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We use the frequency and time domain Teukolsky formalism to calculate gravitational-wave fluxes from
a spinning body on a bound eccentric equatorial orbit around a Kerr black hole. The spinning body is
represented as a point particle following the pole-dipole approximation of the Mathisson-Papapetrou-
Dixon equations. Reformulating these equations we are not only able to find the trajectory of a spinning
particle in terms of its constants of motion, but also to provide a method to calculate the azimuthal and the
radial frequency of this trajectory. Using these orbital quantities, we introduce the machinery to calculate
through the frequency domain Teukolsky formalism the energy and the angular momentum fluxes at
infinity, and at the horizon, along with the gravitational strain at infinity. We crosscheck the results obtained
from the frequency domain approach with the results obtained from a time domain Teukolsky equation
solver called Teukode.
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I. INTRODUCTION

An extreme mass ratio inspiral (EMRI) is one of the
most promising events expected to be detected with future
space-based gravitational wave (GW) detectors like Laser
Interferometer Space Antenna (LISA) [1]. An EMRI
occurs when a stellar mass compact object such as a
black hole (BH) or a neutron star (secondary object) is
trapped in the vicinity of a supermassive black hole
(SMBH) (primary object). Due to gravitational radiation
reaction the secondary is slowly spiralling into the
primary while emitting GWs. From these GWs it is
possible to extract information about the EMRI system
such as the masses of the objects, their spins etc. On a
more fundamental physics level, EMRIs detection are
expected to allow us to probe the strong gravity regime
around a SMBH [2].
Currently in order to extract information from a GW

signal, when it is detected by the terrestrial observatories, it
has to be uncovered from a dominating noise background.
To achieve this, matched filtering is employed, i.e., wave-
form templates for a wide range of parameters are matched
with the detected time series. It is expected that we will
have to use matched filtering for GW signal received by
LISA as well, but not to uncover the signal from the noise;
in LISA’s case we will use them to disentangle overlapping
GW signals from simultaneously detected sources. Because

of this, accurate models of the GW waveform templates are
planned to be produced for a wide range of parameters.
To model GWs from an EMRI, first the trajectory of

the secondary object must be reproduced. The standard way
to do this is to apply the two timescale approximation [3].
In an EMRI the mass ratio q≡ μ=M lies between 10−7 and
10−4, where μ is the secondary mass and M is the primary
mass. The energy changes at rate _E=E ¼ OðqÞ which is
very small. The timescale of the inspiral is, thus, of the
order Oðq−1Þ, i.e., q−1 times larger than the orbital time-
scale. This allows us to break our analysis in two time-
scales, the fast orbital and the slow adiabatic dissipation in
the constants of motion. In the fast one, the trajectory of
the secondary over one orbital period is close to a trajec-
tory calculated without a dissipation. The secondary is
actually drifting between orbits characterized by a set of
constants of motion. In this setup, the azimuthal
coordinate of the inspiral can be expanded as
ϕ ¼ q−1ϕð0ÞðqtÞ þ ϕð1ÞðqtÞ þOðqÞ. The first term of the
expansion is of adiabatic order and includes the contri-
bution from the time-averaged dissipative part of the first-
order self-force. The second term, which is of the order of
radians is called post-adiabatic and contains contributions
from the conservative part of the first-order self-force,
oscillating part of the dissipative part of the first order self-
force as well as the time-averaged dissipative part of the
second-order self-force. The spin of the secondary con-
tributes to the post-adiabatic term as is of the order ofOðqÞ
[4,5]. In particular, for the spin magnitude S of a secondary
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compact object, like a Kerr BH or a neutron star, holds that
S≲ μ2, hence the dimensionless spin parameter defined as
σ ≡ S=ðμMÞ ≤ q is of the same order as the mass ratio [6].
The phase ϕ is approximately proportional to the phase of
the GW. Hence, to accurately model the GW fluxes, all the
aforementioned terms must be taken into account.
In this work, we deal with the contribution of the

