +b,, 0,0+ Qyb,) 1-n 4 (26)

In particular, when # — oo, we will have the Dirichlet
boundary condition,

"rreﬂ _ e * —4ip
[_2 src(t b*’ 9’ ¢ Hb*)] - - ¢ Az. (27)
LY (14b,,0, ¢+ Qub,) 4

This then provides us with a prescription for obtaining the
boundary condition at r, = b,. Once we know the left-
propagating w§*, the reflected waves due to the tidal
response are simply given by Eq. (26).

Let us now define a new parameter R (b, 6) as

R(b,6) =1 (28)

1-7n"

This parameter has the physical meaning of being the
reflectivity of the tidal fields on the ECO surface. In terms
of R(b,0), we can write

L, (t—b,.0,¢— Qyb,)]*
—4ip
:_64 R(b.O)A2 LT (1+b,.0.+Qub,).  (29)

This local response, constructed for the surface element
with Boyer-Lindquist coordinates (¢, b, 0, ¢b), assumes that
different angular elements of the ECO act independently,
which is reasonable, since on the ECO surface, and in the
FIDO frame, the gravitational wavelength is blueshifted by
a—nhence, much less than the radius of the ECO.

Furthermore, the ECO’s response may not be instanta-
neous, but may instead depend on the history of the exerted
tidal perturbation. In order to account for this, we should
construct a more general boundary condition, in which the
reflected field emitted at (7, b, 6, ¢)—more specifically,
emitted by a FIDO at spatial coordinates (b, 8, ¢) at Boyer-
Lindquist time r—is the result of incoming fields at
[(,b,0,p—Qu(t—1)], with ¢/ <r1; these are points on
the past of the world line of this same FIDO (see Fig. 1). To
implement this, we rewrite the right-hand side of Eq. (29)
as an integral. In this integral, we evaluate the incoming
tidal field ,,T*¢ at arguments t — ¢, § — 6, and ¢ —
¢—Qu(t—1) (f <1). For the response, we replace the
instantaneous response R(b,0) with a Green function,
which, assuming stationarity, only depends on the time
difference t —¢: R(b,0;t— ). In this way, we can now
write
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t

rcos ¢ rsin g

FIG. 1. Trajectory of the FIDO in a constant @ slice of the Kerr
spacetime in the (¢, r cos ¢, rsin ¢p) coordinate system. Here the
green surface indicates the ECO surface with r = b, while the
black surface indicates the Kerr horizon. Each FIDO has r = b,
but also has (¢, ¢) = (1, g + Qp1).

[_2T“’ﬂ(t— b,.0,0—Qpyb,)|*
o—4ip

t
=== / di'R(b,0;t—1")

[Se]

X A2 TS0 4 b,,0,+Qub, —Qu(1—1)).  (30)

This is the key equation of our reflection model.

D. Mode decomposition

We now have obtained the modified boundary condition
[Eq. (30)] in terms of the Newman-Penrose quantities, and
we are ready to apply it to the Teukolsky formalism. The
solution to the s = —2 Teukolsky equation, _,Y, admits the
near-horizon decomposition as in Eq. (14). In this equation,
7" is the amplitude of the ingoing wave down to the
ECO, which is contributed by the source, and Z™ is the
amplitude of the reflected wave due to the tidal response.
For s = +2, the corresponding amplitudes are Y' and
Y™, We would like to derive a relation among the four
amplitudes.

Near the ECO surface S, |, T is given by

T (v. 0, 94)

do . -
= Z/Ee—sz%i,A 2+25fmw(9, 0.), (31)
‘m

where we have kept only the dominant piece—the left-
propagating mode—and Y is the amplitude of that
mode. The quantity _, Y™ is given by

_ZTreﬂ(u, H, (ﬂ_)

do .
= Z/Ee lwuZ?wa—ZSfmw(e’ ¢—)
‘m

(32)

Inserting the above two equations into Eq. (30), we obtain

er;rgw—ZSfmw (97 ¢)

7
1 o .
= DI (IR Y S, (6. D)
f/
(33)
where R, (b, 0) is the Fourier transform of R(b,0;1— 1),
and k = w — mQpy. During the derivation, we have used the

fact that the spheroidal harmonic functions satisfy the
relation

2Simo0-¢) = (=1)" 12S,_,,_,(0.4).  (34)

Assuming the normalization that [72]

2n n ;L
A /0 S im0, P) 58 41,0, (0, P) sin 0dOdp = 5? on

(35)
from Eq. (33), we can write
1 . .
Z?rfr}w = (_1)m+1 Z e_Zlkb*ZMfﬂme%{em—w* ’ (36)
f’
with
Mff’m(u = /ﬂ Riw*-}-mQH (b’ 9)64”}(9)
0
X 58 1 (@) 58 41y (6) sin0dB.  (37)

In general, the reflection will mix between modes with
different #, but not different m. Note that the mixing not
only arises from the 6 dependence of R (0, b), but also from
the @ dependence of . This mixing vanishes for the
Schwarzschild case. For our calculation, it will be good
to discard the phase term ¢*# and make the assumption that
‘R is independent of the angle 6. But we should keep in
mind that these assumptions only work well in the
Schwarzschild limit a — 0.

In the simplified scenario where mode mixing is ignored,
we can write

hole*
Y

Zreﬂ ~ (_1)m+1 le—Zikb*R*

‘mao 4 —w*+mQy (38)
In this way, the w-frequency component of the y, ampli-
tude of each (/,m) mode is related to the —w*-frequency
component of y of the (I, —m) mode. Here in a Fourier
analysis, w is always real, but we have kept @* so that our
notation will directly apply to quasinormal modes, where
frequency can be complex.
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III. WAVE PROPAGATION IN THE VICINITY
OF THE HORIZON

In the previous section, we have obtained a new
reflecting boundary condition [Eq. (30)] relating the
Newman-Penrose quantities y, and y, on a spherical
surface near the Kerr horizon. This was further converted
as a relation between frequency components of the incom-
ing w, and the outgoing y,. Before moving on to the
applications of these boundary conditions, in this section,
we put the discussions of the previous section onto a more
solid ground. We consider a concrete coordinate system
associated with the FIDOs, and we relate condition (30) to
modified refractive indices or dispersion relations of
gravitational waves in this coordinate system. This way
of modeling the ECO can be thought of as a generalization
of Refs. [47,48,54] to the spinning case.

A. Rindler approximations

Let us now study the propagation of waves near the
horizon, and explore how emergent gravity might influence
the boundary condition there.

