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We classify all fundamental electrically charged thin shells in general relativity, i.e., static spherically
symmetric perfect fluid thin shells with a Minkowski spacetime interior and a Reissner-Nordström spacetime
exterior, characterized by the spacetime massM, which we assume positive, and the electric chargeQ, which
without loss of generality in our analysis can always be assumed as being the modulus of the electric charge,

be it positive or negative. The fundamental shell can exist in three states, namely, nonextremal when Q
M < 1,

which includes the Schwarzschild Q
M ¼ 0 state, extremal when Q

M ¼ 1, and overcharged when Q
M > 1. The

nonextremal state, Q
M < 1, allows the shell to be located in such a way that the radius R of the shell can be

outside its own gravitational radius rþ, i.e., R > rþ, where rþ is given in terms of M and Q by

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, or can be inside its own Cauchy radius r−, i.e., R < r−, where r− is given in terms of

M and Q by r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. The extremal state, QM ¼ 1, allows the shell to be located in such a way

that the radius R of the shell can be outside its own gravitational radius rþ, i.e., R > rþ, where now rþ ¼ r−,
or can be inside its own gravitational radius, i.e., R < rþ, or can be at its own gravitational radius rþ, i.e.,
R ¼ rþ. The overcharged state, QM > 1, allows the shell to be located anywhere R ≥ 0. There is yet a further
division; indeed, one has still to specify the orientation of the shell, i.e., whether the normal out of the shell
points toward increasing radii or toward decreasing radii. For the shell’s orientation, the analysis in the
nonextremal state is readily performed using Kruskal-Szekeres coordinates, whereas in the extremal and
overcharged states the analysis can be performed in the usual spherical coordinates. There is still a subdivision
in the extremal state rþ ¼ r− when the shell is at rþ, R ¼ rþ, in that the shell can approach rþ from above or
approach rþ from below. The shell is assumed to be composed of an electrically charged perfect fluid
characterized by the energy density, pressure, and electric charge density, for which an analysis of the energy
conditions, null, weak, dominant, and strong, is performed. In addition, the shell spacetime has a
corresponding Carter-Penrose diagram that can be built out of the diagrams for Minkowski and
Reissner-Nordström spacetimes. Combining these two characterizations, specifically, the physical properties
and the Carter-Penrose diagrams, one finds that there are fourteen cases that comprise a bewildering variety of
shell spacetimes, namely, nonextremal star shells, nonextremal tension shell black holes, nonextremal tension
shell regular and nonregular black holes, nonextremal compact shell naked singularities, Majumdar-
Papapetrou star shells, extremal tension shell singularities, extremal tension shell regular and nonregular black
holes, Majumdar-Papapetrou compact shell naked singularities, Majumdar-Papapetrou shell quasiblack
holes, extremal null shell quasinonblack holes, extremal null shell singularities, Majumdar-Papapetrou null
shell singularities, overcharged star shells, and overcharged compact shell naked singularities.
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I. INTRODUCTION

An important group of solutions in a theory of gravi-
tation, in particular solutions to general relativity, is that
which represents stars. A nonrotating star in general
relativity is a static spherically symmetric solution com-
posed of some matter fields that either extend indefinitely,
with its fields decaying sufficiently fast to yield a well-
defined asymptotic infinity structure, or fill some interior
part that has a well-defined boundary that in turn connects
to a vacuum exterior. A particular interesting example of
this latter instance of a general relativistic star is an interior
composed of vacuum plus a boundary made of a thin shell
of matter that is joined to a vacuum exterior. The matter
concentration on the thin shell can produce with faithful-
ness several local and global properties of the spacetime,
and with particular relevance it can generate the formation
of apparent and event horizons.
In general relativity the generic study of uncharged time-

like and spacelike thin shells was initiated by Israel [1],
followed by Papapetrou and Hamoui [2] and Taub [3], with
lightlike thin shells being treated by Barrabès and Israel [4].
In the instance that the uncharged thin shell is spherically
symmetric, the interior spacetime can be of any type, inmany
situationsMinkowski can be used, and the exterior spacetime
of pure vacuum is the Schwarzschild spacetime according to
Birkoff’s theorem. There are many applications of spheri-
cally symmetric uncharged shells with a Schwarzschild
exterior, and we mention a few of those. Thin shell
gravitational collapse was treated by Israel [5], spacetimes
with counterrotating particles in thin shells were studied by
Evans [6] and Papapetrou and Hamoui [7], collisions of
spherical thin shells were analyzed by ’t Hooft and Dray [8],
cosmic bubbles with inflation were considered by Blau,
Guendelman, and Guth [9], properties of thin shells with a
black hole interior were investigated by Frauendiener,
Hoenselaers, and Konrad [10] and Brady, Louko, and
Poisson [11], the study of tension shell black holes was
performed by Katz and Lynden-Bell [12] and Comer and
Katz [13], thin shell wormholes were constructed by Visser
[14] andbyLemos,Lobo, andOliveira [15], andproperties of
black holes, such as black hole entropy through thin shells,
were done byAndré, Lemos, andQuinta [16] and Bergliaffa,
Chiapparini, and Reyes [17].
The study of spherically symmetric electrically charged

thin shells with a Reissner-Nordström spacetime exterior
was dealt with by de la Cruz and Israel [18] and Kuchař
[19], gravitational collapse of electrically charged shells
was performed by Chase [20] and Boulware [21], Vilenkin
and Fomin [22] inspected the problem of the self-energy
of the electron through thin shells, the topology of the
collapse of charged thin shells and fluids was analyzed by
Hiscock [23], interacting electric thin shells were studied in
Lemos and Zanchin [24], Dias, Gao, and Lemos studied
electric collapsing shells in Lovelock theory [25] with the
general relativistic counterpart and its relation to cosmic

censorship studied by Gao and Lemos [26], properties of
highly compact electric shells together with their energy
conditions where a maximum bound of the kind of the
Buchdahl bound has been found, have been discussed by
Andréasson [27], the inclusion of a Vlasov fluid into a thin
shell was studied by Andréasson, Eklund, and Rein [28],
thin shell electrically charged wormholes were constructed
by Dias and Lemos [29], regular black holes with thin
shells were worked out in [30], the highest compact shells
were analyzed by Lemos and Zaslavskii [31], Berezin and
Dokuchaev performed a thorough study of gravitational
collapse of electric thin shells [32], and properties of black
holes, such as black hole entropy, through thin shells, were
analyzed by Lemos, Quinta, and Zaslavskii [33,34], tension
electric shells on the other side of the Reissner-Nordström
universe were studied by Luz and Lemos [35], further study
on thin shells with matter obeying the Einstein-Maxwell
equations with the inclusion of a Vlasov fluid were
analyzed in [36], and for the highest compact electric thin
shells that form quasiblack holes see the work of Lemos
and Zaslavskii [37].
A feature of the electric thin shells is that the exterior

Reissner-Nordström spacetime can be in three different states
dependingon the ratio of the chargeQ to spacetimemassM, QM,
noting thatweuseunits inwhich the constant of gravitation and
the speedof light areequal toone. Indeed, theexteriorReissner-
Nordström spacetime can be nonextremal when Q

M < 1,
extremal when Q

M ¼ 1, and overcharged when Q
M > 1. The

matter that forms the thin shells canbeof several types,one type
oftenconsidered isanelectricchargedperfect fluid,withenergy
density σ and pressurep. Of course the electric charge density
σe of thefluid is relatedtoQandtherestmassdensityof thefluid
σ is related to M. An interesting particular situation is when
σe ¼ σ, for which the matter is called Majumdar-Papapetrou
matter and which gives rise to an exterior extremal Reissner-
Nordström spacetime with Q

M ¼ 1. For all the three different
states it is of interest to test the energy conditions for thematter,
the most important of which are the null, weak, dominant, and
strong. Many of the studied shell spacetimes can only be
understood through the maximal extension of the correspond-
ing exterior spacetime. Indeed, to appreciate a spacetime in its
totality, in particular a spherical symmetric spacetime, one
should first, maximally extend it in the manner of the Kruskal-
Szekeres canonic extension for the vacuum Schwarzschild
metric aspresented inmany textbooks ingeneral relativity,orof
the Graves-Brill extension for the electrovacuum Reissner-
Nordström solution [38], and second, draw the corresponding
Carter-Penrose diagram by using the techniques available; see,
e.g., [39–43]. In addition, to have a full grasp on electric shells,
certain properties of theReissner-Nordström spacetime have to
be understood, such as the regions where electric repulsion
dominates over gravitational attraction.
Theaimof thepaper is tofindandclassifyall thefundamental

electrically charged thin shells in the Einstein-Maxwell theory,
i.e., static spherically symmetric electrically charged general
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relativistic thin shellswithaMinkowski interior andaReissner-
Nordström exterior. We thus extend the Katz-Lynden-Bell
solution and analysis done for uncharged shells with a
Schwarzschild exterior. The fundamental electric thin shells
are assumed to have a perfect fluid stress-energy tensor Sαβ on
theshellwhichisdefinedthroughthe junctionof the interiorand
exterior spacetimes. We consider that the shells have positive
spacetime mass M, in the no-shell limit they have zero mass,
M ≥ 0, and the radius of the shell obeys R ≥ 0. In the
nonextremal state, QM < 1, there are two natural intrinsic radii,
the gravitational radius rþ given by rþ ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
and the Cauchy radius r− given by r− ¼

M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. Depending on the location radius R of the

shell, rþ and r− canbehorizon radii. In this nonextremal state it
is useful to define Kruskal-Szekeres coordinates for the
maximally extended spacetime, as they allow one to analyze
in a natural way the physical properties including the energy
conditions of the thin shell at any allowable location radiusR. In
the extremal state, QM ¼ 1, the two intrinsic radiimerge into one,
rþ ¼ r−, and it is possible to analyze the physical properties of
the thin shell including the energy conditions at any allowable
location radius R simply by resorting to the usual spacetime
spherical coordinates. In the overcharged state, QM > 1, the two
intrinsic radii do not exist, and one can analyze the physical
properties of the thin shell including the energy conditions at
any allowable location radius R also by resorting to the usual
spacetime spherical coordinates. The shell spacetime classi-
fication thatwepresent canonlybe fullyunderstood through the
maximal extension of the outer Reissner-Nordström spacetime
and the drawing of theCarter-Penrose diagrams.A bewildering
variety of fourteen cases appear, namely, nonextremal star
shells, nonextremal tension shell black holes, nonextremal
tension shell regular and nonregular black holes, nonextremal
compact shell naked singularities, Majumdar-Papapetrou star
shells, extremal tension shell singularities, extremal tension
shell regular andnonregular blackholes,Majumdar-Papapetrou
compact shell naked singularities, Majumdar-Papapetrou shell
quasiblack holes, extremal null shell quasinonblack holes,
extremal null shell singularities, Majumdar-Papapetrou null
shell singularities, overcharged star shells, and overcharged
compact shell naked singularities. In contrast to the
Schwarzschild shell analyzed by Lynden-Bell and Katz which
has only twocases, herewehave indeed awealth of cases.Toall
the fourteen cases, a physical interpretation can be given with
thehelpof the twomain features thatwementioned,namely, the
matter properties in conjunctionwith the energy conditions, and
the causal and global structure based on the Carter-Penrose
diagrams. Which cases are familiar and which cases are
peculiar, or even strange, depends on the analysis one makes.
Some cases have the energy conditions verified and the
geometrical setup seems to be physically reasonable, other
cases have the energy conditions verified and the resulting
spacetime is rather peculiar, and yet other cases have the energy

conditions violated with a physically reasonable geometri-
cal setup.
The article is organized as follows. In Sec. II, we set the

framework and devise the manner to study the physical
properties of the fundamental electric thin shells through the
formalismof junction conditions in general relativity, joining a
Minkowski interior to a Reissner-Nordström exterior. We
present the main features of the Minkowski and the
Reissner-Nordström spacetimes together with their Carter-
Penrose diagrams. We also establish the classification scheme
and thenomenclatureweuse. InSec. III,we studynonextremal
electric thin shells outside the gravitational radius and show
there are two types, namely, star shells and tension shell black
holes. In Sec. IV, we study nonextremal electric thin shells
inside theCauchy radius and show there are two types, namely,
tension shell regular and nonregular black holes and compact
shell naked singularities. In Sec. V, we study extremal electric
thin shells outside the gravitational radius and show there are
two types, namely, Majumdar-Papapetrou star shells and
tension shell black holes. In Sec.VI,we study extremal electric
thin shells inside thegravitational radiusandshowthereare two
types, namely, tension shell regular and nonregular black holes
and Majumdar-Papapetrou compact shell naked singularities.
In Sec. VII, we study extremal electric thin shells at the
gravitational radius and show there are four types, namely,
Majumdar-Papapetrou shell quasiblack holes, extremal null
shell quasinonblackholes, extremalnull shell singularities, and
Majumdar-Papapetrou null shell singularities. In Sec.VIII, we
study overcharged thin shells and show there are two types,
namely, star shells and compact shell naked singularities. In
Sec. IX, we study theweak, null, dominant, and strong energy
conditions for all the fundamental electric thin shells and
present a chart with all Carter-Penrose diagrams for the shells.
In Sec. X, we conclude. In the Appendix A, we present the
maximal extension of the nonextremal Reissner-Nordström
spacetime throughKruskal-Szekeres coordinates important to
deal with the shells in a nonextremal state. In Appendix B, we
present the calculation of the shell’s extrinsic curvature in a
nonextremal Reissner-Nordström exterior spacetime also
important to the whole development of the paper.

II. PRELIMINARIES: PHYSICAL PROPERTIES
OF FUNDAMENTAL ELECTRIC THIN

SHELLS THROUGH JUNCTION
CONDITIONS, MINKOWSKI INTERIOR

AND REISSNER-NORDSTRÖM EXTERIOR
AND THEIR CARTER-PENROSE DIAGRAMS,

AND CLASSIFICATION SCHEME AND
NOMENCLATURE

A. Physical properties of fundamental electric
thin shells through junction conditions

We work with general relativity coupled to electric
matter, so the appropriate equations are the Einstein-
Maxwell-charged matter field equations, i.e.,
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Rαβ −
1

2
gαβR ¼ 8πTαβ; ð1Þ

∇βFαβ ¼ 4πJα; ð2Þ

where Rαβ is the Ricci tensor, R is the Ricci scalar, Tαβ is
the stress-energy tensor, Fαβ is the Faraday-Maxwell
tensor, Jα is the electromagnetic 4-current, and α, β ¼ 0,
1, 2, 3 are the usual spacetime indices. The other Maxwell
equations, ∇½αFβγ� ¼ 0, where square brackets represent
antisymmetrization in the delimited indices, are automati-
cally satisfied for a properly defined Fαβ. We use units in
which the constant of gravitation and the speed of light are
equal to one, and assume the metric signature ð−þþþÞ.
We consider a general relativistic spacetime that is built

from an interior Mi with metric gi, an exterior Me with
metric ge, glued together at a common hypersurface S. We
will assumeMi to be described by the Minkowski solution
and Me to be the Reissner-Nordström spacetime, but for
the time being we can keep the analysis quite general.
In joining Mi with Me the whole spacetime solution M
still has to obey the Einstein-Maxwell field equations,
Eqs. (1) and (2). The hypersurface S can be timelike,
lightlike, or spacelike. Here, we work with the timelike and
possible spacelike situations, and we will revise briefly the
Darmois-Israel junction formalism for these types of
hypersurfaces in the theory of general relativity [1]; see
also [19] for the inclusion of the electromagnetic field. The
lightlike case can sometimes be dealt with by extension of
these two situations or generically within an appropriate
formalism [4].
To start, we assume that it is possible to define a common

coordinate system fxαg on both sides of the hypersurface
S, where the index α runs from 0 to 3, for the time and the
three space components, respectively. We also assume the
existence of a vector field n, well defined on both sides of
S, to be orthogonal at each point to the matching surface.
We choose n, the normal to S, to point fromMi toMe and
without loss of generality

nαnα ¼ ε; ð3Þ

where nα are the components of n in the coordinate system
fxαg and ε is �1 depending on n being spacelike or
timelike, respectively; the null case has ε ¼ 0 but will not
be treated here. The normal vector field n is such that it is
spacelike or timelike if the hypersurface is timelike or
spacelike, respectively. We denote by fyag a local coor-
dinate system on S, where the index a has three compo-
nents only, which depending on the character of S, can be
one for the time and two for the other space coordinates, or
three for the space coordinates. Now, the normal vector
field n must be orthogonal, at each point, to the tangent
vectors to the hypersurface S, ea ≡ ∂

∂ya, such that

eαanα ¼ 0; ð4Þ

with eαa ≡ ∂xα
∂ya. The induced metric on S as seen from each

region Mi and Me is

hi ab ≡ giαβeαae
β
b; he ab ≡ ge αβeαae

β
b; ð5Þ

respectively, where gi αβ and ge αβ are the components of the
interior and exterior metrics in the coordinate system fxαg,
respectively. Notice that in general, the induced metric on S
by each metric giαβ or ge αβ may not coincide; hence we use
the notation hi αβ and he αβ to refer to the metric induced by
each spacetime Mi and Me, respectively. The extrinsic
curvature Ki ab or Ke ab of S, as an embedded manifold in
Mi or Me, respectively, is defined as

Ki ab ≡ eαae
β
b∇i αnβ; Ke ab ≡ eαae

β
b∇e αnβ; ð6Þ

where ∇i and ∇e are the covariant derivatives with respect
to giαβ and ge αβ, respectively. Their traces are

Ki ≡ hiabKi ab; Ke ≡ heabKe ab; ð7Þ

respectively.
We need to find the conditions under which the matching

of the two spacetimes Mi and Me form a valid solution
of the field equations, namely, of Eqs. (1) and (2). So,
following the Darmois-Israel formalism [1] to join the two
regions Mi and Me at S, such that the union of giαβ and
ge αβ forms a valid solution to the Einstein field equa-
tions (1), two junction conditions must be verified at the
matching surface S: (i) The induced metric as seen from
each regionMi andMe [see Eq. (5)] must be the same, i.e.,

½hab� ¼ 0; ð8Þ

where we use [ψ] to represent the difference of a field as
seen from each submanifold at S, i.e., ½ψ �≡ ψ ejS − ψ ijS,
with ψ i and ψ e referring to a field ψ defined in Mi or Me,
respectively. (ii) If the extrinsic curvature [see Eq. (6)] is
not the same on both sides of the boundary S, then a thin
shell is present at S. The relation between the extrinsic
curvature Kab of S and the stress-energy tensor Sab of the
thin shell is given by

−εð½Kab� − hab½K�Þ ¼ 8π Sab: ð9Þ

We further assume that the stress-energy Sab of the thin
shell is a perfect fluid stress-energy tensor on S; i.e., we
assume that the total stress-energy tensor, defined as the
sum of the matter stress-energy tensor and the electromag-
netic stress-energy tensor, can be written as

Sab ¼ σuaub þ pðhab þ uaubÞ; ð10Þ

JOSÉ P. S. LEMOS and PAULO LUZ PHYS. REV. D 103, 104046 (2021)

104046-4



where σ is the energy density, p is the pressure, and ua is
the fluid’s velocity on S. This ua is uniquely defined from
projecting the interior four-velocity uiα onto S itself as
ua ¼ uiαeαa, or projecting the exterior four-velocity ueα

onto S itself as ua ¼ ueαeαa, with both projections obvi-
ously yielding the same ua.
In the presence of electromagnetic fields, to guarantee

that the spacetime M is a valid solution of the Maxwell
field equations, Eq. (2), in addition to Eqs. (8) and (9)
we must impose that the Faraday-Maxwell tensor, Fαβ,
obeys certain conditions. Defining the projected Faraday-
Maxwell tensor at S from the interior as Fiab ¼ Fiαβeαae

β
b

and from the exterior as Fe ab ¼ Fe αβeαae
β
b, and the pro-

jected Faraday-Maxwell vector at S from the interior as
Fi a ¼ Fi αβeαanβ and from the exterior as Fe a ¼ Fe αβeαanβ,
the electromagnetic matching conditions at S are then

½Fab� ¼ 0 ð11Þ

and

½Fa� ¼ 4π sa; ð12Þ

where sa is the electromagnetic surface current at S
given by

sa ¼ σeua; ð13Þ

with σe being the electric charge density on S.
Two notes are in order. The first note is to mention that

an infinitesimally thin shell is certainly an approximation to
a thick shell with a very small thickness. The second note is
to draw the attention that our assumption on the form of Sab
[see Eq. (10)] is a restriction on the properties of the fluid,
namely, it imposes that the thin shell fluid has no effective
anisotropic pressure. Since under certain density regimes,
realistic matter is expected to be anisotropic, it would be
interesting to understand how the presence of anisotropic
pressure affects our results. Surely, both assumptions,
namely, infinitesimal thickness and isotropic matter for
the shell, simplify the analysis, which nevertheless, as we
will see, can be quite complex.

B. Minkowski interior and Reissner-Nordström
exterior spacetimes

1. Minkowski interior spacetime

The interior spacetime Mi that will be considered is the
Minkowski spacetime. The Minkowski spacetime is a
totally empty spacetime and is a solution, a trivial solution,
to the Einstein-Maxwell equations, Eqs. (1) and (2). It is
characterized in spherical coordinates by the following line
element:

ds2 ¼ −dt2 þ dr2 þ r2dΩ2; ð14Þ

where t and r are the time and radial coordinates,
respectively, and dΩ2 ≡ dθ2 þ sin2 θ dφ2, with θ and φ
being the angular coordinates.
The Carter-Penrose diagram of the Minkowski is given

in Fig. 1. It is worth noting the timelike line r ¼ 0 which is
the origin of coordinates, the null infinities, the past one
I− and the future one Iþ, and the spacelike infinity i0.
There are also the timelike infinities i− and iþ at the lower
and upper vertices of the triangle that are not labeled to not
overload the figure. Each point in the diagram represents a
two-sphere of radius r.

2. Reissner-Nordström exterior spacetime

The exterior spacetimeMe that will be considered is the
Reissner-Nordström spacetime. The Reissner-Nordström
spacetime is a solution for the Einstein-Maxwell equations,
Eqs. (1) and (2), and describes an empty massive electri-
cally charged spherically symmetric spacetime. The full
vacuum Reissner-Nordström spacetime is the unique vac-
uum spherically symmetric electric charged solution in
general relativity, following Birkhoff’s theorem. In what
are commonly called Schwarzschild coordinates ðt; r; θ;φÞ,
the Reissner-Nordström spacetime is a solution of the
Einstein-Maxwell field equations characterized by the
following line element:

ds2 ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2 þ dr2

1 − 2M
r þ Q2

r2

þ r2dΩ2

ð15Þ

with M being the spacetime mass and Q its charge. We
assume the mass to be zero or positive M ≥ 0, and Q we
treat, without loss of generality here, as the modulus of the
electric charge, be it positive or negative. A function that
turns up often is the redshift function kðr;M;QÞ at some
radius r, or simply k, given by

FIG. 1. Carter-Penrose diagram of a spacetime described by the
Minkowski solution. See text for details.
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k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

þQ2

r2

r
: ð16Þ

The Faraday-Maxwell tensor, solution of Maxwell field
equation in Eq. (2), is in terms of Q given by

Frt ¼ −Ftr ¼
Q
r2
; ð17Þ

with the remaining components being identically null.
When Q

M ≤ 1, there are two important characteristic radii:
the event horizon radius rþ and the Cauchy horizon r−,
with M and Q being given in terms of these by

M ¼ rþ þ r−
2

; Q ¼ ffiffiffiffiffiffiffiffiffiffi
rþr−

p
: ð18Þ

The line element Eq. (15) then represents a black hole
solution and can be written as

ds2 ¼−
�
1−

rþ
r

��
1−

r−
r

�
dt2þ dr2

ð1− rþ
r Þð1− r−

r Þ
þ r2dΩ2:

ð19Þ

The redshift function of Eq. (16) at some radius r is now
kðr; rþ; r−Þ given by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

rþ
r

��
1 −

r−
r

�s
: ð20Þ

The Faraday-Maxwell tensor of Eq. (17) is in terms of rþ
and r− given by

Frt ¼ −Ftr ¼
ffiffiffiffiffiffiffiffiffiffi
rþr−

p
r2

: ð21Þ

Inverting Eq. (18) one obtains rþ and r− in terms of the
spacetime mass M and the electric charge Q as

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; r− ¼ M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð22Þ

When the solution is nonextremal, one has rþ > r−, which
in terms of M and Q is given by the condition M2 > Q2

[see Eq. (22)], i.e., QM ≤ 1. For the nonextremal solution we
work with the line element as given in Eq. (19). A particular
important instance here is when r− ¼ 0; i.e., the electric
charge is zero, Q ¼ 0, rþ ¼ 2M, and the Schwarzschild
solution is recovered, ds2 ¼ −ð1 − rþ

r Þdt2 þ dr2

1−rþ
r
þ r2dΩ2.