secondary spin to the post-adiabatic term, in the case of
bounded equatorial orbits around a Kerr BH. The descrip-
tion of a spinning test body moving on a curved back-
ground was for the first time studied in [7–9]. In particular,
Mathisson [10] managed to write the stress-energy tensor
of an extended test body as a sum of multipolar moments.
When the body is sufficiently small and compact, then it is
sufficient to take into account only the mass (monopole)
and the spin (dipole) leading to what is known as the pole-
dipole approximation, which essentially reduces the body
to a spinning test particle. Later on Papapetrou [11,12] was
able to employ the conservation law of the stress energy
tensor ∇μTμν ¼ 0 to derive the equations of motion for a
spinning particle. Finally, these equations were rewritten by
Tulczyjew [13], Dixon [14–17], and Wald [18] bringing
them to their modern form. MPD equations have been
studied in several works, see, e.g., [6,19–22]. Particularly,
these equations simplify when the particle is confined into
the equatorial plane of the Kerr spacetime [23]. In this case,
the motion can be determined by the following constants of
motion: the energy E, the component of the total angular
momentum parallel to the axis of the central BH Jz, the
mass of the secondary μ, and the magnitude of its spin S.
In the present work, we rederive the equations of motion

for a spinning particle in the equatorial plane in a reduced
form. This allows us to find analytical formulas for the
constants of motion dependence on the eccentricity and the
semi-latus rectum and to provide a method to numerically
calculate the fundamental frequencies. These results are
then used to calculate the GW fluxes. To achieve this, we
employ the Teukolsky formalism and solve the GWs
perturbatively. Namely, we solve the Teukolsky equation
(TE) both in the frequency and in the time domain with a
spinning-particle as a source. In the frequency domain, the
formulas providing the energy and the angular momentum
fluxes to infinity and to the horizon from a spinning particle
following equatorial trajectories are novel. While, for the
calculations in the time domain, we introduce a new
approach to simulate the spinning source making the
computations more efficient. Due to the GW flux balance
law in an EMRI, these fluxes equal to the rate of change of
the constants of motion of an inspiraling spinning particle
[5,24]. Hence, once these fluxes are obtained, then the
adiabatic term with the spinning-particle contribution to the
post-adiabatic term can be reconstructed.
This paper is organized as follows. Section II briefs the

dynamics of a spinning particle moving in a curved
spacetime. After covering the basics, the equations of

motion of a spinning particle are rederived in a reduced
form appropriate for eccentric equatorial orbits in a Kerr
BH background. Subsequently, the constants of motion and
the frequencies are calculated. Section III reviews the
Teukolsky formalism calculating the GW fluxes both in
the frequency and the time domain. Finally, the frequency
domain results are compared with the time domain results.
To make the main text more readable, we have concentrated
in a list all the dimensionless quantities we use in
Appendix A, Appendix B provides all the explicit formulas
for the frequency domain fluxes, while in Appendix C our
frequency domain results for a non-spinning object are
compared with the ones of [25]. Finally, Appendix D
provides tables from the frequency domain calculations
aiming to serve as reference for future works.
Throughout this paper, we use geometrized units where

the speed of light and the gravitational constant are
c ¼ G ¼ 1. The Riemann tensor is defined as Rμ

νκλ ¼
Γμ

νλ;κ − Γμ
νκ;λ þ Γμ

ρκΓρ
νλ − Γμ

ρλΓρ
νκ where the comma

denotes partial derivative Uμ;ν ¼ ∂νUμ. A covariant deriva-
tive is denoted by a semicolon Uμ;ν ¼ ∇νUμ and
DUμ=dτ ¼ Uμ

;νdxν=dτ. The signature of the metric is
ð−;þ;þ;þÞ. Symmetrization of indices is denoted by
round brackets ΦðμνÞ ¼ ðΦμν þΦνμÞ=2. For some quan-
tities we prefer to use their dimensionless counterparts.
They are denoted by a hat, e.g., energy Ê ¼ E=μ, radial
coordinate r̂ ¼ r=M etc (see Appendix A).