Inside the ECO boundary S, we can consider the
propagation of metric perturbations in the near-horizon
FIDO coordinate system. According to MP, the unper-
turbed metric takes the simple form [63]

do? _ 452 i
ds? = —a?di* + g;: +X,d0* + EL:sinZqubz, (39)
H

where

rH—l

I = : Ty =1} +d’cos?0.  (40)

2r H
This metric, only valid for ¢ <1, is a Rindler-like
spacetime with spherical symmetry, with the horizon
located at @ = 0. According to the membrane paradigm
[73], the new radial coordinates (a, 0, (/7)) are defined as

i=t, (41)

a = (2gy — 2aQy gusin?0):(r — ry)z, (42)
0=0- 455 2"%{ a2, (43)

b =d¢—Qut. (44)

The Kinnersley tetrad, near the horizon, can then be
expressed in terms of the Rindler coordinates as

- 2ry = -
[ == ;4 gnad,). (45)
- TH G =

i =2 (3 = gyad,). (46)

*

aQy sin 6 cos 0 =

R AR
e S nea’ - 7 a
m=—r [“’ O a,sintd
i i . . =2\2
+0p + <m —iaQ)y sin 9) 84 s (47)

where we have used the near-horizon approximations and
discarded all O(a?) corrections.

For convenience, we introduce a new radial coordinate x,
which is related to the lapse function via

a = e, (48)

The regime x — —oo is the horizon, where a — 0. In fact,
(¢, x) is exactly the Cartesian coordinate of the Minkowski
space in which this Rindler space is embedded. Now we
consider metric perturbations of the trace-free form

héé(tvx’ év 4_5) = z:HPI+(t’x’é’ a))’ (49)
hoj(t,x.8.4) = 2ry sinBH (1.x,6.9),  (50)
hyo(t,%,0, ) = =4r% sin@H, (1,x,0,8)/Zy.  (51)

Note that H, , are metric perturbations in the angular
directions, measured in orthonormal bases. We first find
that the Einstein equations reduce to

(-07 +03)H, =0, p =+, X. (52)

Again, to obtain the equations above we have only kept the
leading terms in the a series. The absence of @ and ¢
derivatives in this equation supports the argument that the
tidal response of the ECO is local to each angular element
on its surface, as we have established in Sec. II ct

We can further decompose H (¢, x) into left- and right-
propagating pieces as

H,(t,x,0,¢) = H5(t +x,0,¢) + HR(1—x,0.¢).  (53)

Using the Rindler approximations, we then find that the
Weyl quantities y and y4 near the horizon can be written as

L (O - gnd H (130.5). (54)

[p~wa(t, x,0, )" = 2r%e 2P (0?7 — g0, HE(1,x,0, ),
(55)

*Note that this argument only works well based on the
assumption that the ECO surface is close to the event horizon.
For instance, if we had kept the higher-order terms in Eq. (52), the
angular dependence would appear and we would lose the simple
spherically symmetric structure of the Einstein equations.
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ECO Surface
=

FIG. 2. Waves that propagate toward the ECO surface can be
approximated as propagating toward the future horizon, while
those that originate from the ECO surface can be approximated as
originating from the past horizon.

where we have defined

HE = HY + iHE, HR = HR +iHR.  (56)
Note that in this approximation, we only extract the
leading behavior of v and y, near the horizon, namely a
left-going wave ~(r — ry)~2 for y, and a right-going wave
~(r —ry)? for y,. Here, we are considering wave propa-
gation and reflection independently for each (6,¢).
Equations (54) and (55) are consistent with our reflection
model given in Eq. (30). For instance, in the case of total
reflection, we have R = —1, and all left-propagating modes
HY, become right-propagating modes HX.

Let us now evaluate the Riemann tensor components in
an orthonormal basis whose vectors point along the

(t,x,0, §) coordinate axes. The results are

e—Zng

(=0 + guOiJH .. (57)

1070 — ipig 2

e—Zng
107 2

[_8t2 + gHax]Hx' (58)
This also confirms the reflection model that we have
obtained from the previous section.

We also point out that near the horizon, x and r, differ by
a additive constant for each (6, ¢). Let us work out the
dependence of the asymptotic shift between x and r,. More
specifically, near the horizon, the tortoise coordinate r, is
approximately given by

1
r.~=—m2gy(r—ry)+7Z, (59)
29u

with a constant

r 1
T=ry+1In <;) S In(8ryg%).  (60)

Here we have neglected O(r — ry) terms. Note that r, is
independent of 6. We define the difference between the two
radial coordinates as

x—r,=6(0)-1, (61)

where

1 -
5(0) = —1In(1 — aQysin’0).

2 (62)

This may influence the mode mixing of reflected waves
from an ECO whose surface has a constant redshift. In
Fig. 3, we illustrate constant-x contours in the (r,,cos6)
plane.

Finally, let us derive the Teukolsky reflectivity R using
the Rindler approximation. Supposing for x in certain
regions, we can write the wave solution as

H(t, x,0,p) = H(t,

x.0.4) + HR(1.x.0.4).  (63)

with

o dk . o
HL(t,x,0,3) = Z/E(ak(@)e—the—zkzezmqb’ (64)

HR(t,x,0,¢) = Z/g@k(é)é‘keikxe_ik’eimé. (65)

Here ©,(0) gives the k-dependent angular distribution.
¢ = (k) is the reflection coefficient that converts left-
propagating to right-propagating gravitational waves. Thus,
yo and y, are respectively given by

constant x contours
I I

by

A 4

o

I
I
|
|
|
i
|
|
1
\

\

e
o

I
I
I
I
1
I
I
1
1
1
1
1

I
—_

FIG. 3. Tllustration of the constant-x contours in the (r,, cos 0)
plane. Reflections from the same x for different 8 will appear as
being reflected at different r, for different 6.
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) (1.2.0.9) = 200

Now that we have obtained v, and y, using the Rindler
approximations, we would like to relate { to the Teukolsky
reflectivity R. To accomplish this, recall that in Sec. II we
have obtained a reflection relation [Eq. (30)] between v,
and y, on the ECO surface. Since the relation is written in
the Boyer-Lindquist coordinates, we first perform the
|

812,620 dk
wo(v.0.9.) ZT;/ﬂGk(g)

i dk ; —i(k+m u i =i im
(0_41//4)*(14,9, p.) = zr%_le—zz/i(é))Z/EGk(g)(_kz — igyk)Cre (kt-mQu )u »ikd(0) p—=ikI pimp-.