For the extremal solution, one has rþ ¼ r−, which in terms
of M and Q is given by the condition M2 ¼ Q2 [see
Eq. (22)], i.e., Q

M ¼ 1. For the extremal solution we work
with the line element as given in Eq. (19) putting rþ ¼ r−.
For the overcharged solution, rþ and r− take complex

values, and in terms ofM andQ it is given by the condition
M2 < Q2 [see Eq. (22)], i.e., QM > 1, so for the overcharged
solution it is definitely better to work not with the line
element of Eq. (19) but with the line element of Eq. (15).
The Reissner-Nordström spacetime, given by the line
element Eq. (19), or Eq. (15), has a maximal extension.
The Carter-Penrose diagrams for the three possible sol-
utions, namely, nonextremal, extremal, and overcharged
[40–42], are given in Figs. 2–4, respectively. Looking at the
Carter-Penrose diagrams it is clear that the nonextremal,
extremal, and overcharged Reissner-Nordström spacetimes
have a very distinct causal structure. Let us look at them
one at a time.
For the nonextremal solution, rþ > r− (see Fig. 2), the

Carter-Penrose diagram shows that there is a central block
that repeats itself. The central block is composed of
undashed regions and dashed mirror regions, specifically,
regions I and I0, regions II and II0, and regions III and III0.
Regions I and I0 are delimited by the two null lines rþ,
which are the event horizon of the spacetime, the past I−

and the future Iþ, the spacelike infinity i0, and the timelike
infinities i− and iþ at the lower and upper vertices of the
triangle that are not drawn to not overload the figure,
regions II and II0 are delimited by rþ and r−, the event and
the Cauchy horizons, respectively, and regions III and III0
by r− and the singularity at r ¼ 0. From region I to I0 there
is an Einstein-Rosen bridge, more precisely, a dynamic
wormhole. Region II0 is a white hole region, region II a
black hole. Thus, in summary the central block is com-
posed of a white and a black hole, plus two asymptotically
flat regions that are connected by a wormhole, plus a region
that contains two Cauchy horizons and two singularities at

FIG. 2. Carter-Penrose diagram of the nonextremal Reissner-
Nordström spacetime. See text for details.
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r ¼ 0. A detailed analysis of the causal structure and the
construction of the diagram is given in Appendix A for
the mathematics and properties of the maximal analytical
extension of the vacuum nonextremal Reissner-Nordström
solution. It will be seen that instead of the ðt; rÞ coordinates
of Schwarzschild it is necessary to resort to ðT; XÞ
coordinates of Kruskal to have a better hold on the
extension.
For the extremal solution, rþ ¼ r− (see Fig. 3), the

Carter-Penrose diagram shows that there are no mirror
regions, and so there is no Einstein-Rosen bridge, i.e., no
dynamic wormhole. Region I is the asymptotically flat
region, and region II is a black and white hole together.
For the overcharged solution, rþ and r− do not exist (see

Fig. 4), the Carter-Penrose diagram shows that there is only
the asymptotic region with r ¼ 0 being both the origin of
coordinates and a timelike singularity.

C. Classification scheme and nomenclature

1. Classification scheme

Armed with the necessary formalism to make a junction
of an interior Minkowski to an exterior Reissner-Nordström
solution we can now proceed to find and classify all
fundamental electrically charged static thin shells.
There are three distinct main electric states for the thin

shell, namely, nonextremal, extremal, and overcharged.
These yield an exterior Reissner-Nordström spacetime that
is nonextremal, i.e., QM < 1 or rþ > r−; extremal, i.e., QM ¼ 1

or rþ ¼ r−; and overcharged, i.e., Q
M > 1, respectively.

For each of the three main states one has to assign a
location for the shell, assumed to have radius R. In the
nonextremal state, rþ > r−, there are two possible loca-
tions, the shell can be located outside rþ, i.e., R > rþ, or
inside r−, i.e., R < r−. In the extremal state, rþ and r−
coincide, rþ ¼ r−, there are three possible locations, the
shell can be located outside rþ, i.e., R > rþ, inside rþ, i.e.,
R < rþ, or at rþ, i.e., R ¼ rþ. In the overcharged state,
there are no rþ and r−, there is one generic location, the
shell can be located anywhere without distinction, R > 0.
For each of the locations one has to assign an orientation

for the normal vector to the shell; indeed as seen by an
external observer the normal vector to the shell can either
point outward to increasing r or point inward to decreasing
r. Thus, in the nonextremal state with the shell located
outside rþ, one can have either a shell with the orientation
of the normal vector pointing to spatial infinity or one can
have a shell with the orientation of the normal vector
pointing to rþ. In the nonextremal state with the shell
located inside r−, one can have either a shell with the
orientation of the normal vector pointing to r− or one can
have a shell with the orientation of the normal vector
pointing to r ¼ 0. In the extremal state with the shell
located outside rþ, one can have either a shell with the
orientation of the normal vector pointing to spatial infinity
or one can have a shell with the orientation of the normal
vector pointing to r ¼ rþ. In the extremal state with the
shell located inside rþ, one can have either a shell with the
orientation of the normal vector pointing to rþ or one can
have a shell with the orientation of the normal vector
pointing to r ¼ 0. In the extremal state with the shell
located at rþ, one can have either a shell with the
orientation of the normal vector pointing to spatial infinity
or one can have a shell with the orientation of the normal
vector pointing to r ¼ 0, and for each of these two
orientations, there are two possible approaches: the shell
approaches rþ from above, i.e., R > rþ with R → rþ, or
the shell approaches rþ from below, i.e., R < rþ with
R → rþ. In the overcharged state, with the shell located
anywhere, one can have either a shell with the orientation of
the normal vector pointing to spatial infinity or one can
have a shell with the orientation of the normal vector
pointing to r ¼ 0.

FIG. 3. Carter-Penrose diagram of the extremal Reissner-
Nordström spacetime. See text for details.

FIG. 4. Carter-Penrose diagram of the overcharged Reissner-
Nordström spacetime. See text for details.

ALL FUNDAMENTAL ELECTRICALLY CHARGED THIN SHELLS … PHYS. REV. D 103, 104046 (2021)

104046-7



So, the classification we perform for a fundamental
electric thin shell and respective spacetime, namely, state,
location, orientation, yields fourteen different cases. All the
fourteen cases, four for nonextremal, eight for extremal,
and two for overcharged will be analyzed, in particular, the
physics and geometry of all the cases will be displayed.

2. Nomenclature

There is a question of nomenclature that we must clarify.
Note that the thin shell spacetime solution has a character-
istic radius which is the radius R of the location of the shell.
For a shell in the nonextremal state, rþ > r−, the exterior
Reissner-Nordström exterior solution has two further char-
acteristic radii, namely, rþ and r− themselves. The question
of nomenclature is the distinction between gravitational
radius and event horizon radius on the one hand, and
between Cauchy radius and Cauchy horizon radius on the
other hand. The gravitational radius and Cauchy radius of a
nonextremal spacetime are characteristic intrinsic radii of
the spacetime, more precisely, given a mass M and charge
Q then there is a one-to-one correspondence to rþ and r−. It
can happen that the nonextremal shell spacetime has no
horizons in which situation rþ and r− are simply the
gravitational radius and Cauchy radius of the spacetime,
respectively, or it can happen that the nonextremal shell
spacetime has horizons, in which situation the event
horizon radius rþ is also the gravitational radius and the
Cauchy horizon radius r− is also the Cauchy radius. For
example, a nonextremal star object for which Q

M < 1 has
gravitational radius but no event horizon, since the space-
time in which it is inserted has no event horizon. For the
same reason, it also has a Cauchy radius but no Cauchy
horizon. On the other hand, a nonextremal black hole for
which also Q

M < 1 has the property that its gravitational
radius is also its event horizon radius and its Cauchy radius
is also its Cauchy horizon radius. For a shell in the extremal
state, rþ ¼ r−, besides the radius R of the shell, the exterior
Reissner-Nordström exterior solution has one characteristic
radius, namely, rþ; one could use r− also but it is clearly
more appropriate to use rþ. As before, depending on the
location of the shell, rþ can be a gravitational radius alone
when the extremal shell spacetime has no horizon, or it can
be a gravitational radius and an event horizon radius as
well, when the shell spacetime has a horizon. For a shell in
the overcharged state, rþ and r− are not defined, and so the
nomenclature does not apply.
Let us see in detail this nomenclature when applied to the

fundamental electric thin shells. First, the shell in the
nonextremal state has four cases. If the radius R of the shell
is greater than rþ and its normal points toward spatial
infinity, so the shell is located in region I of Fig. 2, then
there is no event horizon and no Cauchy horizon, and rþ is
the gravitational radius and r− is the Cauchy radius. If the
radius R of the shell is greater than rþ and its normal points
toward rþ, so the shell is located in region I0 of Fig. 2, then

there are event and Cauchy horizons, and rþ is, in addition
to a gravitational radius, an event horizon radius and r− is
also the Cauchy horizon radius. If the radius R of the shell
is less than r− and its normal points toward r−, so the shell
is located in region III or III0 of Fig. 2, then rþ is the event
horizon radius and r− is the Cauchy horizon radius. If the
radius R of the shell is less than r− and its normal points
toward the singularity r ¼ 0, so the shell is still located in
region III or III0 of Fig. 2, then there is no event horizon and
no Cauchy horizon, and rþ is the gravitational radius and
r− is the Cauchy radius. Second, the shell in the extremal
state has eight cases. For the eight cases of the extremal
state one has that, since rþ ¼ r−, there is no need for the
name Cauchy which drops out, and the radius rþ ¼ r− is
called gravitational radius and event horizon radius in the
appropriate cases. Here one follows the nonextremal
nomenclature; see also Fig. 3 representing the shell’s
exterior region. Third, the shell in the overcharged state
has two cases. The nomenclature in the overcharged state
with Fig. 4 representing the shell’s exterior region, does not
apply since rþ and r− do not exist.
It is clearly convenient to use this nomenclature and to

distinguish when there no horizons from when there are
horizons. We follow it in the study of the fourteen differ-
ent cases.

III. NONEXTREMAL ELECTRIC THIN SHELLS
OUTSIDE THE GRAVITATIONAL RADIUS: STAR
SHELLS AND TENSION SHELL BLACK HOLES

A. Nonextremal electric thin shells outside the
gravitational radius: Star shells

Here we study the case of a fundamental electric thin
shell in the nonextremal state, i.e., rþ > r− or M > Q, for
which the shell’s location obeys R > rþ, and for which the
orientation is such that the normal to the shell points toward
spatial infinity. In this case horizons do not exist and so,
following the nomenclature, rþ and r− are the gravitational
radius and Cauchy radius, respectively. Two remarks are
important. First, when we write M > Q, it is meant as
M > jQj, but to simplify the notation, we drop the modulus
in these instances, expecting that the context makes clear
the meaning. Second, the normal to the shell pointing
toward spatial infinity means in the notation of the Kruskal
coordinate X that we take signðXÞ ¼ þ1; see the end of this
section and Appendix A for details.
As functions ofM,Q, and R, the shell’s energy density σ

and pressure p, are (see the end of this section)

8πσ ¼ 2

R
ð1 − kÞ; ð23Þ

8πp ¼ 1

2Rk

�
ð1 − kÞ2 −Q2

R2

�
; ð24Þ
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with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
. Also, the electric charge density

σe is given in terms of M, Q, and R, by

8πσe ¼
2Q
R2

; ð25Þ

explicitly showing that the shell’s electric charge density is
the source of the exterior Reissner-Nordström spacetime
electric charge. The behavior of σ and p as functions of the
radius R of the shell for various values of the Q

M ratio in this
case is shown in Fig. 5. Since M > Q and R > rþ, so
R > M, one has that σ and p, Eqs. (23) and (24), are always
positive for this type of shells, as can also be checked in
Fig. 5. These are the star shells. Qualitatively, one can
understand why the pressure is positive for shells with
normal pointing toward spatial infinity, i.e., signðXÞ ¼ þ1.
A free-falling particle in the region outside the shell sees
a geometry that is indistinguishable from the non-
extremal Reissner-Nordström spacetime. Therefore, a par-
ticle, momentarily comoving with the shell but detached
from it say, would tend to fall to the inside as if an event
horizon existed. Therefore, in order to be static, a thin shell
located at the junction hypersurface with R > rþ must be
supported by pressure. Notice from Fig. 5 that as the charge
Q is increased one needs less pressure support; as expected,
the electric repulsion makes up for the pressure. Notice that
when R → ∞, the energy density σ, the pressure p, and the
charge density σe, all tend to zero; i.e., the shell disperses
away. Notice also that when R → rþ, the energy density is
finite, but the pressure of the shell goes to infinity, while the

electric charge density is also finite. Indeed, for R ¼ rþ one
has a quasiblack hole. When Q ¼ 0 the outer solution is
Schwarzschild. In relation to the energy conditions of the
shell one can work out and find that the null and the weak
energy conditions are verified for R > rþ, the dominant
energy condition for R ≥ RI, where RI is some specific
radius that we present later, and the strong energy condition
for R > rþ; see a detailed presentation ahead.
The Carter-Penrose diagram for this case can be

drawn directly from the building blocks of an interior
Minkowski spacetime and the exterior asymptotic infinite
region of the nonextremal Reissner-Nordström spacetime.
In Fig. 6 the Carter-Penrose diagram of a shell spacetime in
a nonextremal Reissner-Nordström state, which includes
Schwarzschild, in the location R > rþ, with orientation
such that the normal points toward spatial infinity, i.e.,
signðXÞ ¼ þ1, is shown. It is clearly a star shell, a star in an
asymptotically flat spacetime.
The physical interpretation of this case is clear-cut. This

nonextremal thin shell solution mimics a familiar star. The
energy density and pressure obey the energy conditions if
the radius of the shell is sufficiently large. When this radius
approaches the gravitational radius, the energy conditions
are not obeyed, and at the gravitational radius itself the
solution turns into a quasiblack hole, an object with very
interesting properties. The causal and global structures as
displayed by the Carter-Penrose diagram are well behaved
and rather elementary. So, this case falls into the category
of having the energy conditions verified, and the geomet-
rical setup is physically reasonable.

(a) (b)

FIG. 5. Physical properties of a nonextremal star shell, i.e., an electric perfect fluid thin shell in a nonextremal Reissner-Nordström
state, in the location R > rþ, i.e., located outside the gravitational radius, and with orientation such that the normal points toward spatial
infinity. The interior is Minkowski and the exterior is nonextremal Reissner-Nordström spacetime. (a) Energy density σ of the shell as a
function of the radius R of the shell for various values of the Q

M ratio. The energy density is adimensionalized through the massM, 8πMσ,
and the radius is adimensionalized through the gravitational radius rþ, R

rþ
. (b) Pressure p on the shell as a function of the radius R of the

shell for various values of the Q
M ratio. The pressure is adimensionalized through the massM, 8πMp, and the radius is adimensionalized

through the gravitational radius rþ, R
rþ
.
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B. Nonextremal electric thin shells outside the event
horizon: Tension shell black holes

Here we study the case of a fundamental electric thin
shell in the nonextremal state, i.e., rþ > r− or M > Q, for
which the shell’s location obeys R > rþ, and for which the
orientation is such that the normal to the shell points toward
rþ. In this case horizons do exist and so, following the
nomenclature, rþ is both the gravitational and the event
horizon radius, and r− is both the Cauchy radius and the
Cauchy horizon radius. The normal to the shell pointing

toward rþ means in the notation of the Kruskal coordinate
X that we take signðXÞ ¼ −1; see the end of this section
and Appendix A for details.
As functions ofM,Q, and R, the shell’s energy density σ

and pressure p, are (see the end of this section)

8πσ ¼ 2

R
ð1þ kÞ; ð26Þ

8πp ¼ −
1

2Rk

�
ð1þ kÞ2 −Q2

R2

�
; ð27Þ

where the redshift parameter k is again k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
.

The electric charge density σe is given in terms of M, Q,
and R also by Eq. (25). The behavior of σ and p as
functions of the radial coordinate R of the shell for various
values of the Q

M ratio in this case is shown in Fig. 7. We see
that σ is always positive but p is negative; it is rather a
tension. These are the tension shells. Qualitatively, one can
understand why these shells, with normal pointing to rþ,
i.e., signðXÞ ¼ −1, must be supported by tension, by
remembering that a free-falling particle in the region
outside the event horizon will infall toward the event
horizon rþ itself. Therefore, a particle momentarily
comoving with the shell but detached from it will infall
toward the black hole region of the exterior Reissner-
Nordström spacetime; hence, a perfect fluid thin shell
located at the junction hypersurface, in order to be static,
must be supported by tension. Notice from Fig. 7 that as
the charge Q is increased one needs more tension support.

(a) (b)

FIG. 7. Physical properties of a nonextremal tension shell black hole, i.e., an electric perfect fluid thin shell in a nonextremal Reissner-
Nordström state, in the location R > rþ, i.e., located outside the event horizon, with orientation such that the normal points toward rþ.
The interior is Minkowski, the exterior is nonextremal Reissner-Nordström spacetime. (a) Energy density σ of the shell as a function of
the radius R of the shell for various values of the Q

M ratio. The energy density is adimensionalized through the mass M, 8πMσ, and the
radius is adimensionalized through the gravitational radius rþ, R

rþ
. (b) Tension −p on the shell as a function of the radius R of the shell for

various values of the Q
M ratio. The tension is adimensionalized through the massM, −8πMp, and the radius is adimensionalized through

the gravitational radius rþ, R
rþ
.

FIG. 6. Carter-Penrose diagram of a star shell, i.e., a thin
shell spacetime in a nonextremal Reissner-Nordström state, in
the location R > rþ, i.e., located outside the gravitational
radius, with orientation such that the normal points toward
spatial infinity. The interior is Minkowski, and the exterior is
nonextremal Reissner-Nordström. For zero electric charge the
exterior is Schwarzschild, in which case the diagram looks
the same.
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This is expected as the electric repulsion obliges an
increase in the tension. Notice that here R is finite,
although it can be arbitrarily large, in which case the
energy density σ, the tension −p, and the charge density
σe, all tend to zero. Notice that σ has a nonmonotonic
behavior. Notice also that when R → rþ, the energy
density is finite, but the tension of the shells goes to
infinity, while the charge density is also finite. Indeed,
for R ¼ rþ one has a shell at the horizon with
properties similar to a quasiblack hole, although one with
additional structures. When Q ¼ 0, the outer solution is
Schwarzschild. In relation to the energy conditions of the
shell one can work out and find that the null, the weak, and
the dominant energy conditions are verified for R ≥ RI0,
where RI0 is some specific radius that we present later, and
the strong energy condition is never verified (see a
detailed presentation ahead).
The Carter-Penrose diagram for this case can be drawn

from the building blocks of an interior Minkowski space-
time and the full nonextremal Reissner-Nordström space-
time. In Fig. 8 the Carter-Penrose diagram of a shell
spacetime in a nonextremal Reissner-Nordström state, in
the location R > rþ, with orientation such that the normal

points toward rþ, i.e., signðXÞ ¼ −1, is shown. In the
diagram it is clear that the tension shell is in the other side
of the Carter-Penrose diagram of a Reissner-Nordström
spacetime. From Fig. 8 it is seen that it is clearly a black
hole solution, not a vacuum black hole, nor a regular black
hole. The solutions represent tension shell black holes.
Note rþ and r− are the event horizon and the Cauchy
horizon radii, and there is an Einstein-Rosen bridge,
provided by a dynamic wormhole in the spacetime.
Tension shell black holes were found in [12] for the zero
electric charge case, i.e., for the Schwarzschild shells, in
which case the Carter-Penrose diagram is similar, only the
r ¼ 0 singularity is spacelike, and the diagram does not
repeat itself. In the Reissner-Nordström spacetime, contrary
to Schwarzschild, there is an infinitude of possible dia-
grams. In Fig. 8(a) it is clear that the tension shell is outside
the event horizon in the other side of the diagram in the
region I0 shown. One can then put another shell in the
region I0 above and repeat the procedure ad infinitum. In
Fig. 8(b) the tension shell is again outside the event horizon
in the other side of the diagram in the region I0 shown. One
can then put an infinity region in the region I0 above and
repeating the procedure ad infinitum. As what one puts in

(a) (b)

FIG. 8. Carter-Penrose diagrams of a tension shell black hole, i.e., a thin shell spacetime in a nonextremal Reissner-Nordström state, in
the location R > rþ, i.e., located outside the event horizon, with orientation such that the normal points toward rþ. The interior is
Minkowski, the exterior is nonextremal Reissner-Nordström spacetime. For zero electric charge the exterior is Schwarzschild, in which
case the timelike singularities turn into spacelike ones. (a) The Carter-Penrose diagram contains a shell in the regions I0 shown and
another shell in the next region I0, which is repeated for all regions I0. (b) The Carter-Penrose diagram contains a shell in region I0 and an
infinity in the next region I0, which is then repeated for all regions I0. An infinite number of different Carter-Penrose diagrams can be
drawn, since there are an infinite number of combinations to locate the shell and infinity.
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the regions I0, either a tension shell or infinity, is not
decided by the solution; an infinite number of different
Carter-Penrose diagrams can be drawn, since there are an
infinite number of combinations to locate a shell or infinity
when one goes upward or downward through the diagram.
When R ¼ rþ the shell with its interior forms a tension
quasiblack hole with special features since it is attached to
the other regions of the Reissner-Nordström spacetime.
The physical interpretation of this case has some com-

plexity. This nonextremal thin shell solution carries with it
a white hole connected to a black hole through a wormhole.
The energy density and pressure obey some of the energy
conditions if the radius of the shell is sufficiently large, i.e.,
is sufficiently larger than the gravitational radius. When the
radius of the shell approaches the gravitational radius, the
energy conditions are not obeyed, and when the radius of
the shell is at the gravitational radius the solution turns into
a tension quasiblack hole an object with interesting proper-
ties. The causal and global structures as displayed by the
Carter-Penrose diagram in its simplest form shows the
important spacetime regions. We have called this solution
a tension shell black hole, but it could be called as well a
tension shell nontraversable wormhole, since there is a
nontraversable wormhole that links the white hole to the
black hole region. As in the Reissner-Nosdström solution,
this tension shell black hole possesses Cauchy horizons,
and, as in the vacuum Reissner-Nosdström solution, it is
subject to be destroyed by perturbations. Presumably, the
perturbation would turn the Cauchy horizon into a null or
spacelike singularity, turning in turn the nonextremal
tension shell solution into a solution similar to the electri-
cally uncharged Lynden-Bell-Katz tension shell black hole
solution. Moreover, these solutions, in the same way as the
full Reissner-Nosdström or Schwarzschild solutions, are
universes in themselves, and, if they existed, they would
have to be given directly by mother nature, rather than
appear by, say, a straight gravitational collapse or some
other process. So, this case falls into the category of having
some of the energy conditions verified and the geometrical
setup being physically peculiar, although full of interest, as
matter solutions on the other side of the Carter-Penrose
diagram are rare. Moreover these solutions are familiar, in
the sense that nontraversable wormholes with white and
black holes are well known.

C. Formalism for nonextremal electric thin shells
outside the gravitational radius

1. Preliminaries

We now make a careful study to derive the properties of
the fundamental electric thin shell used in the two previous
subsections, i.e., the thin shell in the nonextremal state, i.e.,
rþ > r− or M > Q, for which the shell’s location obeys
R > rþ, and for which the orientation is such that the
normal to the shell points toward spatial infinity or toward

rþ. It should be read as an Appendix to the previous two
subsections. We use the formalism developed in Sec. II and
Appendix A.