II. A POLE-DIPOLE PARTICLE MOVING
ON THE EQUATORIAL PLANE

OF A KERR BLACK HOLE

The motion of a spinning test object in a curved
background is governed by the Mathisson-Papapetrou-
Dixon (MPD) equations [9,11,14] which read

DPμ

dτ
¼ −

1

2
Rμ

νρσvνSρσ;

DSμν

dτ
¼ Pμvν − Pνvμ; ð1Þ

where Pμ is the four-momentum of the particle, Rμ
νρσ is the

Riemann tensor of the background spacetime, vμ ¼ dxμ=dτ
is the four-velocity, Sμν is the spin tensor of the particle and
D=dτ ¼ vμ∇μ is the covariant derivative along the world-
line parametrized by the proper time τ.
The stress-energy tensor Tμν for a spinning particle

with its trajectory parametrized by the coordinate time t
reads [26]

Tμν ¼ 1ffiffiffiffiffiffi−gp
�
PðμvνÞ

vt
δ3 −∇α

�
SαðμvνÞ

vt
δ3
��

; ð2Þ

where for Boyer-Lindquist (BL) coordinates δ3 ¼
δðr − rpðtÞÞδðθ − θpðtÞÞδðϕ − ϕpðtÞÞ is the delta func-
tion located at the particle position ðrpðtÞ; θpðtÞ;ϕpðtÞÞ

SKOUPÝ and LUKES-GERAKOPOULOS PHYS. REV. D 103, 104045 (2021)

104045-2



parametrized by coordinate time. Note that by using the
conservation law Tμν

;ν ¼ 0, it is possible to retrieve the
MPD equations.
Actually, the MPD system of equations is underdeter-

mined. The physical implication of the latter fact is that the
center of the mass of the spinning object is not defined. To
close the system of equations and to define the centre of the
mass, a spin supplementary condition (SSC) in the form
SμνVμ ¼ 0 has to be specified, where Vμ is a timelike vector
field. In this work, we use the Tulczyjew-Dixon (TD) SSC
[13,15]

SμνPμ ¼ 0: ð3Þ

Under the TD SSC, the rest mass of the particle with respect
to the four-momentun

μ2 ¼ −PμPμ ð4Þ

and the magnitude of the spin

S2 ¼ 1

2
SμνSμν ð5Þ

are conserved quantities (see, e.g., [19]). The conservation
of the above quantities is independent of the spacetime
background. The symmetries of the spacetime introduce for
each Killing vector ξμ a specific quantity

C ¼ ξμPμ −
1

2
ξμ;νSμν; ð6Þ

which is conserved upon the evolution of the MPD
equations.
Instead of the spin tensor, it is sometimes more con-

venient to use the spin four-vector

Sμ ¼ −
1

2
ϵμνρσuνSρσ; ð7Þ

where ϵμνρσ is the Levi-Civita tensor and uν ≔ Pν=μ is the
specific four-momentum. The inverse relation of this
equation reads

Sρσ ¼ −ϵρσγδSγuδ: ð8Þ

After substituting Eq. (8) into Eq. (5), we can derive the
relation for the spin magnitude in terms of the spin four-
vector

S2 ¼ SμSμ: ð9Þ

The spin four-vector is from the definition (7) orthogonal to
the four-momentum PμSμ ¼ 0, while from Eq. (8) one sees
it is orthogonal also to the spin tensor SμνSμ ¼ 0. Finally,

from Eq. (10) it can be shown that it is orthogonal to the
four-velocity vμSμ ¼ 0 as well.
Since the MPD equations do not provide an evolution

equation for the four-velocity, it is convenient that for the
TD SSC exists an explicit relation of the four-velocity in
terms of the four-momentum and the spin tensor [27]. This
relation reads

vμ ¼ m
μ

�
uμ þ 2SμνRνρκλuρSκλ

4μ2 þ RαβγδSαβSγδ

�
; ð10Þ

where m ¼ −Pμvμ is the rest mass with respect to the
four-velocity vμ. This mass m is not conserved under
the TD SSC, but it is used to conserve the normali-
zation vμvμ ¼ −1 during the MPD evolution. This leads
to [28]

