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The stability and other physical properties of a class of regular black holes, quasiblack holes, and other
electrically charged compact objects are investigated in the present work. The compact objects are obtained
by solving the Einstein-Maxwell system of equations assuming spherical symmetry in a static spacetime.
The spacetime is split in two regions by a spherical surface of coordinate radius a. The interior region
contains a nonisotropic charged fluid with a de Sitter type equation of state, pr ¼ −ρm, pr and ρm being
respectively the radial pressure and the energy density of the fluid. The charge distribution is chosen as a
well behaved power-law function. The exterior region is the electrovacuum Reissner-Nordström metric,
which is joined to the interior metric through a spherical thin shell (a thin matter layer) placed at the radius
a. The matter of the shell is assumed to be a perfect fluid satisfying a linear barotropic equation of state,
P ¼ ωσ, with P and σ being respectively the pressure and energy density of the shell, with ω being a
constant. The exact solutions obtained are analyzed in some detail by exploring the interesting regions of
parameter space, complementing the analysis of previous works on similar models. This is the first
important contribution of the present study. The stability of the solutions are then investigated considering
perturbations around the equilibrium position of the shell. This is the second and the most important
contribution of this work. We find that there are stable objects in relatively large regions of the parameter
space. In particular, there are stable regular black holes for all values of the parameter ω of interest. Other
stable ultracompact objects as quasiblack holes, gravastars, and even overcharged stars are allowed in
certain regions of the parameter space.
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I. INTRODUCTION

Black holes have been a subject of wide interest in the
literature along the years. Initially, these objects attracted
attention mainly because of the intriguing properties that
took long to be unveiled. Since the early 1970s, the
discovery by Hawking [1] of quantum effects that take
place near black holes and that connect gravity to thermo-
dynamics, confirming the conjecture by Bekenstein [2],
motivated a lot of effort to try to unveil their intriguing
classical and quantum properties in full. In the past few
decades the interest on black holes have become even wider
since they are also solutions to several generalized gravity
and grand-unifying theories, what has even turned them
into conceptual objects beyond their initial realm. That is to
say, nowadays the concept of black hole is found in several
other theories besides the original theory of general
relativity. Most of this interest has been motivated by their
odd physical properties unveiled from the theoretical point

of view, but also from the potential for observations of
general relativistic effects related to astrophysical black
hole candidates.
More recently, the first detection of gravitational waves

by the Ligo-Virgo experiment [3] gathered much interest
and attention from the community, now in view of the
possibility of verifying several astrophysical aspects of
black holes and other compact objects directly from
observations. The analysis of the observational data col-
lected from such an event is fully compatible with the
results from simulations of the merging of two black holes
within general relativity theory.
Moreover, the first observation of the shadow of the

supermassive compact object at the center of M87 galaxy,
accomplished by the Event Horizon Telescope (EHT) [4]
collaboration, brought even more interest for astrophysical
tests involving black holes. Once the shape of the shadows
depends on the parameters of the compact object models
and, moreover, the observational data is precise enough, it
is possible to use such data to test and possibly ruling out
some theoretical models. In the case of the M87 central
object, the data analysis is compatible with the shadow of a
Kerr black hole solution of general relativity. Interestingly
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for the theoretical work, the analysis of the EHT data does
not exclude other options of ultracompact objects that
mimic black holes and, in particular, variants of the Kerr
black hole that bear other parameters such as electric charge
and cosmological constant, or even regular black holes [5]
are not excluded. The effects of the electric charge,
cosmological constant, and the Newman-Unti-Tamburino
(NUT) charge have been investigated in [6], while the
possibility of being a regular black hole has been consid-
ered, for instance, in Refs. [7–9]. These and the future new
data on strong gravitational lensing may also help us to
distinguish black holes from its mimickers, including naked
singularities [10,11], see also [12] for more references and
proposed tests on black hole mimickers.
Following the perspective of the possible advances in

astrophysical observations, confirmed in part by the recent
developments mentioned above, and also envisaging future
experiments, several possible tests to constraint the physical
parameters of compact objects have been proposed during
the years. Owing the purpose of the present work, the
proposal by Zakharov et al. [13,14] to extract information
from supermassive black holes can be mentioned here. In
particular, a procedure to constrain the electric charge
parameter with current and future observations of bright
stars at the Galactic Center is outlined in Ref. [15]. Thework
also sets some bounds on such a parameter. However, much
more stringent bounds on the electric charge of the Galactic
Center black hole are found in Refs. [16,17].
Under real astrophysical conditions, an accretion disk is

formed around the compact object and then more infor-
mation on the parameters of such an object may be obtained
from the equilibrium conditions of the surrounding matter.
In this context, the possibility of black holes to carry some
electric charge has been recently tested in simulations of the
dynamics of accretion disks with electrically charged
plasma [18,19]. Besides, these conditions allows us to
determine additional physical properties of the surrounding
matter, such as the effective equation of state to model the
matter of the disk (see e.g., Ref [20]).
From the theoretical point of view, black holes are

closely related to the concept of spacetime singularities.
The inevitability of singularities, under certain physical
conditions, in general relativity is a consequence of the
singularity theorems [21–24]. Besides formation of a
singularity inside black holes, as predicted by such theo-
rems, another important example is the Big-Bang singu-
larity. There are, however, ways to avoid singularities. For
instance, the quantum arguments given by Sakharov [25]
and Gliner [26] suggest that matter at very high densities
may undergo a phase transition leading to a de Sitter phase,
i.e., a phase characterized by a false vacuum where the
matter pressure is negative and equals the energy density,
p ¼ −ρ, with the big-bang cosmological singularity being
replaced by an initial de Sitter spacetime. This equation of
state violates the strong energy condition, and then the

singularity theorems do not apply. Based on this idea,
several models of regular or nonsingular black holes have
been proposed, see e.g., [27–32] and, for more references,
see also Ref. [33]. Extensions of the de Sitter equation of
state, especially the ones by using the inflaton field and
others scalar field models, motivated many different studies
on black objects free of singularities, including studies on
the important problem of primordial black holes, see
Refs. [34–41] for a small sample of such studies.
The fact that some kind of exotic matter could avoid

singularities formation in general relativity has been inves-
tigated since the pioneering work by Bardeen [42]. The
source for the Bardeen regular black hole may be interpreted
as an electromagnetic field within a particular nonlinear
electrodynamicsmodel [43,44]. See, e.g., Refs. [45–55] for a
small sample of regular black hole solutions built by
following Bardeen’s idea, see also [56,57] for reviews on
the subject of regular black holes, andRefs. [58–61] formore
recent lists of references. Many of these models present a
central core that approximates a de Sitter solution, see
however the recent works of Refs. [62,63] for models with
asymptotically empty central cores.
Regular black holes with a central de Sitter core may also

be built within effective theories that incorporate the limiting
curvature hypothesis [64–66]. Such theories assume the
existence of a fundamental length of the order of the
Planck scale, lp, which bounds all curvature invariants,
i.e., jRj < l−2p , jRμνRμνj < l−4p , and so on. Interestingly,
the finite curvature hypothesis leads to black hole solutions
free of singularities whose inner region approaches the de
Sitter space.
An interesting strategy to obtain regular black hole

solutions, as several cases among those reported in the
above cited references, is by the matching of two different
smooth spacetimes through a thin transition layer (or a
surface) by convenient junction conditions. This tool,
derived by Israel [67], provides a way to analyze the
characteristics and dynamics of the thin layer (or surface)
with matter in the context of the general relativity. Such a
strategy has been widely used in the literature to build exact
solutions for compact objects of several kinds. In particular,
several exact solutions of electrically charged regular black
holes with a de Sitter core and a thin shell at the boundary
have been constructed in that way (see, for instance,
Refs. [33,68–74]).
In our previous work [73], we obtained regular black

hole exact solutions by matching an interior de Sitter type
region to an exterior Reissner-Nordström (RN) spacetime
through a timelike thin shell of matter. The matter in the
shell obeys a linear barotropic equation of state, P ¼ ωσ, P
and σ being the intrinsic pressure (or tension) and energy
density of the shell, respectively, and ω being a constant
parameter. Regular black holes and other interesting ultra-
compact (charged and/or uncharged) objects are found
among those exact solutions. Our aim here is to examine
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the stability of these new regular black hole and ultra-
compact objects solutions having a massive thin shell. For
instance, considering a regular black hole solution con-
taining a thin shell of matter at the matching surface, the
instability of the stationary shell immediately implies
instability of the regular black hole. In this context,
Balbinot and Poisson [75] showed that, for a certain choice
of parameters, a class of uncharged regular black holes with
shells [65,66] may be stable. Moreover, Uchikata et al. [71]
applied the analysis of Balbinot and Poisson to two types of
charged regular black holes: one kind with a massive but
pressureless thin shell, and the other kind with a massless
shell as constructed by Lemos and Zanchin [33]. They
found that the black holes with a massive shell are stable
solutions in a certain region of the parameter space, and in
the limit of a massless shell, the configurations may also be
stable against perturbations of the thin shell location. By
following Ref. [75], here we test the stability of the whole
classes of objects found in Ref. [73].
The present work is organized as follows. In Sec. II the

basic equations of the model are implemented through the
Einstein-Maxwell equations for a spherically symmetric
charged fluid. The resulting system is then solved for the
interior region and the solutions are briefly analyzed to
complement the previous work [73]. The matching of the
interior and exterior metrics is presented and discussed.
Section III is devoted to analyze in detail the junction
conditions and to define the matter content of the thin shell.
In Sec. IV we identify and describe the regions in the
parameter space where regular black holes, quasiblack
holes, and other interesting solutions are found. The results
of the stability/instability analysis of the solutions are
presented and discussed in Sec. V. In Sec. VI we make
the final remarks and conclude.
Throughout this work, geometric unities such that the

gravitational constant G and the where speed of light c are
set to unity are employed, G ¼ 1 ¼ c, and the metric
signature is þ2.

II. THE MODEL

A. Basic equations and solutions

In this paper we are mainly interested in studying the
stability of the exact solutions representing regular black
holes and other charged compact objects presented in
Ref. [73]. Aiming such a study, in this section we briefly
review such solutions.
The spacetime is considered to be static and spherically

symmetric, so that the line element can be written in the
form

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 is the metric on the unit
2-sphere, ft; r; θ;φg are Schwarzschild-like coordinates,

and the potentials BðrÞ and AðrÞ depend on the radial
coordinate r alone.
The source is considered to be a nonisotropic charged

fluid with four-velocity Uμ and preferred (anisotropy)
spatial direction represented by a spacelike vector Xμ.
The four-vectors Uμ and Xμ satisfy the normalization
conditions UμUμ ¼ −XμXμ ¼ −1, and are orthogonal to
each other, UμXμ ¼ 0. From these conditions and the
metric (1) it follows the relations

Uμ ¼ −
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
δtμ; Xμ ¼

ffiffiffiffiffiffiffiffiffi
AðrÞ

p
δrμ; ð2Þ

where the δ symbol stands for the Kronecker delta.
The energy density is labeled by ρm while the radial

pressure (along the direction Xμ) and the tangential
pressure (along the orthogonal directions with respect to
Xμ) are labeled respectively by pr and pt.
The electromagnetic field strength is obtained from a

gauge potential which can be written as

Aμ ¼ −ϕðrÞδtμ; ð3Þ

where ϕðrÞ is the electric potential and depends on the
radial coordinate only.
The electrically charged fluid fills the interior region, up

to a limiting surface S, of radius r ¼ a. The interior
solution, for all r < a, is found under the assumptions

prðrÞ þ ρmðrÞ ¼ 0;