2. Induced metric and extrinsic curvature
of S as seen from Mi

Let us start by analyzing the interior Minkowski space-
time, Mi, whose line element in spherical coordinates is
given by

ds2i ¼ −dt2i þ dr2 þ r2dΩ2; ð28Þ

where ti and r are the time and radial coordinates,
respectively, and dΩ2 ≡ dθ2 þ sin2θdφ2, with θ and φ
being the angular coordinates. The subscript i denotes
interior or inside from now onwards.
The junction from the interior to the exterior is made

through a hypersurface S. We assume the hypersurface S to
be static, i.e., static as seen from a free-falling observer in
the interior Minkowski spacetime. In general, S can be
either timelike or spacelike; however, since we are con-
sidering Minkowski spacetime, it is not possible to have a
static spacelike surface, and hence, S must be timelike.
It is convenient to choose the coordinates on S to be
fyag ¼ ðτ; θ;φÞ, where τ is the proper time measured by an
observer comoving with S. It follows that denoting ui as the
four-velocity of an observer comoving with the shell as
seen from the inside, we can define a unit vector eτ
such that eτ ≡ ui. The hypersurface S, as seen from the
interior spacetime Mi, is parametrized by τ, such that the
surface’s radial coordinate is described by a function
rjS ≡ R ¼ RðτÞ. The fact that S is assumed to be static
implies dR

dτ ¼ 0, from which we have that uαi ¼ ðdtidτ ; 0; 0; 0Þ,
where uαi represents the components of the four-velocity ui
as seen from the interior spacetime Mi. Since S is a
timelike hypersurface, it must verify uiα uαi ¼ −1. With
these latter two equations we find that dti

dτ ¼ �1. Imposing
that ui points to the future leads to the choice of the plus
sign, thus

uαi ¼ ð1; 0; 0; 0Þ: ð29Þ

From Eqs. (5) and (29) we can find the induced metric on S
by the spacetime Mi, such that

ds2i jS ¼ −dτ2 þ R2dΩ2: ð30Þ

Also, with the expression for the four-velocity of an
observer comoving with S, we can now use Eqs. (4)
and (29) to find the expression for the components of the
unit normal as seen from Mi, nαi ; hence niα ¼ λð0; 1; 0; 0Þ
where λ is a normalization factor. Using Eqs. (3) and (28)
and the condition that n is spacelike yields λ ¼ �1. Since
we are studying the case where the interior Minkowski
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spacetime is spatially compact and enclosed by the hyper-
surface S, we must choose the plus sign, such that the
expression for the outward pointing unit normal to S is
given by

niα ¼ ð0; 1; 0; 0Þ: ð31Þ

We are now in position to compute the components of
the extrinsic curvature of S as seen from Mi, Kiab. In
the case where the matching surface S is timelike, static,
and spherically symmetric, the nonzero components of the
extrinsic curvature are given byKττ ¼ −aαnα,Kθθ ¼ ∇θnθ,
Kφφ ¼ ∇φnφ, where aα ≡ uβ∇βuα; see Appendix B.
Taking into account Eqs. (4), (28), (30), and (31), we find
that the nontrivial components of the extrinsic curvature as
seen from the interior Minkowski spacetime, see Eq. (6),
are given by

Ki
τ
τ ¼ 0; Ki

θ
θ ¼ Ki

φ
φ ¼ 1

R
; ð32Þ

where the induced metric taken from Eq. (30) was used to
raise the indices.

3. Induced metric and extrinsic curvature
of S as seen from Me

To proceed we now have to find the expressions for the
induced metric on S and the extrinsic curvature compo-
nents as seen from the exterior spacetime, Me, in the
nonextremal state, i.e., rþ > r− or M > Q (see Fig. 2) for
which the shell’s location obeys R > rþ, and for which the
orientation is such that the normal to the shell points toward
increasing r or toward decreasing r as seen from the
exterior, as used in the two previous subsections.
For a nonextremal shell with R > rþ we work with the

coordinate patch that has no coordinate singularity at
the gravitational radius r ¼ rþ. For the setting of coor-
dinate patches in the nonextremal Reissner-Nordström
spacetime see Appendix A, and see also [13] for the
coordinate patches of an uncharged shell matched to the
Schwarzschild spacetime. In this region and for the chosen
coordinate patch, the line element for the Reissner-
Nordström spacetime in Kruskal-Szekeres coordinates is
given by

ds2e ¼ 4

�
rþ þ r−
rþ − r−

�
2 r4þ
r2

e
−rðrþ−r−Þ

r2þ

�
r − r−
rþ þ r−

�
1þðr−rþÞ2

× ðdX2 − dT2Þ þ r2ðT; XÞdΩ2;

X2 − T2 ¼ e
rðrþ−r−Þ

r2þ

�
r − rþ
rþ þ r−

��
r − r−
rþ þ r−

�
−ðr−rþÞ2

; ð33Þ

with rðT; XÞ being given implicitly by the latter equation.
The subscript e denotes exterior from now onwards.

The shell’s radial coordinate when measured by an
observer at Me is described by a function rjS ≡
R ¼ RðτÞ, where τ is the proper time of an observer
comoving with the surface S, which, since we assume it
to be static, is such that dRdτ ¼ 0. Strictly, R should be written
as another letter, say R, but as we will see we can put
R ¼ R and so we stick to the letter R from the start.
Considering the second of the equations given in Eq. (33),
dR
dτ ¼ 0 implies that the X and T coordinates of a point on S
must verify X2 − T2 ¼ const. Taking the derivative of
X2 − T2 ¼ const in order to the proper time we find the
relation ∂X

∂τ ¼ T
X
∂T
∂τ . In our previous analysis of the Mi

spacetime, we found that the hypersurface S must be
timelike, then, due to the first junction condition, S must
also be timelike when seen from the exterior Me space-
time. Therefore, the components of the four-velocity of
an observer comoving with it as seen from Me are
uαe ¼ ð∂T∂τ ; ∂X∂τ ; 0; 0Þ. Using ∂X

∂τ ¼ T
X
∂T
∂τ and ueαuαe ¼ −1 we

find ∂T
∂τ ¼ �

ffiffiffiffiffiffiffiffiffiffi
gXXX2

X2−T2

q
and ∂X

∂τ ¼ �
ffiffiffiffiffiffiffiffiffiffi
gXXT2

X2−T2

q
, so that

uαe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXX

X2 − T2

r
ðX; T; 0; 0Þ; ð34Þ

where the sign was chosen in order that ue points to the
future and gXX is the XX component of the inverse metric
associated with Eq. (33). Notice that the expression found
for the components of ue, Eq. (34), only makes sense,
physically, if X2 > T2. Looking at the second of the
equations given in Eq. (33), one has that X2 > T2 implies
that R > rþ, so the shell is located either in the region I or
in the region I0 (see Fig. 2). The restriction on the allowed
regions for the shell is a consequence of the shell being
assumed static; if we were to consider a dynamic shell or a
different interior spacetime, then shells in the black hole or
the white hole region could also be treated. Note also that
our choice of the plus sign in Eq. (34), such that ue points
to the future, is the correct one in both I or I0 regions.
Equation (34) can now be used to find the induced metric
on the hypersurface S by the spacetime Me, such that
ds2e jS ¼ −dτ2 þ R2dΩ2. From the first junction condition,
Eq. (8), matching Eq. (30) with this equation for ds2e jS, we
find that R, the radial coordinate of S when measured by an
observer at Me, and R, the radial coordinate of S when
measured by an observer at Mi, must indeed be equal, as
we have anticipated. So, generically, R describes the radial
coordinate of the shell for either the interior or the exterior
spacetime, and so the intrinsic line elements of the shell,
namely, ds2i jS ¼−dτ2þR2dΩ2 and ds2e jS ¼−dτ2þR2dΩ2,
can be written uniquely as

ds2jS ¼ −dτ2 þ R2dΩ2: ð35Þ

Now, using the fact that the unit normal to S is spacelike
implies nαeneα ¼ þ1. Then, taking into account Eqs. (4)
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and (34), we find neα ¼ �
ffiffiffiffiffiffiffiffiffiffi
gXX

X2−T2

q
ð−T; X; 0; 0Þ. To pro-

ceed, we must choose the sign for the normal. The choice
of the sign is related with the orientation of the shell,
i.e., the direction of the normal, and we impose that it
points in the direction of increasing X. This implies that the
choice of the sign is different if we consider the shell to be
in the region I or I0 (see Fig. 2 and also Fig. 32
of Appendix A 1). One of the simplifications that the
use of the Kruskal-Szekeres coordinates introduces is that
the choice of the sign can be written in a concise manner,
such that

neα ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXX

X2 − T2

r
ð−T; X; 0; 0Þ; ð36Þ

where the quantities on the right-hand side are to be
evaluated at r ¼ R and signðXÞ is the signum function
of the coordinate X of the shell. Notice however, that the
usage of this notation is simply to treat in a concise
way the two possible directions of the normal of the
shell. Physically, there is nothing different between a shell
located in either region, i.e., with positive or negative
values of X. Having found the normal to the hypersurface S
as seen from the exterior nonextremal Reissner-Nordström
spacetime, we can now compute the nonzero com-
ponents of the extrinsic curvature. Following the results
in Appendix B 1 we have

Ke
τ
τ ¼

signðXÞ
2R2k

�
rþ þ r− − 2

rþr−
R

�
;

Ke
θ
θ ¼ Ke

φ
φ ¼ signðXÞðrþ − r−Þ

2r2þR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXXðX2 − T2Þ

q
; ð37Þ

where k, here, is the redshift function given in Eq. (20),

evaluated at R, i.e., kðR; rþ; r−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rþ

R Þð1 − r−
R Þ

q
.

4. Shell’s energy density and pressure

We are now in a position to find the properties of
a perfect fluid thin shell in a nonextremal Reissner-
Nordström state, located outside the gravitational radius
or event horizon radius, depending on the case. The shell’s
stress-energy tensor is given in Eq. (10), an expression
containing the energy per unit area σ, the tangential
pressure of the fluid p, the velocity ua, and the induced
metric hab. From our choice of coordinates on S we have
that fyag ¼ ðτ; θ;φÞ, the four-velocity uαi is given in
Eq. (29), and the metric hab is given through Eq. (35).
Putting everything together we find that Sττ ¼ −σ, Sθθ ¼
Sφφ ¼ p. Comparing these latter equations with the second
junction condition, Eq. (9), taking into account the com-
ponents of the induced metric, given through Eq. (35), and
the fact that ½Kθ

θ� ¼ ½Kφ
φ�, we find σ ¼ − 1

4π ½Kθ
θ� and

p ¼ 1
8π ½Kτ

τ� − σ
2
. With the components of the extrinsic

curvature found in Eqs. (32) and (37) we then obtain

8πσ ¼ 2

R
ð1 − signðXÞkÞ; ð38Þ

8πp ¼ signðXÞ
2Rk

�
ð1 − signðXÞkÞ2 − rþr−

R2

�
; ð39Þ

where k here is the redshift function given in Eq. (20)

evaluated at R, i.e., kðR; rþ; r−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rþ

R Þð1 − r−
RÞ

q
. As

the surface electric current density sa on the thin shell is
defined as sa ¼ σeua, where σe represents the electric
charge density and ua is the velocity of the shell, and since
the Minkowski spacetime has zero electric charge, from
Eqs. (12), (13), and (21) it follows that

8πσe ¼ 2

ffiffiffiffiffiffiffiffiffiffi
rþr−

p
R2

: ð40Þ

In Eqs. (38) and (39) it is clear that it is necessary to pick
the sign in signðXÞ. Let us start with signðXÞ ¼ þ1. It is
useful here to give the expressions for the shell’s
energy density and pressure, σ and p, in terms of M and
Q. Using Eq. (22) in Eqs. (38) and (39) with signðXÞ ¼ þ1

we have 8πσ ¼ 2
R ð1 − kÞ, 8πp ¼ 1

2Rk ½ð1 − kÞ2 − Q2

R2 �, where
kðR;M;QÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
, and also from Eq. (40) we

have 8πσe ¼ 2Q
R2 . Let us now take signðXÞ ¼ −1. It is

also useful here to give the expressions for the shell’s
energy density and pressure, σ and p, in terms ofM and Q.
Using Eq. (22) in Eqs. (38) and (39) with signðXÞ ¼ −1 we
have 8πσ ¼ 2

R ð1þ kÞ, 8πp ¼ − 1
2Rk ½ð1þ kÞ2 − Q2

R2 �, where
again kðR;M;QÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
, and also from Eq. (40)

we have 8πσe ¼ 2Q
R2 . These are the expressions used in the

two previous subsections. Note also that when r− ¼ 0, then
σe ¼ 0 and the electric charge Q is zero, Q ¼ 0, so the
outside spacetime is described by the Schwarzschild
solution, for which Eqs. (38) and (39) can be written

explicitly as 8πσjr−¼0 ¼ 2
R

�
1 − signðXÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − rþ

R

q �
and

8πpjr−¼0 ¼ signðXÞ
2R

ffiffiffiffiffiffiffiffi
1

1−rþ
R

q h�
1 − signðXÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − rþ

R

q �
2
i
, and

which are the energy density and the tangential pressure
for a shell matching Minkowski to the Schwarzschild
spacetime.

IV. NONEXTREMAL ELECTRIC THIN SHELLS
INSIDE THE CAUCHY RADIUS: TENSION SHELL
REGULAR AND NONREGULAR BLACK HOLES
AND COMPACT SHELL NAKED SINGULARITIES

A. Nonextremal electric thin shells inside the
Cauchy horizon: Tension shell regular

and nonregular black holes

Here we study the case of a fundamental electric thin
shell in the nonextremal state, i.e., rþ > r− or M > Q, for
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which the shell’s location obeys R < r−, and for which the
orientation is such that the normal to the shell points toward
r−. In this case horizons do exist and so, following the
nomenclature, rþ is both the gravitational and the event
horizon radius, and r− is both the Cauchy radius and the
Cauchy horizon radius. The normal to the shell pointing
toward r− means in the notation of the Kruskal coordinate
X that we take signðXÞ ¼ þ1; see the end of this section
and Appendix A for details.
As functions ofM,Q, and R, the shell’s energy density σ

and pressure p, are (see the end of this section)

8πσ ¼ 2

R
ð1 − kÞ; ð41Þ

8πp ¼ 1

2Rk

�
ð1 − kÞ2 −Q2

R2

�
; ð42Þ

respectively, with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
. Also, the electric

charge density σe is given in terms of M, Q, and R, by

8πσe ¼
2Q
R2

: ð43Þ

The behavior of σ and p as functions of the radial
coordinate R of the shell for various values of the Q

M ratio
in this case is shown in Fig. 9. We see that, depending on
the radial coordinate of the shell, the energy density might
take negative values. Indeed, from Eq. (41) we find that for

R < Q2

2M the energy density, σ, is negative. Also, this kind of
thin shell is always supported by tension [see also Eq. (42)].
It is a tension shell. This is related to the fact that the
Reissner-Nordström singularity at r ¼ 0 is repulsive.
Moreover, we see that both the energy density and the

(a)

(b)

FIG. 9. Physical properties of a nonextremal tension shell regular and nonregular black hole, i.e., an electric perfect fluid thin shell in a
nonextremal Reissner-Nordström state, in the location R < r−, i.e., located inside the Cauchy radius, and with orientation such that the
normal points toward r−. The interior is Minkowski and the exterior is nonextremal Reissner-Nordström spacetime. (a) Energy density σ
of the shell as a function of the radius R of the shell for various values of the Q

M ratio. The energy density is adimensionalized through the
massM, 8πMσ, and the radius is adimensionalized through the Cauchy radius r−, R

r−
. The marked zone on the top left is amplified on the

right. (b) Tension −p on the shell as a function of the radius R of the shell for various values of the Q
M ratio. The tension is

adimensionalized through the mass M, −8πMp, and the radius is adimensionalized through the Cauchy radius r−,
R
r−
.
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pressure of the shell diverge to negative infinity as the shell
gets closer to R ¼ 0. On the other hand, in the limit of
R → r− the pressure diverges to negative infinity, but the
energy density, σ, tends to 4πσ ¼ 1

r−
. When Q ¼ 0, i.e.,

r− ¼ 0, the solution is the vacuum Schwarzschild solution,
since as R < r−, one has in the limit R ¼ 0, which is
singular. In relation to the energy conditions of the shell we
can say that the null, the weak, the dominant, and the strong
energy conditions are never verified in this case (see a
detailed presentation ahead).
The Carter-Penrose diagram for this case can be drawn

directly from the building blocks of an interior Minkowski
spacetime and the full nonextremal Reissner-Nordström
spacetime. In Fig. 10 two possible Carter-Penrose diagrams
of a shell spacetime in a nonextremal Reissner-Nordström
state, in the location R < r−, with orientation such that the
normal points toward r−, i.e., signðXÞ ¼ þ1, are shown. It
is a tension shell black hole spacetime. More specifically,
there is an infinitude of possible diagrams. Indeed, in
Fig. 10(a) it is clear that the tension shell is inside the
Cauchy horizon in both regions III and III0 of a Reissner-
Nordström spacetime. Admitting that the portion shown of
the diagram repeats itself ad infinitum then the black hole is
regular. In Fig. 10(b) there is a shell in region III and a
singularity in region III0, and so it is not a regular black hole
but a tension shell black hole with a singularity. Since what

one puts in the regions III and III0, either a shell or a
singularity, is not decided by the solution, an infinite
number of different Carter-Penrose diagrams can be drawn,
as there are an infinite number of combinations to locate a
shell or a singularity when one goes upward or downward
through the diagram. Note that rþ and r− are the event
horizon and the Cauchy horizon radii, clearly, and the
Einstein-Rosen bridge, i.e., the dynamic wormhole, is
there. Regular black holes with shells that are sandwiched
between a de Sitter interior and a Reissner-Nordström
exterior were built in [30].
The physical interpretation of this case is of real interest.

This nonextremal thin shell solution provides a regular
black hole solution. The energy density and pressure never
obey the energy conditions for all shell radii, i.e., shell radii
between zero and the Cauchy horizon. The causal and
global structure as displayed by the Carter-Penrose diagram
shows clearly that there is no singularity if one adopts the
simplest form of the diagram, meaning also that the
topology of the region inside the Cauchy horizons is a
three-sphere, as is usual for regular black holes. As in the
Reissner-Nosdström vacuum solution, these tension shell
regular black holes possess Cauchy horizons, and so they
are subject to instabilities, which would lead the solutions
to an end point which can only be guessed. As regular black
holes these solutions join the other known regular black

(a) (b)

FIG. 10. Carter-Penrose diagrams of the tension shell black holes, i.e., a thin shell spacetime in a nonextremal Reissner-Nordström
state, in the location R < r−, i.e., located inside the Cauchy radius, with orientation such that the normal to the shell points toward r−.
The interior is Minkowski, the exterior is Reissner-Nordström spacetime. (a) The Carter-Penrose diagram contains a shell in both
regions III and III0. If this pattern is repeated ad infinitum, then it is a tension shell regular black hole. (b) The Carter-Penrose diagram
contains a shell in region III and a singularity in region III0. It is a tension shell black hole, now not regular. An infinite number of
different Carter-Penrose diagrams can be drawn, since there are an infinite number of combinations to locate the shell.
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hole solutions which are of interest in quantum gravita-
tional settings that presumably get rid of the singularities.
So, this case falls into the category of having the energy
conditions never verified, and so in this sense it is odd,
although of interest, as regular black hole matter solutions
always are. As much as a regular black hole is familiar, so
this shell solution is familiar.

B. Nonextremal electric thin shells inside the Cauchy
radius: Compact shell naked singularities

Here we study the case of a fundamental electric thin
shell in the nonextremal state, i.e., rþ > r− or M > Q, for
which the shell’s location obeys R < r−, and for which the
orientation is such that the normal to the shell points toward
r ¼ 0. In this case, horizons do not exist and so, following
the nomenclature, rþ is the gravitational radius, and r− is
the Cauchy radius. The normal to the shell pointing toward
r ¼ 0 means in the notation of the Kruskal coordinate X
that we take signðXÞ ¼ −1 (see the end of this section and
Appendix A for details).
As functions ofM,Q, and R, the shell’s energy density σ

and pressure p, are (see the end of this section)

8πσ ¼ 2

R
ð1þ kÞ; ð44Þ

8πp ¼ −
1

2Rk

�
ð1þ kÞ2 −Q2

R2

�
; ð45Þ

respectively, with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
. The electric charge

density σe is given in terms ofM,Q, and R by Eq. (43). The

behavior of σ and p as functions of the radial coordinate R
of the shell for various values of the Q

M ratio in this case is
shown in Fig. 11. We see that the energy density of the shell
is always positive and the shell is supported by pressure. As
the radial coordinate of the shell, R, goes to zero, both the
energy density and pressure of the shell diverge to infinity.
Moreover, as R → r− the energy density tends to 1

4πr−
and

the pressure diverges to infinity. When Q ¼ 0 the solution
does not exist. In relation to the energy conditions of the
shell we can say that the null and the weak energy
conditions are verified for 0 < R < r−, the dominant
energy condition is verified for 0 < R < RIII, with RIII to
be given later, and the strong energy condition is verified
for 0 < R < r− (see a detailed presentation ahead).
The Carter-Penrose diagram for this case can be drawn

directly from the building blocks of an interior Minkowski
spacetime and the full nonextremal Reissner-Nordström
spacetime. In Fig. 12 the Carter-Penrose diagram of a shell
spacetime in a nonextremal Reissner-Nordström state, in
the location R < r−, with orientation such that the normal
points toward r ¼ 0, i.e., signðXÞ ¼ −1, is shown. It is a
compact shell naked singularity spacetime. It is clearly a
compact space, and r goes from 0 to R and then decreases
back to 0 at the timelike singularity, such that there is no
clear distinction what is interior from what is exterior. We
use the hash symbol # to represent the connected sum of the
spacetime manifolds, in order to conserve the conformal
structure in the Carter-Penrose diagram of the total space-
time. It is difficult to understand if this solution can be
achieved from a physical phenomenon. However, we
expect the shell to be the source of the singularity since

(a) (b)

FIG. 11. Physical properties of a nonextremal compact thin shell singularity, i.e., an electric perfect fluid thin shell in a nonextremal
Reissner-Nordström state, in the location R < r−, i.e., located inside the Cauchy radius, and with orientation such that the normal points
toward r ¼ 0. The interior is Minkowski and the exterior is nonextremal Reissner-Nordström spacetime, although what is interior and
what is exterior is blurred in this case. (a) Energy density σ of the shell as a function of the radius R of the shell for various values of the Q

M
ratio. The energy density is adimensionalized through the massM, 8πMσ, and the radius is adimensionalized through the Cauchy radius
r−,

R
r−
. (b) Pressure p on the shell as a function of the radius R of the shell for various values of the Q

M ratio. The pressure is

adimensionalized through the mass M, 8πMp, and the radius is adimensionalized through the Cauchy radius r−,
R
r−
.
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the shell is the source of the exterior spacetime, although it
is very difficult to understand why the singularity is formed
away from the shell itself. Nonetheless, surely the non-
linearity of the theory just leads to this counterintuitive
behavior.
The physical interpretation of this case is most curious.

This nonextremal thin shell solution provides a closed
spatial static universe with a singularity at one pole. The
energy density and pressure obey the energy conditions for
certain shell radii. The causal and global structure as
displayed by the Carter-Penrose diagram show the char-
acteristics of this universe that has two sheets joined at the
shell with one sheet having a singularity at its pole and with
no horizons. So, this case falls into the category of having
the energy conditions verified and the resulting spacetime
being peculiar.

C. Formalism for nonextremal electric thin
shells inside the Cauchy radius

1. Preliminaries

We now make a careful study to derive the properties of
the fundamental electric thin shell used in the two previous
subsections, i.e., the thin shell in the nonextremal state, i.e.,
rþ > r− or M > Q, for which the shell’s location obeys
R < r−, and for which the orientation is such that the
normal to the shell points toward r− or toward r ¼ 0. It
should be read as an Appendix to the previous two
subsections. We use the formalism developed in Sec. II
and Appendix A.

2. Induced metric and extrinsic curvature
of S as seen from Mi

Let us start by mentioning the interior Minkowski
spacetime, Mi. Since it is the same as the analysis done
in the previous section we only quote the important
equations. They are the interior metric Eq. (28), the interior

four-velocity of the shell Eq. (29), the metric for the shell at
radius R given in Eq. (30), the normal to the shell Eq. (31),
and the extrinsic curvature from the inside Eq. (32).