Using the reflection model in Eq. (30), we obtain that

Ri =& <M) exp[2ikb, + 2ikd(6) — 2ikZ]. (70)
—k+igy

Thus, once we know ¢, the Teukolsky reflectivity R can be
readily obtained. We point out that the phase factor -
here will cancel the e~2*?- factors in Sec. IID. This is
because in the previous section, we chose b,, as the location
for the “surface of the ECO,” while in this section, the ECO
is embedded into the x coordinate system; therefore, we no
longer need to introduce a reference location b, as the
“surface of the ECO.” The information of the ECO location
will now be incorporated into ;.

Before the end of this subsection, let us look at the factor
M ypime i1 Eq. (37) and see how the mode mixing shows up
in the reflected waves. We can pull out the angular
dependence of this factor by defining

—k—igy 2ikb, ~2iKT
/ = —=" o kb, —21 , , 71
Mff mw <—k+ lgH> -0 +mQHe Mff mw ( )
where
My pme = / e®n® 5, (0)_,5% (0)sin0do, (72)
0

with

o Sr%{ezw(é) dk _ 5 " ikt imd
- _ a0 _ _ ; —ikx ,—i img¢
wo(t,x,0,¢) = A7 Em /2ﬂ®k(9)( k* + igyk)e " e~k eimd

(66)

—0,(0) (=K% — igyk) et emikigimd (67)

coordinate transformations on y, and y, according to
x=r,+60)—-TI,0=0, and ¢ = ¢ — Qyt. During the
coordinate transformation, we have used the near-horizon
approximations and discarded all O(a?) terms. The results
are given by

(—k2 4 ing)e—i(kerQH)ve—ik&(é‘) eikT eim(er’ (68)
(69)

|
®D,,.,(0) =2(w—mQy)5(0) + 45(6). (73)

This M ¢¢'me Value directly shows the mixing of modes due
to the phases (@) and f(6), which arises due to the
nonspherical nature of the ECO surface. Since ¢/®m (@) is a
unitary operator, we must have

ZMff/mwM;f”mw - 5?:’ . (74)
4

We plot the absolute value of J\A/lmmw for/ =2, m=2
and for various spin and ¢’ in Fig. 4. For a = 0, we have

./\A/l”/mw = 1, indicating no mode mixing. As we raise the
spin, modes get more mixed and the reflected waves attain
more contributions from £’ > 2 modes. This quantitatively
shows that the mixing of different £ modes is a significant
feature for the reflection of waves near the horizon.

B. Position-dependent damping
of gravitational waves

We now calculate the reflectivity R in a simple setting—
by adding dissipating terms in the linearized Einstein
equation in the Rindler coordinate system, obtaining {,
and then converting to R. Wang et al. already introduced a
model in which a wave is damped by introducing a
complex “Young’s modulus” of spacetime [48]. They name
the reflection coefficient they found the Boltzman reflec-
tivity. As an alternative approach, let us introduce a
position-dependent damping to gravitational waves that
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(=2m=2a=0.1

(=2m=2a=0.3

1.0

0.8

1.0

0.8

FIG. 4. The absolute values of the factor M ¢¢'me TOT various spin a and £’. This factor shows the mixing between different £ modes
after an incoming single mode gets reflected on the surface of an exotic compact object. Here we have chosen £ = 2, m = 2 as an
example. In general, for higher spin the reflected waves gain more contributions from higher-£’ modes; thus, the effect of mode mixing

is not negligible for rapidly spinning ECOs.

increases as we approach the horizon. This model has the
feature of being able to provide more well-posed differ-
ential equations.

To do so, we modity the linearized Einstein equation by
adding an extra dissipation term, with the coupling coef-
ficient €, to the equation satisfied by the perturbation H
defined in Eq. (63):

—0?H — ee™9 0, H + O*H = 0. (75)
Assuming harmonic
F(x)e ™, we have

time decomposition H(x, 1) =

& _
el k> + ikee™97* | H(x) = 0. (76)
X

Here k has the physical meaning of being the angular
frequency of the perturbation measured by FIDOs, before
blueshift. The modified Einstein equation then admits a
general solution given by

FH(x) = C,T(1 = iv)d") () + (1 + i)l (). (77)
where
v=2k/gy, z =265 Vek/ gy, (78)

and Jﬁl)(z) is the Bessel function of the first kind. The
appropriate solution which damps on the horizon is
given by

G

C I'(1+iv)
c,

T1-i)° (79)
Here we shall assume ¢ < 1. In this way, there is a region
where x < —1, but still with ee™9#* <« 1. In other words,
this is a region very close to the Kerr horizon, but here the
damping has not yet turned on. In this region, the damping
solution can be written as
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H(x) o e™™ + {pe'™, (80)
with
F(l +2lk/gH) kg _ak _dikjpe
K\=————"""e 9 e me s | k>0. (81
e T MRS

Here we have imposed k& > 0 because the sense of ingoing
and outgoing waves changes for k < 0, where we need to
write

{p(=k) = {p (k). (82)

This is the same form of reflectivity proposed by Wang
et al. In Eq. (81), the first factor involving two I" functions
is a pure phase factor that has a moderate variation at the

_2ikn ko, ..
scale k ~ g, and the phase factor e % " is similar; the

amplitude factor e i provides unity reflectivity for k ~ 0,

and this reflectivity decreases as |k| increases. We plot
|Cp(k)| for gy =1 in Fig. 5.

The final phase factor in {5 can be written in the form of

2ik

—=2lne ik
e 9H = e t xeff’

1
Xeff = — Ine. (83)
9H

This provides an effective x location around which most of
the wave is reflected—as we can see, we no longer have a

[¢ol
[l = 0.1
[Carls =1
[Cal, =10

= = |Culp— o0

)

0.01 :
0.001 0.010 0.100 1 10
Mk
FIG. 5. Absolute values of {p and ¢, as functions of the

frequency k. We have set gy = 1. As indicated by Eq. (70), { and
the Teukolsky reflectivity R only differ by a phase; |{] is the same
as |R|. The blue solid line represents |{|. The yellow dotted line,
the green dashed line, the red dot-dashed line, and the purple
long-dashed line give || for u = 0.1,0.2,0.5, oo, respectively.
The “Boltzman” reflectivity, i.e., {p, exponentially decays for
higher frequencies. For our model of homogeneous stars, we have
total reflection of waves on the ECO surface below a certain
threshold frequency. Beyond the threshold frequency, the reflec-
tivity gets decreased and converges to a constant. When u — oo,
we have total reflection of waves for all the frequency range,
which is equivalent to the case of inhomogeneous stars we have
introduced.

single location r = b for the ECO surface at which all
the waves are reflected. To obtain the reflectivity R, we
simply insert {p into Eq. (70), which adds an additional
0-dependent phase factor.