8πρmðrÞ þ
Q2ðrÞ
r4

¼ 3

R2
; ð4Þ

where R is an arbitrary constant parameter bearing physical
dimensions of length. The first hypothesis in Eq. (4)
establishes that, in the region containing the fluid, the
energy density ρmðrÞ and the radial pressure prðrÞ obey a
de Sitter equation of state [25,26], prðrÞ ¼ −ρmðrÞ, a
relation that violates some of the energy conditions. The
second hypotheses in (4) establishes that, in the region
containing the fluid, the effective energy density ρmðrÞ þ
Q2ðrÞ=8πr4 is globally constant [76,77].
An additional assumption is in respect to the charge

distribution, which is in fact a necessary additional entry to
close the system of equations. Following [78], the electric
charge density ρeðrÞ is chosen in the form

ρeðrÞ ¼ ρe0

�
r
a

�
n
�
1 −

r2

R2

�
1=2

; ð5Þ

where n ≥ 0 is a dimensionless parameter and ρe0 is a
constant carrying dimensions of electric charge per volume.
With the three above hypotheses, the system of Einstein-

Maxwell equations may be solved exactly to obtain the
metric potentials [73]
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AðrÞ ¼
�
1 −

r2

R2

�−1
; BðrÞ ¼ 1

AðrÞ ; ð6Þ

and the fluid quantities

8πρmðrÞ ¼
3

R2
−
q2

a4

�
r
a

�
2ðnþ1Þ

; ð7Þ

8πprðrÞ ¼ −
3

R2
þ q2

a4

�
r
a

�
2ðnþ1Þ

; ð8Þ

8πptðrÞ ¼ −
3

R2
−
q2

a4

�
r
a

�
2ðnþ1Þ

: ð9Þ

Besides that, the massMðrÞ and the total electric charge
inside a spherical surface of radial coordinate r are,
respectively,

MðrÞ ¼ r3

2R2
þ q2

2a

�
r
a

�
2nþ5

; ð10Þ

QðrÞ ¼ q

�
r
a

�
nþ3

; ð11Þ

where q ¼ 4πρe0a3=ðnþ 3Þ is the total charge of the
distribution. Accordingly, the electric potential is

ϕðrÞ ¼ q
ðnþ 2Þa

��
r
a

�
nþ2

þ 1þ n

�
: ð12Þ

It is worth mentioning that the solution presented above
is regular everywhere inside the matter distribution.
The region of the spacetime outside the electrically

charged fluid distribution, for all r > a, is electrovacuum
and corresponds to a portion of the RN spacetime. Namely,
the metric functions are

BðrÞ ¼ 1

AðrÞ ¼ 1 −
2m
r

þ q2

r2
; ð13Þ

where m and q are respectively the total mass and the total
charge of the source. The fluid quantities all vanish in this
region, and the electric potential is ϕðrÞ ¼ q=r, which
matches continuously the interior solution given by
Eq. (12) at r ¼ a.

B. The junction conditions and the surface layer content

The Birkhoff theorem allows us to join the interior de
Sitter to the exterior RN spacetime regions by means of a
dynamical (spherical) surface Σ located at r ¼ aðτÞ, where
τ is a time parameter on the surface. Such a surface is
considered as a thin shell that carries an uncharged perfect

fluid whose energy density σ ¼ σðτÞ and pressure (tension)
P ¼ PðτÞ are given respectively by [73]

σðτÞ ¼ −
1

4πa

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
a

þ q2

a2
þ _a2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2

R2
þ _a2

r !
;

ð14Þ

PðτÞ¼ 1

8πa

0
B@aä− _a2−1þ 3m

a − 2q2

a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2m

a þ q2

a2þ _a2
q −

aä− _a2−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− a2

R2þ _a2
q

1
CA−σ;

ð15Þ

where dots denote differentiation with respect to τ,
_a ¼ da=dτ, etc.
The thin shell formalism provides a relationship between

the energy density σ and the pressure P which may be
written in the form dσ=da ¼ −2ðσ þ PÞ=a (see, e.g., [79]),
what is equivalent to the energy conservation on the thin
shell. In fact, this relation may be cast into the form

dð4πσa2Þ=dτ ¼ −Pdð4πa2Þ=dτ; ð16Þ

from which we identify the total mass of the shell on the
left-hand side of the equation,

M ¼ 4πσa2; ð17Þ

while the right-hand side may be written as PdS=dτ, with
S ¼ 4πa2. With this interpretation, the term on the left-
hand side of Eq. (16), dM=dτ, represents the variation of
the internal energy, while the term on the right-hand side
represents the work done by the internal forces of the shell,
i.e., dW ¼ −PdS.
As done in the work of Ref. [73], for the perfect fluid on

the shell, we assume a barotropic equation of state of the
form

P ¼ ωσ; ð18Þ

with constant ω. After such a choice, Eq. (16) may be
integrated to yield

σðaÞ ¼ σ0

�
a0
a

�
2ð1þωÞ

; ð19Þ

where σ0 is an integration constant satisfying the condition
σ0 ¼ σða0Þ, with (a0) being a fixed initial position of the
thin shell.
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III. EQUILIBRIUM SOLUTIONS: COMPACT
OBJECTS WITH A MASSIVE THIN SHELL

A. Equilibrium solutions: General properties

Here we sort out the static case which follows by taking
a ¼ a0 ¼ constant,1 that means _a ¼ ä ¼ 0. In this case,
Eqs. (14) and (15) fully determine the energy-momentum
content of the matching surface Σ (a thin shell) in terms of
four parameters: a, R, m, and q. If these parameters are
given, the energy density σ and the intrinsic pressure of the
shellP result also known. However, as done in the previous
work [73] and summarized in Sec. II B, we take an
alternative route and impose the linear barotropic state
equation (18). With this, a new free parameter ω is
introduced in the model.
The two resulting relations from the junction conditions,

Eqs. (14) and (15), may be used to express two out of the
six fundamental parameters (a, R, M, m, q, ω) in terms of
the other four free parameters. There are, of course, a
number of choices for the four free parameters, but in any
case the given choice should not affect the physical
interpretation of the resulting solutions. We opt to eliminate
the shell mass M and the total mass of the system m in
terms of the other four free parameters. For this, we use
relations from Eqs. (14) and (15), together with Eqs. (17)
and (18), and solve for M and m to obtain two solutions in
terms of a, R, q, and ω. Namely,

M� ¼ aðX �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − Y

p
Þ

ð1þ 4ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

R2

q ; ð20Þ

and

m� ¼ a
2
þ q2

2a
−
a
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2

R2

r
−
M�
a

�2
; ð21Þ

where, in order to simplify notation, we introduced the
quantities X and Y, given respectively by,

X ¼ 2ω

�
1 −

a2

R2

�
þ a2

R2
; ð22Þ

Y ¼ ð1þ 4ωÞ
�
1 −

a2

R2

��
3a2

R2
−
q2

a2

�
: ð23Þ

Notice that there are two independent solutions, since
Mþ corresponds to mþ and M− corresponds m−, respec-
tively, so that each pair (Mþ; mþ) and (M−; m−) represents
a different configuration for the same set of parameters.
In the previous work [73] we performed a partial analysis

of the equilibrium solutions presented above. In that work,

we noticed that the solutions generated by (M−; m−) are
interesting from the physical point of view when consid-
ering large de Sitter cores, i.e., considering configurations
with a=R close to unity, while the solutions generated by
(Mþ; mþ) are more interesting for small a=R. The interest
is in solutions for which the respective masses are positive
quantities. With this in mind, for each given set of the
parameters a=R, q=R, and ω, we take here the solution
given by m ¼ maxðm−; mþÞ, and take the corresponding
shell mass M ¼ M∓, respectively, for each one of the
choicesm ¼ m− or m ¼ mþ. That is to say, we identify the
largest mass between m� as the total gravitational corre-
sponding to a giving set of parameters, and takeMþ orM−
accordingly as the mass of the shell of the resulting
configuration, with the solution with smaller mass being
neglected.
The functions M� given by Eq. (20) and, as a conse-

quence, the functions m� given by Eq. (21), look as
indeterminate forms in the limit ω → −1=4. In fact, such
indeterminacy may be solved by substituting ω ¼ −1=4
from the beginning, in the original formulas given by
Eqs. (14) and (15), with _a ¼ 0 ¼ ä, and Eqs. (17) and (18).
Such a procedure yields [73]

M ¼ a

�
q2

a2
−
3a2

R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2

R2

r �
1 −

3a2

R2

�−1
; ð24Þ

m ¼ a
2
þ q2

2a
−
a
2

�
1 −

a2

R2

� ð1 − q2

a2Þ
2

ð1 − 3a2

R2 Þ2
; ð25Þ

where the mass m was obtained by replacing (24) into
Eq. (21). These resulting expressions forM and m are used
to analyze the case ω ¼ −1=4.

B. Further conditions

An interesting feature of the present model is that the
solutions for M�=R and m�=R depend explicitly on the
ratios a=R and q2=R2. Therefore, the model presents
effectively three free constant parameters, namely,
a=R≡ a0=R, q=R, and ω, with the other important
parameters being given by relations (20)–(23).
In order to investigate the physical properties of the

solutions in terms of the free parameters, a key issue is to
test for the presence or absence of horizons. For instance,
for a given solution to represent a regular black hole, the
geometry necessarily has to present horizons. This means
that quantities r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
must assume real

positive values. Moreover, and more important, at least
rþ must be larger than the radius of the matter region
boundary, i.e., rþ=R > a=R. Furthermore, the imposition
of a timelike boundary layer (shell) implies that the
condition a=R ≤ 1 has to be imposed. Additionally, the
matching of the de Sitter (inner) solution to the RN (outer)
solution (see Sec. II) has to be located inside r− and,

1Notice that, in the remaining of this section, we shall drop the
“0” indexes to simplify notation.
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therefore, one has the constraint a=R ≤ r−=R. In such a
case, both the RN gravitational radius rþ and the inner
radius r− need to be in the exterior electrovacuum region,
been respectively the event and Cauchy horizons.
Even though solutions representing regular black holes are

the most relevant for the present work, other configurations
are also interesting. For instance, it happens that thematching
may be taken arbitrarily close to the Cauchy horizon,
a=R → r−=R, giving rise to quasiblack hole configurations.
Situations with no horizons as for a=R > rþ, corresponding
to regular charged stars, and when r− and rþ are not real-
valued parameters, corresponding to regular overcharged
stars (for whichm2=R2 < q2=R2), are also considered in the
present analysis.

IV. ANALYSIS AND CLASSIFICATION OF THE
EQUILIBRIUM SOLUTIONS

A. Preliminary remarks

As mentioned above, in the numerical analysis of the
present solutions we are going to employ the normalized
dimensionless variables a=R, q=R, and ω. The ranges of
parameters considered in the present study are
0 ≤ a=R ≤ 1, −∞ < q=R < ∞, and −∞ < ω ≤ 1. The
upper bound on ω is imposed by the causality condition,
and negative values are allowed to consider also tension
shells or thin shells made of some kind of dark fluid. Let us
mention that, since the electric charge enters all the
expressions as powers of q2=R2, without loss of generality,
the numerical analysis is performed by assuming q=R ≥ 0.
In our previous work [73], the properties of the equi-

librium solutions were partly investigated by means of an
analysis in the ðq=R; a=RÞ–plane. A few values of the
parameter ω were selected and representative figures were
drawn in each case. Here, for completeness, we extend the
analysis also to the ðω; a=RÞ–plane by considering a few
fixed values of the charge ratio q=R. The main results
appear in Figs 1–9, which are representative examples. The
study presented in this section is important not only to
complete the previous work, but mainly to identify the
important regions of the parameter space of interest for the
stability analysis performed in the next section.
For the sake of convenience, we separate the analysis in

regions and boundaries of the regions in the param-
eter space.

B. Boundaries in the parameter space

1. Preliminary remarks

When considering the three free parameters ω, a=R, and
q=R, there are interesting surfaces in the parameter space
that separate different regions presenting objects of differ-
ent physical properties, and other surfaces that belong to the
boundary of the parameter space itself. For a better
visualization, we choose to show some figures in the

two dimensional spaces obtained by slicing the parameter
space for a few values of constant q=R, cf. Figs. 1–9, and
also for a few values of constant ω, cf. Figs. 10–18. In such
two-dimensional spaces those surface boundaries appear as
boundary lines.