3. Induced metric and extrinsic curvature
of S as seen from Me

To proceed we have now to find the expressions for the
induced metric on S and the extrinsic curvature compo-
nents as seen from the exterior spacetime, Me, in the
nonextremal state, i.e., rþ > r− or M > Q; see Fig. 2, for
which the shell’s location has radius R obeying R < r−, and
for which the orientation is such that the normal to the shell
points toward increasing r, i.e., toward r−, or toward
decreasing r, i.e., toward r ¼ 0, as seen from the exterior,
as used in the two previous subsections.
For a nonextremal shell with R < r− we work with the

coordinate patch that has no coordinate singularity at the
gravitational radius r ¼ r−. Many of the previous results
are also valid for the second coordinate patch. From the
discussion in Appendix A 2, the line element for the
Reissner-Nordström spacetime in Kruskal-Szekeres coor-
dinates in this patch is

ds2e ¼ 4

�
rþ þ r−
rþ − r−

�
2 r4−
r2

e
rðrþ−r−Þ

r2−

�
rþ − r
rþ þ r−

�
1þðrþr−Þ2

× ðdX2 − dT2Þ þ r2ðT; XÞdΩ2;

X2 − T2 ¼ e
−rðrþ−r−Þ

r2−

�
r− − r
rþ þ r−

��
rþ − r
rþ þ r−

�
−ðrþr−Þ2

; ð46Þ

with rðT; XÞ being given implicitly by the latter equation.
The shell’s radial coordinate when measured by an

observer at Me is constant since the shell is static, so
from the second of the equations in Eq. (46) we take that
the X and T coordinates of the shell must verify
X2 − T2 ¼ const. Now, as was argued in the previous
section, a static shell must be timelike as seen from both
interior and exterior spacetimes. The restriction X2 − T2 ¼
const and the analysis performed in Sec. III C 3 imply that
the components of the four-velocity ue of an observer
comoving with the shell as seen from the exterior spacetime
are given by

uαe ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXX

X2 − T2

r
ðX; T; 0; 0Þ; ð47Þ

where, in this case, gXX is the XX component of the inverse
of the metric in Eq. (46). We see that Eq. (47) makes sense
physically only if X2 − T2 > 0, which, taking into account
the second of the equations in Eq. (46), allows us to
conclude that the shell must then be located at either the
region III or the region III0 (see Fig. 2). Let us remark that
the minus sign in Eq. (47) arises from the convention that
the four-velocity points to the future for both regions III

FIG. 12. Carter-Penrose diagram of the compact shell naked
singularity, i.e., a thin shell spacetime in a nonextremal Reissner-
Nordström state, in the location R < r−, i.e., located inside the
Cauchy radius, with orientation such that the normal to the shell
points toward r ¼ 0. Part of the spacetime is Minkowski, part is
Reissner-Nordström, and in this case there is no clear distinction
what is interior from what is exterior. The hash symbol #
represents the connected sum of the two spacetimes.
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and III0. Making use of Eqs. (46) and (47) to find the
induced metric on S as seen by an observer at Me and
imposing the first junction condition, Eq. (8), we deduce
that the shell’s radial coordinate R is the same as measured
by an observer atMi orMe and the induced metric on S is
given by Eq. (35), namely,

ds2jS ¼ −dτ2 þ R2dΩ2: ð48Þ

Combining nαeneα ¼ 1 [see Eq. (3)], neαuαe ¼ 0 [see
Eq. (4)], and Eq. (47), we find the expression for the
components of the unit normal to the hypersurface S, as
seen from the exterior spacetime Me, to be

neα ¼ �
ffiffiffiffiffiffiffiffiffiffi
gXX

X2−T2

q
ð−T; X; 0; 0Þ. To specify the sign of the

normal to S for each region we consider two orientations:
the orientation where the normal neα points toward the
Cauchy radius at r− and the orientation where the normal
points toward the singularity r ¼ 0. These two orientations
can be treated in a concise way by assuming, for example, a
shell located in either the region III or the region III0 and the
normal pointing in the direction of decreasing X, such that

neα ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXX

X2 − T2

r
ðT;−X; 0; 0Þ: ð49Þ

Note the importance of the sign of the normal to yield
totally different physical and geometrical properties to a
shell in the same location, here in the region R < r−. Then,
using the results from Appendix B 2, we find the nonzero
components of the extrinsic curvature of S as seen from the
exterior spacetime to be given by

Ke
τ
τ ¼

signðXÞ
2R2k

�
rþ þ r− − 2

rþr−
R

�
;

Ke
θ
θ ¼ Ke

φ
φ ¼ signðXÞðrþ − r−Þ

2r2−R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXXðX2 − T2Þ

q
; ð50Þ

where k, here, is the redshift function given in Eq. (20),

evaluated at R, i.e., kðR; rþ; r−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rþ

R Þð1 − r−
R Þ

q
.

A comment is in order here. In our study of a shell in a
nonextremal Reissner-Nordström state, we have worked
with two coordinate patches to describe the various regions
of the Reissner-Nordström spacetime exterior to the shell as
was done in [13] (see also Appendix A). It is possible to
find a coordinate system that covers the entire Reissner-
Nordström spacetime without coordinate singularities (see
[38] and also [39–43]), but we have not followed this path,
as it is not the best one to our aims. Thus, we have separated
the study of a shell located in a region described by one
coordinate patch and the other.

4. Shell’s energy density and pressure

We are now in position to find the properties of a perfect
fluid thin shell in a nonextremal Reissner-Nordström state,
located inside the Cauchy horizon radius or Cauchy radius,
depending on the case. The shell’s stress-energy tensor is
given in Eq. (10), an expression containing the energy per
unit area σ, the tangential pressure of the fluid p, the four-
velocity ua, and the induced metric hab. From our choice of
coordinates on S we have that fyag ¼ ðτ; θ;φÞ, the four-
velocity ua is given in Eq. (47), and the metric hab is given
in Eq. (48). Putting everything together we find Sττ ¼ −σ,
Sθθ ¼ Sφφ ¼ p. Comparing these latter equations with the
second junction condition, Eq. (9), taking into account the
components of the induced metric, given through Eq. (48),
and the fact that ½Kθ

θ� ¼ ½Kφ
φ�, we find σ ¼ − 1

4π ½Kθ
θ� and

p ¼ 1
8π ½Kτ

τ� − σ
2
. With the components of the extrinsic

curvature found in Eqs. (32) and (50) we obtain the
following properties of a perfect fluid thin shell located
inside of the Cauchy radius:

8πσ ¼ 2

R
ð1 − signðXÞkÞ; ð51Þ

8πp ¼ signðXÞ
2Rk

�
ð1 − signðXÞkÞ2 − rþr−

R2

�
; ð52Þ

where k here is the redshift function given in Eq. (20)

evaluated at R, i.e., kðR; rþ; r−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rþ

R Þð1 − r−
RÞ

q
. As

the surface electric current density sa on the thin shell is
defined as sa ¼ σeua, where σe represents the electric
charge density and ua is the velocity of the shell, from
Eqs. (12), (13), and (21) it follows that

8πσe ¼ 2

ffiffiffiffiffiffiffiffiffiffi
rþr−

p
R2

: ð53Þ

Now, the expressions found for the energy density and
pressure for a shell located inside the Cauchy radius,
Eqs. (51) and (52), are the same as Eqs. (38) and (39)
found for the energy density and pressure for a shell located
outside the gravitational radius. However, the behavior of
the properties of the shell will be different since the radial
coordinate of the shell, R, in this case ranges between zero
and r−. As before, we have to distinguish the two possible
orientations provided by the signðXÞ. In Eqs. (51) and (52)
it is clear that it is necessary to pick the sign in signðXÞ. Let
us start with signðXÞ ¼ þ1. It is useful to give the
expressions for the shell’s energy density and pressure, σ
and p, in terms ofM andQ. Using Eq. (22) in Eqs. (38) and
(39) with signðXÞ ¼ þ1 we have 8πσ ¼ 2

R ð1 − kÞ,
8πp ¼ 1

2Rk ½ð1 − kÞ2 − Q2

R2 �, and also from Eq. (40) we have

8πσe ¼ 2Q
R2 . Let us now take signðXÞ ¼ −1. It is useful to

give the expressions for the shell’s energy density and
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pressure, σ and p, in terms of M and Q. Using
Eq. (22) in Eqs. (38) and (39) with signðXÞ ¼ −1 we

have 8πσ ¼ 2
R ð1þ kÞ, 8πp ¼ − 1

2Rk ½ð1þ kÞ2 − Q2

R2 �, with

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
, and also from Eq. (40) we have

8πσe ¼ 2Q
R2 . These are the expressions used in the two

previous subsections. Note also that when r− ¼ 0, then
σe ¼ 0 and the electric charge Q is zero, Q ¼ 0, and
since R < r− we obtain that there either the solution is
vacuum and singular or there is no solution; in brief, there is
no shell solution.

V. EXTREMAL ELECTRIC THIN SHELLS
OUTSIDE THE GRAVITATIONAL RADIUS:

MAJUMDAR-PAPAPETROU STAR SHELLS AND
EXTREMAL TENSION SHELL SINGULARITIES

A. Extremal electric thin shells outside the gravitational
radius: Majumdar-Papapetrou star shells

Here we study the case of a fundamental electric thin
shell in the extremal state, i.e., rþ ¼ r− or M ¼ Q, and
indeed, rþ ¼ r− ¼ M ¼ Q, for which the shell’s location
obeys R > rþ, and for which the orientation is such that the
normal to the shell points toward spatial infinity. In this
case horizons do not exist and so, following the nomen-
clature, rþ is the gravitational radius. Also, since rþ and r−
have the same value we opt to use consistently the
gravitational radius rþ rather than the Cauchy radius r−.
In general, we also opt to useM rather than Q. The normal
to the shell pointing toward spatial infinity means that the
new parameter ξ we introduce for the extremal states has
value ξ ¼ þ1 (see the end of this section).

As functions ofM and R, the shell’s energy density σ and
pressure p, are (see the end of this section)

8πσ ¼ 2M
R2

; ð54Þ

8πp ¼ 0: ð55Þ

Also, the electric charge density σe is given in terms of M
and R by

8πσe ¼
2M
R2

: ð56Þ

The behavior of σ and p, in Eqs. (54) and (55), as functions
of the radial coordinate R of the Q

M ¼ 1 extremal shell is
shown in Fig. 13. These shells are characterized by a
positive energy density and vanishing pressure support,
and so the matter that composes this kind of shells is
Majumdar-Papapetrou matter, i.e., electric dust, and so
there is no need for matter pressure since there is an inbuilt
equilibriumbetween gravitational attraction and electrostatic
repulsion. These are extremal star shells or Majumdar-
Papapetrou star shells. Majumdar-Papapetrou matter shells
with a Minkowski interior matched to an exterior extremal
Reissner-Nordström spacetime, with the implicit assumption
that the outward unit normal to the matching surface points
toward spatial infinity, have been considered in many works.
Notice that when R → ∞, the energy density σ and the
charge density σe, all tend to zero; i.e., the shell disperses
away. Notice also that when R → rþ, the energy density is
finite, the pressure remains zero, and the charge density σe is

(a) (b)

FIG. 13. Physical properties of a Majumdar-Papapetrou star shell, i.e., an electric perfect fluid thin shell in an extremal Reissner-
Nordström state, in the location R > rþ, i.e., located outside the gravitational radius, and with orientation such that the normal points
toward spatial infinity. The interior is Minkowski and the exterior is extremal Reissner-Nordström spacetime. Extremal means Q

M ¼ 1.
(a) Energy density σ of the shell as a function of the radius R of the shell. The energy density is adimensionalized through the mass M,
8πMσ, and the radius is adimensionalized through the gravitational radius rþ, R

rþ
. (b) Pressure p on the shell as a function of the radius R

of the shell. The radius is adimensionalized through the gravitational radius rþ, R
rþ
. The pressure is zero, the shell is supported by electric

repulsion alone, and so it is Majumdar-Papapetrou matter.
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also finite. Indeed, for R ¼ rþ one has a quasiblack hole,
discussed in detail ahead.WhenQ ¼ 0, and soM ¼ 0, there
is no shell, only Minkowski spacetime. In relation to the
energy conditions of the shell one can work out and find that
the null, the weak, the dominant, and the strong energy
conditions are verified for R > rþ; see a detailed presenta-
tion ahead.
The Carter-Penrose diagram can be drawn directly

from the building blocks of an interior Minkowski space-
time and the exterior asymptotic region of an extremal
Reissner-Nordström spacetime. In Fig. 14 the Carter-
Penrose diagram of an extremal Reissner-Nordström shell
spacetime for a junction surface with normal pointing
toward spatial infinity is shown. It is clearly a star shell,
a Majumdar-Papapetrou star shell in an asymptotically flat
spacetime.
The physical interpretation of this case is clear-cut, and it

is similar to the corresponding nonextremal shell. This
extremal thin shell solution mimics an extremal star. The
energy density and pressure obey the energy conditions for
any radius; indeed, the shell is composed of Majumdar-
Papapetrou matter. The causal and global structure as
displayed by the Carter-Penrose diagram are well behaved
and rather elementary. So, this case falls into the category
of having the energy conditions verified, and the geomet-
rical setup is physically reasonable.

B. Extremal electric thin shells outside the event
horizon: Extremal tension shell singularities

Here we study the case of a fundamental electric thin
shell in the extremal state, i.e., rþ ¼ r− or M ¼ Q, and
indeed, rþ ¼ r− ¼ M ¼ Q, for which the shell’s location
obeys R > rþ, and for which the orientation is such that the
normal to the shell points toward rþ. In this case horizons
do exist and so, following the nomenclature, rþ is both the
gravitational and the event horizon radius. Also, rþ and

r− have the same value, and we opt to use the event horizon
radius rþ rather than the Cauchy horizon radius r−. We
also opt to use M rather than Q. The normal to the shell
pointing toward rþ means in the notation we use that we
take ξ ¼ −1 (see the end of this section for details).
As functions of M and R, the shell’s energy density σ

and pressure p are (see the end of this section)

8πσ ¼ 2

R

�
2 −

M
R

�
; ð57Þ

8πp ¼ −
2

R
: ð58Þ

The electric charge density σe is given in terms ofM and R
by 8πσe ¼ 2M

R2 , which is identical to Eq. (56). The behavior
of σ and p, in Eqs. (57) and (58), as functions of the radial
coordinate R of the Q

M ¼ 1 extremal shell is shown in
Fig. 15. The matter fluid that composes such shells is
characterized by positive energy density σ and is supported
by tension −p, with both falling to zero when R ¼ ∞. In
this case since p is not zero, the shell is not composed of
Majumdar-Papapetrou matter. Notwithstanding the exterior
spacetime is extremal. Examples of spacetimes for which
M ¼ Q globally whose interior is not made of Majumdar-
Papapetrou matter, as is the case here, are many. However,
this case is of particular interest since matter properties
provided by Eqs. (57) and (58) and the electric charge
density 8πσe ¼ 2M

R2 have specific relevant features. Indeed,
σ has two terms, namely, an intrinsic geometrical one given
by 4

R and a gravitational one which is negative given by
− 2M

R2 . These two terms can be considered independent and σ
is the sum of the two. The first term of σ, 4R, is a geometrical
term that also gives rise to a geometrical tension given by
− 2

R and ensures that there is a shell for sure caused from the
embedding of the shell in the interior and exterior space-
times, as the radial distance grows up to a maximum at the
shell with radius R and then diminishes to rþ and finally to
zero at the timelike singularity. This geometric term exists
independently of whether there is spacetime mass M;
indeed, the spacetime mass energy coming from this
geometrical term is zero since 4

R þ 2p ¼ 0. The second
term − 2M

R2 is negative and can be explained by the fact that
due to the electric charge density 8πσe ¼ 2M

R2 on the shell,
there is electric repulsion, and on the other hand, since
positive gravity is in the direction of rþ and r ¼ 0, to
counterbalance the electric repulsion and the direction of
positive gravity, the shell has to have an antirepulsive
negative energy density, an antigravity term, or an anti-
Majumdar-Papapetrou energy density term, of value − 2M

R2 .
Note also that σ þ 2pþ σe ¼ 0. When Q ¼ 0, and so
M ¼ 0, there is still a shell of radius R, but with a
Minkowski spacetime on each side of it. In relation to
the energy conditions of the shell one can work out and find

FIG. 14. Carter-Penrose diagram of a Majumdar-Papapetrou
star shell, i.e., a thin shell spacetime in an extremal Reissner-
Nordström state, located at R > rþ, i.e., located outside the
gravitational radius, with orientation such that the normal points
toward spatial infinity. The interior is Minkowski, the exterior is
extremal Reissner-Nordström. This star shell is supported by
electrical repulsion alone.
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that the null, the weak, and the dominant energy conditions
are verified for R > rþ, and the strong energy condition is
never verified (see a detailed presentation ahead).

The Carter-Penrose diagram for this case can be drawn
directly from the building blocks of an interior Minkowski
spacetime and the full extremal Reissner-Nordström

(a) (b)

FIG. 15. Physical properties of an extremal tension shell singularity, i.e., an electric perfect fluid thin shell in an extremal Reissner-
Nordström state, in the location R > rþ, i.e., located outside the event horizon, with orientation such that the normal points toward rþ.
The interior is Minkowski, and the exterior is extremal Reissner-Nordström spacetime. Extremal means Q

M ¼ 1. (a) Energy density σ of
the shell as a function of the radius R of the shell. The energy density is adimensionalized through the massM, 8πMσ, and the radius is
adimensionalized through the gravitational radius rþ, R

rþ
. (b) Pressure p on the shell as a function of the radius R of the shell. The

pressure is negative, so the shell is supported by tension. The radius is adimensionalized through the gravitational radius rþ, R
rþ
.

(a) (b)

FIG. 16. Carter-Penrose diagrams of an extremal tension shell singularity, i.e., a thin shell spacetime in an extremal Reissner-
Nordström state, in the location R > rþ, i.e., located outside the event horizon, with orientation such that the normal points toward rþ.
The interior is Minkowski, the exterior is extremal Reissner-Nordström spacetime. (a) The Carter-Penrose diagram contains a shell in
region I and repeats itself upwards. (b) The Carter-Penrose diagram contains a shell in the regions I shown that passes into
asymptotically flat regions. An infinite number of different Carter-Penrose diagrams can be drawn, since there are an infinite number of
combinations to place the shell and infinity.
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spacetime. In Fig. 16 the Carter-Penrose diagram of a shell
spacetime in an extremal Reissner-Nordström state, in the
location R > rþ, with orientation such that the normal
points toward rþ, i.e., ξ ¼ −1, is shown. It has a horizon,
but the existence of the singularity is more striking; i.e., it
is an extremal tension shell singularity. There is an
infinitude of possible diagrams as the maximal analytical
extension of the resulting spacetime can always contain a
thin matter shell outside the event horizon or only at a
discrete number of these regions. In Fig. 16(a) the tension
shell is outside the event horizon in region I. Then, the
tension shell repeats itself in the next portion of the
diagram. It is a compact tension shell that repeats itself. In
Fig. 16(b) the tension shell is outside the event horizon
in region I. Then, an asymptotic infinity takes over in
the next portion of the diagram. Since what one puts in the
regions I, either a shell or infinity, is not decided by the
solution; indeed, an infinite number of different Carter-
Penrose diagrams can be drawn, as there are an infinite
number of combinations to locate a shell or infinity when
one goes upward or downward through the diagram. This
is a tension shell, but since it is extremal there is no
Einstein-Rosen bridge, i.e., no dynamic wormhole.
The physical interpretation of this case is somewhat

simple, with the case itself being unusual. This extremal
thin shell solution, in its simplest form, turns the space
around up to a horizon and then opens up to another
universe with another shell, or to a singularity, and so on.
The energy density and pressure have special features as
has been just pointed out, and they obey some of the
energy conditions. The causal and global structures as
displayed by the Carter-Penrose diagram show the unique
features of this spacetime. So, this case falls into the
category of having some of the energy conditions verified
and the geometrical setup is strange.

C. Formalism for extremal electric thin shells
outside the gravitational radius

1. Preliminaries

We now make a careful study to derive the properties of
the fundamental electric thin shell used in the two previous
subsections, i.e., the thin shell in an extremal state, i.e.,
rþ ¼ r− or M ¼ Q, and indeed rþ ¼ r− ¼ M ¼ Q, for
which the shell’s radius R location obeys R > rþ, and for
which the orientation is such that the normal to the shell
points toward infinity or toward rþ. It should be read as an
Appendix to the previous two subsections. We use the
formalism developed in Sec. II.

2. Induced metric, and extrinsic curvature
of S as seen from Mi

Let us start by analyzing the interior Minkowski space-
time, Mi. Since it is the same as the analysis done
previously, we only quote the important equations. They

are the interior metric Eq. (28), the interior four-velocity of
the shell Eq. (29), the metric for the shell at radius R
Eq. (30), the normal to the shell Eq. (31), and the extrinsic
curvature from the inside Eq. (32).

3. Induced metric, and extrinsic curvature
of S as seen from Me

To proceed we have now to find the expressions for the
induced metric on S and the extrinsic curvature compo-
nents as seen from the exterior spacetime, Me, in the
extremal state, i.e., rþ ¼ r− or M ¼ Q (see Fig. 3), for
which the shell’s radius R location obeys R > rþ, and for
which the orientation is such that the normal to the shell
points toward increasing r, i.e., toward infinity, or toward
decreasing r, i.e., toward rþ, as seen from the exterior, as
used in the two previous subsections.
For an extremal shell located at R > rþ one also has

to be concerned about the normal vector to the shell. In
the extremal Reissner-Nordström spacetime there is no
Einstein-Rosen bridge, and so there is no ambiguity in
the definition of the radial coordinate as the value of the
circumferential radius. Thus, there is no need for the
Kruskal-Skekeres ðT; X; θ;φÞ coordinates, andwe can resort
in this analysis of the induced metric and extrinsic curvature
of the matching surface to using simply the Schwarzschild
coordinates ðt; r; θ;φÞ. The Reissner-Nordström line
element for the exterior extremal solution is

ds2e ¼ −
�
1 −

rþ
r

�
2

dt2 þ dr2

ð1 − rþ
r Þ2

þ r2dΩ2: ð59Þ

Assuming the circumferential radius of the matching
surface S to be described by a function RðτÞ, where τ is the
proper time of an observer comoving with S and imposing
the shell to be static implies that dR

dτ ¼ 0. Then, the four-
velocity of an observer comoving with S, as seen fromMe,
is given by

uαe ¼
�
1

k
; 0; 0; 0

�
; ð60Þ

where in this situation the redshift function k at S is given
in Eq. (20) and evaluated at R, i.e., kðR; rþ ¼ r−Þ≡
kðR; rþÞ ¼ 1 − rþ

R . Equation (60) can now be used to
compute the induced metric on S by Me, and we find
ds2e jS ¼ −dτ2 þ R2dΩ2. Imposing the first junction con-
dition Eq. (8) and Eq. (30) we find that the shell’s radial
functions at each side of S are the same, and so the
matching surface S is characterized by the line element

ds2jS ¼ −dτ2 þ R2dΩ2: ð61Þ

Using the normalization and orthogonality relations (3) and
(4) allows us to find the following expression for the normal
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neα ¼ ξ

�
0;
1

k
; 0; 0

�
; ð62Þ

where the parameter ξ ¼ f−1; 1g is defined as ξ ¼ þ1 if
the outside unit normal to the shell points in the direction of
increasing r, measured by an observer in the exterior Me
spacetime, and ξ ¼ −1 if the outside unit normal to the
shell points in the direction of decreasing radial coordinate
r, again, measured by an observer in the exterior Me
spacetime. In the extremal case the parameter ξ takes the
place of the signðXÞ used in the nonextremal case. Taking
into account Eqs. (4), (60), and (62) we find that the
nonzero components of the extrinsic curvature of the
matching surface [see Eq. (6)] are given by

Ke
τ
τ ¼ ξ

rþ
R2

; Ke
θ
θ ¼ Ke

φ
φ ¼ ξ

k
R
: ð63Þ

4. Shell’s energy density and pressure

Having determined the components of the extrinsic
curvature of the matching surface S as seen from the
interior and exterior spacetimes we are now in position to
use the second junction condition given in Eq. (9) to
find the expressions for the energy density and pressure
support of the extremal thin shell in these cases. The shell’s
stress-energy tensor is given in Eq. (10), so Eqs. (32) and
(63) yield

8πσ ¼ 2

R

�
1 − ξ

�
1 −

rþ
R

��
; ð64Þ

8πp ¼ 1

R
ðξ − 1Þ; ð65Þ

where again here k ¼ 1 − rþ
R . Note that p in Eq. (65) is

independent ofM, and it depends only on R and thus on the
geometry of the shell as embedded in the ambient space-
time. Moreover, since the surface electric current density sa
on the thin shell is sa ¼ σeua, where σe represents the
electric charge density, and since the Minkowski spacetime
has zero electric charge, from Eqs. (12), (13), and (21), it
follows that

8πσe ¼ 2
rþ
R2

: ð66Þ

The radial coordinate of the shell is in the range
rþ < R < ∞.
Equations (64) and (65), together with (66), can now be

used to study the properties of the thin matter shells
separating a Minkowski spacetime from an exterior
extremal Reissner-Nordström spacetime, located outside
the extremal gravitational radius rþ. In Eqs. (64) and (65) it
is clear that it is necessary to pick the sign of ξ. Let us start

with ξ ¼ þ1. It is useful to give the expressions for the
shell’s energy density and pressure, σ and p, in terms of
M ¼ Q, where we opt forM. Using Eq. (22), i.e., rþ ¼ M,
in Eqs. (64) and (65) with ξ ¼ þ1 we have 8πσ ¼ M

4πR2,
8πp ¼ 0, and also from Eq. (66) we have 8πσe ¼ 2M

R2 . Let
us now take ξ ¼ −1. It is useful to give the expressions for
the shell’s energy density and pressure, σ and p, in terms of
M ¼ Q, where as usual we opt for M. Using Eqs. (64) and
(65) with ξ ¼ −1 we have 8πσ ¼ 2

R ð2 − M
RÞ, 8πp ¼ − 2

R,
and also from Eq. (66) we have again 8πσe ¼ 2M

R2 . These are
the expressions used in the two previous subsections.