C. GW propagation in matter

The damping term in the linearized Einstein equation
causes reflection in the near-horizon region. In this sub-
section, we consider another scenario, where there exist
some effective matter fields in the vicinity of the horizon.
The effective stress-energy tensor is denoted as 7%, and its
existence may be related to the emergent nature of gravity.
We now modify the linearized (1 4 1)-Einstein equa-
tion (52) by adding the effective source, and we get

—?H + O¥H = —167e*9* TS, (84)

In this equation, on the left-hand side, we have a freely
propagating GW in (1 + 1)-Minkowski spacetime, while
on the right-hand side, we have the effect of emergent
gravity.

1. Tidal response of matter

We now discuss how T4% should respond to H. Suppose
these effective degrees of freedom act as matter that stays at
rest in the FIDO frame. The AB component of the Riemann
tensor is given by

(=0% + gu0H. (85)

Riap =

N[ =

We postulate that the response of the effective matter is
given by

e H
TAfij = gRrArB’ (86)

where 7 is the proper time for the Rindler metric [Eq. (39)],
and p is a physical coupling constant measured in the local
Lorentz frame of the FIDO, which can be dependent on the
driving frequency felt by the FIDO. Physically speaking, x4
is the linear response of the matter towards external
perturbations, which is similar to the permeability of
gravitational waves in matter. Thus, we have

e H M
TSE = 5 R = Tord? (=0? + g0, )H. (87)

8ra
Note that the Einstein equation is now modified into
Gap = UR pp- (88)

With the effective stress-energy tensor, the metric equation
of motion can now be written as

[—(1 + )07 + gupd, + 02H = 0. (89)
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Here (1 + p) acts as the permeability of gravitational waves
in matter and decreases the speed of gravitational waves.
Now, let us consider two kinds of matter distributions for
the exotic compact object.

2. Homogeneous star

For a simple model, let us look at a homogeneous star
with uniform g in the interior region. For a frequency-
independent y, we can write H o« e~ * % and the modi-
fied dispersion relation is given by k = k, or k_, with

: 2.2
k. = ’gg” + \/(1 k2 - gHT”. (90)

We immediately note that gravitational waves become
evanescent when

|guu
— 91
214 u G

That is, we have a total reflection of all waves below wy,.
Substantial reflection also takes place near the wy, fre-
quency. For |k| > kg, and positive p, waves will be
amplified when propagating towards the x — —o0
direction—i.e., towards the horizon.

We may further postulate that y is of order unity inside a
surface at which the surface gravity is blueshifted to the
Planck frequency wp:

|k| < |kth| =

-1

Ho, @ gy > wp,

p= { . (92)
0, otherwise.

The surface is then located at x = xp, where

p = —ln (g—H>. (93)

9H @p

As before, we write down the general solutions to Eq. (89)
as H(x,t) = H(x)e ™. Outside the surface, we can write

H(x) o e 4 £ e, (94)
Inside the surface, we have
H(x) o ek, (95)

Matching the solutions on the surface gives

i e’
AT L A P

Cu=

k>0. (96)
k=gt [ (14 )2 = T

Similarly to the previous section, {(—k) = {*(k). For
|k| < kg, we have |y;| = 1, indicating a total reflection of

low-frequency waves. For higher frequencies, ||

approaches a constant

lim |C | _Vidtp-1 (97)
k—o0 1 + 1 —i—/[

We plot |¢,,| for different 4’s in Fig. 5. Since u is supposed
to be a small number, high-frequency waves have nearly
zero reflection near the surface. This {,, is qualitatively
similar to the Lorentzian reflectivity model adopted, e.g.,
by Ref. [62].

3. Inhomogeneous star

Let us make p grow as a function of the location, with

# = poe™™, (98)

where po and 5 are positive constants. In this way, we
successfully “revive” u near the horizon.
We write down the general solutions to Eq. (89) as

H(x,t) = H(x)e~*, and obtain that

~ i H0Y,
%ln( OnH) rk

Ti(x) = Aje-re ~“iM(a,b.z)
+ Ay et MM (a* b, Z), (99)

where
kK2 2ik

a="- p=147E, Ho9H. = (100)
n  gun n

A, and A, are some constants, and M(a,b,z) is the
confluent hypergeometric function.
The hypergeometric function behaves asymptotically as

3

b)
(@)’

M(a,b,z) ~e*z¢7"

(101)

Z_)m7

—

M(a,b,z) ~1, z—0. (102)

The solution that damps on the horizon is then given by

(103)

For x in the region that uygye ™ < 1 and positive k, this
solution can then be written as

H(x) = e7F 4 ¢yet®, (104)
where
2ik ik _ K
£y = — ol TSI T 5, (105)
_ 2ik ik _ k2
(1 n) r(;_ﬁ)
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One immediately notes that |y| =1 for all real k,
indicating a total reflection of waves. This may be due
to the fact that our assumption of y in Eq. (98) is equivalent
to putting infinite numbers of reflecting surfaces near the
horizon—i.e., the 4 — oo case in Fig. 5.

IV. BOUNDARY CONDITION IN TERMS
OF VARIOUS FUNCTIONS

In calculations for gravitational waveforms, one does not
usually compute both y and w,; the Sasaki-Nakamura
formalism was also used to obtain faster numerical con-
vergence. In this section, let us convert our boundary
condition [Eq. (36)], which involves both yw, and y,
amplitudes, into those that only involve y, amplitudes,
and compare our reflectivity with the one defined using the
Sasaki-Nakamura functions.

A. Reflectivity for y,-mode amplitudes

The Newman-Penrose quantities y, and y, can be
transformed into each other using the Teukolsky-
Starobinsky identities. The amplitudes Z"'® and Y"°'® are
related by [70]

Comow Yl}%i) = Dfmwzl}(r);iin (106)
with
Dy = 64(2ry)*(ik)(k* + 4€%)(—ik + 4¢),  (107)
and C is given by
IComa|* = (A +2)? + dawm — 4a’>?)
X [4? + 36awm — 364w’
+ (24 + 3)(96a*w? — 48awm)
+ 1440*(1 — a?), (108)
with
ImC = 12w, (109)
ReC = +4/|CJ]> = (ImC)?. (110)
Here we have defined
A /1 )
e = <, (111)
4rH
and A= _,4,,, is the eigenvalue of the s = —2 spin-

weighted spheroidal harmonic. See Appendix B for more
discussions on the Teukolsky-Starobinsky identity.