2. The line c∓;m− =m+

This line is obtained by solving the equation
m−ðω; q=R; a=RÞ ¼ mþðω; q=R; a=RÞ, cf. Eq. (21), for
each given value of q=R in the ðω; a=RÞ–plane, and for
each fixed value of ω in the ðq=R; a=RÞ–plane. The
solution is a segment of the curve given by the relation
a=R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ω
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ωÞp

, independently on the elec-
tric charge q=R. The solution is represented in all the
figures (when present) by a dashed brown line, and it is also
indicated by the appropriate label c∓.
The curve c∓ extends all along the parameter space,

except for q=R ¼ 0 where it does not appear in the region
with ω < −1=2 (it coincides with the line a=R ¼ 0). Note
that the segment of c∓ given by the function a=R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ω

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ωÞp

is continued along the two branches
of the curve c4 (see Figs. 1–18).
The complete line c∓, including the sectors where it

coincides with the two branches of c4, separates the
parameter space into two regions. The configurations
represented by the region above such a line are obtained
from the masses m− and M−, while the configurations
represented by the region below it are obtained from the
massesmþ andMþ. As mentioned above, this is the choice
that maximizes the regions of the parameter space con-
taining solutions representing objects with good physical
properties. Note also that this choice implies the mass of the
shellM is not a continuous function in the parameter space,

FIG. 1. The stability (white) and instability (light gray) regions
for q=R ¼ 0 in the ðω; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.
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since it presents a jump when crossing the segment of line
c∓ given by a=R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ω
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ωÞp

. However, the
total gravitational mass m is a continuous function every-
where, what guarantees the smoothness of the resulting
spacetime geometries in the parameter space, even in the
neighborhood of any point belonging to c∓.

3. The line c1, m=R=q=R

This line is the locus of extremely charged objects in the
parameter space, which is obtained by substituting m=R ¼
q=R into Eq. (21) and solving for a=R as a function of ω for
each fixed value of q=R in the ðω; a=RÞ–plane, and by
solving for a=R as a function of q=R for each fixed value of
ω in the ðq=R; a=RÞ–plane. The resulting equation presents
real solutions just for ω in the range −1.725≲ ω ≤ 1. The
solutions are represented by green dashed lines labeled as
c1 in all figures, except in Fig. 1 where it is not present.
As it can be seen from Figs. 2–18, the line c1 separates

the regions of undercharged from the regions of over-
charged objects. We find four different instances. The line
(surface) c1 appears between regions (i) and (ii), between
regions (ii) and (iii), between regions (iii) and (iv), and/or
between regions (iv) and (v). In the first case, it bears
extremely charged stars, while it bears extremely charged
regular black holes in all the other three cases.
For values of charge in the interval 0 < q=R < 3

ffiffiffi
3

p
=4,

the solution to the resulting equation presents two branches,
generating two open curves in the ðω; a=RÞ–plane, see
Figs. 2–5. The region between the two branches of line c1
and bounded by curve c4 contains overcharged configura-
tions (with q=R > m=R) and other less interesting solu-
tions, while the regions above the upper branch and below
the lower branch contain undercharged (with q=R < m=RÞ,
more interesting solutions.

For values of the electric charge in the interval
q=R ≥ 3

ffiffiffi
3

p
=4, the two branches of line c1 meet each

other on the line c∓ generating a single open curve, see
Figs. 6–9. In the special case of Fig. 6, for q=R ¼ 3

ffiffiffi
3

p
=4,

the two branches of c1 join each other on the boundary of
the ω range, at the point ðω ¼ 1; a=R ¼ ffiffiffi

3
p

=2Þ. The
undercharged solutions are then found in the regions above
and to the right of such a curve. In the limit of very large
electric charge, curve c1 coincides with the vertical axes
ω ¼ 0. For some more details see Sec. 4.3.3 of Ref. [73].

FIG. 2. Stability (white) and instability (light gray) regions for
q=R ¼ 0.2 in the ðω; a=RÞ–plane. The gridded regions (viii)
contain no physical solutions.

FIG. 3. Stability (white) and instability (light gray) regions for
q=R ¼ 1=

ffiffiffi
3

p
≃ 0.57735 in the ðω; a=RÞ–plane. The gridded

regions (viii) contain no physical solutions.

FIG. 4. Stability (white) and instability (light gray) regions for
q=R ¼ 0.78 in the ðω; a=RÞ–plane. Region (vii) is also present, it
is just below region (iv), on top of region (vi), but it is not
indicated by a label in the figure. The gridded regions (viii)
contain no physical solutions.
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4. The line c2, M = 0

This line corresponds to the class of solutions without a
thin shell, i.e., for which the intrinsic mass, energy density,
and pressure of the shell are all zero. In fact, Eqs. (14) and
(15) together with the conditions M ¼ 0 and a=R ≠ 1
imply in σ ¼ 0 and P ¼ 0. In such a situation, the junction
between the de Sitter interior region and the exterior RN
region is made smoothly (without the thin shell), by means
of a boundary surface.
The solution of the equation Mðω; a; qÞ ¼ 0 gives

q=R ¼ ffiffiffi
3

p
a2=R2 for some restricted interval of values of

ω that depends upon the electric charge. In all represen-
tative figures, the corresponding solutions are represented
by red dashed lines labelled as c2. The full real solution is a
segment of the curve q=R ¼ ffiffiffi

3
p

a2=R2, and it is well
visualized in the ðq=R; a=RÞ–plane, cf. Figs. 10–18, where
it has an extremity on the line c∓ and the other one at the
point ðq=R ¼ ffiffiffi

3
p

; a=R ¼ 1Þ, independently of ω. The area
bounded by this line, a segment of line c4, and by the line
c∓ contains configurations with M=R < 0, while the
remaining region of the parameter space contains configu-
rations with M=R > 0. For other details see Sec. 4.3.4
of Ref. [73].
Notice that, in the ðω; a=RÞ–plane, the curve c2 appears

as a segment of the horizontal line a=R ¼ ð ffiffiffi
3

p
q=3RÞ1=2

that starts on the line c∓ and ends at line c4 (see below). For
electric charges in the interval 0 < q=R < 1=

ffiffiffi
3

p
, the line

c2 lies below the curve c∓, while it lies above c∓ for q=R
in the interval 1=

ffiffiffi
3

p
< q=R <

ffiffiffi
3

p
. For q=R ¼ 0,

q=R ¼ 1=
ffiffiffi
3

p
, and in the interval q=R >

ffiffiffi
3

p
, the line c2

is not present, see Figs. 1–9. On the other hand, the line c2
is also a segment of the curve a=R ¼ ffiffiffiffiffiffiffiffiffi

q=R
p

=
ffiffiffi
34

p
for

ω > −a2=2R2ð1 − a2=R2Þ. In the ðq=R; a=RÞ–plane, the

line c2 satisfies the relation a=R ¼ ffiffiffiffiffiffiffiffiffi
q=R

p
=
ffiffiffi
34

p
, see

Figs. 10–18.
The configurations belonging to c2 are similar to the

particular case studied in Refs. [33,71], whose solutions
satisfy the relation a=R ¼ ffiffiffiffiffiffiffiffiffi

q=R
p

=
ffiffiffi
34

p
and present no thin

shell, but here the electric charge is not confined to the
boundary surface.
A special case of the curve c2 deserves further analysis.

As depicted in Fig. 6, for q=R ¼ 3
ffiffiffi
3

p
=4, c2 is the whole

horizontal line a=R ¼ ffiffiffi
3

p
=2 and it coincides with a branch

of the curve c1, implying that the solutions are extremely
charged black holes without a thin shell.
Notice also that there is another line where the relation

M=R ¼ 0 is satisfied, this is when a=R ¼ 1, which is the
(upper) boundary surface in the three dimensional parameter
space. This fact can be verified by performing a Taylor
expansion of the mass function M=R around the point
a=R ¼ 1, that gives M=R ¼ ðq2=R2 − 3Þð1 − a=RÞ1=2=ffiffiffi
2

p þOð½a=R − 1�3=2Þ and from what follows that M=R
vanishes in the limit a=R → 1. However, it is worth
mentioning that the configurations on the line a=R ¼ 1
are singular due to the fact that P is not well defined, it
diverges at all points on this line, except for the particular
value q=R ¼ ffiffiffi

3
p

, where P vanishes. For more details see
Secs. 4.3.6 and 4.3.7 of Ref. [73].

5. The line c3, r− =R=a=R

This line is drawn for the condition that the boundary
shell coincides with the inner radius of the RN metric,
a=R ¼ r−=R. In the interval with 0 < a=R < 1, the same
line may be obtained by taking the condition rþ=R ¼ a=R.
The two conditions together imply in the relation
rþ=R ¼ r−=R, which also implies the equality between

FIG. 5. Stability (white) and instability (light gray) regions for
q=R ¼ 1 in the ðω; a=RÞ–plane. The gridded region (viii) con-
tains no physical solutions.

FIG. 6. Stability (white) and instability (light gray) regions for
q=R ¼ 3

ffiffiffi
3

p
=4 ≃ 1.3 in the ðω; a=RÞ–plane. The gridded region

(viii) contains no physical solutions.
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the total mass and the electric charge of the solution,
m=R ¼ q=R, so that the solutions on this line are extreme
objects. In the ðω; a=RÞ–plane, this line is a segment
of the horizontal line a=R ¼ q=R ¼ constant. In turn, in
the ðq=R; a=RÞ–plane, c3 is a segment of the line
a=R ¼ q=R. As seen in Figs. 1–9, and also in
Figs. 10–18, this line is only present for values of electric
charge 0 ≤ q=R ≤ 1. This is a consequence of the restriction
on the parameter a=R, which assumes values in the inter-
val 0 ≤ a=R ≤ 1.
When considering neighboring sectors of parameter

space bearing undercharged solutions, with m=R ≥ q=R,
the line c3 separates the region of regular charged black
holes from the region of regular charged stars. This fact can
be seen in all figures shown in the present section, except in
the especial cases of q=R ¼ 0 and q=R ¼ 1 where it
coincides with the lines a=R ¼ 0 and a=R ¼ 1, respec-
tively, see Figs. 1 and 5.
For 0 < a=R < 1, all physical quantitiesM, m, σ, and P

are well defined on the line c3, but the matching surface
character depends on the observer point of view. From the
external spacetime analysis, the matching is made on the
extreme horizon of the RN metric, which is a lightlike
surface (located at a=R ¼ r−=R ¼ m=R), while from the
inner de Sitter metric analysis, the matching surface is
timelike (located at a=R < 1). According to Ref. [80], the
solution may be interpreted as a quasiblack hole. In fact, the
matching of the two spacetime metrics would lead toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=R2

p
dT ¼ ð1 −m=aÞdt, where T and t are respec-

tively the interior and exterior time coordinates. In the limit
m=a → 1, the coefficient gtt ¼ ð1 −m=aÞ2 vanishes while
gTT ¼ 1 − a2=R2 does not (since we have 0 < a=R < 1),
and then for any finite time interval dT it elapses an
arbitrarily large time interval dt, leading to causally
disconnected spacetimes. As discussed for instance in
Sec. C 2 of Ref. [80] (see also [81] for a recent short
review), the whole region 0 ≤ r < a becomes an infinite
redshift region and the surface a → m forms a quasihor-
izon, characterizing a quasiblack hole configuration.
For q=R ¼ 0, the line c3 coincides with the horizontal

axes a=R ¼ 0 for all ω (see Fig. 1) and the respective
solution is the flat spacetime. For more details, see the
discussion related to the boundary line a=R ¼ 0 given
in Ref. [73].
For q=R ¼ 1, the line c3 coincides with the boundary

a=R ¼ 1 for all values of ω (see Fig. 5). Here the thin shell
mass vanishes, the total gravitational mass is finite,
m=R ¼ 1, but the superficial pressure P diverges.
Therefore, all solutions in this limit represent singular
extreme quasiblack holes.