VI. EXTREMAL ELECTRIC THIN SHELLS INSIDE
THE GRAVITATIONAL RADIUS: EXTREMAL

TENSION SHELL REGULAR AND NONREGULAR
BLACK HOLES AND MAJUMDAR-PAPAPETROU

COMPACT NAKED SINGULARITIES

A. Extremal electric thin shells inside the
event horizon: Extremal tension shell regular

and nonregular black holes

Here we study the case of a fundamental electric thin
shell in the extremal state, i.e., rþ ¼ r− or M ¼ Q, and
indeed, rþ ¼ r− ¼ M ¼ Q, for which the shell’s location
obeys R < rþ, and so also R < r−, and for which the
orientation is such that the normal to the shell points toward
rþ; i.e., we choose the quantity ξ which gives the direction
of the normal as ξ ¼ þ1 (see the end of this section for
details). In this case horizons do exist and so, following
the nomenclature, rþ is both the gravitational radius and the
event horizon radius, and since rþ ¼ r−, it is also the
Cauchy horizon radius and the Cauchy radius. We opt to
use rþ and M.
As functions ofM and R, the shell’s energy density σ and

pressure p are (see the end of this section)

8πσ ¼ 2

R

�
2 −

M
R

�
; ð67Þ

8πp ¼ −
2

R
: ð68Þ

Also, the electric charge density σe is given in terms of M
and R, by

8πσe ¼
2M
R2

: ð69Þ

The behavior of σ and p, in Eqs. (67) and (68), as functions
of the radial coordinate R of the Q

M ¼ 1 extremal shell is
shown in Fig. 17. These shells are characterized by a
positive energy density for R near rþ that changes sign
from positive to negative values when the radius of the shell
R obeys R ¼ M

2
up to minus infinity when R ¼ 0. The
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exterior spacetime is extremal although p is not zero, and
so the shell is not made of Majumdar-Papapetrou matter,
this case providing thus another instance, of the many
instances found in the literature, for whichM ¼ Q globally
but with an interior that is not made of Majumdar-
Papapetrou matter. Equation (67) shows that σ is the
sum of a geometrical term given by 4

R and a gravitational
term which is negative given by − 2M

R2 , with the two terms
being independent. The first term of σ, 4

R, is a geometrical
term that also gives rise to a geometrical tension given by
− 2

R and ensures that there is a shell for sure with radius R
inside the Cauchy horizon rþ ¼ r−. This geometric term
exists independently of whether there is spacetime massM;
indeed, the spacetime mass energy coming from this
geometrical term is zero since 4

R þ 2p ¼ 0. The second
term − 2M

R2 is negative and can be explained by the fact that
inside a Cauchy horizon rþ ¼ r− gravity is repulsive, here
manifested by σe ¼ 2M

R2 . Since the shell is indeed inside
rþ ¼ r−, the shell tends naturally to rþ. So to counterbal-
ance this effect and produce a static shell, the shell has to
have an antirepulsive negative energy density, an anti-
Majumdar-Papapetrou energy density, of value − 2M

R2 . Note
also that σ þ 2pþ σe ¼ 0. When Q ¼ 0, and so M ¼ 0,
and since R < M, in the limiting case one has R ¼ 0, and
we are left with a singular massless null shell at R ¼ 0 with
σ þ 2p ¼ 0 surrounded by a massless spacetime, i.e., a
Minkowski spacetime. This Minkowski spacetime with a
well-defined singularity at its center is a new and interest-
ing solution of the Einstein equation. In relation to the
energy conditions of the shell one can work out and find
that the null, the weak, the dominant, and the strong energy

conditions are never verified (see a detailed presenta-
tion ahead).
The Carter-Penrose diagram can be drawn directly from

the building blocks of an interior Minkowski spacetime
and the full extremal Reissner-Nordström spacetime. In
Fig. 18 two possible Carter-Penrose diagrams of a shell
spacetime in an extremal Reissner-Nordström state, in the
location R < rþ ¼ r−, with orientation such that the
normal points toward rþ, are shown. It is clearly a black
hole, more specifically, a tension shell black hole. In
Fig. 18(a) the tension shell is inside the event horizon in
region II. Then, in the next portion of the diagram there is
another shell and so onwards. So, in this realization it is a
regular tension black hole. In Fig. 18(b) the tension shell
is also inside the event horizon in region II. Then, the
tension shell is replaced by the timelike singularity at
r ¼ 0. So, in this realization it is a nonregular tension
black hole. Since what one puts in the regions II, either a
shell or a singularity, is not decided by the solution, an
infinite number of different Carter-Penrose diagrams can
be drawn, as there are an infinite number of combinations
to locate a shell or a singularity when one goes upward or
downward through the diagram. So, similar to the pre-
vious subsection, in the case of shells whose unit normal
points toward the event horizon, the maximal analytical
extension of the spacetime may always contain a thin shell
inside the event horizon or only at some regions.
The physical interpretation of this case is of some

interest. This extremal thin shell solution provides an
extremal regular black hole solution. The energy density
and pressure never obey the energy conditions for all
shell radii, i.e., shell radii between zero and the horizon.

(a) (b)

FIG. 17. Physical properties of an extremal tension shell regular and nonregular black hole, i.e., an electric perfect fluid thin shell in an
extremal Reissner-Nordström state, in the location R < rþ ¼ r−, i.e., located inside the even horizon, and with orientation such that the
normal points toward rþ. The interior is Minkowski and the exterior is extremal Reissner-Nordström spacetime. Extremal means Q

M ¼ 1.
(a) Energy density σ of the shell as a function of the radius R of the shell. The energy density is adimensionalized through the mass M,
8πMσ, and the radius is adimensionalized through the gravitational radius rþ, R

rþ
. (b) Tension −p on the shell as a function of the radius

R of the shell. The tension is adimensionalized through the mass M, −8πMp, and the radius is adimensionalized through the event
horizon radius rþ, R

rþ
.
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The causal and global structure as displayed by the
Carter-Penrose diagram shows clearly that there is no
singularity if one adopts the simplest form of the diagram.
As regular extremal black holes these solutions join the
other known regular black hole solutions which are of
interest in quantum gravitational settings that presumably
get rid of the singularities. So, this case falls into the
category of having the energy conditions never verified,
and in this sense is odd, although of interest as regular
black hole matter solutions always are.

B. Extremal electric thin shells inside the
gravitational radius: Majumdar-Papapetrou

compact shell naked singularities

Here we study the case of a fundamental electric thin
shell in the extremal state, i.e., rþ ¼ r− or M ¼ Q, and
indeed, rþ ¼ r− ¼ M ¼ Q, for which the shell’s location
obeys R < rþ ¼ r−, and for which the orientation is such
that the normal to the shell points toward r ¼ 0; i.e., we
choose the quantity ξ which gives the direction of the
normal as ξ ¼ −1 (see the end of this section for details). In
this case horizons do not exist and so, following the
nomenclature, rþ is both the gravitational radius, and since
rþ ¼ r− it is also the Cauchy radius. We opt to use rþ
and M.
As functions ofM and R, the shell’s energy density σ and

pressure p are (see the end of this section)

8πσ ¼ 2M
R2

; ð70Þ

8πp ¼ 0: ð71Þ

Also, the electric charge density σe is given in terms of M
and R by Eq. (69). The behavior of σ and p, in Eqs. (70)
and (71), as functions of the radial coordinate R of the
Q
M ¼ 1 extremal shell is shown in Fig. 19. These shells are
characterized by a positive energy density for all shell’s
radii. The pressure is zero, and so the matter is Majumdar-
Papapetrou matter. WhenQ ¼ 0, and soM ¼ 0, there is no
shell spacetime. In relation to the energy conditions of the
shell one can work out and find that the null, the weak, the
dominant, and the strong energy conditions are verified for
0 < R < rþ (see a detailed presentation ahead).
The Carter-Penrose diagram can be drawn directly

from the building blocks of an interior Minkowski space-
time and the full extremal Reissner-Nordström spacetime.
In Fig. 20 the Carter-Penrose diagram of a shell spacetime
in an extremal Reissner-Nordström state, in the location
R < rþ ¼ r−, with orientation such that the normal points
toward r ¼ 0, is shown. It is a Majumdar-Papapetrou, i.e.,
extremal, compact shell naked singularity spacetime. It is
clearly a compact space, the coordinate r goes from 0 to R
and then decreases back to 0 at the timelike singularity,
such that there is no clear distinction of what is outside
from what is inside. We use the hash symbol # to represent

(a) (b)

FIG. 18. Carter-Penrose diagrams of the extremal tension shell black holes, i.e., a thin shell spacetime in an extremal Reissner-
Nordström state, in the location R < rþ ¼ r−, i.e., located inside the event horizon radius, with orientation such that the normal to the
shell points toward rþ. The interior is Minkowski, and the exterior is extremal Reissner-Nordström spacetime. (a) The Carter-Penrose
diagram contains a shell in the region II. If this pattern is repeated ad infinitum, then it is an extremal tension shell regular black hole.
(b) The Carter-Penrose diagram contains a shell in region II and a singularity in regions II above and below. It is a tension shell black
hole, now not regular. An infinite number of different Carter-Penrose diagrams can be drawn, since there are an infinite number of
combinations to place the shell and the singularity.
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the connected sum of the spacetime manifolds, in order to
conserve the conformal structure in the Carter-Penrose
diagram of the total spacetime.
The physical interpretation of this case is noteworthy,

and it is similar to the corresponding nonextremal shell.
This extremal thin shell solution provides a closed spatial
static universe with a singularity at one pole. There are no
horizons. The energy density and pressure obey the energy
conditions for all shell radii; indeed, the shell is composed
of Majumdar-Papapetrou matter. The causal and global
structure as displayed by the Carter-Penrose diagram show
the characteristics of this universe that has two sheets

joined at the shell with one sheet having a singularity at its
pole and with no horizons. The singularity is avoidable to
timelike curves. So, this case falls into the category of
having the energy conditions verified and the resulting
spacetime being peculiar.

C. Formalism for extremal electric thin shells
inside the gravitational radius

1. Preliminaries

We now make a careful study to derive the properties
of the fundamental electric thin shell used in the two
previous subsections, i.e., the thin shell in an extremal state,
i.e., rþ ¼ r− or M ¼ Q, for which the shell’s radius R
location obeys R < rþ ¼ r−, and for which the orientation
is such that the normal to the shell points toward rþ or
toward r ¼ 0. It should be read as an Appendix to the
previous two subsections. We use the formalism developed
in Sec. II.

2. Induced metric, and extrinsic curvature
of S as seen from Mi

Let us start by analyzing the interior Minkowski space-
time, Mi. Since it is the same as the analysis done
previously, we only quote the important equations. They
are the interior metric Eq. (28), the interior four-velocity of
the shell Eq. (29), the metric for the shell at radius R
Eq. (30), the normal to the shell Eq. (31), and the extrinsic
curvature from the inside given in Eq. (32).

FIG. 20. Carter-Penrose diagram of the Majumdar-Papapetrou
compact shell naked singularity spacetime, i.e., a shell in an
extremal Reissner-Nordström state, in the location R < rþ ¼ r−,
i.e., located inside the event horizon radius, with orientation such
that the normal to the shell points toward r ¼ 0. The interior is
Minkowski, and the exterior is extremal Reissner-Nordström. There
is no clear distinction of what is outside from what is inside. The
hash symbol # represents the connected sum of the two spacetimes.

(a) (b)

FIG. 19. Physical properties of a Majumdar-Papapetrou compact shell naked singularity, i.e., an electric perfect fluid thin shell in an
extremal Reissner-Nordström state, in the location R < rþ ¼ r−, and with orientation such that the normal points toward r ¼ 0. The
interior is Minkowski and the exterior is extremal Reissner-Nordström spacetime. Extremal means Q

M ¼ 1. (a) Energy density σ of the
shell as a function of the radius R of the shell. The energy density is adimensionalized through the mass M, 8πMσ, and the radius is
adimensionalized through the gravitational radius rþ, R

rþ
. (b) Pressure on the shell as a function of the radius R of the shell. The pressure

is zero, the shell is supported by electric repulsion, i.e., it is Majumdar-Papapetrou matter. The radius is adimensionalized through the
gravitational radius rþ, R

rþ
.
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3. Induced metric, and extrinsic curvature
of S as seen from Me

To proceed we have now to find the expressions for the
induced metric on S and the extrinsic curvature compo-
nents as seen from the exterior spacetime, Me, in the
extremal state, i.e., rþ ¼ r− or M ¼ Q (see Fig. 3), for
which the shell obeys R < rþ ¼ r−, and for which the
orientation is such that the normal to the shell points toward
increasing r, i.e., toward rþ or toward decreasing r, i.e.,
toward r ¼ 0, as seen from the exterior, as used in the two
previous subsections.
Most of the analysis and many of the results of Sec. Vare

still verified, namely, the extremal Reissner-Nordström line
element ds2e given in Eq. (59), the four-velocity uαe given in
Eq. (60), the line element on S, ds2jS given in Eq. (61), and
the normal to the surface S given in Eq. (62). Then, taking
into account that here we are considering that, R, the radial
coordinate of S as seen fromMe, verifies R < rþ ¼ r−, we
find the following expressions for the nonzero components
of the extrinsic curvature of the matching hypersurface

Ke
τ
τ ¼ −ξ

rþ
R2

; Ke
θ
θ ¼ Ke

φ
φ ¼ ξ

k
R
; ð72Þ

where, as before, the parameter ξ is defined as ξ ¼ þ1 if the
orientation is such that the outside unit normal to the shell
points in the direction of increasing radial coordinate r,
measured by an observer in the exterior Me spacetime,
and ξ ¼ −1 if the orientation is such that the outside
unit normal to the shell points in the direction of decreasing
radial coordinate r, and the redshift function k at the
shell is given by k ¼ j1 − rþ

R j; i.e., since R < rþ, one has
k ¼ rþ

R − 1.

4. Shell’s energy density and pressure

Having determined the components of the extrinsic
curvature of the matching surface S as seen from the
interior and exterior spacetimes we are now in position to
use the second junction condition given in Eq. (9) to find
the expressions for the energy density and pressure support
of the thin shell. The shell’s stress-energy tensor is given in
Eq. (10), and Eqs. (32) and (72) then yield

8πσ ¼ 2

R

�
1þ ξ

�
1 −

rþ
R

��
; ð73Þ

8πp ¼ −
1

R
ð1þ ξÞ; ð74Þ

where we used k ¼ rþ
R − 1 ¼ M

R − 1. Note that p in Eq. (65)
is independent of M, and it only depends on R and thus on
the geometry of the shell as embedded in the ambient
spacetime. Moreover, defining the surface electric current
density sa on the thin shell as sa ¼ σeua, where σe
represents the electric charge density, and since the

Minkowski spacetime has zero electric charge, from
Eqs. (12), (13), and (21) it follows that

8πσe ¼ 2
rþ
R2

: ð75Þ

The radial coordinate of the shell is in the range
0 < R < rþ.
Equations (73) and (74), together with (75), can now be

used to study the properties of the thin matter shells
separating a Minkowski spacetime from an exterior
extremal Reissner-Nordström spacetime, located inside
the event horizon rþ. In Eqs. (73) and (74) it is clear that
it is necessary to pick the sign ξ. Let us start with ξ ¼ þ1. It
is useful to give the expressions for the shell’s energy
density and pressure, σ and p, in terms of M ¼ Q, and we
opt for M. Using Eq. (22), i.e., rþ ¼ M, in Eqs. (73) and
(74) with ξ ¼ þ1 we have 8πσ ¼ 2

R ð2 − M
RÞ, 8πp ¼ − 2

R,
and also from Eq. (66) we have 8πσe ¼ 2M

R2 . Let us now take
ξ ¼ −1. It is useful to give the expressions for the shell’s
energy density and pressure, σ and p, in terms of M ¼ Q,
and we opt forM. Using Eqs. (73) and (74) with ξ ¼ −1we
have 8πσ ¼ 2M

R2 , 8πp ¼ 0, and also from Eq. (66) we have
again 8πσe ¼ 2M

R2 . These are the expressions used in the two
previous subsections.

VII. EXTREMAL ELECTRIC THIN SHELLS
AT THE GRAVITATIONAL RADIUS:
MAJUMDAR-PAPAPETROU SHELL

QUASIBLACK HOLES, EXTREMAL NULL SHELL
QUASINONBLACK HOLES, EXTREMAL NULL
SHELL SINGULARITIES, AND MAJUMDAR-
PAPAPETROU NULL SHELL SINGULARITIES

A. Extremal electric thin shells at the event horizon:
Majumdar-Papapetrou shell quasiblack holes and

extremal null shell quasinonblack holes

1. Majumdar-Papapetrou shell quasiblack holes

Here we study the case of a fundamental electric thin
shell in the extremal state, i.e., rþ ¼ r− or M ¼ Q, and
indeed, rþ ¼ r− ¼ M ¼ Q, for which the shell’s location
obeys R ¼ rþ, and for which the orientation is such that the
normal to the shell points toward spatial infinity. Moreover,
there is an additional characterization for shells at the
horizon. This case comes from the limit of R → rþ from
above and so is the limiting case of the case studied in
Sec. VA. In this case a horizon is barely formed, namely,
we have a quasihorizon, and so, following the nomencla-
ture, rþ is both the gravitational radius and the quasihor-
izon radius. This is an extremal quasiblack hole [37]. Also
rþ and r− have the same value. In general, we also opt to
use M rather than Q. The normal to the shell pointing
toward spatial infinity means in the notation for the
extremal states that the new parameter ξ has value ξ ¼
þ1 (see the end of this section for details).
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As functions ofM and R, the shell’s energy density σ and
pressure p, are (see the end of this section)

8πσ ¼ 2

M
; ð76Þ

8πp ¼ 0: ð77Þ

Also, the electric charge density σe is given in terms
of M by

8πσe ¼
2

M
: ð78Þ

Since it is one point in a plot of σ or p as functions of R
M,

there is no need to draw a figure. The shell is characterized
by a positive energy density. The pressure is zero, and so
the matter is Majumdar-Papapetrou matter, i.e., σe ¼ σ, and
therefore is fully supported by electric repulsion. This is an
interesting system to consider, this case when the shell’s
radius is taken to the event horizon radius. It is a quasiblack
hole configuration. The Majumdar-Papapetrou shell quasi-
black hole is regular in that all curvature scalars are finite
everywhere. When Q ¼ 0, so M ¼ 0 and rþ ¼ 0, the shell
is at R ¼ 0, and the spacetime is singular being Minkowski
in the exterior. In relation to the energy conditions of the
shell one can work out and find that the null, the weak, the
dominant, and the strong energy conditions are always
verified (see a detailed presentation ahead).
The Carter-Penrose diagram can be drawn with some

care from the building blocks of an interior Minkowski
spacetime and the exterior asymptotic region of an extremal
Reissner-Nordström spacetime (see [31] and for more
details see [37]). In Fig. 21 the Carter-Penrose diagram
of a Majumdar-Papapetrou shell quasiblack hole, i.e., for
R ¼ rþ and a junction surface with orientation such that the
outside normal points toward spatial infinity is shown. We
use the hash symbol # to represent the connected sum of the
spacetime manifolds, in order to conserve the conformal
structure in the Carter-Penrose diagram of the total space-
time. We see that when the shell is at R ¼ rþ, i.e., the shell
is at a null surface, the two regions contain incomplete
geodesics with ending points at the matching surface, so
that observers at each spacetime are disconnected and the
manifold is composed by two separate regions.
Some remarks on quasiblack holes should be made. In

this section we treated an extremal quasiblack hole, namely,
a Majumdar-Papapetrou shell quasiblack hole. Since it is
Majumdar-Papapetrou, the pressure on the shell is zero,
p ¼ 0, and so the extremal quasiblack hole is regular in this
sense. On the other hand, in Sec. III A on nonextremal
shells that are located outside rþ, R > rþ, with orientation
such that the normal points toward spatial infinity, one has
that Eqs. (23), (24), and (25), in the limit that the shell is
located at the gravitational radius, R ¼ rþ, yield that the
surface density σ is finite, the pressure support p of the thin

matter shell diverges to infinity, and the electric charge
density σe is finite. This case defines a nonextremal quasi-
black hole. Since the pressure diverges, the spacetime of
nonextremal shells at R ¼ rþ presents some type of singu-
larity. This singularity is mild, however, with entropy and the
mass formulas being derived in this limiting case; see [37].
The Carter-Penrose diagram of a nonextremal quasiblack
hole is similar to theCarter-Penrose diagram for aMajumdar-
Papapetrou one, i.e., the one showed in Fig. 21. Since
nonextremal quasiblack holes are somewhat singular and
extremal ones are not, we have treated these within the
extremal state and mentioned the nonextremal here.
The physical interpretation of this case is known and it is

remarkable. The extremal thin shell solution with its radius
at the horizon radius is inherited from the extremal thin
shell star, and provides a typical extremal quasiblack hole.
A quasiblack hole is an object on the verge of becoming a
black hole, but cannot turn into such a one. The energy
density and pressure show that the matter is Majumdar-
Papapetrou and obey the energy conditions. The causal and
global structures as displayed by the Carter-Penrose dia-
gram show the quasiblack hole characteristics. These
quasiblack holes have no curvature singularities, although
at the quasihorizon there is some form of singular degen-
eracy that disconnects the interior from the exterior. It can
form in a limiting process of quasistatic collapse.
Quasiblack holes are of great interest because they reveal
new black hole properties or black hole properties in a new
perspective. So, this case falls into the category of having
some of the energy conditions verified, and the geometrical
setup is interesting and peculiar.