Combining Eq. (36) with Eq. (106), we finally arrive at
the relation between Z™! and Z™, which is given by

ZE = GromeZlS . (112)
bp!
where
m 1 =21, Df/
gf’f’mw = (_1) +IZ€ Zkb*Mff’meimw' (113)
'mw
We have used the relations Dy, = D;_, . and Cy,, =

C,_,,_, in order to obtain the above equation.
If we restrict ourselves to the simple case where ¢ and ¢’
modes do not mix up, we may simply write Eq. (112) as

Ze = GmaZ (114)
with
s Df * i prefl
gfmw = 4C;::; —w+mQHel¢f”"” (1 15)
and
Pne = (m+ 1)z = 2kb,. (116)

Equation (114) says that the (£, m, ) modes of gravita-
tional-wave echoes are not induced by the reflection of the
incoming (¢, m, ) modes, but the (£, —m, —®*) modes
instead. The mixing of these two types of modes essentially
indicates the breaking of isospectrality, as pointed out by
Ref. [67]. We will get back to this point later. The other new
result is the extra phase term @™ for the reflected waves,
which may be important for observations.

B. Reflectivity for Sasaki-Nakamura
mode amplitudes

Since most previous literature on gravitational-wave
echoes base their models on the reflection of Sasaki-
Nakamura (SN) functions, one may ask how the tidal
reflectivity can be related to the SN reflectivity. (See
Appendix A for a brief review of the SN formalism.) In
the vicinity of the horizon, the s = —2 SN function—i.e.,
the one associated with y,—can be written as

r., = b,.

ECO _ ghole p—ikr, 4 grefl pikr. (117)

‘mw T Sfmo

Under the Chandrasekhar-Sasaki-Nakamura transforma-
tion, we have

refl
freﬂ _ “lma

hole __ ~7hol
foe = Zfoma fma)_f ’
‘mw

me fmwdfmw’

(118)

with
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dimew = \/2ry|(8 = 24iw — 160%)r%,
+ (12iam — 16 + 16amw + 24iw)ry

—4a*m? — 12iam + 8| (119)
and
Akr/2ry[2k i(ry —1
ffma) = - rH[ rH+l(rH )} (120)

n(ru)

Inserting Eq. (118) into Eq. (112), we obtain boundary
conditions for the Zm components of the SN functions:

1 ,—2ikb
refl (_1)m+ ¢ ) M Dgw hole*
e —— 0 )
Fmen 4ffma) ; " Cf’mwdf’mw fimm=o
(121)
Here we have used the identity that
Apme = dyp_ - (122)

As we will see later, the fact that reflection at the ECO
surface turns the ingoing (¢, —m,—w*) SN components
into outgoing (I, m,®) SN components leads to the break-
ing of isospectrality, which has also been pointed out by
Maggio et al. [67]; here we take the further step of relating
these coefficients to the tidal response of the ECO.

For the most simplified scenario,” where Zhol’  —

f—-m—-w*
Zble and different £’ modes do not mix, we may simply
write
fl. _ >SN zhol
r;m(u - leo f(z)ni)’ (123)
where
SN __ 1 T-SN
Rfmw — Kfmw iw+mQH’ (124)
with
+1
TSN _ (=)™ Dy (125)
"o 4Cfmwffmwdfmw

This is a simple linear factor that converts R into the R5N’s
that are used in SN calculations. In the Schwarzschild limit,
we have

sy (CD"(o-)[120+iA2+2)]

(126)

where 4= (£ —1)(¢+2). One immediately notes that

|KT>SN| =1 in the Schwarzschild limit. For spinning

’In general, this symmetry is broken in the inhomogeneous
Teukolsky equation with nonspherically symmetric sources.

ECOs, we numerically investigate 1SN for the (2,2)
mode for different spins in Fig. 6.

C. Energy contents of incoming and reflected waves

The reflection coefficient we defined in the last sub-
section is indeed the (square root of the) power reflectivity
of the gravitational waves on the ECO boundary. To see
this, consider a solution to the s = —2 Teukolsky equation
near the ECO surface. The energy flux down to the surface
is given by [70]

dE hole

®
= yhole 2,
dw ;m: 64nk(k> + 4¢*)(2ry)? Y el

(127)

while the energy propagating outward from the surface is
given by

dEreﬂ ®
= Zreﬂ 2.
dw ;4”]((](2 4 462)(2rH)3 12|

(128)
Here all @’s are taken to be real numbers. See Appendix B
for detailed discussions on the energy flux and the energy
conservation law. In the simple case of neglecting £ — ¢’
mixing, incoming energy from the (£ — m — w) mode will
return from the (£m®) mode, with

dEreﬂ dEhole
— =|R_ o u—— . 129
< dw )fmw | w+mQH| < dw —m—-w ( )

This means that our reflectivity R indeed acts as an energy
reflectivity.

V. WAVEFORMS AND QUASINORMAL
MODES OF THE ECO

In this section, we show how our ECO boundary
conditions can be applied to echo computations and
resonant conditions for quasinormal modes. We shall also
restrict ourselves to the case of

gz,’ma) = g;—m—w*- (130)
This is satisfied by all the reflectivity models discussed in

this paper, since in these cases the tidal response in the time
domain, R(b, 0;1) [cf. Eq. (30)], is real-valued.

A. Even- and odd-parity echoes

In this subsection, we derive the gravitational-wave echo
waveform based on our reflection model. Note that this
echo can be the additional wave due to the reflection at the
ECO surface during the inspiral phase—it does not
necessarily have to be the echo that follows the ringdown
phase of the coalescence wave.

Suppose now that we have some small perturbations
toward the ECO spacetime. We assume that the source in
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K

the Teukolsky equation drives a _ZT(O), which has the
following form at r, — —oo:

-2 /E

This satisfies the Teukolsky equation with the appropriate
source term away from the horizon, the outgoing condition
at infinity, but not the ECO boundary condition near the
horizon. We will need to add an additional homogeneous
solution, which satisfies the outgoing boundary condition

at infinity. Recall that for the radial part, we have

dw holc
f maw

2 —ikr* —ZSfmw(e’ ¢)e—imt‘
(131)

dw
2,11 Cotmw

2

5 Yecho — ‘m

KZ: fg—?z)cfmw[ L”mmA2 ik +D
'm

—2Rfmw - { 3
r

ikr, r— b,

A2 —ikr, +Dout

fmw
ior.
e,

r — +o00.