m ¼ Aμ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2μ2 − BS2

p ; ð11Þ

where

A ¼ 4μ2 þ RαβγδSαβSγδ; ð12Þ

B ¼ 4hκηRκιλμPιSλμRηνωπPνSωπ; ð13Þ

hκη ¼
1

S2
SκρSηρ: ð14Þ

A. The Kerr spacetime background

Since our work deals with the motion of a spinning in the
Kerr spacetime, let us briefly introduce this spacetime. The
Kerr geometry in BL coordinates ðt; r; θ;ϕÞ is described by
the metric

ds2 ¼ gttdt2 þ 2gtϕdtdϕþ gϕϕdϕ2

þ grrdr2 þ gθθdθ2; ð15Þ

where the metric coefficients are

gtt ¼ −
�
1 −

2Mr
Σ

�
;

gtϕ ¼ −
2aMrsin2θ

Σ
;

gϕϕ ¼ ðϖ4 − a2Δsin2θÞsin2θ
Σ

;

grr ¼
Σ
Δ
;

gθθ ¼ Σ ð16Þ

with
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Σ ¼ r2 þ a2cos2θ;

Δ ¼ ϖ2 − 2Mr;

ϖ2 ¼ r2 þ a2: ð17Þ

The Kerr spacetime is stationary and axisymmetric. This
provides two Killing vector fields, the timelike one ξμðtÞ and
the spacelike one ξμðϕÞ. Due to these Killing vector fields,

Eq. (6) provides two constants of motion. In particular,
thanks to the timelike field, the energy

E ¼ −Pt þ
1

2
gtμ;νSμν ð18Þ

is conserved, and thanks to the spacelike field, the
component of the total angular momentum parallel to
the rotational axis of Kerr (z axis)

Jz ¼ Pϕ −
1

2
gϕμ;νSμν ð19Þ

is conserved. These two conserved quantities can be used to
parametrize the spinning particles orbits as discussed in
Sec. II C.

B. Equatorial orbits

We are interested in equatorial orbits, where θ ¼ π=2. To
constrain the body to the equatorial plane, the vθ compo-
nent of the four-velocity must be always zero. The
orthogonality of the spin four-vector and the four-velocity
vμSμ ¼ 0 implies that in order to achieve vθ ¼ 0 for
arbitrary equatorial orbit all the components of the spin
four vector should be zero except from Sθ, i.e.,

Sμ ¼ Sθδθμ: ð20Þ

The spin is, therefore, parallel to the z axis. From the
orthogonality of the spin four-vector and the four-momen-
tum PμSμ ¼ 0, it holds that Pθ ¼ 0.
From Eqs. (9) and (20) it can be shown that Sθ ¼

− ffiffiffiffiffiffi
gθθ

p
S where the sign is chosen such that the spin

magnitude is positive (negative) when the spin is parallel
(antiparallel) to the z axis. Then, from Eq. (8) the only
nonzero components of the spin tensor are

Str ¼ −Srt ¼ −Suϕ
ffiffiffiffiffiffiffiffiffiffi
−
gθθ
g

r
¼ −

Suϕ
r

;

Stϕ ¼ −Sϕt ¼ Sur

ffiffiffiffiffiffiffiffiffiffi
−
gθθ
g

r
¼ Sur

r
;

Srϕ ¼ −Sϕr ¼ −Sut
ffiffiffiffiffiffiffiffiffiffi
−
gθθ
g

r
¼ −

Sut
r

; ð21Þ

where g is determinant of the metric. For Kerr spacetime on
equatorial plane, it holds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gθθ=g

p ¼ 1=r.
Let us recheck the setup for equatorial orbits in a Kerr

background. The total derivative with respect to proper time
of the θ component of four-momentum can be expressed
from Eq. (1)

dPθ

dτ
¼ −

1

2
Rθ

νρσvνSρσ − Γθ
νρPνvρ: ð22Þ

The right-hand side (rhs) of this equation is equal to zero
on the equatorial plane. Furthermore, Eq. (10) reduces
on the equatorial plane to vθ ¼ ðm=μ2ÞPθ. This implies
that when vθ ¼ 0 then Pθ remains zero as well. Thus, the
particle stays on the equatorial plane by just demanding
that vθ ¼ 0.
From Eqs. (18), (19) and (21), Pt and Pϕ can be