6. The line c4;ImðM=RÞ= 0
This line represents the boundary of real solutions for the

thin shell mass M=R. In both cases, for sections of the

parameter space with constant q=R or constant ω, it is
drawn as the contour curve for zero imaginary part ofM=R,
ImðM=RÞ ¼ 0. All the relevant quantities such as the total
mass, the intrinsic energy density and pressure, and the
mass of the shell are real and well defined on the curve, and
then it represents interesting physical configurations. The
physical properties of such objects may be inferred from
the objects of the neighboring regions, whose descriptions
are given in Sec. IV C.

7. The line c5, m=R=0

This line corresponds to solutions with zero total
gravitational mass, m=R ¼ 0, and then it represents con-
figurations similar to regular overcharged stars. All the
physical quantities are well defined on such a line. It occurs
just for small negative values of ω, and it appears in all
figures drawn in the ðω; a=RÞ–plane. In such a plane, the
region between this line and the line c4 contains solutions
of negative total mass. The specific properties of the objects
belonging to this line vary from case to case, and may be
inferred from the objects of the neighboring regions, whose
descriptions are given in Sec. IV C.

8. Other boundaries

Besides the special boundary regions commented above,
there are some other surfaces (that appear as lines in the
q=R ¼ constant or ω ¼ constant sections) belonging to the
boundary of the parameter space that are of relevance by
themselves. Examples of interesting boundary regions not
mentioned in the preceding analysis are the surfaces
a=R ¼ 1, a=R ¼ 0, and ω ¼ 1. Some properties of the
objects belonging to the lines a=R ¼ 1 and a=R ¼ 0 were
investigated in Ref. [73] and then we do not reproduce such
an analysis here. The properties of the solutions at the
boundary ω ¼ 1 are discussed in the next subsection.

C. Regions in the parameter space

1. Preliminary remarks

The boundaries described in the last subsection are
surface boundaries of three-dimensional domains in the
parameter space that contains objects with similar physical
properties. In the two-dimensional sections of constant
q=R, or of constant ω, the surface boundaries appear as
lines and the three-dimensional domains appear as two-
dimensional regions. As shown in Figs. 1–18, such regions
indicate the different types of objects modeled by the
solutions studied in the present work. White and light gray
regions contain physically interesting objects. The hach-
ured/gridded (grid with light brown dotted lines) regions
present no real solutions since some of the parameters are
complex numbers. A brief description of each region is
giving in the following.
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2. Region (i)

This region contains regular undercharged star con-
figurations with total gravitational mass larger than the
total electric charge, m=R > q=R. The solutions in this
region present a radius a=R that satisfies the constraint
a=R > rþ=R, meaning that the matching surface is outside
the gravitational radius of the configuration and then no
horizon is formed. All solutions are regular undercharged
stars with a de Sitter core, a thin shell of positive mass
(M=R > 0), reassembling gravastars [82–87]. The con-
figurations belonging to this region include from
uncharged stars, as in the case of Fig. 1, up to highly
charged stars with q=R very close tom=R. A configuration
of this kind, i.e., with q=R≲m=R, is singled out from any
point of the parameter space within region (i) that is
located very close to one of the curves c1 or c3, as seen in
the cases of Figs. 2–4, and also in all figures drawn in the
ðq=R; a=RÞ–plane, cf. Figs. 10–18. In turn, the configu-
rations that approach the gravastar limit, i.e., with shell
radius a=R very close to the normalized gravitational
radius rþ=R ¼ ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
Þ=R, are the ones repre-

sented by points close to the boundary c3, the ones for
large negative values of ω (typically ω < −0.8), the
configurations with parameter a=R close to unity, and
also the configurations with ω close to unity.
Note that there are two type (i) regions in the parameter

space. The two regions are present just for electric charge
q=R and parameter ω in the intervals 0 ≤ q=R≲ 0.7680
and 0 < ω ≤ 1, respectively. One of such regions is located
above the boundary c∓, while the other one is located below
such a boundary. For electric charges in the interval
0.7680≲ q=R < 1, as well as for ω ≤ 0, only the upper
type (i) region appears. Notice also that for sufficiently
large electric charges the region (i) is not present. It can be
shown that this class of undercharged (or uncharged, for
q=R ¼ 0) stars satisfies the following constraint for the
total electric charge, 0 ≤ q=R < 1, what may be verified by
checking all the figures for q=R ≥ 1. In fact, as seen from
Figs. 5–9, region (i) disappears for q=R ≥ 1.
The boundary of the region (i) located above the

boundary line (surface in the 3D parameter space) c∓ is
formed by the lines (surfaces) c1, c3, q=R ¼ 0, a=R ¼ 1,
and ω ¼ 1, see Figs. 1–4 and 10–18. The boundary of the
region (i) located below c∓ is formed by c1, c3, q=R ¼ 0,
and ω ¼ 1, see Figs. 1–3 and 10–18. The case q=R ¼ 0 is
special because in the limit q=R → 0 the boundary c1 is not
present, it tends to the line c5, which takes part in the region
(i) boundary, see Fig. 1.

3. Region (ii)

This region contains overcharged star configurations (no
horizons are present) with total mass smaller than total
electric charge, m=R < q=R, except on the portion of line
(surface) c3 that crosses region (ii) for which q=R ¼ m=R,

cf. Figs. 2–4 and 10–18. As discussed above, the segment
of c3 inside the region (ii) contains extremely charged
(q=R ¼ m=R) quasiblack holes. All other solutions are
regular overcharged stars with a de Sitter core, a thin shell
of non-negative mass (M=R ≥ 0), and with positive total
mass (m=R > 0).
In the ðω; a=RÞ–plane, different combinations of the

lines c1, c2, c4, c∓, c5, and ω ¼ 1 that depend on the value
of the electric charge form the boundary of this region,
see Figs. 2–9.
It is worth mentioning that c3 does not belong to the

boundary of the region (ii), since in every situation the
region continues across such line. In turn, c∓ is a boundary
of region (ii) in some instances, e.g., between region
(ii) and region (iv). In view of this difference, we consider
that c∓ is a boundary between two regions of type (ii),
cf. Figs. 2–18.
Naturally, region (ii) is not present in the uncharged case of

Fig. 1. For values of electric charge and ω in the intervals
0 < q=R < 3

ffiffiffi
3

p
=4 and −1=2 < ω ≤ 1=2, respectively, the

parameter space shows two type (ii) regions, one of them
above c∓ and the other one below such a surface, as seen in
Figs. 2–5 and 10–16. The two regions (ii) have a branch of c∓
as the boundary between them. As the electric charge
increases from q=R ¼ 1, the upper region (ii) in the
ðω; a=RÞ–plane shrinks down to vanish at q=R ¼ 3

ffiffiffi
3

p
=4.

As seen from Figs. 6–9, the lower region (ii) also tends to
disappear for large q=R.
In the (q=R, a=R)–plane, the boundary of region (ii) is

formed by different combinations of the lines c1, c2, c4, c∓,
c5, and a=R ¼ 0, as seen in Figs. 10–18. As also seen in
those figures, the line c∓ is not present for all ω ≤ −1=2
and we are left with only one region of type (ii).

4. Region (iii)

This region is the most relevant for our purposes. All
objects contained in such a region satisfy the constraint
a=R < r−=R, where r− is the Cauchy horizon, confirming
they are all charged regular black holes. The central core is
a regular distribution of charged fluid whose radial
pressure satisfies a de Sitter equation of state, and whose
boundary is a thin shell located at a=R < r−=R. The
spacetime metric in the region r > a is the RN electro-
vacuum solution. In cases where the boundary c2 belongs
to the frontier of region (iii), we find regular black hole
configurations with a massless shell exactly on that line,
i.e., the mass of the shell at the boundary of the object
vanishes and the matching between the inner and the outer
metrics is smooth, by means of a boundary surface. This
happens for the electric charge q=R in the interval
3
ffiffiffi
3

p
=4 ≤ q=R <

ffiffiffi
3

p
for all ω, as shown in the cases of

Figs. 6 and 7. The presence of c2 at the boundary of the
type (iii) region located above the c∓ is clearly seen in
Figs. 6,7 and 10–18.
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Region (iii) does not appear in the q=R ¼ 0 case, see
Fig. 1. Two regions of this kind are present in all the domain
with electric charge q=R and ω in the intervals 0 < q=R <ffiffiffi
3

p
and 0 < ω ≤ 1, respectively. One of such regions is

above (and to the left of) and another one is below (and to
the right of) the boundary c∓, as seen in Figs. 2–7 and 10–11.
In the ðω; a=RÞ–plane, for q=R ≥

ffiffiffi
3

p
only the region

(iii) located below c∓ is present, cf. Figs. 8–9. On the other
hand, in the ðq=R; a=RÞ–plane, for ω ≤ 0 only the region
located above the c∓ is present, cf. Figs. 12–18.
The boundary of the two regions of type (iii) varies along

the three dimensional parameter space. One of such regions

is bounded by branches of the surfaces a=R ¼ 0, c1 (or c2),
c3 (or a=R ¼ 1), and ω ¼ 1. The other one is bounded by
branches of the surfaces c1, c2, c3 (or c∓), and ω ¼ 1. The
physical properties of the objects belonging to each differ-
ent branch of this frontier were presented in Sec. IV B.

5. Region (iv)

This is another region that contains regular overcharged
stars (no horizon is present) with total positive mass
(0 < m=R < q=R). The main difference when compared
to region (ii) is that the mass of the thin shell is negative
(M < 0). A single point from this regionwith specific values
of m=R, q=R and a=R represents a spacetime whose geo-
metric properties are basically the same as a configuration
singled out from region (ii). There is a central core of charged
fluid whose radial pressure satisfies a de Sitter equation of
state, and whose boundary is a thin shell located at a > rþ,
where rþ is the gravitational radius of the solution.
Region (iv) is not present in the boundaries of zero

charge q=R ¼ 0 and for ω ¼ 1, and also for the especial
case with q=R ¼ 1=

ffiffiffi
3

p
. There are two of such regions for

ω in the interval −1=2 < ω < 0, while there is just one of
such regions for ω in the intervals 1 > ω ≥ 0 and
−3=2 < ω ≤ −1=2. Moreover, this type of region is not
present in the case ω ¼ 1 and in the interval ω < −3=2 (see
Figs. 10–18).
As seen in Figs. 7 and 9, region (iv) tends to disappear,

becoming vanishingly tiny, for large values of q=R. For
sufficiently small electric charge, 0 < q=R ≤ 3

ffiffiffi
3

p
=4, the

region is delimited by c2, c∓, and a branch of c5, while for
large electric charges, with q=R > 3

ffiffiffi
3

p
=4, it is bounded by

c1, c∓, and c5. In the ðq=R; a=RÞ–plane, depending on the

FIG. 7. Stability (white) and instability (light gray) regions
for q=R ¼ 3=2 in the ðω; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.

FIG. 8. Stability (white) and instability (light gray) regions for
q=R ¼ ffiffiffi

3
p

in the ðω; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.

FIG. 9. Stability (white) and instability (light gray) regions
for q=R ¼ 10 in the ðω; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.
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values of ω, region (iv) is delimited by the lines c1, c2, c∓,
c4, and a branch of c5.

6. Region (v)

This is another region that contains regular charged black
hole solutions with two horizons, i.e., with total gravita-
tional mass larger than the electric charge m=R > q=R,
whose central core of charged matter is bounded by a thin
shell located inside the Cauchy horizon, at the radius
a=R < r−=R. The main difference with respect to the
objects found in region (iii) is that the mass of the shell
M=R is negative. A single point from this region with
specific values of m=R, q=R and a=R represents a
spacetime whose geometric properties are basically the
same as a configuration singled out from region (iii).
In the (ω, a=R)–plane, the region shows up just for large

values of electric charge, q=R > 3
ffiffiffi
3

p
=4. For electric

charges in the interval 3
ffiffiffi
3

p
=4 < q=R <

ffiffiffi
3

p
, it is delimited

by the lines c1, c2, c∓, and ω ¼ 1 (see Fig. 7), while for
q=R ≥

ffiffiffi
3

p
, it is delimited by the lines c1, c∓, a=R ¼ 1, and

ω ¼ 1 (see Figs. 8–9). In the (q=R, a=R)–plane, the region
is present for all ω, and it is delimited by the lines c1, c2,
a=R ¼ 1, and c∓, see Figs. 10–18.