Thus, we add the following homogeneous solution to T

dw .
Yecho — Rt® ¢ 0, —ta)t, 132
-2 ; :/zﬂcfmw—z emir-2Semo(0-)e (132)

so that _2T(0) + _

,Yecho js of the form (14), also satisfying

Eq. (114). The asymptotic behavior of _, T is given by

}’36+’wr‘ e—twt ZSfmm(g ¢)

out
mw®€
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Here we already see that the amplitudes c,,,,, directly give
us the additional gravitational waves due to the reflecting

surface. Identifying term by term between _ZT(O) + _ZT“hO
and Eq. (14), we find
hole (0

Zl;(;);li) = Zf(r)niz( ) + Cfmel;mw’

Z?rgw = Cfme(L;lrJrgw‘ (134)
Applying Eq. (112), we obtain

Zhol i
Cfmﬁ)Dfma) ngt”mw Oem - + Cf’ Dl;—m—w}’

hole (0) in
§ :gff’ —m— a) f’mw +cﬂmet”mw]'

(135)

* out
cf—m—a)Df— )

Here we restrict ourselves to real-valued @ only. Using the
symmetry of the Teukolsky equation for real-valued w, it is
straightforward to show that the homogeneous solutions
have the symmetry

ler'lmw = D?—m—w’ D%%w - D;u—tm—w (136)
We can then write
< éff’Dfmw _gff’ma)Di{pmw) ( Clmw )
_gt’f’mmemw 51/’5”D;l,lytlw C;’—m—a)
in(0)x*
- (g”""‘“ 0 > <Z"’f’"‘")>, (137)
0 gff’mw Zm )
' mw
GKf’mw = g;f’—m—w’ (138)

where the components in all matrices are also block
matrices with ¢ and £’ representing sections of rows and
columns. This will allow us to solve for cg,,, therefore
leading to the additional outgoing waves at infinity—i.e.,
the gravitational-wave echoes.

In the simple case where there is no £ — ¢’ mixing for
reflected waves [so that the relation between reflected
waves and incoming waves is simply given by Eq. (114)],
and that

g*f—m—w = gfmw’ (139)
we can have simpler results. For each harmonic for the Z
components (and similarly for the ¢ components), we
can define symmetric and antisymmetric quadrature
amplitudes:

2z,

T

hole (0).S
Z g

(140)

hole (0) hole (0)

Zho]e 0)A _ “tmo  — “t-m-o (141)
‘mw - \/Ez ’
We then have
G, hol
S maw ole (0),S

o 2 hole(0)5 (142)

me D(;,l,tla, gfmeIL’me "
C?ma, = gfmw };(r)rlti)(O)YA ( 143)

out s in
Dfmw + gfmet’mw

Here we see that the A quadrature has a reflectivity of

—Gbﬂmw, compared with Gmw for the S quadrature. These
quadratures correspond to electric- and magnetic-type
perturbations.

As it turns out, nonspinning binaries, or those with spins
aligned with the orbital angular momentum, only excite the
S quadrature—although generically both quadratures are
excited—they will have different echoes. In the case where
echoes are well separated in the time domain (the first,
third, and other odd echoes), the A and S will have transfer
functions negative to each other, while for even echoes,
they will have the same transfer function.

If we further simplify the problem by demanding

Ctmo = c;—m—w’ Eq. (137) gives
Gfmw hole (0)
c = 144
mo — D%ﬁw gfmeI;mw ‘ma ( )

This expression coincides, for instance, with the one
obtained in Ref. [37] for the spherically symmetric space-
time with a reflecting surface. Note that the phase factor

e~2%b. has been absorbed into our definition of G.

B. Echoes driven by symmetric source terms

In our reflection model [Eq. (114)], as discussed in
Ref. [74], the coefficients Z8¢ . and Z!' are related for
quasicircular orbits. For such orbits, one can define a series
of frequencies as

(O m.Q.¢ + kgg, (145)
where Q4 and Q, are two fundamental frequencies defined
for periodic motions in ¢ and 6. Then, for real frequencies,

we can decompose the amplitude Z‘;lmw according to

Zive = D 20l = o). (146)
k
It is easy to check that for Kerr black holes,
Z0e = (=1) Hhz (147)
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That is, if we consider a specific circular orbit, we have the
symmetry that either ZI®  is equal to Z!° = or they
differ by a minus sign. In this simple case, our reflection
model (114) does not involve different modes, and the
model becomes similar to those reflection models based on
Sasaki-Nakamura functions like in Ref. [48]. However, if
we consider the full quasicircular motions—i.e., adding up
all orbits—this symmetry no longer exists, and one has to
consider the mixing of modes when dealing with the
reflecting boundary. For general orbits that are not quasi-
circular, the symmetry between ZI%¢  and ZBO° may
not exist.

Now, for the symmetric source, where there is no mode
mixing, let us consider a solution _ZT(()) to the Teukolsky
equation, which has the following form at r, - —oo:

dw hole
§ : fmu)

A2 —ikr, Sfmw(e’ ¢)€—iwt‘

(148)
Following the same steps as in the last subsection, it is

straightforward to show that the echo solution to the
Teukolsky equation at infinity is given by

1 =3 [ S SO0 (149
with
;cho _ G{mw Z};ole (0) (1 50)
" D(;lrlv;w gfmelLBmw "
where we have chosen the normalization D = 1. The

‘mo

tidal reflectivity can also be directly related to the SN
reflectivity as

Dfma)

RSN
4Cfmwffmw dfmw

e = (=17 R . (151)

—o+mQy

In this simple scenario, the tidal reflectivity is exactly the
energy reflectivity for each mode.

C. Quasinormal modes and breakdown
of isospectrality

For quasinormal modes, we set Z to zero, and analyti-
cally continue Eq. (137) to complex w. The QNM frequen-
cies can be directly solved by setting the determinant of the
lhs matrix of Eq. (137) to zero—i.e.,

5&&/ Dout _g{ﬂ Din
det( e ’"“’m"'""’> =0. (152)
0 —m—w* Dz,”mm 5ff/Dfmm

This will in general cause a mixing between QNMs
with different #, and break the isospectrality property of
the Kerr spacetime and lead to two distinct QNMs for
each (£, m).