expressed as functions of E and Jz. These expressions in
dimensionless quantities read

ut ¼
−Ê − σ

r̂3 ðâ Ê−ĴzÞ
1 − σ2

r̂3
;

uϕ ¼ M
Ĵz − σ

r̂3 ½ð−â2 þ r̂3ÞÊþ âĴz�
1 − σ2

r̂3
: ð23Þ

When we restrict the motion to the equatorial plane, it is
possible to reproduce the equations of motion for the
spinning particle from Eqs. (10) and (4). In particular, we
can express ur from the normalization (4) as function of E
and Jz and thanks to the fact that it holds

2SrνRνρκλuρSκλ ¼
12μ2Δ̂σ2x2

r̂3Σ2
σ

ur ð24Þ

we can write the equations of motion as

ΣσΛσ
dt̂
dτ̂

¼ m
μ
Vtðr̂Þ; ð25aÞ

ΣσΛσ
dr̂
dτ̂

¼ m
μ
Vrðr̂Þ ¼ �m

μ

ffiffiffiffiffiffiffiffiffiffiffi
Rσðr̂Þ

p
; ð25bÞ

ΣσΛσ
dϕ
dτ̂

¼ m
μ
Vϕðr̂Þ; ð25cÞ

where

Σσ ¼ r̂2
�
1 −

σ2

r̂3

�
; ð25dÞ

Λσ ¼ 1 −
3σ2r̂x2

Σ3
σ

; ð25eÞ

Vt ¼ â

�
1þ 3σ2

r̂Σσ

�
xþϖ2

Δ
Pσ; ð25fÞ
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Rσ ¼ P2
σ − Δ̂

�
Σ2
σ

r̂2
þ x2

�
; ð25gÞ

Vϕ ¼
�
1þ 3σ2

r̂Σσ

�
xþ â

Δ̂
Pσ; ð25hÞ

Pσ ¼ ΣσÊ −
�
âþ σ

r̂

�
x; ð25iÞ

x ¼ Ĵz − ðâþ σÞÊ: ð25jÞ

The rest mass with respect to vμ can be expressed from (11)
as

m
μ
¼ Λσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

r̂3

−1þ 2Λσ − ð2 − ΛσÞ σ2r̂3

vuut : ð26Þ

This expression is identical to Eq. (49) in [29].
Equations (25) are identical to the equations (2.19)–
(2.21) in [23] up to the parametrization with dτ̃=dτ ¼
m=μ where τ̃ is the parametrization used in [23]. By
dividing Eqs. (25b) and (25c) we obtain Eq. (19) in
[30]. Hence, we have checked the validity of the above
equations.
To simplify the equations of motion, it is useful to

reparametrize Eqs. (25) with a time parameter λ which is
similar to the Mino time [24]. Equations (25) and (26)
imply that the relation between τ̂ and λ is

dτ̂
dλ

¼ r̂2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

σ2

r̂3

��
−1þ 2Λσ − ð2 − ΛσÞ

σ2

r̂3

�s
: ð27Þ

Then it holds dx̂μ=dλ ¼ Vμ where x̂μ ¼ ðt̂; r̂; θ;ϕÞ with
Vθ ¼ 0. Vμ can be interpreted as dimensionless four-
velocity with respect to λ.

C. Constants of motion as orbital parameters

Let us see how we can use the constants of motion E; Jz
to parametrize bounded equatorial orbits. To do that we
have to find first the roots of Eq. (25b), which will lead us
to the turning points of an equatorial eccentric orbit. The
function r̂4Rσðr̂Þ is an eighth order polynomial, hence it has
generally 8 roots. At least four of these roots are real as in
the nonspinning case, while four additional roots, which
come from the secondary spin’s terms, can be complex or
real. From these roots the two outermost ones 0 < r̂1 ≤ r̂2
are the candidates for being the turning points we are
seeking. Obviously for these two roots it has to hold that