2. Extremal null shell quasinonblack holes

Here we study the case of a fundamental electric thin
shell in the extremal state, i.e., rþ ¼ r− or M ¼ Q, and

FIG. 21. Carter-Penrose diagram of a Majumdar-Papapetrou
shell quasiblack hole, i.e., a thin shell spacetime in an extremal
Reissner-Nordström state, with the shell located at R ¼ rþ, i.e.,
located at the gravitational radius or quasihorizon, with orienta-
tion such that the normal points toward infinity, and such that
R → rþ from R > rþ. The interior is Minkowski, and the exterior
is extremal Reissner-Nordström. This quasiblack hole shell is
supported by electrical repulsion alone.
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indeed, rþ ¼ r− ¼ M ¼ Q, for which the shell’s location
obeys R ¼ rþ, and for which the orientation is such that the
normal to the shell points toward spatial infinity. Moreover,
there is an additional characterization for shells at the
horizon. This case here comes from the limit of R → rþ
from below and so is the limiting case of the case studied in
Sec. VI A. In this case rþ is timelike on one side and
lightlike on the other side. Thus, a horizon, or rather a
quasinonhorizon, does exist and so, following the nomen-
clature, rþ is both the gravitational radius and the quasi-
nonhorizon radius. Also rþ and r− have the same value. In
general, we also opt here to use M rather than Q. The
normal to the shell pointing toward spatial infinity means in
the notation for the extremal states that the new parameter ξ
has the value ξ ¼ þ1 (see the end of this section for
details).
As functions ofM and R, the shell’s energy density σ and

pressure p are (see the end of this section)

8πσ ¼ 2

M
; ð79Þ

8πp ¼ −
2

M
: ð80Þ

Also, the electric charge density σe is given in terms of M
by Eq. (78). Since it is one point in a plot of σ or p as
functions of R

M, there is no need to draw a figure. The shell is
characterized by a positive energy density. The pressure is
negative, so it is a tension. The equation of state is
σ þ 2pþ σe ¼ 0, inherited from the extremal R < rþ
shell. When Q ¼ 0, and so M ¼ 0, there is a singular null
shell at R ¼ 0 and a Minkowski spacetime in the exterior.
In relation to the energy conditions of the shell one can
work out and find that the null, the weak, and the dominant
energy conditions are always verified, and the strong
energy condition is always violated (see a detailed presen-
tation ahead).
The Carter-Penrose diagram can be drawn with some

care from the building blocks of an interior Minkowski
spacetime and the exterior asymptotic region of an extremal
Reissner-Nordström spacetime. In Fig. 22, the Carter-
Penrose diagram of an extremal null shell quasinonblack
hole, i.e., for R ¼ rþ and a junction surface with orientation
such that the outside normal points toward spatial infinity,
is shown. We use the hash symbol # to represent the
connected sum of the spacetime manifolds, in order to
conserve the conformal structure in the Carter-Penrose
diagram of the total spacetime. This setup is very different
from the quasiblack hole limit of the last section leading to
a new Carter-Penrose diagram. Nonetheless, we see that as
in the previous case, when the shell is at R ¼ rþ, i.e., the
shell, for one of the regions, is at a null surface, the two
regions contain incomplete geodesics with ending points at
the matching surface, so that observers at each spacetime

are disconnected and the manifold is composed by two
separate regions.
The physical interpretation of this case is also remark-

able. The extremal thin shell solution with its radius at the
horizon radius is inherited from the extremal regular black
hole and provides an example of an extremal quasinonblack
hole. It is an object that is on the verge of becoming a star
solution, but cannot turn into one. The energy density and
pressure show that the matter obeys some of the energy
conditions. These quasinonblack holes have no curvature
singularities, although at the quasinonhorizon there is some
form of singular degeneracy that disconnects the interior
from the exterior. The causal and global structures as
displayed by the Carter-Penrose diagram show the char-
acteristics pertaining to the quasinonblack hole. These
quasinonblack hole solutions are new, and they have
showed up here for the first time. So, this case falls into
the category of having the energy conditions verified and
the geometrical setup is new, very interesting, and peculiar.

B. Extremal electric thin shells at the gravitational
radius: Extremal null shell singularities and
Majumdar-Papapetrou null shell singularities

1. Extremal null shell singularities

Here we study the case of a fundamental electric thin
shell in the extremal state, i.e., rþ ¼ r− or M ¼ Q, and
indeed, rþ ¼ r− ¼ M ¼ Q, for which the shell’s location
obeys R ¼ rþ, and for which the orientation is such that the
normal to the shell points toward the singularity at r ¼ 0.

FIG. 22. Carter-Penrose diagram of an extremal null shell
quasinonblack hole, i.e., a thin shell spacetime in an extremal
Reissner-Nordström state, with the shell located at R ¼ rþ, i.e.,
located at the gravitational radius or horizon, with orientation
such that the normal points toward r ¼ 0, and such that R → rþ
from R < rþ. The interior is Minkowski, and the exterior is
extremal Reissner-Nordström.
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Moreover, as we have seen above, there is an additional
characterization for shells at the horizon; this case comes
from the limit of R → rþ from above and so is the limiting
case of the case studied in Sec. V B. In this case the shell is
at the horizon; thus in a sense a quasihorizon does exist, and
so, following the nomenclature, rþ is both the gravitational
radius and the quasihorizon radius. Also rþ and r− have the
same value. In general, we also opt to useM rather than Q.
This is an extremal null shell singularity. The normal to the
shell pointing toward the singularity at r ¼ 0 means in the
notation for the extremal states that the new parameter ξ has
value ξ ¼ −1 (see the end of this section for details).
As functions ofM and R, the shell’s energy density σ and

pressure p are (see the end of this section)

8πσ ¼ 2

M
; ð81Þ

8πp ¼ −
2

M
; ð82Þ

so the matter is not Majumdar-Papapetrou. Also, the
electric charge density σe is given in terms of M by
Eq. (78). The equation of state is σ þ 2pþ σe ¼ 0,
inherited from the extremal R < rþ shell. In relation to
the energy conditions of the shell one can work out and find
that the null, the weak, and the dominant energy conditions
are always verified, whereas the strong energy condition is
never verified (see a detailed presentation ahead).
The Carter-Penrose diagram can be drawn with some

care from the building blocks of an interior Minkowski
spacetime and the exterior asymptotic region of an extremal
Reissner-Nordström spacetime. In Fig. 23 the Carter-
Penrose diagram of an extremal null shell singularity,
i.e., for R ¼ rþ from above and a junction surface with
orientation such that the outside normal points toward the
singularity at r ¼ 0 is shown. We see that when the shell is
at R ¼ rþ, that is the shell is at a null surface, the two
regions contain incomplete geodesics with ending points at
the matching surface, so that observers at each spacetime
are disconnected and the manifold is composed by two
separate regions.
The physical interpretation of this case follows from the

corresponding extremal shell outside the gravitational
radius. This extremal thin shell solution, with the shell
itself at the horizon, or more properly, at the quasinonhor-
izon, turns the space around at the quasinonhorizon and
then ends in a singularity. The energy density and pressure
obey some of the energy conditions. The causal and global
structures as displayed by the Carter-Penrose diagram are
interesting and the two parts up to the shell and from the
shell to the singularity are disjoint, with the quasinonhor-
izon presenting some form of degeneracy, although there
are no curvature singularities there. So, this case falls into
the category of having some of the energy conditions
verified and the geometrical setup is rather strange.

2. Majumdar-Papapetrou null shell singularities

Here we study the case of a fundamental electric thin
shell in the extremal state, i.e., rþ ¼ r− or M ¼ Q, and
indeed, rþ ¼ r− ¼ M ¼ Q, for which the shell’s location
obeys R ¼ rþ, and for which the orientation is such that
the normal to the shell points toward the singularity at
r ¼ 0. Moreover, there is an additional characterization
for shells at the horizon. This case comes from the limit
of R → rþ from below and so is the limiting case of the
case studied in Sec. VI B. In this case there is a null
shell, which is not a horizon, and so, following the
nomenclature, rþ is the gravitational radius. Also rþ and
r− have the same value. In general, we also opt to use M
rather than Q. The normal to the shell pointing toward
r ¼ 0 means in the notation for the extremal states that
the new parameter ξ has value ξ ¼ −1 (see the end of
this section for details).
As functions ofM and R, the shell’s energy density σ and

pressure p are (see the end of this section)

8πσ ¼ 2

M
; ð83Þ

8πp ¼ 0: ð84Þ

Also, the electric charge density σe is given in terms of M
by Eq. (78). Since it is one point in a plot of σ or p as
functions of R

M, there is no need to draw a figure. The shell is
characterized by a positive energy density. The pressure is

FIG. 23. Carter-Penrose diagram of an extremal null shell
singularity, i.e., a thin shell spacetime in an extremal Reissner-
Nordström state, with the shell located at R ¼ rþ, i.e., located at
the gravitational radius from above, with orientation such that the
normal points toward the singularity at r ¼ 0, and such that
R → rþ from R > rþ. The interior is Minkowski, and the exterior
is extremal Reissner-Nordström.

ALL FUNDAMENTAL ELECTRICALLY CHARGED THIN SHELLS … PHYS. REV. D 103, 104046 (2021)

104046-31



zero, and so the matter is Majumdar-Papapetrou matter, i.e.,
σe ¼ σ, and therefore is fully supported by electric repul-
sion. When Q ¼ 0, and so M ¼ 0, there is a singularity at
R ¼ 0 and Minkowski in the exterior. In relation to the
energy conditions of the shell one can work out and find
that the null, the weak, the dominant, and the strong energy
conditions are always verified (see a detailed presenta-
tion ahead).
The Carter-Penrose diagram can be drawn with

some care from the building blocks of an interior
Minkowski spacetime and the exterior asymptotic region
of an extremal Reissner-Nordström spacetime. In Fig. 24
the Carter-Penrose diagram of an extremal Majumdar-
Papapetrou shell singularity, i.e., for R ¼ rþ from below
and a junction surface with orientation such that the outside
normal points toward r ¼ 0, is shown. The two regions
contain complete geodesics so that the manifold is com-
posed by two connected regions, where in the interior there
is Minkowski spacetime, and on the exterior extremal
Reissner-Nordström spacetime.
The physical interpretation of this case follows from

the corresponding extremal shell inside the gravitational
radius. This extremal thin shell solution provides a closed
spatial static universe with a singularity at one pole.
There are quasihorizons. The energy density and pressure
obey the energy conditions for all shell radii; indeed, the
shell is composed of Majumdar-Papapetrou matter. The
causal and global structure as displayed by the Carter-
Penrose diagram show the characteristics of this universe
that has two sheets joined at the shell. For one sheet, i.e.,
for one side of the universe, the shell is timelike, and for
the other sheet, the shell is null and possesses a timelike
singularity. So, this case falls into the category of having
the energy conditions verified and the resulting spacetime
being strange.

C. Formalism for extremal electric thin shells
at the gravitational radius

1. Preliminaries

We now make a careful study to derive the properties of
the fundamental electric thin shell used in the two previous
subsections, i.e., the thin shell in an extremal state, i.e.,
rþ ¼ r− or M ¼ Q, for which the shell’s radius R location
obeys R ¼ rþ ¼ r−, and for which the orientation is such
that the normal to the shell points toward infinity or toward
r ¼ 0. It should be read as an Appendix to the previous two
subsections. We use the formalism developed in Sec. II.

2. Induced metric, and extrinsic curvature
of S as seen from Mi

Let us start by analyzing the interior Minkowski space-
time, Mi. Since it is the same as the analysis done
previously, we only quote the important equations. They
are the interior metric Eq. (28), the interior four-velocity of
the shell Eq. (29), the metric for the shell at radius R
Eq. (30), the normal to the shell Eq. (31), and the extrinsic
curvature from the inside Eq. (32).

3. Induced metric, and extrinsic curvature
of S as seen from Me

To proceed we now have to find the expressions for the
induced metric on S and the extrinsic curvature compo-
nents as seen from the exterior spacetime, Me, in the
extremal state, i.e., rþ ¼ r− or M ¼ Q (see Fig. 3), for
which the radius of the shell R tends toward rþ ¼ r−, and
for which the orientation is such that the normal to the shell
points toward increasing r, i.e., toward spatial infinity, or
toward decreasing r, i.e., toward r ¼ 0, as seen from the
exterior, as we considered in the two previous subsections.
Moreover, besides the direction of the normal as seen from
the exterior spacetime, we also have to differentiate
between the cases when the shell is located outside or
inside the event horizon, i.e., R > rþ or R < rþ (see
Secs. V and VI), respectively.
The direction of the normal is taken into account by the

parameter ξ as previously used. In order to account for the
two possibilities R > rþ and R < rþ when R tends to rþ,
we introduce a new sign parameter χ defined by χ ¼
sign ðR − rþÞ. Then, we can take directly from Eqs. (63)
and (72) the expressions for the extrinsic curvature

Ke
τ
τ ¼ χξ

1

rþ
; Ke

θ
θ ¼ Ke

φ
φ ¼ ξ

k
R
; ð85Þ

where again ξ is defined as ξ ¼ þ1 if the outside unit normal
to the shell points in the direction of increasing radial
coordinate r, measured by an observer in the exterior Me
spacetime, and ξ ¼ −1 if the outside unit normal to the shell

FIG. 24. Carter-Penrose diagram of an extremal Majumdar-
Papapetrou null shell singularity, i.e., a thin shell spacetime in an
extremal Reissner-Nordström state, with the shell located at
R ¼ rþ, i.e., located at the gravitational radius, with orientation
such that the normal points toward r ¼ 0, and such that R → rþ
from R < rþ. The interior is Minkowski, and the exterior is
extremal Reissner-Nordström.
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points in the direction of decreasing radial coordinate r,
and k ¼ j1 − rþ

R j.

4. Shell’s energy density and pressure

Having determined the components of the extrinsic
curvature of the matching surface S as seen from the
interior and exterior spacetimes, we are now in position to
use the second junction condition (9) to find the expres-
sions for the energy density and pressure support of the thin
shell. The relations σ ¼ − 1

4π ½Kθ
θ� and p ¼ 1

8π ½Kτ
τ� − σ

2
then

yield

8πσ ¼ 2

rþ
; ð86Þ

8πp ¼ ξ

rþ
ðχ − ξÞ: ð87Þ

Moreover, defining the surface electric current density sa
on the thin shell as sa ¼ σeua, where σe represents the
electric charge density, and since the Minkowski spacetime
has zero electric charge, from Eqs. (12), (13), and (21) it
follows that

8πσe ¼
2

rþ
: ð88Þ

The radial coordinate of the shell is R ¼ rþ.
In Eq. (87) it is clear that it is necessary to pick the

signs of ξ and χ. It is useful to give the expressions for the
shell’s energy density and pressure, σ and p in terms of
M ¼ Q, where as usual we opt for M. Using Eq. (22), i.e.,

rþ ¼ M, in Eqs. (86)–(88) with ξ ¼ þ1 and χ ¼ þ1 we
have 8πσ ¼ 2

M, 8πp ¼ 0, and 8πσe ¼ 2
M. Choosing now

ξ ¼ þ1 and χ ¼ −1, with rþ ¼ M, in Eqs. (86)–(88) we
have 8πσ ¼ 2

M, 8πp ¼ − 2
M, and 8πσe ¼ 2

M. Choosing then
ξ ¼ −1 and χ ¼ þ1, with rþ ¼ M, in Eqs. (86)–(88) we
have 8πσ ¼ 2

M, 8πp ¼ − 2
M, and 8πσe ¼ 2

M. Choosing
finally ξ ¼ −1 and χ ¼ −1, with rþ ¼ M, in Eqs. (86)–
(88) we have 8πσ ¼ 2

M, 8πp ¼ 0, and 8πσe ¼ 2
M. These

are the expressions used in the two previous subsections to
study the properties of the thin matter shells located at the
event horizon rþ separating a Minkowski spacetime from
an exterior extremal Reissner-Nordström spacetime.

VIII. OVERCHARGED ELECTRIC THIN SHELLS:
OVERCHARGED STAR SHELLS AND
COMPACT OVERCHARGED SHELL

NAKED SINGULARITIES

A. Overcharged electric thin shells:
Overcharged star shells

Here we study the case of a fundamental electric thin
shell in the overcharged state, i.e., rþ and r− are not real, or
M < Q, for which the shell’s location is anywhere, i.e.,
0 < R < ∞, and for which the orientation is such that the
normal to the shell points toward spatial infinity. In this
case horizons do not exist and moreover rþ and r− do not
exist, and so there is neither gravitational radius nor Cauchy
radius. The normal to the shell pointing toward spatial
infinity means in the notation we have been using that ξ ¼
þ1 (see the end of this section for details).
As functions ofM,Q, and R, the shell’s energy density σ

and pressure p are (see the end of this section)

(a) (b)

FIG. 25. Physical properties of an overcharged star shell, i.e., an electric perfect fluid thin shell in an overcharged Reissner-Nordström
state, in any location, i.e., 0 < R < ∞, and with orientation such that the normal points toward spatial infinity. (a) Energy density σ of
the shell as a function of the radius R of the shell for various values of the Q

M ratio. The energy density is adimensionalized through the
massM, 8πMσ, and the radius is adimensionalized through the mass M, R

M. (b) Tension −p on the shell as a function of the radius R of
the shell for various values of the Q

M ratio. The tension is adimensionalized through the mass M, −8πMp, and the radius is
adimensionalized through the mass M, R

M.
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8πσ ¼ 2

R
ð1 − kÞ; ð89Þ

8πp ¼ 1

2Rk

�
ð1 − kÞ2 −Q2

R2

�
; ð90Þ

respectively, with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
. Also, the electric

charge density σe is given in terms of M, Q, and R, by

8πσe ¼
2Q
R2

: ð91Þ

The behavior of σ and p as functions of the radial
coordinate R of the shell for various values of the Q

M ratio
in this case is shown in Fig. 25. From Fig. 25 we see that,
depending on the radial coordinate of the shell, the energy
density might take negative values. Indeed, from Eq. (89)

we find that for R < Q2

2M the energy density σ is negative.
Also, this case of thin shell is always supported by negative
pressure, i.e., tension; see Eq. (90). It is a tension shell and
can also be a negative energy density shell. The fact that it
is supported by negative energy density sometimes and by
tension translates the well-known fact that the Reissner-
Nordström singularity at r ¼ 0 is repulsive. Moreover, we
see that both the energy density and the pressure of the shell
diverge to negative infinity as the shell gets closer to R ¼ 0.
On the other hand, in the limit of R → ∞ both energy
density and the pressure go to zero. When Q ¼ 0 there are
no shells; since then M ¼ 0 as we are not considering
negativeM. In relation to the energy conditions of the shell
we can say that the null, the weak, and the dominant energy
conditions are verified when R ≥ RI0 , and the strong energy

condition is verified when R ≥ Q2

M (see a detailed presen-
tation ahead).
The Carter-Penrose diagram can be drawn directly from

the building blocks of an interior Minkowski spacetime and
the exterior asymptotic infinite region of the overcharged
Reissner-Nordström spacetime. In Fig. 26 the Carter-
Penrose diagram of an overcharged Reissner-Nordström
star shell spacetime for a junction surface with normal
pointing toward spatial infinity is shown. It is clearly a star
shell, a star in an asymptotically flat spacetime.
The physical interpretation of this case is clear-cut, and it

is similar to the corresponding nonextremal and extremal
shells. This overcharged thin shell solution mimics an
overcharged star. The energy density and pressure obey the
energy conditions for certain radii. The causal and global
structure as displayed by the Carter-Penrose diagram are
well behaved and rather elementary. So, this case falls into
the category of having the energy conditions verified, and
the geometrical setup is physically reasonable.

B. Overcharged electric thin shells: Overcharged
compact shell naked singularities

Here we study the case of a fundamental electric thin
shell in the overcharged state, i.e., rþ and r− are not real, or
M < Q, for which the shell’s location is anywhere, i.e.,
0 < R < ∞, and for which the orientation is such that the
normal to the shell points toward r ¼ 0. In this case
horizons do not exist and moreover rþ and r− do not
exist, and so there is neither gravitational radius nor Cauchy
radius. The normal to the shell pointing toward r ¼ 0
means in the notation we have been using that ξ ¼ −1 (see
the end of this section for details).
As functions ofM,Q, and R, the shell’s energy density σ

and pressure p are (see the end of this section)

8πσ ¼ 2

R
ð1þ kÞ; ð92Þ

8πp ¼ −
1

2Rk

�
ð1þ kÞ2 −Q2

R2

�
; ð93Þ

respectively, with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
. Also, the electric

charge density σe is given in terms of M, Q, and R by
Eq. (91). The behavior of σ and p as functions of the radial
coordinate R of the shell for various values of the Q

M ratio in
this case is shown in Fig. 27. From Fig. 27 we see that the
energy density is positive for all shells. Also, this kind of
thin shell is always supported by tension. It is a tension
shell. The fact that it is supported by tension translates the
well-known fact that the Reissner-Nordström singularity at
r ¼ 0 is repulsive. Moreover, we see that both the energy
density and the tension of the shell diverge to infinity as the
shell gets closer to R ¼ 0. On the other hand, in the limit of
R → ∞ both go to zero. An interesting feature of this kind
of shells is the change in the behavior of −p for R > M,
where the tension needed to support such shells is smaller

FIG. 26. Carter-Penrose diagram of an overcharged star thin
shell, i.e., a thin shell spacetime in an overcharged Reissner-
Nordström state, with a thin shell located at any radius R, with
orientation such that the normal points toward spatial infinity. The
interior is Minkowski, the exterior is overcharged Reissner-
Nordström. The shell is a star shell supported by tension and
for sufficiently small R also by negative energy density.

JOSÉ P. S. LEMOS and PAULO LUZ PHYS. REV. D 103, 104046 (2021)

104046-34



as the Q
M ratio increases. Moreover, if the ratio Q

M is in the

range 1 < Q
M <

ffiffiffi
2

p
, we find that the tension support of

the matter fluid that composes this type of shells is an
increasing function at R ¼ M and this function contains a
local minimum in the region 0 < R < M. Notwithstanding,
the minimum value is zero only in the extremal case,
Q
M ¼ 1. When Q ¼ 0, there are no shells since we are not
considering negativeM. In relation to the energy conditions
of the shell we can say that the null, the weak, and the
dominant energy conditions are verified when R > 0, and

the strong energy condition is verified when R ≤ Q2

M in this
case (see a detailed presentation ahead).
The Carter-Penrose diagram can be drawn directly from

the building blocks of an interior Minkowski spacetime and

the exterior region neighbor to r ¼ 0 of the overcharged
Reissner-Nordström spacetime. In Fig. 28 the Carter-
Penrose diagram of an overcharged Reissner-Nordström
star shell spacetime for a junction surface with normal
pointing toward the r ¼ 0 singularity is shown. It is clearly
a compact shell naked singularity, such that there is no clear
distinction of what is outside from what is inside.
The physical interpretation of this case is understood by

now, it is similar to the corresponding nonextremal and
extremal shells. This overcharged thin shell solution
provides a closed spatial static universe with a singularity
at one pole. There are no horizons. The energy density and
pressure obey the energy conditions for certain shell
radii. The causal and global structure as displayed by
the Carter-Penrose diagram show the characteristics of this
universe that has two sheets joined at the shell with one
sheet having a singularity at its pole and with no horizons.
The singularity is avoidable to timelike curves. So, this case
falls into the category of having the energy conditions
verified and the resulting spacetime being peculiar.

C. Formalism for overcharged shells

1. Preliminaries

We now make a careful study to derive the properties of
the fundamental electric thin shell used in the two previous
subsections, i.e., the thin shell in an overcharged state, i.e.,
rþ and r− do not exist or M < Q, for which the shell’s
radius R location obeys 0 < R < ∞, and for which the
orientation is such that the normal to the shell points toward
spatial infinity or toward r ¼ 0. It should be read as an

(a) (b)

FIG. 27. Physical properties of an overcharged compact shell naked singularity, i.e., an electric perfect fluid thin shell in an
overcharged Reissner-Nordström state, in any location, i.e., 0 < R < ∞, and with orientation such that the normal points toward r ¼ 0.
(a) Energy density σ of the shell as a function of the radius R of the shell for various values of the Q

M ratio. The energy density is
adimensionalized through the massM, 8πMσ, and the radius is adimensionalized through the massM, RM. (b) Tension −p on the shell as
a function of the radius R of the shell for various values of the Q

M ratio. The tension is adimensionalized through the massM, −8πMp, and
the radius is adimensionalized through the mass M, R

M.

FIG. 28. Carter-Penrose diagram of an overcharged compact
shell naked singularity, i.e., a thin shell spacetime in an over-
charged Reissner-Nordström state, located at any radius R, with
orientation such that the normal points toward r ¼ 0. There is no
clear distinction of what is outside from what is inside. The
interior is Minkowski, the exterior is overcharged Reissner-
Nordström. This is a compact shell naked singularity spacetime.
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Appendix to the previous two subsections. We use the
formalism developed in Sec. II.

2. Induced metric, and extrinsic curvature
of S as seen from Mi

Let us start by analyzing the interior Minkowski space-
time, Mi. Since it is the same as the analysis done
previously we only quote the important equations. They
are the interior metric Eq. (28), the interior four-velocity of
the shell Eq. (29), the metric for the shell at radius R
Eq. (30), the normal to the shell Eq. (31), and the extrinsic
curvature from the inside Eq. (32).