Neglecting the Z — ' mixing, we can simply write

= gfmwgfmw[D?mw] s

D
gfmw = g —m—w* -

[DOllt ]

‘mw

(153)

In the special case of Gfm,,, = éfmm (which is satisfied by
all the reflectivity models discussed in this paper), we note
that the ECO’s QNMs split into S and A modes, with @ om

and a)jl‘fm satisfying different equations:

Dout gfmws Dm

Cmag Cmag

=0, (154)

Der, t Gmw,Die, = 0. (155)
This still breaks the isospectrality properties of Kerr
spacetime. Note that this property has also been found
and studied in Ref. [67] with their echo model, which
describes the ECO as a dissipative fluid. Since modes of the
ECO are usually excited collectively, the main signature of
the breakdown of isospectrality is still the fact that S and A
echoes have alternating sign differences in even and odd
echoes.

VI. CONCLUSIONS

In this paper, we developed a more physical way to
impose boundary conditions for Teukolsky functions near
the surface of extremely compact objects. We adopted the
membrane paradigm and assumed that the ECO structure is
well adapted to the coordinate system of the fiducial
observers, which is an approximate Rindler coordinate
system near the horizon. More specifically, assuming that
the additional physics near an ECO can be viewed as
modified propagation laws of gravitational waves in the
Rindler coordinate system, we were able to obtain reflec-
tivity models for spinning ECOs that are similar to those
proposed by previous literature when taking the
Schwarzschild limit. In particular, the Boltzmann reflec-
tivity of Oshita et al. was obtainable from a position-
dependent damping of gravitational waves in the Rindler
coordinate system, which might be thought of as due to the
emergent nature of gravity.

As it has turned out, the most directly physical condition
is between ingoing components of y, and outgoing
components of y,, although relations between ingoing
and outgoing components of y,, as well as those of the
Sasaki-Nakamura functions, can be obtained by using the
Starobinsky-Teukolsky transformation, as well as the
Chandrasekhar-Sasaki-Nakamura relations.
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The deformation of spacetime geometry due to the spin
of the ECO causes a mixing between different # modes
during reflection at the ECO surface; reflection at the ECO
also takes (m,®) — (—m, —w®*). This means an incoming
(¢, m, w) mode is reflected into (¢/, —m, —»*) modes. For
moderately rapidly spinning holes, such ¢ — £’ mixing is
moderate, but non-negligible, which means that accurately
modeling echoes will indeed have to take such mixing into
account. For incoming waves toward the ECO caused by a
quasicircular inspiral of a nonspinning particle, the wave-
form has a definite parity, and is invariant under the
(m,w) - (—m,—w*) transformation. For more general
waves, the (m, w) — (—m, —w*) map causes echoes from
even- and odd-parity waves to differ from each other; it also
causes the breakdown of quasinormal mode isospectrality,
as has been pointed out by Maggio et al. in the
Schwarzschild case.

ACKNOWLEDGMENTS

The authors would like to thank Shuo Xin, Wenbiao
Han, Ka-Lok R. Lo, Ling Sun, and Niayesh Afshordi for
useful conversations. B.C. and Y.C. acknowledge the
support from the Brinson Foundation, the Simons

|

Foundation (Grant No. 568762), and the National
Science Foundation, Grants No. PHY-2011961 and
No. PHY-2011968. Q. W. acknowledges the support from
the University of Waterloo, Natural Sciences and
Engineering Research Council of Canada (NSERC), and
the Perimeter Institute for Theoretical Physics.

APPENDIX A: THE HOMOGENEOUS
TEUKOLSKY AND SASAKI-NAKAMURA
EQUATIONS

Perturbations of Kerr spacetime can be described by the
Teukolsky equations [57]. In the vacuum case, one can
decompose solutions to the homogeneous Teukolsky equa-
tion as

do _. .
ST = ;/Ze_lthrlmd)th’mw(r)sSfma)(a)a (Al)

where (S,,,,(0) is the spin-weighted spheroidal harmonic
function, and s is the spin weight. The Teukolsky equations
are then separable, and the equations for R and S are,
respectively,

d d K? =2is(r— 1)K
|:A_S e (AS-H _) + lsA(r ) =+ diswr — sﬂfmm:| stmw = 07

dr dr

sinf df do sin’6

1 d d 0)?
[—— <sin 9—> _ arsintg — M H500s0)”

where K = (r* + a®>)w — ma, and A, is the eigenvalue
of the spin-weighted spheroidal harmonic.

For s = -2, the radial Eq. (A2) admits two independent
solutions, ,RY “and ,R%® . which have the following
asymptotic forms:

out .3 iwr, in —1 —iwr,
R By, re”=+By r e , =00, Ad
=25 mo hole A2 ,—ikr, . (A4)
B e Ace , r—=ry;
- D§°mwr3ei“”*, r— 00,
_zRfm‘U - out ikr in 2 ,—ikr, (AS)
Dyl e + Dy A“e™™ r — rg.
The Sasaki-Nakamura-Chandrashekar transformation

[59] takes the Teukolsky radial function _,R(r) to the
Sasaki-Nakamura function X(r), and the Teukolsky equa-
tion becomes the Sasaki-Nakamura equation. The homo-
geneous SN equation is given by

defmw
dr?

demw
dr,

- F(l") - U(r)Xfmw =0. (A6)

(A2)

—2aws cos O + s + 2maw + s/lfmw] Sems =0, (A3)

The explicit expressions for F(r) and U(r) are given in
Egs. (51)—(58) of Ref. [75]. The SN equation also admits

. . H 0 .
two independent solutions, X, and X3 . which have the
asymptotic values
H A(z;lr]rttweiwr* + Ai;mwe_[wr*’ r— oo,
‘mo hole _—ikr . (A7)
Afmwe i r="Tu;
(e _ ;Omweia)r* ’ r — oo, AS
Cmo T out ikr, in —ikr ( )
Conpe +Ch e, r—rg.

The amplitudes A and C can be related to the amplitudes B
and D by matching the asymptotic solutions to the SN and
the Teukolsky equation on the horizon and at infinity. The
B coefficients and A coefficients are related by

B},’me == Tsz;]mw’ (AQ)
4 2

B3, = ——— A%k, (A10)
€o
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hole __ 1 Ahole

‘mw dfmm ‘mw’

(Al1)

and the D coefficients and C coefficients are related by

. 1 .
dfmw
Do = femaComor (A13)
4 2
D;oma) = _ic?mw’ (A14)
o
where
Ao = \/2r5[(8 = 24iw — 160?) 1%
+ (12iam — 16 + 16amw + 24iw)ry
—4a’m? — 12iam + 8], (A15)
and
4kr/2ry |2k i(ry —1
n(ru)
Here #(r) is defined by
_ a,9,4, 4
n(r) =co+ , +r2+r3+r4’
with
co = —12iw 4+ A(A + 2) — 12aw(aw — m),
c; = 8ial3aw — Alaw — m)], (A17)
¢y = —24ia(aw — m) + 12a*[1 - 2(aw — m)?],
¢y = 24ia’ (aw — m) — 244>,
s = 124, (A18)
where 1= _,4,,,, is the eigenvalue of the s = —2 spin-

weighted spheroidal harmonic.