7. Region (vi)

This region contains regular objects without horizons
resembling regular stars, but with negative total gravita-
tional mass, m=R < 0, and with a thin shell of positive
mass, M=R > 0. These kinds of configurations appear for
ω in the interval −1=2 < ω < 0, and two regions of this
type show up in some cases. The upper region, present just
for small charges (0 ≤ q=R < 1=

ffiffiffi
3

p
), is delimited by the

lines c∓, c4, and a branch of c5, see Figs. 1–2 and 13–16.
The lower region is bounded by a=R ¼ 0, c∓, c4, and a
branch of c5. In view of the total gravitational mass being
negative, the solutions in this region are of little interest.

8. Region (vii)

This region contains regular objects with no horizon
resembling regular stars, but with negative total gravita-
tional mass m=R < 0, and with a thin shell also with
negative mass, M=R < 0, and then the solutions in this
region are of little interest. The region is delimited by the
lines c4, c5, and c∓, or q=R ¼ 0, c4, c∓, and a=R ¼ 0 at the
frontier q=R ¼ 0, see Figs. 1–18.

9. Region (viii)

This is the region with no real solution for M=R, i.e.,
M=R assumes complex values meaning that there in no
interest in these configurations. The region is delimited by
the lines a=R ¼ 0 and c4, and/or by the lines c4 and ω ¼ 1,
see Figs. 1–18.

V. STABILITY ANALYSIS OF THE EQUILIBRIUM
SOLUTIONS

A. General remarks

To investigate the stability of the thin shell against radial
perturbations about the static solution a ¼ a0 ¼ constant, it
is useful rewriting the equation for the surface energy
density σ, Eq. (14), in the following suggestive form [88]

_a2 þ VðaÞ ¼ 0; ð26Þ

where now a is a time dependent variable a ¼ aðτÞ. Taking
cognizance of Eqs. (18) and (19), the effective potential
VðaÞ may be written as

VðaÞ ¼ −
�

1

2M0

�
a3

R2
þ q2

a
− 2m

��
a0
a

�
−2ω

−
M0

2a0

�
a0
a

�
1þ2ω

�
2

−
a2

R2
þ 1; ð27Þ

whereM0 ¼ 4πa20σða0Þ is a constant representing the mass
of the shell at equilibrium.
Here, the equilibrium (static) solution a ¼ a0 can be

obtained by solving simultaneously the equations Vða0Þ ¼
0 and V 0ða0Þ ¼ 0, which means that the configuration is at
rest, i.e., _a ¼ ä ¼ 0. The relations Vða0Þ ¼ 0 and V0ða0Þ ¼
0 lead respectively to expressions (20) and (21).
Now, in order to obtain the stability conditions of the

static solutions, we consider a Taylor expansion of the
effective potential VðaÞ around a0,

VðaÞ ¼ Vða0Þ þ V 0ða0Þða − a0Þ

þ 1

2
V 00ða0Þða − a0Þ2 þO½ða − a0Þ3�: ð28Þ

By substituting the equilibrium conditions into Eq. (28), it
follows

VðaÞ ¼ 1

2
V 00ða0Þða − a0Þ2 þO½ða − a0Þ3�: ð29Þ

Hence, the stability condition may be stated as follows. If
VðaÞ has a local minimum at a ¼ a0 and V 00ða0Þ > 0, the
solution at a ¼ a0 is stable. On the other hand, the
condition V 00ða0Þ < 0 implies instability of the thin shell.
If V 00ða0Þ ¼ 0, the present criterion is inconclusive, and
then the next nonzero n-derivative of VðaÞ is necessary to
characterize the potential and to define unambiguous
stability conditions. This particular situation is not consid-
ered here.
The second derivative of the potential evaluated at the

static point a0 is obtained from relation (27), which gives
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1

2
V 00ða0Þ ¼ −

1

R2
−
�ð3þ 2ωÞa20

2M0R2
−
ð1 − 2ωÞq2
2M0a20

−
2mω

M0a0
þ ð1þ 2ωÞM0

2a20

�
2

−
�
a40 þ ðq2 − 2ma0ÞR2

2M0a0R2
−
M0

2a0

�

×

�ð1þ ωÞð3þ 2ωÞa0
M0R2

þ ð1þ ωÞð1 − 2ωÞq2
M0a30

þ 2ð1 − 2ωÞmω

M0a20
þ ð1þ ωÞð1þ 2ωÞM0

a30

�
; ð30Þ

where M0 and m are obtained putting a ¼ a0 in Eqs. (20)
and (21), respectively.
The stability analysis of spherical thin shells, isolated or

in the presence of a central compact object, by following
the strategy just reviewed has been widely employed in the
literature, see. e.g., Refs. [89–93] and their references for a
small sample of such kind of works, see also Refs. [94,95]
for more recent works, and the very interesting work of
Ref. [96] for other kind of analysis and more references on
the subject.
The ingredients for the stability analysis are now ready.

Since the model presents three free parameters, namely
a0=R, q=R, and ω, the condition V 00ða0Þ ¼ 0 defines a
surface in the corresponding parameter space. Such a
surface separates the space into disjoint regions containing
only stable, or only unstable solutions. For a better
visualization of such regions we perform the analysis by
slicing the parameter space first considering the planes with
constant q=R, and then the planes of constant ω.

B. Regions of stability in the ðω;a=RÞ–plane
1. General remarks

Here we investigate the stability of the solutions by
slicing the parameter space at some fixed values of q=R and
determining the values of a0=R and ω for which
V 00ða0Þ ¼ 0. Such an equation defines a curve (or a set
of curves) in the two dimensional slice of the parameter
space that separates the planar slice into regions containing
stable configurations from regions containing unstable
configurations. The study is performed for a few different
values of q=R, and the results are presented in the set of
graphs shown in Figs. 1–9. A brief description of the
physical properties of the corresponding stable (unstable)
solutions is given below. In the remaining of this section
and in the labels of all figures, to simplify notation, we drop
the index “0” by identifying a0 ≡ a, M0 ≡M, etc.

2. The zero electric charge case, q=R=0

Figure 1 shows the regions containing stable and
unstable uncharged (q=R ¼ 0Þ solutions in the parameter
space. The figure is drawn in the ðω; a=RÞ–plane, and
q=R ¼ 0 is a boundary surface of the three-dimensional
parameter space. The white regions represent stable sol-
utions and the light gray regions correspond to the unstable
solutions, while the gridded region (viii) contains no

physical solutions and is not considered in the present
analysis.
In this uncharged case, we find stable objects just in region

(i) which, as described in Sec. IV C, are uncharged regular
stars with positive total gravitational mass m=R > 0. These
stable stars are found for ω in the interval 0 < ω ≤ 1, in a
slim region just below the curve c4, with the parameter a
varying within the interval 0 < a=R≲ 0.5230.
It is worthmentioning that the particular casewith q=R¼0

and ω ¼ 1 corresponds to a particular interesting case of the
model for stable gravastars studied in Ref. [87], see also [97]
for a different stability analysis of gravastar models. In the
critical case of [87], the condition for the existence of (stable)
thin shells which satisfy the stiff equation of state (P ¼ σ)
implies the constraint km2 ≃ 0.02430, with k being a con-
stant, see Eq. (63) in Ref. [87]. In our notation, k is given by
k ¼ 1=2R2. It is then found that stable configurations occur if
the total mass is smaller than or equal to a critical value given
by mc=R ≃ 0.2205 (our notation). For such a critical mass,
the thin shell is located at a=R ≃ 2.301mc=R ≃ 0.5072,
implying in a=rh ¼ a=2m ¼ 1.150. As it can be verified
in the case of Fig. 1, in our model the thin shell stability
occurs for a=R in the interval 0.5072≲ a=R≲ 0.5230,
corresponding respectively to a total gravitational masses
in the range 0.2205≳m=R≳ 0.2092. The ratio between the
thin shell radius and the gravitational radius (2m) is in the
interval 1.150≲ a=2m≲ 1.260, where the lower limit is in
agreement with the results of Ref. [87].
A true gravastar configuration presents a boundary

which is very close to the corresponding gravitational
radius, so that even small arbitrary perturbations on the
position of the boundary may lead to the shell to reach the
gravitational radius, giving rise to an event horizon and
forming a black hole [98]. Roughly speaking, an equilib-
rium solution may suffer a perturbation δa as large as the
distance between the initial radius of the shell a ¼ a0 and
the corresponding gravitational radius of the configuration
rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
¼ 2m (in the case q=R ¼ 0), without

reaching the corresponding gravitational radius. As we have
just mentioned, taking ω ¼ 1 as a representative case, stable
gravastars occur for 0.5072≲ a=R≲ 0.5230, with the ratio
a=2m respectively in the range 1.150≲ a=2m≲ 1.260.
Therefore, keeping fixed all the other free parameters, the
relative amplitude of perturbations on the shell position
(δa=2m) may be as large as 0.15, which means 15% of its
equilibrium relative value (a0=2m0). In fact, the junction
conditions are satisfied all along during the shell oscillations,
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and it can be shown that the gravastar configurations enter an
instability region of the parameter space before the ratio
a=2m reaches the limiting value a=2m ¼ 1.With such initial
conditions, in principle, the system will oscillate around the
equilibrium configuration.

3. The case with q=R=0.20

This case, whose results of the stability analysis are
shown in Fig. 2, is representative of all configurations with
electric charge in the interval 0 < q=R < 1=

ffiffiffi
3

p
. As in the

other figures presented in this section, the white regions
represent stable solutions and the light gray regions contain
unstable solutions in the ðω; a=RÞ–plane, while the gridded
regions (viii) contain no physical solutions. According to
the figure, there are stable objects of four different types, in
the regions (i), (ii), (iii), and (vi).
A small part of the undercharged stars belonging to the

region (i) with parameters a and ω respectively in the
intervals 0.20 ≤ a=R≲ 0.5643 and 0.03114≲ ω ≤ 1 are
stable. The range of the total gravitational masses of these
stable charged stars is 0.20 ≤ m=R≲ 0.2823, with the
compactness ratio m=a in the interval 0.4754≲m=a ≤ 1,
where the least compact objects correspond to a=R ≃ 0.5643
and m=R ≃ 0.2683, beyond the Buchdahl limit established
for uncharged spheres [100] and in accordance with the
analog limit for charged spheres [101,102]. As mentioned
above, configurations in region (i) may be interpreted as
charged gravastars, and then these configurations represent
stable gravastars,which aregoodblackholemimickers.As in
the preceding case, for q=R ¼ 0, the ratio between the thin
shell radius a and the gravitational radius (rþ ¼ mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
) depends on the state equation of matter on the

shell, with the most interesting stable gravastar configura-
tions occurring for stiff matter, with ω ¼ 1. In such a case,
stable gravastars are found for a=R in the interval
0.5441≲ a=R≲ 0.5643, corresponding respectively to total
gravitational masses in the range 0.2822≳m=R≳
0.2683, and with the ratio a=rþ is in the interval
1.130≲ a=rþ ≲ 1.256. Therefore, by keeping fixed all the
other free parameters, the amplitude of perturbations of the
(stiff matter) shell position may be as large as 13% of its
equilibrium relative value a0=rþ without reaching the corre-
sponding gravitational radius. In fact, as in theuncharged case
of Fig. 1, it can be shown that the oscillating gravastar
configurations enter a neighboring unstable portion of region
(i) before the ratio a=rþ reaches the limiting value a=rþ ¼ 1.
In case of charged gravastars, the oscillating configuration
may otherwise enter a type (ii) region, by crossing the line c1,
and turning into a stable overcharged star.
All overcharged stars present in the regions (ii) on the