3. Induced metric, and extrinsic curvature
of S as seen from Me

To proceed we have now to find the expressions for the
induced metric on S and the extrinsic curvature compo-
nents as seen from the exterior spacetime, Me, in the
overcharged state, i.e., rþ and r− do not exist or M < Q
(see Fig. 3), for which the shell obeys 0 < R < ∞, and for
which the orientation is such that the normal to the shell
points toward increasing r, i.e., toward spatial infinity, or
toward decreasing r, i.e., toward r ¼ 0, as seen from the
exterior, as used in the two previous subsections.
The line element for the overcharged Reissner-

Nordström spacetime, now in the quantities M and Q,
since rþ and r− do not exist, is

ds2e ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2 þ dr2

1 − 2M
r þ Q2

r2

þ r2dΩ2;

ð94Þ

where M < Q.
Considering a static shell as we have been doing, the

components of the four-velocity uα of an observer comov-
ing with the shell as seen from the exterior spacetime are
given by

uαe ¼ −
�
1

k
; 0; 0; 0

�
; ð95Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
. To find the induced metric on S

as seen by an observer at Me and imposing the first
junction condition, Eq. (8), we find that the shell’s radial
coordinate R is the same as measured by an observer atMi
or Me and the induced metric on S is given by Eq. (35),
namely,

ds2jS ¼ −dτ2 þ R2dΩ2: ð96Þ

Combining nαeneα ¼ 1 [see Eq. (3)], neαuαe ¼ 0 [see
Eq. (4)], and Eq. (95), we find the expression for
the components of the unit normal to the hypersurface
S, as seen from the exterior spacetime Me, to be
neα ¼ �ð0; 1k ; 0; 0Þ. To specify the sign of the normal to
S for each region we consider two orientations: the
orientation where the normal n points toward spatial
infinity and the orientation where the normal points toward
the singularity r ¼ 0. These two orientations can be treated
in a concise way by using ξ ¼ �1, such that

neα ¼ ξ

�
0;
1

k
; 0; 0

�
: ð97Þ

Then, we find the nonzero components of the extrinsic
curvature of S as seen from the exterior spacetime to be
given by

Ke
τ
τ ¼

ξ

R2k

�
M −

Q2

R

�
; Ke

θ
θ ¼ Ke

φ
φ ¼ ξ

k
R
; ð98Þ

where again k is the redshift function given

by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
.

4. Shell’s energy density and pressure

Having determined the components of the extrinsic
curvature of the matching surface S as seen from the
interior and exterior spacetimes, we are now in position to
use the second junction condition (9) to find the expres-
sions for the energy density and pressure support of a
perfect fluid thin shell in an overcharged state. Using the
shell’s stress-energy tensor given in Eq. (10) we find

8πσ ¼ 2

R
ð1 − ξkÞ; ð99Þ

8πp ¼ ξ

2Rk

�
ð1 − ξkÞ2 −Q2

R2

�
; ð100Þ

where the redshift function of the shell at r ¼ R is given by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2

q
. Moreover, defining the surface electric

current density sa on the thin shell as sa ¼ σeua, where σe
represents the electric charge density, and since the
Minkowski spacetime has zero electric charge, from
Eqs. (12), (13), and (21) it follows that

8πσe ¼
2Q
R2

: ð101Þ

As before, we have to distinguish the two possible
orientations provided by ξ. In Eqs. (99) and (100) it is
clear that it is necessary to pick the sign in ξ. Let us start
with ξ ¼ þ1. Equations (99) and (100) with ξ ¼ þ1 yield
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8πσ ¼ 2
R ð1 − kÞ, 8πp ¼ 1

2Rk ½ð1 − kÞ2 − Q2

R2 �, and also

from Eq. (101) we have 8πσe ¼ 2Q
R2 . Let us now take

ξ ¼ −1. Equations (99) and (100) with ξ ¼ −1 yield

8πσ ¼ 2
R ð1þ kÞ, 8πp ¼ − 1

2Rk ½ð1þ kÞ2 − Q2

R2 �, and also

from Eq. (101) we have 8πσe ¼ 2Q
R2 . These are the expres-

sions used in the two previous subsections. Note that for the
overcharged case 0 < R < ∞.

IX. A SYNOPSIS TO ALL THE FUNDAMENTAL
ELECTRIC THIN SHELLS: ENERGY

CONDITIONS AND THE BEWILDERING
VARIETY OF CARTER-PENROSE DIAGRAMS

A. Energy conditions for the fundamental
electric thin shells

1. Energy conditions

The analysis of the properties of the fundamental electric
shells, i.e., timelike, static, perfect fluid thin shells with a
Minkowski interior and a Reissner-Nordström exterior,
showed that both the energy density and pressure support
depend on the state of the shell, on the location of the shell,
and on the orientation of the shell, i.e., on the direction of
the outside pointing normal. Moreover, we saw that in some
situations the energy density and pressure may take
negative values, and this feature can also depend on the
value of the radial coordinate of the shell. Here, we address
the question of which shells and in what conditions do they
verify the various energy conditions.
The energy conditions are a set of restrictions on the

stress-energy tensor. In the case of a perfect fluid they lead
to specific constraints on the energy density and pressure
(see, e.g., [27] for energy conditions on shells; see also
[14,15] for energy conditions on shells and [41] for the
original setting of energy conditions). Here we will study
the null, weak, dominant, and strong energy conditions for
the fundamental electric thin shells. Now, each energy
condition may be considered to hold at any point of the
spacetime or along a flow line, where the specific energy
condition is only verified on average, allowing for point-
wise violations. We consider the pointwise version of the
energy conditions. Let us first briefly explain the physical
motivation for each energy condition and their implications
on the properties of a perfect fluid thin shell.
The null energy condition, or NEC, represents the

restriction that the energy density of any matter distribution
in spacetime experienced by a light ray is nonnegative. For
a generic stress-energy tensor Tαβ, this is represented by
Tαβkαkβ ≥ 0 for any future pointing null vector field kα. For
a perfect fluid thin shell with stress-energy tensor Sab given
by Eq. (10) this implies

σ þ p ≥ 0: ð102Þ

The weak energy condition, or WEC, is a more res-
trictive version of the NEC where it is imposed that the
energy density of any matter distribution in spacetime
measured by any timelike observer must be nonnegative,
and then Tαβvαvβ ≥ 0 for any future pointing, timelike
vector field vα. For a perfect fluid thin shell with stress-
energy tensor Sab given by Eq. (10) this leads to the
following restrictions:

σ ≥ 0; σ þ p ≥ 0: ð103Þ

The dominant energy condition, or DEC, represents the
statement that in addition to the WEC being verified, the
flow of energy can never be observed to be faster than light;
i.e., in addition to Tαβvαvβ ≥ 0, the vector field Yα with
components given by Yα ¼ −Tβ

αvβ verifies YαYα ≤ 0 for
any timelike future pointing vector field vα. For a perfect
fluid thin shell with stress-energy tensor Sab given by
Eq. (10) this implies

σ ≥ 0; σ − jpj ≥ 0: ð104Þ

The strong energy condition, or SEC, represents the
restriction that nearby timelike geodesics are always
focused toward each other, essentially guaranteeing
that gravity is always perceived to be attractive by
any timelike observer. In the case of general relativity,
this is found by guaranteeing ðTαβ − 1

2
gαβT γ

γÞvαvβ ≥ 0

for any timelike vector field vα. For a perfect fluid
thin shell with stress-energy tensor Sab given by Eq. (10)
we find

σ þ p ≥ 0; σ þ 2p ≥ 0: ð105Þ

2. Limiting radii from an analysis of the energy
conditions on fundamental electric thin shells

From Eqs. (102)–(105) we see that the energy conditions
imply various restrictions on the energy density and
pressure of a perfect fluid. In the considered setup, we
have found that the properties of the perfect fluid funda-
mental electric thin shells are functions essentially of the
radius R of the shell. Hence, the constraints imposed
by the energy conditions on the thin shell for the various
possible spacetimes will lead to restrictions on R.
Anticipating what follows, we present the expressions
for the limiting radii RI, RI0 , and RIII that arise from solving
the inequalities (102)–(105) for the various junction space-
times, i.e.,

RI ¼
M
36

�
25þ 3

�
Q
M

�
2

þ 9ðQMÞ4 − 570ðQMÞ2 þ 625

ΔI
þ ΔI

�
;

ð106Þ
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RI0 ¼
M
4

�
3þ

�
Q
M

�
2

þ ðQMÞ4 − 10ðQMÞ2 þ 9

ΔI0
þ ΔI0

�
; ð107Þ

RIII ¼
M
72

�
50þ 6

�
Q
M

�
2

−
ð1 − i

ffiffiffi
3

p Þ½9ðQMÞ4 − 570ðQMÞ2 þ 625�
ΔI

− ð1þ i
ffiffiffi
3

p
ÞΔI

�
; ð108Þ

with

ΔI ¼


27

�
Q
M

�
6

þ 216

�
Q
M

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

�
Q
M

�
4

þ 366

�
Q
M

�
2

− 375

s
þ 5211

�
Q
M

�
4

− 21375

�
Q
M

�
2

þ 15625
3

vuut ;

ΔI0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

�
Q
M

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
Q
M

�
2

− 1

�
2

s
þ
�
Q
M

�
6

þ 17

�
Q
M

�
4

− 45

�
Q
M

�
2

þ 27
3

vuut : ð109Þ

The expressions for RI and RI0 can be read directly, the
expression for RIII is written in terms of the imaginary unit
i, but for the range of values of the ratio Q

M of interest, this
function takes purely real values. Moreover, although it is
not clear from the expressions, the values of the radii RI,
RI0 , and RIII are independent of the sign of Q, as expected.
For completeness, in Fig. 29 we present the behavior of the
various limiting radii defined in Eqs. (106)–(108) as
functions of the ratio Q

M.

3. Table of the energy conditions on fundamental
electric thin shells

Using the expressions for the energy density and
pressure support for the thin matter shell for each resulting
junction spacetime in the inequalities (102)–(105) allows us
to find the constraints on the shell’s location so that each of
the tested energy conditions is verified. In the table of
Fig. 30 we summarize the results.

4. Detailed description

For the fundamental electric shells in a nonextremal
state, located outside the gravitational radius rþ, R > rþ,
we find that when their orientation is such that the outward
normal points to spatial infinity, Sec. III A, i.e., the star
shells, they always verify the NEC and WEC, they verify
the DEC for R > RI, and also always verify the SEC, and
when their orientation is such that the outward normal
points to the gravitational radius rþ, Sec. III B, i.e., the
tension shell black holes, they verify the NEC, WEC, and
DEC for R > RI0, and the SEC is always violated.
Moreover, the limiting radius RI0 of Eq. (107) also
determines the value of the circumferential radius of the
shell for which its energy density is maximum, and thus it is
connected to the bumps in the energy density σ of Fig. 7.
For the fundamental electric shells in a nonextremal state,
located inside the Cauchy radius r−, R < r−, we find that
when their orientation is such that the outward normal
points to r−, Sec. IVA, the tension shell regular and

(a) (b)

FIG. 29. Behavior of the various radii, whose expressions are given by Eqs. (106)–(108), found by imposing the null, weak, dominant,
and strong energy conditions to the thin shells present at the matching surface of the various junction spacetimes.
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nonregular black holes, none of the energy conditions are
verified, and when their orientation is such that the outward
normal points to the r ¼ 0 singularity, Sec. IV B, the
compact shell naked singularities, the shells always verify
the NEC and WEC, verify the DEC in the domain
0 < R ≤ RIII, and always verify the SEC.
For the fundamental electric shells in an extremal state,

rþ ¼ r−, located outside the gravitational radius rþ,
R > rþ, we find that when their orientation is such that
the outward normal points to spatial infinity, Sec. VA,
i.e., the Majumdar-Papapetrou star shells, they always
verify the NEC, WEC, DEC, and SEC, and when their
orientation is such that the outward normal points to the
event horizon, Sec. V B, the extremal tension shell black
holes, they always verify the NEC,WEC, and DEC, and the
SEC is always violated. For the fundamental electric shells
in an extremal state, rþ ¼ r−, located inside the gravita-
tional radius, R < rþ, we find that when their orientation is
such that the outward normal points to spatial infinity,
Sec. VI A, the extremal tension shell regular and nonregular
black holes, none of the energy conditions are verified by
the shells, and when their orientation is such that the
outward normal points to the r ¼ 0 singularity, Sec. VI B,
the Majumdar-Papapetrou compact shell naked singular-
ities, the shells always verify the NEC, WEC, DEC, and
SEC. For the fundamental electric shells in an extremal
state, rþ ¼ r−, located in the limit at the gravitational
radius, R ¼ rþ, we find that when their orientation is such
that the outward normal points to spatial infinity and the
limit of R → rþ comes from above, Sec. VII A 1, the

Majumdar-Papapetrou shell quasiblack holes, the shells
always verify the NEC, WEC, DEC, and SEC, the matter is
Majumdar-Papapetrou matter; whereas when the limit of
R → rþ comes from below, Sec. VII A 2, the extremal null
shell black holes, the shells verify the NEC, WEC, DEC,
and never verify the SEC, and when their orientation is
such that the outward normal points to the r ¼ 0 singularity
and the limit of R → rþ comes from above, Sec. VII B 1,
the extremal tension shell null singularities, one has that
these shells always verify the NEC, WEC, and DEC, and
never verify the SEC; whereas when the limit of R → rþ
comes from below, Sec. VII B 2, the extremal Majumdar-
Papapetrou null shell singularities, the shells verify the
NEC, WEC, DEC, and SEC, the matter is Majumdar-
Papapetrou matter.
For the fundamental electric shells in an overcharged

state, rþ and r− do not exist and M < Q, located at any
radius R, we find that when their orientation is such that the
outward normal points to spatial infinity, Sec. VIII A, the
overcharged star shells, the shells verify the NEC, WEC,
DEC for R ≥ RI0, and the SECwhen R ≥ Q2

M , and when their
orientation is such that the outward normal points to the
r ¼ 0 singularity, Sec. VIII B, the overcharged compact
shell naked singularities, the NEC, WEC, DEC are always

satisfied, and the SEC when R ≤ Q2

M . The results for the
strong energy condition of an overcharged shell indicate
that in the overcharged Reissner-Nordström spacetime the
singularity is repulsive in a core region within r < Q2

M . Our
result extends that of [38] (see also [39–43]) where it was

FIG. 30. Range of values of the radius R of the fundamental electric thin shell, in the various allowed locations of the exterior Reissner-
Nordström spacetime for which the null, weak, dominant, and strong energy conditions are verified. The symbols ↑ and ↓ denote the
orientation of the shell, i.e., outward normal pointing to increasing radius and to decreasing radius from the shell, respectively. The
symbols > and < for Secs. VII A and VII B in the table denote whether the approach to rþ is done through R > rþ or R < rþ,
respectively.
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found that the nonextremal and extremal Reissner-
Nordström solutions are characterized by a repulsive
region delimited, respectively, by the Cauchy or event
horizons. Here, although there are no horizons, we see that
the same conclusion holds, and it confirms the result
given in, e.g., [43] that there is a repulsive region in the
overcharged Reissner-Nordström spacetime near the sin-
gularity, and, in addition, find the limiting radius of this
repulsive region.

B. The bewildering variety of the Carter-Penrose
diagrams for the fundamental electric thin shells

In addition to performing an analysis on the physical
properties of the shells, i.e., their energy density σ, pressure
p, and the corresponding energy conditions, we have drawn
the Carter-Penrose diagram in each of the fourteen cases.
These diagrams for the fundamental electric thin shells are
summarized in the chart of Fig. 31 which displays clearly
their bewildering variety. There were cases that the solution

FIG. 31. A chart with all the fourteen different Carter-Penrose diagrams for the fundamental electric charged shells, i.e., static shells
with a Minkowski interior and a Reissner-Nordström exterior.
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does not tell precisely how to continue the Carter-Penrose
diagram, one can either repeat the shell or draw horizons
and infinities at will, in any possible combination.

X. CONCLUSIONS

We have classified and studied the spacetimes generated
by a fundamental electric thin shell, i.e., a spherical static
electrical thin shell with a Minkowski interior and a
Reissner-Nordström exterior. All three main states a shell
with a Reissner-Nordström exterior can have were consid-
ered, namely, nonextremal, extremal, and overcharged. In
the nonextremal state there are still two possible locations
for the shell, namely, the shell is located outside the
gravitational radius or the shell is located inside the
Cauchy radius. In the extremal state there are three
possibilities, namely, the shell is located outside the
gravitational radius, the shell is located inside the gravi-
tational radius, or the shell is located at the gravitational
radius. In the overcharged state there is only one possibil-
ity: the shell can be located anywhere. We have seen, in the
wake of the work of Lynden-Bell and Katz for nonelectrical
thin shells with a Schwarzschild exterior, that each of the
locations still has two possibilities, either the outward
normal to the shell points toward increasing radius or it
points toward decreasing radius. For extremal shells at the
gravitational radius there is still a subdivision, either the
shell approaches the gravitational radius from above or it
approaches the gravitational radius from below. In all there
are fourteen different cases.
For each of the fourteen different shells we have worked

out the energy density σ and the pressure p and analyzed
the energy conditions of the matter on the shell. In addition,
we have drawn the Carter-Penrose diagrams in all the
fourteen cases. There were cases that the solution does not
tell precisely how to continue the diagram, so one can either
repeat the shell or draw horizons and infinities at will, in
any possible combination. In addition, in some cases the
distinction between what is interior and what is exterior is
blurred. The maximum analytical extension of the funda-
mental electric shells and consequent Carter-Penrose dia-
grams showed that there is a plethora of solutions that
encompass nonextremal star shells, nonextremal tension
shell black holes, nonextremal tension shell regular and
nonregular black holes, nonextremal compact shell naked
singularities, Majumdar-Papapetrou star shells, extremal
tension shell singularities, extremal tension shell regular
and nonregular black holes, Majumdar-Papapetrou com-
pact shell naked singularities, Majumdar-Papapetrou shell
quasiblack holes, extremal null shell quasinonblack holes,
extremal null shell singularities, Majumdar-Papapetrou null
shell singularities, overcharged star shells, and overcharged
compact shell naked singularities.
In some of the cases it was found that the energy

conditions are verified and the geometrical setup is physi-
cally reasonable. In other cases it was found that the energy

conditions are verified but the resulting geometry is rather
peculiar, or even strange, or that the energy conditions
are violated but the resulting geometry seems physically
reasonable. Therefore, the set of solutions might be greatly
reduced if we only choose solutions that indeed obey the
energy conditions and are physically reasonable, or regard
only solutions that verify the energy conditions, independ-
ently of the geometrical setup, or maintain only solutions
whose geometry seems reasonable. Here we choose to
maintain everything as good and interesting solutions, to be
tested a posteriori.
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APPENDIX A: KRUSKAL-SZEKERES
COORDINATES OF THE NONEXTREMAL
REISSNER-NORDSTRÖM SPACETIME

1. General formalism for a static spherically
symmetric spacetime

In this Appendix we will construct two coordinate
systems for the nonextremal Reissner-Nordström space-
time, one well behaved in a neighborhood of the event
horizon, r ¼ rþ, and the other in a neighborhood of the
Cauchy horizon, r ¼ r−, which, together, cover the full
nonextremal Reissner-Nordström spacetime. To find these
new coordinate systems we will use the formalism intro-
duced in [38] which we now present briefly.
Given a static, spherically symmetric spacetime whose

line element can be written in the form

ds2 ¼ −ΦðrÞ dt2 þΦ−1ðrÞdr2 þ r2dΩ2; ðA1Þ

where the function ΦðrÞ is assumed to have zeros or poles
representing coordinate singularities, which can be
removed by a change of coordinates. Let us determine a
simultaneous transformation of the coordinates r and t to
new coordinates Xðr; tÞ and Tðr; tÞ such that the line
element can be written as

ds2 ¼ f2ðX; TÞðdX2 − dT2Þ þ r2ðX; TÞdΩ2; ðA2Þ

where f2ðX; TÞ is to be regular in a subregion covered by
the coordinates X and T. Comparing Eqs. (A1) and (A2) it
is found that [38]

ALL FUNDAMENTAL ELECTRICALLY CHARGED THIN SHELLS … PHYS. REV. D 103, 104046 (2021)

104046-41



X ¼ hðr� þ tÞ þ gðr� − tÞ;
T ¼ hðr� þ tÞ − gðr� − tÞ; ðA3Þ

with dr� ¼ Φ−1ðrÞdr, i.e.,

r� ¼
Z

Φ−1ðrÞdr; ðA4Þ

h and g are arbitrary functions of one variable, and

f2 ¼ ΦðrÞ
4h0ðr� þ tÞg0ðr� − tÞ ; ðA5Þ

where the prime denotes differentiation with respect to the
functions variable and r� ¼ r�ðrÞ as given in Eq. (A4). In
order for f2 given in Eq. (A5) to be nonsingular, any
singularity in the numerator ΦðrÞ must be canceled by the
denominator, for all t. Assuming Φ to have only poles of
order 1, and setting

hðr� þ tÞ ¼ Aeγðr�þtÞ;

gðr� − tÞ ¼ Beγðr�−tÞ; ðA6Þ

where the scale factors A and B are complex numbers, it is
possible to choose a value for the constant γ such that f2 is
regular and positive throughout the region covered by the
coordinate patch. Substituting Eq. (A6) into Eqs. (A3) and
(A5) we find

f2 ¼ ΦðrÞe−2γr�
4ABγ2

; ðA7Þ

and

Xðr; tÞ ¼ Aeγðr�þtÞ þ Beγðr�−tÞ;

Tðr; tÞ ¼ Aeγðr�þtÞ − Beγðr�−tÞ; ðA8Þ

in terms of the coordinates r and t. From Eq. (A8) we can
find the inverse transformation and define the coordinate r,
implicitly, in terms of the coordinates X and T, such that

X2 − T2 ¼ 4ABe2γr
�
: ðA9Þ

Last, since f2 in Eq. (A7) depends on the values of A and B,
A and B themselves have to be chosen in such a way that f2

is positive. Moreover, given that the transformation
between the coordinates fr; tg and fX; Tg depends on A
and B, these must be chosen such that the coordinates X
and T take only real values.