APPENDIX B: CONSERVATION OF ENERGY
FOR GRAVITATIONAL PERTURBATIONS

In this section, we derive a new conservation relation
among four energies, which correspond to waves that are
outgoing at infinity, ingoing at infinity, coming down to the
“horizon,” and being reflected from the “horizon,” respec-
tively. A derivation has been performed by Teukolsky and
Press in Ref. [70] for the relation among the first three
energies. Here we extend their results to include the
reflected one.

From the Newman-Penrose equations, one can derive the
Teukolsky-Starobinsky identities for s = £2, which can be
written as

[’—I‘C’OEIEZQS + 12l60_25 = C—ZS’ (B])

1
DDDD_,R = ZZR’ (B2)
where we have omitted (¢mw) indices in R and S for the
sake of brevity. We will adopt these abbreviated notations
throughout this section. The operators £ and D are
defined by

L,=0y+mcsch—awsind+ncotd, (B3)
D =0, —iK/A, (B4)
and C is given by
IC)* = (A4 2)* + 4awm — 4a*w?)
x [A2 + 36awm — 36a*w?]
+ (24 + 3)(96a*w* — 48awm)
+ 1440?(1 — a?), (B5)
with
ImC = 120, (B6)
ReC = +4/|C|> = (ImC)>. (B7)
Similarly, we define
Ly =L, (-0, —m), (B8)
D' = D(-w,-m) = 9, + iK/A. (B9)

A complementary set of equations to Eqgs. (B1) and (B2)
then gives

£hcicicic s + 12i0C*,S = 2,8, (B10)

DID'DIDIA2,R = 4|C|*A~2_,R. (B11)

Now, let us derive the relation between v and y, by
using the Teukolsky-Starobinsky identities. Note that at
large r, the radial function (R has the following asymptotic
behavior:

e—iu)r* eimr*

R=Y, + You——

- (B12)

—iwr,

—2R =Z + Zoutr3eiwr*-

; (B13)
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Plugging these asymptotic expressions into Eq. (B2), and
keeping the terms leading in (1/r) expansions, we have

CYin == 640)4Zin. (B14)

A set of useful identities that can be used during the
derivations are

ADD = 2(-iK +r—1)D + 6iwr + 1, (B15)
A*DDD = [4iK(iK — r+ 1) 4+ (A + 2 + 2iwr)A|D

—2iK (A + 6iwr) + 6iwA, (B16)

A3DDDD = [A(—4iK(A +2) — 8iwr(r — 1))
+ 8iK(K? + (r — 1)?) + 8iwA?|D
+ A[(A+2 = 2iwr) (A + 6irw)
—12iw(iK +r—1)]
+4iK(iK +r — 1)(A + 6irw). (B17)
Similarly, plugging the asymptotic expressions of the radial
functions ,,R into Eq. (B11), we obtain

4w4Y0ul = C*Zour (Blg)

On the horizon, the radial function (R is given by

2R = YholeA_ze_ikr* + Yreﬂeikr* ’ (Blg)

DR = Zyge AT 4 Zi e (B20)
Plugging these expressions into Eq. (B2) and (B11), we
obtain

CYnote = 64(2ry)*(ik)(—=ik + 4€) (K> + 4€*) Znge,  (B21)

4(2ry)*(ik)(—ik — 4€) (K> + 4€*)Y,eq = C*Zy.  (B22)

In the Schwarzschild case, the energy conservation
relations can be most easily seen from the Wronskian of
two linearly independent homogeneous solutions to the
perturbation equations such as the Regge-Wheeler equa-
tion. In the Teukolsky equation, due to the existence of the
dR/dr, term, the Wronskian is then dependent on r. To
resolve this, one can rewrite the radial Teukolsky
equation (A2) in the form of

d*Y/dr* +VY =0, (B23)
which is possible if one defines
Y = A2(r? + a?)'/?R, (B24)

[K? = 2isK(r — 1) + A(4irws — A —2) — s*(1 — a?)]
P+ 2P
AQ2r + d®r* — 4ra® + a*)
- (rz +a2)4 :

(B25)

The Wronskian of any two solutions of Eq. (B23) is then
conserved. By equating the Wronskian evaluated at infinity
and that on the horizon, we have

d,Y d_Jy* d,Y d_y*
— Y=Y —— == V- y= :
(dr* - odr, )rrH (dr* - odr, )roo

(B26)

For s =2, we substitute Egs. (B12), (B13), (B19), and
(B20) into the Wronskian equation, and we use Eqs. (B14),
(B18), (B21), and (B22) to obtain

_iC*‘Yholel2
32k(2ry)3 (K + 4€?)
n 256(z'k)r§1,(k2 +4€?)(k* + 16€%)|Y e |?
C
O Y | Bia Yol
“ T3 T C
where ¢ is defined in Eq. (111).
This is indeed the energy conservation law relating the
ingoing energy at infinity E;, the outgoing energy at
infinity E,,, the energy absorbed by the “horizon” Ej .,

and the energy reflected from the horizon E,.n. The
conservation law can be written as

dEin _ dEout — dEhole _ dEreﬂ
do do dw do ’

(B27)

(B23)

in which the explicit expressions for the four energies are

dEi 1 640°
n __ - Y. ]2 = —— _\Z 2’ B29
dw ;; 64nw? [Yinl ;MCP |Zin ( )
dE 1 4
u — e Z 2 = - Yln 2’ B3O
dw ;47%02 | Zoutl ;H|C|2 | ( )
dEh 1 w
, Yhote| B31
dw ;;647[]{(]{2 + 4€2)(2rH)3 | hole| ( )
64wk(k? +4€*) (k2 +16€2)(2ry)?
= wk(k* 4 4¢*)( 2+ €*)(2ry) Zuel?,  (B32)
‘m 7T|C|
dErefl w )
do Zeen. B33
dw ;1:471-]((](2 + 4€2>(2rH)3 | refl ( )
- Z%k(kz +4)(2 +166)2ru) ) o (pay
B refl| -

‘m ﬂ|C|2
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