right of line c∓, for which −0.4347≲ ω≲ 0.4269 and
0 < a=R≲ 0.4342, and part of configurations in the region
on the left of such a curve, for which −1.709≲ ω≲
−0.4347 with 0.1415≲ a=R≲ 0.3853, are stable solutions
against radial perturbations of the shell. The range of the

total gravitational masses of these stable configurations is
0 ≤ m=R < 0.2, with the maximum mass configurations
being located very close the line c1, and the minimum mass
at line c5. In fact, the overcharged stars with zero total mass
ðm=R ¼ 0Þ represented by points on the branch of line c5
located below line c3 are also stable configurations.
Another interesting kind of stable ultracompact objects

are the extreme quasiblack holes found on the segment of
the line c3 that is inside the region (ii). That is in the interval
−0.9895≲ ω≲ 0.03114, the mass of the objects equals the
electric charge m=R ¼ q=R ¼ 0.2, and the shell is located
at a=R ¼ q=R ¼ 0.2. From the point of view of an external
observer, the matching surface is at the extreme RN
horizon, a=R ¼ r−=R ¼ rþ=R, so that each configuration
on the mentioned segment of c3 corresponds to a stable
quasiblack hole.
More interestingly, in this casewith q=R ¼ 0.2 it happens

part of the regular black hole configurations belonging to one
of regions (iii) are stable solutions. These stable regular black
holes are found in the region given by ω and a=R in the
intervals ω≲ −0.9895 and 0 < a=R < 0.2, respectively, a
region that becomes vanishingly thin as ω decreases to large
negative values. The range of gravitational masses of these
configurations is very close to the extreme solution
m=R ≃ q=R ¼ 0.2. Note that the extreme regular black holes
found on the segment of the line c1 located between the
curves c3 and c4, with ω in the interval −1.709≲
ω≲ −0.9895, are also stable configurations.
Other stable objects are the regular charged stars found in

the branch of region (vi) located below the line c3. This
kind of solutions represent less interesting objects than the
other regions due to the fact that they carry negative total
gravitational mass.

4. The case with q=R=1=
ffiffiffi
3

p

Figure 3 shows the results of the stability analysis for
q=R ¼ 1=

ffiffiffi
3

p
in the ðω; a=RÞ–plane. This case is chosen

because it shows a particular feature. The two branches of
the curve c4 share the point with coordinates (ω ¼ −1=4,
a=R ¼ 1=

ffiffiffi
3

p
), and the whole line c∓ coincides with the

upper branch of c4. As a consequence, the line c2, the upper
branch of line c5, the region (iv), the upper region (vi), and
the region (vii) are not present. As in the case of Fig 2,
stable solutions are found in four different regions, namely,
in the white portions of regions (i), (ii), (iii), and (vi).
A small portion of the region (i) located below c4, between

the curves c1 and c3, with ω in the interval 0.3624≲ ω ≤ 1,
contains stable regular undercharged stars, also interpreted
as charged gravastars. The range of gravitational masses
of these stable stars is 1=

ffiffiffi
3

p
< m=R≲ 0.5812, with the

radius in the interval 1=
ffiffiffi
3

p
< a=R≲ 0.7128, and the com-

pactness factor in the interval 0.8100≲m=a < 1. In the case
of the gravastars with stiff matter on the shell, stable
configurations occur for total masses in the interval
0.5812≳m=R≳ 0.5773, fora=R respectively in the interval
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0.6851≲ a=R≲ 0.7199, and with the compactness ratio
a=rþ in the range 1.056≲ a=rþ ≲ 1.231. In this case the
amplitude of perturbations of the (stiff matter) shell position
may be as large as 5% of its equilibrium relative value a0=rþ
without reaching the corresponding gravitational radius. As
in the previous cases, it can be shown that, before the ratio
a=rþ reaches the limiting value a=rþ ¼ 1, oscillating
charged gravastar configurations enter either a neighboring
unstable type (i) region or a stable type (ii) region, changing
into an overcharged star.
Almost all the configurations belonging to the branches

of region (ii) which lie below the curve c4, in the region
with −1=4 ≤ ω ≤ 1, are stable overcharged stars. A great
portion of the other branch of region (ii) which lies above
the curve c4 withω in the interval−1.720≲ ω < −1=4 also
contains stable overcharged stars.
Configurations represented by the line c5 are stable

electrically charged object with zero gravitational mass.
Stable extreme quasiblack holes configurations are

found on line c3 for −0.8624≲ ω≲ 0.3624. The mass of
each one of such objects equals the corresponding electric
charge m=R ¼ q=R ¼ 1=

ffiffiffi
3

p
, and the shell is located

at a=R ¼ r−=R ¼ rþ=R ¼ 1=
ffiffiffi
3

p
.

A portion of region (iii), for ω and a=R in the ranges
ω≲ −0.8624 and 0 < a=R < 1=

ffiffiffi
3

p
, contains stable regu-

lar black holes. The stable region vanishes as ω decreases to
high negative values. Note also that the extreme regular
black holes found on the line c1, for ω≲ −0.8624, are
stable solutions too.
The entire region (vi) presents stable configurations with

negative gravitational mass.

5. The case with q=R=0.78

This case is chosen as representative of all instances with
electric charge in the interval 0.7680≲ q=R < 1, for which
there is only one region of type (i), i.e., the region (i) that
for smaller values of charge appears below the curve c4,
between the lower branch of c1 and the line c3, is not
present here. In this case, as it happens in all cases with
electric charge in the mentioned interval, the curve c2, the
regions (iv), (vi) and (vii) appear only below the curve c3.
The results of the stability analysis for the case q=R ¼ 0.78
in the ðω; a=RÞ–plane are presented in Fig. 4. As in the
previous cases, the white regions represent stable solutions
and the light gray regions are the unstable solutions. Here,
we can see stable solutions in the regions (ii), (iii) and (vi).
Differently form the preceding cases, there is no stable

undercharged stars (gravastars) in type (i) regions, since the
region (i) located above c4 does not present stable
configurations.
Region (ii) shows stable regular overcharged stars in a

large sub-region in the parameter space, i.e., the stable
region is bounded from below by branches of the curves c2
and c4, and from above, in part, by a branch of curve c1 and

other branch of c4. The extreme values of the parameters
are −1.7249≲ ω ≤ 1 and 0 < a=R≲ 0.8273.
Stable quasiblackholes solutions are foundon the segment

of linec3 that crosses region (ii), for−0.5222≲ ω ≤ 1. These
objects have parameters satisfying the relations m=R ¼
q=R ¼ r−=R ¼ rþ=R ¼ a=R ¼ 0.78.
Region (iii) contains stable charged regular black holes in a

slim area just above the curve c1. The intervals of parameters
are ω≲ −0.5222 and a=R < 0.7800, with the stable region
becomingvanishingly thin asω reaches high negativevalues.
Since the stable region is close to c1, the mass of such black
holes are just slightly higher that the electric charge. Stable
extremely charged regular black holes are found on the
segment of line c1 that is between regions (ii) and (iii), for ω
in the interval −1.7249≲ ω≲ −0.5222.
Overcharged stars with zero total mass ðm=R ¼ 0Þ on a

segment of line c5, for ω in the interval −0.2056≲ ω < 0,
are stable.
The stable portion of region (vi) is for the range of

parameters −0.25≲ ω < 0 and 0 < a=R≲ 0.5135.

6. The case with q=R=1

Figure 5 shows the results of the stability analysis for
q=R ¼ 1 in the ðω; a=RÞ–plane. This case is chosen
because it shows a few particular different features in
comparison to the cases 0 < q=R < 1. The region (i) of
undercharged stars disappears for q=R ≥ 1, the branch of c4
lying in the positive region of ω is not present, and neither
the corresponding region (viii). The line c3 also does not
appear, except for the branch that coincides with the line
a=R ¼ 1. As in the case with q=R ¼ 0.78, here the stable
solutions are found in the regions (ii), (iii), and (vi).
The whole region (ii) above c∓ and a portion of (ii) below

such a line, with parameters ω and a=R in the intervals
−0.1653≲ ω ≤ 0 and 0 < a=R≲ 0.5177, show stable
regular overcharged stars. The configurations close to
curve c2 present stable thin shells with small intrinsic
mass close to zero. The present stability criterion fails for
configurations on the line c2, since the second derivative of
the potential, cf. Eq. (30), is not defined there. Within the
white portion of the lower region (ii), the configurations
located next to the line c5 are stable overcharged stars with
small mass compared to the electric charge (m=R ∼ 0),
while the configurations located next to the line c1 have
mass close to the electric charge (m=R ∼ 1).
The region of stable charged regular black holes, i.e., the

white portion of region (iii) in Fig. 5, is larger than the
preceding cases. Here it is bounded from below by
the upper branch of the curve c1 (for 1 ≥ ω≳ −1.7071)
and by c4 (for−∞ < ω≲ −1.7071), and it is bounded from
above by the gray region, which extends from ω ¼ 1 to
ω → −∞. Also, note that stable extreme regular black
holes are found on the whole upper branch of the line c1.
The stable portions of line c5 and of region (vi) are

similar to the preceding cases for 1=
ffiffiffi
3

p
< q=R < 1.
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7. The case with q=R=3
ffiffiffi
3

p
=4

Figure 6 shows the results of the stability analysis for
q=R ¼ 3

ffiffiffi
3

p
=4 ≃ 1.3 in the ðω; a=RÞ–plane. This special

case is chosen because it is on the boundary surface that
separates domains that contain a type (ii) region above the
curve c∓, as in Figs. 2–5, from other domains that do not
present such a region, cf. Figs 6–9. In this case, the line c2
and the upper branch of c1 coincide. Stable configurations
are found in regions (ii), (iii) and (vi).
A small part of the overcharged stars belonging to the

region (ii) are stable against small radial perturbation. The
stable configurations are found for parameters in the
intervals −0.1283≲ ω < 0 and 0 < a=R≲ 0.5082, simi-
larly to the stable portion of the lower region (ii) of the
preceding case, cf. Fig. 5.
A large portion of region (iii) contains stable regular

charged black holes, the white region above curves c2ðc1Þ
and c4 which extents form ω ¼ 1 to ω → −∞, becoming
vanishingly slim as ω decreases to large negative values. In
the present case, it is not possible to verify the stability of
the extreme regular black holes lying on the whole upper
branch of the line c1. These special black holes contain a
massless thin shell, since the configurations belong also to
curve c2 and the criterion adopted here fails.
Overcharged stars with zero total mass ðm=R ¼ 0Þ are

stable on the segment of line c5 for −0.1283≲ ω < 0. The
stable portion of region (vi) are similar to the preceding
cases for 0.78 ≤ q=R ≤ 1.

8. The case with q=R=3=2

Figure 7 shows the results of the stability analysis for
q=R ¼ 3=2 in the ðω; a=RÞ–plane. This case is chosen as
representative of all caseswith values of electric charge in the
interval 3

ffiffiffi
3

p
=4 < q=R <

ffiffiffi
3

p
. The curve c2 separates the

upper region (iii) from region (v) allowing the appearance of
regular black holes without a thin shell at the boundary.
Stable configurations are found in regions (ii), (iii), and (vi).
A small portion of region (ii) presents stable configu-

rations representing overcharged stars. The range of
parameters and properties of the solutions are similar to
the case shown in Fig. 6.
A significant portion of that region (iii) bears stable

regular black hole configurations, while all region (v) re-
present unstable regular black holes. The stable region is a
band just above the line c2 whose width depends on ω. For
ω close to unity, the band width is from a=R ≃ 0.9306 to
a=R ≃ 0.9796, and it slowly shrinks while ω decreases,
being from a=R ≃ 0.9306 to a=R ≃ 0.9641 for ω ¼ −2.
The criterion fails to by applied to configurations on c2,
since the derivative of the potential (30) is not well
defined there.
A big part of region (vi) is also stable, but the configu-

rations from that region are of little interest for carrying
negative gravitational mass.