2. The general formalism applied specifically to the
nonextremal Reissner-Nordström spacetime

a. The Reissner-Nordström spacetime

Having introduced the general formalism, we can apply
it specifically to the nonextremal Reissner-Nordström
spacetime. For this spacetime, the line element in terms
of the coordinates fr; tg is given by Eq. (A1) with

ΦðrÞ ¼ ðr − rþÞðr − r−Þ
r2

; ðA10Þ

where rþ is the gravitational or event horizon radius and r−
is the Cauchy horizon radius. In terms of the mass M and
the electric charge Q, rþ and r− are given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; ðA11Þ

such that ΦðrÞ in Eq. (A10) can also be written as

ΦðrÞ ¼ 1 − 2M
r þ Q2

r2 . Inverting Eq. (A11) one has 2M ¼
rþ þ r− and Q ¼ ffiffiffiffiffiffiffiffiffiffi

rþr−
p

. From Eq. (A10), in these
coordinates we see that the line element for the nonextremal
Reissner-Nordström spacetime, i.e., ðM2 > Q2Þ contains
two coordinate singularities at r ¼ rþ and at r ¼ r−. Then,
using the formalism of Sec. A 1, two coordinate patches
need to be found, each well-defined in the neighborhood of
each of the coordinate singularities. Notice, however, that
there is a common region where both coordinate patches
overlap.

b. Removal of the coordinate singularity
at the event horizon r+

Let us first find a coordinate patch that covers a
neighborhood of the coordinate singularity at r ¼ rþ.
Using Eq. (A4), for the nonextremal Reissner-Nordström
spacetime, r� is given by

r� ¼ rþ r2þ
rþ − r−

log

�
r− rþ
rþ þ r−

�
−

r2−
rþ − r−

log

�
r− r−
rþ þ r−

�
;

ðA12Þ

where we have set the value of the integration constant to
rþ þ r−. To remove the coordinate singularity at r ¼ rþ we
will impose the constant γ that appears in Eqs. (A6)–(A9) to
take the following value:

γ ¼ rþ − r−
2r2þ

: ðA13Þ

Substituting Eqs. (A12) and (A13) into Eq. (A7) we find

f2 ¼ ðrþ þ r−Þ2
ABr2

�
r2þ

rþ − r−

�
2

e
−rðrþ−r−Þ

r2þ

�
r − r−
rþ þ r−

�
1þðr−rþÞ2

;

ðA14Þ
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which is well behaved near the event horizon at r ¼ rþ. As
was stated in the previous section, the choice of the scale
factors A and B is quite arbitrary, and we impose their
values to be such that in the limit when the electric charge
Q goes to zero we recover the Kruskal-Szekeres coordi-
nates defined in [42] for the Schwarzschild spacetime. So,
the values for the scale factors for the various regions are

I

	
A ¼ 1

2

B ¼ 1
2

; I0
	
A ¼ − 1

2

B ¼ − 1
2

;

II

	
A ¼ − i

2

B ¼ i
2

; II0
	
A ¼ i

2

B ¼ − i
2

: ðA15Þ

We see that our choice for the scale factors differs for each
region. This is a consequence of the behavior of the
coordinates fr; tg. Nonetheless, obviously, the geometry
of the spacetime is unaltered since different choices for the
scale factor that obey the restrictions imposed in the
previous section give the same expression for the metric,
aside a conformal constant factor. Our choice, though,
leaves the metric completely unaltered; hence, substituting
the various values for the scale factors listed in Eq. (A15)
into Eq. (A14) we get, for every region covered by the
coordinate patch,

f2 ¼ 4ðrþ þ r−Þ2
r2

�
r2þ

rþ − r−

�
2

e
−rðrþ−r−Þ

r2þ

�
r − r−
rþ þ r−

�
1þðr−rþÞ2

:

ðA16Þ

Substituting Eq. (A15) into Eq. (A9) allows us to write the
inverse transformation for the coordinate r in terms of the
coordinates X and T as

X2 − T2 ¼ e
rðrþ−r−Þ

r2þ

�
r − rþ
rþ þ r−

��
r − r−
rþ þ r−

�
−ðr−rþÞ2

: ðA17Þ

For completeness, we also define the transformations for
the coordinates fT; Xg in terms of the coordinates fr; tg for
the various regions. Substituting Eqs. (A13) and (A15) into
Eq. (A8) we find

I

8>><
>>:

X ¼ e
rðrþ−r−Þ

2r2þ
�

r−rþ
rþþr−

�1
2

�
r−r−
rþþr−

�− r2−
2r2þ cosh

�
tðrþ−r−Þ

2r2þ

�

T ¼ e
rðrþ−r−Þ

2r2þ
�

r−rþ
rþþr−

�1
2

�
r−r−
rþþr−

�− r2−
2r2þ sinh

�
tðrþ−r−Þ

2r2þ

� ;

I0

8>><
>>:

X ¼ −e
rðrþ−r−Þ

2r2þ
�

r−rþ
rþþr−

�1
2

�
r−r−
rþþr−

�− r2−
2r2þ cosh

�
tðrþ−r−Þ

2r2þ

�

T ¼ −e
rðrþ−r−Þ

2r2þ
�

r−rþ
rþþr−

�1
2

�
r−r−
rþþr−

�− r2−
2r2þ sinh

�
tðrþ−r−Þ

2r2þ

� ;

II

8>><
>>:

X ¼ e
rðrþ−r−Þ

2r2þ
�

rþ−r
rþþr−

�1
2

�
r−r−
rþþr−

�− r2−
2r2þ sinh

�
tðrþ−r−Þ

2r2þ

�

T ¼ e
rðrþ−r−Þ

2r2þ
�

rþ−r
rþþr−

�1
2

�
r−r−
rþþr−

�− r2−
2r2þ cosh

�
tðrþ−r−Þ

2r2þ

� ;

II0

8>><
>>:

X ¼ −e
rðrþ−r−Þ

2r2þ
�

rþ−r
rþþr−

�1
2

�
r−r−
rþþr−

�− r2−
2r2þ sinh

�
tðrþ−r−Þ

2r2þ

�

T ¼ −e
rðrþ−r−Þ

2r2þ
�

rþ−r
rþþr−

�1
2

�
r−r−
rþþr−

�− r2−
2r2þ cosh

�
tðrþ−r−Þ

2r2þ

� :

ðA18Þ

These relations for X and T can be used to find
the coordinate t as a function of these coordinates,
such that

t ¼ 2r2þ
rþ − r−

arctanh

�
T
X

�
; in regions I and I0;

t ¼ 2r2þ
rþ − r−

arctanh

�
X
T

�
; in regions I and II0: ðA19Þ

The spacetime diagram for this coordinate patch together
with the relevant coordinate transformations are exhibited
graphically in Fig. 32. We further note that in between
region I and region I0 there is an Einstein-Rosen bridge, i.e.,
a nontraversable dynamical wormhole.

c. Removal of the coordinate singularity
at the Cauchy horizon r−

Let us now define a second coordinate patch where the
coordinate singularity at the Cauchy horizon, r ¼ r−, is
removed. Here the function r� is now given by

r� ¼ rþ r2þ
rþ − r−

log

�
rþ − r
rþ þ r−

�
−

r2−
rþ − r−

log

�
r− − r
rþ þ r−

�
:

ðA20Þ

This change in the expression for the function r�, compared
with Eq. (A12), should not come as a surprise since, as was
stated in the previous subsection, the function r� is defined
up to an integration constant which will be chosen such that
the metric is real for each coordinate patch.
Now, since we want to remove the coordinate singularity

at r ¼ r−, we impose

γ ¼ −
rþ − r−
2r2−

: ðA21Þ

Substituting Eqs. (A20) and (A21) into Eq. (A7) we find

f2 ¼ ðrþ þ r−Þ2
ABr2

�
r2−

rþ − r−

�
2

e
rðrþ−r−Þ

r2−

�
rþ − r
rþ þ r−

�
1þðrþr−Þ2

:

ðA22Þ
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As in the previous subsection, we now have to choose the
scale factors A and B for the various subregions covered by
the second coordinate patch; hence,

III

	
A ¼ 1

2

B ¼ 1
2

; III0
	
A ¼ − 1

2

B ¼ − 1
2

;

II

	
A ¼ i

2

B ¼ − i
2

; II0
	
A ¼ − i

2

B ¼ i
2

: ðA23Þ

This choice for the scale factors leaves the expression for
the metric unaltered for the various subregions covered by
the coordinate patch, such that

f2 ¼ 4ðrþ þ r−Þ2
r2

�
r2−

rþ − r−

�
2

e
rðrþ−r−Þ

r2−

�
rþ − r
rþ þ r−

�
1þðrþr−Þ2

:

ðA24Þ

Substituting Eq. (A24) in Eq. (A9) we find

X2 − T2 ¼ e
−rðrþ−r−Þ

r2−

�
r− − r
rþ þ r−

��
rþ − r
rþ þ r−

�
−ðrþr−Þ2

; ðA25Þ

which defines, implicitly, the coordinate r in terms of
the coordinates X and T. For completeness we define the
transformations for the various subregions covered by
the coordinate patch that relate the coordinates fX; Tg

with the coordinates fr; tg. Substituting Eqs. (A21) and
(A23) in Eq. (A8) we find

III

8>><
>>:
X¼ e

−rðrþ−r−Þ
2r2−

�
r−−r
rþþr−

�1
2

�
rþ−r
rþþr−

�
−

r2þ
2r2− cosh

�
− tðrþ−r−Þ

2r2−

�

T¼ e
−rðrþ−r−Þ

2r2−

�
r−−r
rþþr−

�1
2

�
rþ−r
rþþr−

�
−

r2þ
2r2− sinh

�
− tðrþ−r−Þ

2r2−

� ;

III0

8>><
>>:
X¼ −e−

rðrþ−r−Þ
2r2−

�
r−−r
rþþr−

�1
2

�
rþ−r
rþþr−

�
−

r2þ
2r2− cosh

�
− tðrþ−r−Þ

2r2−

�

T¼ −e−
rðrþ−r−Þ

2r2−

�
r−−r
rþþr−

�1
2

�
rþ−r
rþþr−

�
−

r2þ
2r2− sinh

�
− tðrþ−r−Þ

2r2−

� ;

II0

8>><
>>:
X¼ e

−rðrþ−r−Þ
2r2−

�
r−r−
rþþr−

�1
2

�
rþ−r
rþþr−

�
−

r2þ
2r2− sinh

�
− tðrþ−r−Þ

2r2−

�

T¼ e
−rðrþ−r−Þ

2r2−

�
r−r−
rþþr−

�1
2

�
rþ−r
rþþr−

�
−

r2þ
2r2− cosh

�
− tðrþ−r−Þ

2r2−

� ;

II

8>><
>>:
X¼ −e−

rðrþ−r−Þ
2r2−

�
r−r−
rþþr−

�1
2

�
rþ−r
rþþr−

�
−

r2þ
2r2− sinh

�
− tðrþ−r−Þ

2r2−

�

T ¼ −e−
rðrþ−r−Þ

2r2−

�
r−r−
rþþr−

�1
2

�
rþ−r
rþþr−

�
−

r2þ
2r2− cosh

�
− tðrþ−r−Þ

2r2−

� :
ðA26Þ

These relations can then be used to find the transformation
that gives the coordinate t in terms of the coordinates X and
T, such that

FIG. 32. Relation between the Kruskal-Szekeres coordinates
fX; Tg that cover a neighborhood of the event horizon and the
Schwarzschild coordinates fr; tg. The hyperbolas represent
curves of constant r coordinate while curves of constant t are
straight lines through the origin.

FIG. 33. Relation between the Kruskal-Szekeres coordinates
fX; Tg that cover a neighborhood of the Cauchy horizon and the
Schwarzschild coordinates fr; tg. The hyperbolas represent
curves of constant r coordinate while curves of constant t are
straight lines through the origin. The thick black lines represent
the singularity at r ¼ 0.
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t ¼ −
2r2−

rþ − r−
arctanh

�
T
X

�
; in regions III and III0;

t ¼ −
2r2−

rþ − r−
arctanh

�
X
T

�
; in regions II and II0:

ðA27Þ

The spacetime diagram for this coordinate patch together
with the relevant coordinate transformations are exhibited
graphically in Fig. 33.

APPENDIX B: EXTRINSIC CURVATURE AS
SEEN FROM Me IN A NONEXTREMAL
REISSNER-NORDSTRÖM SPACETIME

1. Boundary surface outside the event horizon

We want to calculate the extrinsic curvature of a shell S
in a nonextremal Reissner-Nordström spacetime (see also
the nomenclature and some details in Sec. II A). Assuming
the matching surface to be timelike, static, and spherically
symmetric, one finds that the nontrivial components of the
extrinsic curvature of the matching hypersurface S are
given by

Kττ ¼ −aαnα; Kθθ ¼ ∇θnθ; Kφφ ¼ ∇φnφ;

ðB1Þ

where aα ≡ uβ∇βuα is the acceleration of an observer with
four-velocity uα comoving with S, nα is the normal to S,
and ∇α is the covariant derivative using the Levi-Civita
connection. In our study we will allow the shell to be
located at any region of the nonextremal Reissner-
Nordström spacetime. It is possible to find a coordinate
system that covers the entire Reissner-Nordström space-
time without coordinate singularities. For our analysis it is
simpler to define, instead, two coordinate patches to
describe the various regions of the Reissner-Nordström
spacetime exterior to the shell (see also Appendix A).
Hence, we will separate the study of a shell located in a
region described by one coordinate patch and the other.
Here we will make the derivation of the expressions for

the induced metric on S and the extrinsic curvature
components as seen from the exterior spacetime, Me, in
the nonextremal state, rþ > r−, i.e., M > Q, and with S
having radius R obeying R > rþ, i.e., S is located outside
the sphere defined by the gravitational radius or outside the
event horizon, depending on the orientation of S itself.
We start by studying the properties of a static shell

located in a region described by the coordinate patch
defined in Appendix A, the coordinate patch without the
coordinate singularity at the event horizon r ¼ rþ. In this
region, the line element for the Reissner-Nordström space-
time in Kruskal-Szekeres coordinates is given by (see
Sec. A 2 for details)

ds2e ¼ 4

�
rþ þ r−
rþ − r−

�
2 r4þ
r2

e
−rðrþ−r−Þ

r2þ

�
r − r−
rþ þ r−

�
1þðr−rþÞ2

× ðdX2 − dT2Þ þ r2ðX; TÞdΩ2;

X2 − T2 ¼ e
rðrþ−r−Þ

r2þ

�
r − rþ
rþ þ r−

��
r − r−
rþ þ r−

�
−ðr−rþÞ2

: ðB2Þ

The components of the four-velocity of an observer
comoving with S as seen from Me are

uαe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXX

X2 − T2

r
ðX; T; 0; 0Þ; ðB3Þ

where the sign was chosen so that u points to the future and
gXX is the XX component of the inverse metric associated
with Eq. (B2). We use R to describe the radial coordinate of
the shell, and so the intrinsic line element of S is

ds2jS ¼ −dτ2 þ R2dΩ2: ðB4Þ

Imposing that the normal points in the direction of
increasing X coordinate implies that the choice of the sign
is different if we consider the shell to be in the region I or I0
(see Fig. 2 and also Fig. 32). Then the normal neα is

neα ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXX

X2 − T2

r
ðT;−X; 0; 0Þ; ðB5Þ

where the quantities on the right-hand side are to be
evaluated at r ¼ R and signðXÞ is the signum function
of the coordinate X of the shell. Having found the normal to
the hypersurface S as seen from the exterior nonextremal
Reissner-Nordström spacetime, we can now compute the
nonzero components of the extrinsic curvature.
Anticipating some of the intermediate results, we

first find the derivative of the radial coordinate r in order
to the coordinates fX; Tg. Taking the derivative of the
second of the equations given in Eq. (B2) in order to X and
T independently, we find that ∂r

∂X ¼ gXX
2

rþ−r−
r2þ

X and
∂r
∂T ¼ − gXX

2

rþ−r−
r2þ

T, as well as ∂r
∂T ¼ − T

X
∂r
∂X. The Christoffel

symbols are given by Γγ
αβ ¼ 1

2
gγσðgασ;β þ gβσ;α − gαβ;σÞ.

So, to compute the Christoffel symbols associated
with the metric (B2) we need to find the derivatives
of the metric components. Noting that gTT ¼ −gXX, and
using the three previous equations, we find ∂XgXX¼
ðgXXÞ2
r−r−

rþ−r−
2r4þ

½2r2þr−
r −ðrþ−r−ÞðrþþrÞ�X, ∂XgTT ¼ −∂XgXX,

∂TgXX ¼ − T
X ∂XgXX, ∂TggTT ¼ T

X ∂XgXX. One can find
the Christoffel symbols needed to compute the com-
ponent Kττ of the extrinsic curvature. They are

ΓX
XX ¼ gXX

4r4þ
rþ−r−
r−r−

½2 r2þr−
r − ðrþ − r−Þðrþ þ rÞ�X, ΓX

TT ¼ ΓX
XX,

ΓX
XT ¼ ΓX

TX ¼ − T
X Γ

X
XX, ΓT

TT ¼ − T
X Γ

X
XX, ΓT

XX ¼ − T
X Γ

X
XX,

ΓT
TX ¼ ΓT

XT ¼ ΓX
XX. Substituting these into the acceleration
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vector aα, we find that components aX and aT of the
acceleration vector field are given by aX ¼ dUX

dτ þ
X2−T2

T2 ΓX
XXU

XUX, aT ¼ dUT

dτ þ X2−T2

XT ΓX
XXU

XUX, where the
repetition of the indices does not mean summation but
actual products of the components. Substituting Eq. (B3)
in these two equations we find aX ¼ dUX

dτ þ gXXΓX
XX and

aT ¼ dUT

dτ þ gXXΓX
XX

T
X. We are now in position to com-

pute the Keττ component of the extrinsic curvature of
S given in Eq. (B1) embedded in the exterior non-
extremal Reissner-Nordström spacetime. Indeed, with the
components aX and aT , Eq. (B5), and using ∂X

∂τ ¼ T
X
∂T
∂τ

that we encountered before, in Eq. (B1) yields,

Keττ ¼ −signðXÞ
ffiffiffiffiffiffiffiffiffiffi
gXX

X2−T2

q
ðgXX þ gXXΓX

XX
X2−T2

X Þ. Then, using
Eqs. (B2) and ΓX

XX above yields Ke
τ
τ ¼ signðXÞ

2R2k ×
ðrþ þ r− − 2

r−rþ
R Þ, where the induced metric in Eq. (B4)

was used to raise the indices and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rþ

R Þð1 − r−
R Þ

q
. To

find the other nonzero components of the extrinsic
curvature of S embedded in the exterior nonextremal
Reissner-Nordström spacetime, Keθθ and Keφφ, we have
to compute the remaining entries of the Christoffel
symbols. Equation (B2) and ∂r

∂T ¼ − T
X

∂r
∂X yield

ΓX
θθ ¼ −rgXX ∂r

∂X, ΓT
θθ ¼ −rgXX T

X
∂r
∂X, ΓX

φφ ¼ −r sin2 θgXX,
ΓT
φφ ¼ −r sin2 θgXX T

X
∂r
∂X. Substituting these Christoffel

symbols and previously found equations into Eq. (B1)

we find Ke
θ
θ ¼ Ke

φ
φ ¼ signðXÞ

2

rþ−r−
r2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXXðX2−T2Þ

p
R . Thus, in

brief

Ke
τ
τ ¼

signðXÞ
2R2k

�
rþ þ r− − 2

r−rþ
R

�
;

Ke
θ
θ ¼ Ke

φ
φ ¼ signðXÞðrþ − r−Þ

2r2þR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXXðX2 − T2Þ

q
; ðB6Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rþ

R Þð1 − r−
RÞ

q
. With these geometrical

quantities one can compute the physical quantities of a
thin shell, such as its energy density and tangential
pressure, assuming it is made of a perfect fluid, at the
boundary surface outside the event horizon, as we did in
the text.

2. Boundary surface inside the Cauchy horizon

Here we will make the derivation of the expressions for
the induced metric on S and the extrinsic curvature
components as seen from the exterior spacetime, Me, in
the nonextremal state, rþ > r−, i.e., M > Q, and with S
having radius R obeying R < r−; i.e., S is located inside the
sphere defined by the Cauchy radius or inside the Cauchy
horizon depending on the orientation of S itself.
We start by studying the properties of a static shell

located in a region described by the coordinate patch

defined in Appendix A, the coordinate patch without the
coordinate singularity at the Cauchy horizon r ¼ r−. In this
region, the line element for the Reissner-Nordström space-
time in Kruskal-Szekeres coordinates is given by (see
Sec. A 2 for details)

ds2e ¼ 4

�
rþ þ r−
rþ − r−

�
2 r4−
r2

e
rðrþ−r−Þ

r2−

�
rþ − r
rþ þ r−

�
1þðrþr−Þ2

× ðdX2 − dT2Þ þ r2ðX; TÞdΩ2;

X2 − T2 ¼ e
−rðrþ−r−Þ

r2−

�
r− − r
rþ þ r−

��
rþ − r
rþ þ r−

�
−ðrþr−Þ2

: ðB7Þ

The components of the four-velocity of an observer
comoving with S as seen from Me are,

uαe ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXX

X2 − T2

r
ðX; T; 0; 0Þ; ðB8Þ

where the sign was chosen so that u points to the future and
gXX is the XX component of the inverse metric associated
with Eq. (B7). We use R to describe the radial coordinate of
the shell, and so the intrinsic line element of S is

ds2jS ¼ −dτ2 þ R2dΩ2: ðB9Þ

Imposing that the normal points in the direction of
increasing X coordinate implies that the choice of the sign
is different if we consider the shell to be in the region III or
III0 (see Fig. 2 and also Fig. 33). Then the normal neα is

neα ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXX

X2 − T2

r
ð−T; X; 0; 0Þ; ðB10Þ

where the quantities on the right-hand side are to be
evaluated at r ¼ R and signðXÞ is the signum function
of the coordinate X of the shell. Having found the normal to
the hypersurface S as seen from the exterior nonextremal
Reissner-Nordström spacetime, we can now compute the
nonzero components of the extrinsic curvature.
Let us now compute the nonzero components of

the extrinsic curvature of S for a thin shell inside the
Cauchy horizon. Similar to the previous subsection, we
have first to compute some intermediate quantities. Taking
the derivative to X and T, independently, of the second of
the equations given in Eq. (B7) we find ∂r

∂X ¼ − gXX
2

rþ−r−
r2−

X

and ∂r
∂T ¼ gXX

2

rþ−r−
r2−

T. These latter expressions are then rela-

ted by ∂r
∂T ¼ − T

X
∂r
∂X. Equation (B7) and ∂r

∂X¼−gXX
2

rþ−r−
r2−

X

yield ∂XgXX ¼ ðgXXÞ2
2r4−

rþ−r−
rþ−r

½2 r2−rþ
r þ ðrþ − r−Þðrþ r−Þ�X.

Now, in this coordinate patch one still has ∂r
∂T ¼ − T

X
∂r
∂X

and ggTT ¼ −gXX, and the other derivatives of the metric
are also ∂XggTT ¼ −∂XgXX, ∂TgXX ¼ − T

X ∂XgXX, ∂TggTT ¼
T
X ∂XgXX, where gXX refers here to the XX component of
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the metric in Eq. (B7). From Eq. (B7) and the one

just found for ∂XgXX we find ΓX
XX ¼ gXX

4r4−

rþ−r−
rþ−r

½2 r2−rþ
r þ

ðrþ − r−Þðrþr−Þ�X. Unsurprisingly, the other entries of
the Christoffel symbols are given by ΓX

TT ¼ ΓX
XX,

ΓX
XT ¼ ΓX

TX ¼ − T
X Γ

X
XX, ΓT

TT ¼ − T
X Γ

X
XX, ΓT

XX ¼ − T
X Γ

X
XX,

ΓT
TX ¼ ΓT

XT ¼ ΓX
XX, which imply that the aX and aT

components of the acceleration are also given by aX ¼
dUX

dτ þ X2−T2

T2 ΓX
XXU

XUX and aT ¼ dUT

dτ þ X2−T2

XT ΓX
XXU

XUX,
where the repetition of the indices does not mean summa-
tion but actual products of the components. Then, using
Eq. (B8) we find aX ¼ dUX

dτ þ gXXΓX
XX and aT ¼ dUT

dτ þ
gXXΓX

XX
T
X. Finally, substituting Eq. (B10), and these two

latter equations for aX and aT , into Eq. (B1) gives

Keττ ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffi
gXX

X2−T2

q
½gXX þ gXXΓX

XX
X2−T2

X �. Using then

Eq. (B7) and the equation for ΓX
XX found above leads to

Ke
τ
τ ¼ signðXÞ

2R2k ½rþ þ r− − 2
r−rþ
R �, where the induced metric

on S, Eq. (B9), was used to raise the indices and k is given

by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rþ

R Þð1 − r−
RÞ

q
. All that is left now is to find the

Christoffel symbols necessary to compute the components
Ke

θ
θ and Ke

ϕ
ϕ of the extrinsic curvature of S. However,

since the angular part of the metric is the same for both
coordinate patches, the Christoffel symbols are also
given by ΓX

θθ ¼ −rgXX ∂r
∂X, ΓT

θθ ¼ −rgXX T
X

∂r
∂X, ΓX

φφ ¼
−rsin2θgXX, ΓT

φφ ¼ −rsin2θgXX T
X

∂r
∂X. These, in conjunction

with Eq. (B10), and the equations ∂r
∂X ¼ − gXX

2

rþ−r−
r2−

X and
∂r
∂T ¼ gXX

2

rþ−r−
r2−

T found above yield Ke
θ
θ ¼ Ke

φ
φ ¼

signðXÞ
2

rþ−r−
r2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXXðX2−T2Þ

p
R . Thus, in brief

Ke
τ
τ ¼

signðXÞ
2R2k

h
rþ þ r− − 2

r−rþ
R

i
;

Ke
θ
θ ¼ Ke

φ
φ ¼ signðXÞðrþ − r−Þ

2r2−R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gXXðX2 − T2Þ

q
;

ðB11Þ

where again k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rþ

R Þð1 − r−
R Þ

q
. With these geometri-

cal quantities one can compute the physical quantities of a
thin shell, such as its energy density and tangential
pressure, assuming it is made of a perfect fluid, at the
boundary surface inside the Cauchy horizon, as we did in
the text.
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