9. The case with q=R=
ffiffiffi
3

p

Figure 8 shows the results of the stability analysis for
q=R ¼ ffiffiffi

3
p

in the ðω; a=RÞ–plane. This special case is
chosen because it is on the boundary surface that separates
domains that contain type (iii) regions above the line c∓, as in
Figs. 2–7, from other domains that do not present such a
region, cf. Figs 8 and 9, in the parameter space
ðω; a=R; q=RÞ. In this case, the line c1 presents just one
branch, and line c2, beside c3 is not present. Stable
configurations are found in regions (ii) and (vi) alone.
Thewhite portion of region (ii) is a slim strip between the

curves c1 and c5. The configurations found there are stable
overcharged stars with total gravitational mass varying
from m=R ∼ 0 (close to c5) to m=R ∼

ffiffiffi
3

p
(close to c1).

There are also stable solutions in region (vi), but these are
less interesting than the configurations of other regions
since in region (vi) the total mass is negative.

10. The case with q=R=10

Figure 9 shows the results of the stability analysis for
q=R ¼ 10 in the ðω; a=RÞ–plane. This case is chosen
for completeness, in order to show the general behavior
of solutions for high values of electric charge. Here, the
stable configurations are found in three regions (ii), (v),
and (vi).
Region (ii) is slim in this case, it tends to disappear for

large values of q=R, with curves c1 and c5 tending to
coincide. It presents a very tiny stable portion for the lower
values of a=R and ω close to zero, namely, for 0 < a=R≲
0.4493 and −0.01537≲ ω ≤ 0, hardly seen in the figure.
The stable (white) portion of the region (v) above the

curve c∓ appears in the case q=R ≃ 2.6224 and grows with
q=R. This region contains regular charged black holes with
a thin shell of negative mass, whose gravitational mass is
quite larger than the electric charge.
A major part of region (vi) bears stable configurations

representing object with negative gravitational mass.
Region (vi) increases as q=R grows, and so does the
corresponding stable (white) portion of it.

C. Regions of stability in the ðq=R; a=RÞ–plane
1. General remarks

In the present section we show the results of the stability
analysis in the ðq=R; a0=RÞ–plane, by choosing some fixed
values of the parameter ω. As above, the parameters a0 and
q are normalized with respect to R. Once again, to simplify
notation, we drop the index “0” of the symbols denoting
equilibrium quantities, a0 → a, M0 → M, etc. The results
are given in terms of a series of graphs presented in
Figs. 10–18. The notation and conventions in drawing
such graphs are the same as the ones employed in the
preceding section.
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2. The case with ω= 1

This model is characterized by a thin shell containing
stiff matter, which is represented by the corresponding
equation of state in the form P ¼ σ. This case has been
chosen as a representative situation of all cases with
1=2 ≤ ω ≤ 1. The main results of the stability analysis
for this case are shown in Fig. 10. As in the cases analyzed
in the previous section, the white regions represent stable
solutions and the light gray regions contains the unstable
solutions but now in the ðq=R; a=RÞ–plane. The gridded
region (viii) presents no real solutions. According to the
figure, stable solutions are found in the regions (i), (ii),
and (iii).
Stable undercharged stars (charged gravastars) are found

in the region (i) located below the curves c1 andc4. Thewhite
region is strip close to the line c4, bounded from above by the
curves c4 and c1. The transverse boundary on the left hand
side of the strip is at q=R ¼ 0 and it extends up to
q=R ≃ 0.7681, where c1 intercepts c3. The range of the
radius of the shell along the strip is 0.5072≲ a=R≲ 0.7681.
The range of masses in the stable region is 0.2092≲
m=R≲ 0.7681, where the lower limit occurs at the point
(q=R ¼ 0, a=R ≃ 0.5072) and the upper limit corresponds to
the point (q=R ≃ 0.7681, a=R ≃ 0.7681).
Almost all the part of region (ii) located above the line c∓,

and only a small portion of such a region below the lines c4
and c∓ bears stable configurations. This is the region of
regular overcharged stars. The range of the masses of these
stable configurations is 0.4410≲m=R < 3

ffiffiffi
3

p
=4.

Note that the configurations given by the segment of the
curve c1 (lower branch) bounded by the lines c3 and c4 are
stable extremely charged stars with m=R ¼ q=R. The
relevant segment starts at the point ðq=R ≃ 0.4410;
a=R ≃ 0.6614Þ, on the curve c4, and extends to the point

ðq=R ≃ 0.7681; a=R ≃ 0.7681Þ, on the curve c3, so that
the range of masses of the stars on this segment is
ð0.4410≲m=R≲ 7681Þ.
The configurations represented by the segment of the line

c3 inside the region (ii) are stable extreme quasiblack holes.
The masses of these stable configurations are in the range
0.7681≲m=R≲ 0.9207, which is the same for q=R and
a=R, since that on this case one has q=R ¼ a=R ¼ m=R.
A large portion of region (iii) for q=R and a=R in the

ranges 0.9207≲ q=R <
ffiffiffi
3

p
and

ffiffiffi
3

p
=2 < a=R < 1, respec-

tively, contains stable regular black holes with masses in the
range 0.9207≲m=R < 2.000.
Moreover, stable extremely charged (m=R ¼ q=R) regu-

lar black holes are found on the segment of the line c1 (the
upper branch, located above the line c∓) that is at the
boundary between regions (ii) and (iii), for 0.9207≲
q=R < 3

ffiffiffi
3

p
=4.

3. The case with ω= 0.15

This model is characterized by a thin shell containing a
perfect fluid with pressure P ¼ 0.15σ. This case is chosen
as a representative situation of all cases for ω in the interval
0 < ω < 1=2, which show six of the eight different regions
in the parameter space as described in Sec. IV C, five of
them being of interest. The results of the stability analysis
are shown in Fig. 11, where white regions contain stable
solutions and the light gray regions contain unstable
solutions in the ðq=R; a=RÞ–plane. As in the case for
ω ¼ 1, the stable solutions are found in the regions (i), (ii)
and (iii).
Region (i) shows stable solutions just in a slim area of the

branch located below the line c∓, between the lines c1 and
c3. The parameters of these stable charged gravastars are in

FIG. 10. Stability (white) and instability (light gray) regions for
ω ¼ 1 in the ðq=R; a=RÞ–plane. The gridded region (viii) con-
tains no physical solutions.

FIG. 11. Stability (white) and instability (light gray) regions for
ω ¼ 0.15 in the ðq=R; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.
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the intervals 0.1322≲ a=R≲ 0.4109 and 0 < q=R≲
0.4109, and represent charged stars with masses in the
range 0.02723≲m=R≲ 0.4109.
A large part of region (ii) presents stable regular over-

charged stars. Such stable solutions are found in both
branches of region (ii) located below and above the line
c∓. Since these stability regions are in the vicinity of the
curves c1 and c3, the masses of the solutions are close to the
electric charge values, being approximately in the range
0.04687≲m=R < 3

ffiffiffi
3

p
=4, with q=R approximately in

the same interval, and with radius in the range 0.2031≲
a=R≲ 0.8790.
The configuration represented by the line c3 lying inside

the region (ii) are all stable extreme quasiblack holes.
The masses of these configurations are in the range
0.4109≲m=R≲ 0.8790.
As in the case with ω ¼ 1, the white portion of region

(iii) is the lower part, close to the curves c1 and c2. It
contains charged regular black holes that are stable against
radial perturbation of the thin shell. The charge and thin
shell radius of such objects are in the intervals 0.8790≲
q=R <

ffiffiffi
3

p
and

ffiffiffi
3

p
=2 < a=R < 1, respectively, while the

masses are in the range 0.8790≲m=R < 2.000.
The extreme regular black holes found on the segment of

line c1 for 0.8790≲ q=R ¼ m=R < 3
ffiffiffi
3

p
=4, i.e., the seg-

ment of c1 between regions (ii) and (iii), are also stable
solutions.

4. The case with ω= 0

This model is characterized by a thin shell containing a
fluid of zero pressureP ¼ 0, i.e., it represents a thin shell of
dark matter. This is a special case and thus deserves a
separate study. The results of the stability analysis are
shown in Fig. 12. Here, stable solutions are found just in the
regions (ii) and (iii).
The large white portion of region (ii) below the line c∓

and close to curve c4 bears stable overcharged stars. The
stable region extends from the origin, at q=R ≃ 0, a=R ≃ 0
(also withm=R ≃ 0), to the point where the lines c3, c4, and
c∓ meet all together. That is the point q=R ¼ a=R ¼ ffiffiffi

2
p

=2,
and also with m=R ¼ ffiffiffi

2
p

=2. Additionally, a major portion
of region (ii) located above the line c∓ contains stable
configurations. The range of parameters of the stable
overcharged stars in this region are similar to the case of
Fig. 11, for ω ¼ 0.15.
Thewhole segment of line c3 inside the region (ii) contains

stable quasiblack holes. Such a segment starts at q=R ¼
a=R ¼ 0 and extends toq=R ¼ a=R ¼ ffiffiffi

3
p

=2, excluding the
endpoints. The range of masses of the corresponding stable
configurations is the same, 0 < m=R <

ffiffiffi
3

p
=2.

As in the cases with ω ¼ 1 and ω ¼ 0.15, the white
portion of region (iii) is the lower part, close to the curves
c1 and c2. It contains charged regular black holes that are
stable against radial perturbation of the thin shell.

The extreme regular black holes found on the segment of
line c1 for

ffiffiffi
3

p
=2 < q=R < 3

ffiffiffi
3

p
=4 are also stable solutions.

5. The case with ω= − 0.22

This first case of negative pressure, for which the
equation of state is P ¼ −0.22σ, is chosen as being
representative of all cases with ω in the interval
−1=4 < ω < 0, whose matter on the thin shell may be
interpreted as some kind of dark energy, or representing a
tension shell. The key features in the diagram for this case
is the existence of two branches of the curve for zero
gravitational mass that meet each other at the point
ðq=R ¼ 0; a=R ¼ 0Þ, and the existence of a pair of each
one of the regions (ii), (iv), (vi), and (vii). The results of the
stability analysis in the ðq=R; a=RÞ–plane are shown in
Fig. 13, where the conventions are the same as the
preceding figures. Here, stable solutions are found in the
regions (ii), (iii), and (vi).
Stable overcharged stars are found in the white portions

of region (ii). The ranges and sizes of these portions are
very similar to the case for ω ¼ 0 shown in Fig. 12, and
then we do not comment further on this here.
Stable quasiblack hole configurations found on the

segment of line c3 that is inside region (ii). It starts at
the point q=R ¼ a=R ¼ 0 and extends till the point where
line c3 meets the line c1, at q=R ¼ a=R ≃ 0.8404. The
masses of these quasiblack holes are in the same range as
the electric charge.
As in the previous cases, the white portion of region

(iii) is the lower part, close to the curves c1 and c2. It
contains charged regular black holes that are stable against
radial perturbation of the thin shell. The range of masses of
these configurations is 0.8404≲m=R < 2.000, for the

FIG. 12. Stability (white) and instability (light gray) regions for
ω ¼ 0 in the ðq=R; a=RÞ–plane. The gridded region (viii) con-
tains no physical solutions.
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electric charge and thin shell radius respectively in the
intervals 0.8404≲ q=R <

ffiffiffi
3

p
and 0.8404≲ a=R < 1.

The extreme regular black holes found on the segment of
line c1 for 0.8404≲ q=R < 3

ffiffiffi
3

p
=4 are also stable solutions.

A large portion of region (vi) also present stable
configurations. This stability may be understood by taking
into account the negative (repulsive) gravitational mass of
the object, that sustains the massive shell.

6. The case with ω= − 0.25

This very special case also deserves a separate study, and
for that we must employ the mass functions given by
Eqs. (21) and (24). The thin shell is made up by a fluid of
negative pressure P ¼ −0.25σ, which may also be inter-
preted as a tension shell. The results of the stability analysis
in the ðq=R; a=RÞ–plane are shown in Fig. 14. The special
features of the corresponding diagram is the absence of
region (viii), and the existence of a meeting point
q=R ¼ a=R ¼ 1=

ffiffiffi
3

p
, where all relevant lines except c1

converge to. The dotted line a=R ¼ 1=
ffiffiffi
3

p
≃ 0.57735

represent singular solutions for any value of electric charge
q=R. As in the case of Fig. 13, here stable solutions are
found in the regions (ii), (iii), and (vi).
All the large branch of region (ii) located below the

dotted line at a=R ¼ 1=
ffiffiffi
3

p
, and a significant part of that

region above such a line, represent stable configurations.
They are regular overcharged stars whose masses varies in
the range 0 < m=R < 3

ffiffiffi
3

p
=4, with the largest values of

masses coming from configurations close to the intersec-
tion between the lines c1 and c2.
A portion of region (iii) for q=R and a=R in the rangesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2

ffiffiffi
7

pp
=3≃0.8361≲q=R<

ffiffiffi
3

p
and 0.8361≲ a=R < 1

contains stable regular charged black holes. The masses of
these objects are in the interval 0.8361≲m=R < 2.000.
Stable extremely charged black holes appear on the

segment of line c1 located between regions (ii) and (iii),
with electric charges (and masses) in the intervals 0.8361≲
q=R ¼ m=R < 3

ffiffiffi
3

p
=4.

A large portion of region (vi) also presents stable
configurations with negative total gravitational mass.

7. The case with ω= − 0.27

This model is characterized by a thin shell containing a
fluid of negative pressure P ¼ −0.27σ, which may be
interpreted as a tension shell or as some kind of dark
energy. This case is chosen because it is representative of
all situations for ω in the range −0.40≲ ω < −1=4. The
results of the stability analysis are shown in Fig. 15. The
special new feature in comparison to the previous cases for
ω > −1=4 is the presence of a large region (viii) on the
bottom right corner of the diagrams. As in the previous
cases for ω < 0, the stable solutions are found just in the
regions (ii), (iii), and (vi).
Stable regular overcharged stars are found in a signifi-

cant (white) portion of region (ii).
Stable quasiblack holes are found on the segment of the

line c3 located inside region (ii).
Stable regular black holes are found in the lower (white)

portion of region (iii), close to the curves c1 and c2.
Stable extreme regular black holes are found on the

segment of the line c1 that separates the white parts of
regions (ii) and (iii).
The range of masses, charges and radius of the thin shell

are similar to the cases for ω ¼ −0.22 and ω ¼ −0.25. For
instance, the masses of the stable regular black holes of

FIG. 14. Stability (white) and instability (light gray) regions for
ω ¼ −0.25 in the ðq=R; a=RÞ–plane. The dotted line a=R ¼
1=

ffiffiffi
3

p
≃ 0.57735 represents singular solutions.

FIG. 13. Stability (white) and instability (light gray) regions for
ω ¼ −0.22 in the ðq=R; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.
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region (iii) are in the range 0.8330≲m=R < 2.000with the
charge and radius in the intervals 0.8330≲ q=R <

ffiffiffi
3

p
and 0.8330≲ a=R < 1.
The branch of region (vi) located between the curves c4

and c5 contains stable configurations with negative total
mass.

8. The case with ω= − 0.40

This model is characterized by a thin shell containing a
fluid of negative pressure, P ¼ −0.40σ. This case is chosen
because it is representative of all situations for which
−1=2 < ω ≤ −0.40. The key feature in regard to the
preceding cases with negative ω is that only one of the
branches of the line c5 extends to the point q=R ¼ a=R ¼ 0,
and then the branch of region (vi) located below the curve c∓,
on the right of the curve c3, is not present. Moreover, the
lower part of the line c3 coincideswith the line c4. The results
of the stability analysis are shown in Fig. 16. Here, the stable
solutions are found just in regions (ii) and (iii).
Stable regular overcharged stars are found in a signifi-

cant (white) portion of region (ii). The range of masses of
these solutions is 0 < m=R < 3

ffiffiffi
3

p
=4, the lower limit

corresponding to the zero charge case.
As in the previous cases, the configurations on the

segment of line c3 located inside the region (ii), whose
masses vary in the interval 0 < m=R≲ 0.8097, are stable
quasiblack holes. These solutions are stable even in the part
of c3 that coincides with the line c4.
Stable regular black holes are found in the lower (white)

portion of region (iii), close to the curves c1 and c2. The range
of masses of these stable solutions are similar to the
preceding cases with negative ω, namely, 0.8097≲
m=R < 2.000.

The extreme regular black holes on the segment of line
c1 that separates region (ii) from region (iii), with charges
and masses in the interval 0.8097≲ q=R ¼ m=R <
3
ffiffiffi
3

p
=4, are also stable solutions.

9. The case with ω= − 1=2

The state equation is for the fluid in the shell is
P ¼ −σ=2. The results of the stability analysis in the
ðq=R; a=RÞ–plane are shown in Fig. 17. The particular
features with respect to the preceding cases with negative ω
are that line c1 extends down to the origin q=R ¼ a=R ¼ 0,
the lower branch of line c2, the line c5, and the left branch

FIG. 15. Stability (white) and instability (light gray) regions for
ω ¼ −0.27 in the ðq=R; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.

FIG. 16. Stability (white) and instability (light gray) regions for
ω ¼ −0.40 in the ðq=R; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.

FIG. 17. Stability (white) and instability (light gray) regions for
ω ¼ −1=2 in the ðq=R; a=RÞ–plane. The gridded region (viii)
contains no physical solutions.
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of c∓ do not appear. As a consequence, the left branches of
regions (iv), (vi), and (vii) close to the vertical axis q=R ¼ 0,
and that are present in the cases for 0 < ω < −1=2, also
disappear, see Figs. 13–16. As in the case of Fig. 16, stable
solutions are found just in the regions (ii) and (iii).
The white portion of region (ii) is close to the curve c4

and c3, it presents stable overcharged stars with masses in
the range 0 < m=R < 3

ffiffiffi
3

p
=4, while the charge and the

radius of the spheres vary in the same intervals, i.e.,
0 < q=R < 3

ffiffiffi
3

p
=4 and 0 < a=R <

ffiffiffi
3

p
=2.

The configurations on the segment of line c3 located
inside the region (ii) are stable quasiblack holes. These
solutions are stable even in the part of c3 that coincides with
the line c4 and the masses, charges and radius vary in the
interval 0 < m=R ¼ q=R ¼ a=R≲ 0.7862.
The region of stable regular black holes, the lower

(white) portion of region (iii), close to the curves c1 and
c2 is a little larger than in the preceding cases with negative
ω. The masses of these stable configurations are in the
range 0.7862≲m=R < 2.000.
The extreme regular black holes found on the segment

of line c1 that separates regions (ii) and (iii), for
0.7862≲ q=R < 3

ffiffiffi
3

p
=4, are also stable solutions.

10. The case with ω= − 1

In this very special and interesting case the state equation
for the fluid on the shell is P ¼ −σ, similar to the
cosmological constant term. Equation (16) implies in
σ0 ¼ 0, so that the energy density σ and the pressure of
the junction surface are both constant parameters, inde-
pendent of the radial size of the shell. This means that all
configurations for ω ¼ −1 present a thin shell with the
same energy density and pressure (tension).

The results of the stability analysis in the ðq=R; a=RÞ–
plane are summarized in Fig. 18. In this case, the lower part
of the line c3 does not coincide with line c4, and, moreover,
the whole line c1 is on the right-hand side of the line c3.
This implies that the region (ii) is now bounded by the lines
c1 and c4. It is seen from the figure, stable solutions are
found just in the regions (ii) and (iii).
The whole region (ii) shows stable regular overcharged

stars whose masses are in the interval 0 < m=R < 3
ffiffiffi
3

p
=4.

As in the previous cases, the stable part of region (iii) is
close the curves c1 and c2. Region (iii) extends to the origin
of the diagram q=R ¼ a=R ¼ 0, becoming very slim as
q=R and a=R tend to zero, with the stable portion always
present, coasting the line c1 till the origin. The upper limit
of masses, charge and radius are the same as all figures in
the ðq=R; a=RÞ–plane, see Figs. 10–17, while the lower
limit is null, i.e., the mass of the stable regular black holes
are in the range 0 < m=R < 2.000.
The whole segment of the line c1 from the origin to the

point ðq=R ¼ 3
ffiffiffi
3

p
=4; a=R ¼ ffiffiffi

3
p

=2, that is in the boun-
dary of regions (ii) and (iii), bears stable extreme regular
black holes.

VI. CONCLUSION

Let us mention once again that the present work is the
continuation of the previous work of Ref. [73], where new
models for charged spherically symmetric compact objects
with a thin shell of matter at the boundary were presented.
The matter inside the shell is a nonisotropic fluid satisfying a
de Sitter equation of state of the form 8πpr ¼ −8πρm ¼
− 3

R2 þ q2

a4 ðraÞ2ðnþ1Þ, where R, q, and n are constant param-
eters,withn ≥ 0, and r being the areal radius coordinate. The
solutions are given in terms of three parameters, namely, the
normalized electric chargeq=R,withq being the total electric
charge, the radius of the objects a=R, where a coincides with
the radius of the boundary shell, and a parameter ω
introduced by means of a linear equation of state for the
matter contained by the shell. Parameter ω is allowed to
assume also negative values, representing some kind of dark
energy. To avoid violation of causality, we restrictω not to be
larger than unity in units such that the speed of light is unity.
In the present work we have first completed the analysis

of the solutions found in Ref. [73] by studying further
properties and exploring other regions of the parameter
space. Here we investigate all kinds of equilibrium objects,
i.e., with constant radius a, represented by the given
solutions as a function of ω and a=R, by considering some
fixed values of q=R ≥ 0. In the previous work the analysis
was done in the ðq=R; a=RÞ–plane. With the present
analysis it is possible to see more clearly the properties
of the compact objects as a function of the thin shell matter
composition. For all values of ω investigated here, very
interesting solutions, such as regular black holes, regular
charged stars, quasiblack holes, charged gravastars, and

FIG. 18. Stability (white) and instability (light gray) regions for
ω ¼ −1 in the ðq=R; a=RÞ–plane. The gridded regions (viii)
contains no physical solutions.
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regular overcharged stars are found in specific regions of
the parameter space.
In the sequence of the work we investigate the stability of

the solutions against perturbations in the position of the
shell by following the work of Ref. [71]. For a better
visualization of the results, first a detailed analysis of the
stability and instability regions is performed in the
ðω; a=RÞ–plane of the parameter space, and the results
are shown in a number of figures for several fixed values of
the electric charge. At the end, the stability analysis is
performed in the ðq=R; a=RÞ–plane by choosing several
fixed values of the parameter ω. The results show stable
objects of all kinds in some regions of the parameter space.
In particular, stable regular black holes, stable gravastars,
stable quasiblack holes, and stable overcharged stars show
up in large regions of the parameter space.
The stable objects presented here may be generalized to

more realistic situations, e.g., by including rotation, where
the models may be compared to astrophysical objects. The
fact that the present results by Ligo and first EHT
observations do not exclude ultracompact objects as regular
black holes is a good motivation for that study.

Finally, let us point out that the matching conditions used
in the present case apply just to shells following timelike
trajectories, not allowing the analysis of lightlike shells,
and neither the transition from a timelike to a lightlike
trajectory. This last aspect may be of interest, in particular,
in the study of the stability of gravastars, whose boundary is
on the verge of being a lightlike surface and a small
perturbation could lead to such a transition [98]. Due to the
matching conditions, this kind of process is not allowed in
the models we investigate here, but the subject is interesting
and shall be considered in our future studies.
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