Rσðr̂1Þ ¼ 0; Rσðr̂2Þ ¼ 0: ð28Þ

To have a bound equatorial orbit between these two roots,
Eq. (25b) implies that Rσðr̂Þ > 0 for r̂1 < r̂ < r̂2. The latter

can be true only if for the derivative of Rσðr̂Þwith respect to
r̂ it holds that

R0
σðr̂1Þ ≥ 0; R0

σðr̂2Þ < 0: ð29Þ

When the conditions (28), (29) are satisfied, then r̂1 is the
pericenter and r̂2 is the apocenter of an equatorial eccentric
orbit, and it also holds that Ê2 < 1.
Having found the turning points of an equatorial eccen-

tric orbit, we can parametrize each eccentric equatorial orbit
by its semi-latus rectum p and its eccentricity e, which
relate to the turning points as follows

r̂1 ¼
p

1þ e
; r̂2 ¼

p
1 − e

: ð30Þ

The inverse relations read

p ¼ 2r̂1r̂2
r̂1 þ r̂2

; e ¼ r̂2 − r̂1
r̂1 þ r̂2

: ð31Þ

Equation (28) can be written as two quadratic equations
in terms of Ê and Ĵz. Using the same method as in
Appendix B of [31] we can rearrange the formulas (28)
for energy and angular momentum to arrive at

fiÊ
2 − 2giÊĴz − hiĴ

2
z − di ¼ 0 i ¼ 1; 2 ð32Þ

where f1 ¼ fðr̂1Þ, f2 ¼ fðr̂2Þ etc. and

fðr̂Þ ¼ â2ðr̂þ 2Þr̂þ r̂4

þ σ

�
â2σ
r̂2

þ 2â2ðâþ σÞ
r̂

þ 6â r̂−ðr̂ − 2Þr̂σ
�

gðr̂Þ ¼ 2â r̂þσ

�
âσ
r̂2

þ âð2âþ σÞ
r̂

− ðr̂ − 3Þr̂
�

hðr̂Þ ¼ Δ̂ −
�
âþ σ

r̂

�
2

dðr̂Þ ¼ Δ̂ðr̂3 − σ2Þ2
r̂4

ð33Þ

These functions for σ ¼ 0 are identical to the functions
(B.6)—(B.9) in [31] with z− ¼ 0. By manipulating Eq. (32)
properly, we arrive at

Ê2 ¼ κρþ 2ϵσ̃ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̃ðσ̃ϵ2 þ ρϵκ − ηκ2Þ

p
ρ2 þ 4ησ̃

; ð34Þ

Ĵz ¼
ρÊ2 − κ

2σÊ
; ð35Þ

where
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κ ¼ d1h2 − d2h1;

ϵ ¼ d1g2 − d2g1;

ρ ¼ f1h2 − f2h1;

η ¼ f1g2 − f2g1;

σ̃ ¼ g1h2 − g2h1 ð36Þ

are the determinants appearing in [31]. Thanks to the
identity ϵρ − κη ¼ σ̃ζ, where

ζ ¼ d1f2 − d2f1; ð37Þ

we can rearrange Eq. (34) as

Ê2 ¼ κρþ 2ϵσ̃ − 2sgnðĴzÞσ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ κζ

p
ρ2 þ 4ησ̃

: ð38Þ

Since for â ¼ σ ¼ 0 the determinant σ̃ ¼ 0 and the Eq. (35)
is singular, it is better to substitute Ê2 into Eq. (35) and
rearrange it as follows

Ĵz ¼
ϵρ − 2κη − sgnðĴzÞρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ κζ

p
ðρ2 þ 4ησ̃ÞÊ : ð39Þ

The signs of Ĵz appearing in Eqs. (38) and (39) have been
numerically verified for spin values jσj ≤ 1.
The constants of motion Ê and Jz for given p and e have

two solutions corresponding to the corotating orbit and the
counterrotating orbit. We can choose the coordinates such
that the z axis is parallel to the total angular momentum,
i.e., Ĵz > 0. This convention implies that â > 0 corre-
sponds to corotating orbits and â < 0 to counterrotating
orbits. The spins of the secondary particle and of the central
black hole are parallel when âσ > 0 and antiparallel
when âσ < 0.
For e ¼ 0, both the numerator and the denominator of

Eq. (38) become zero. This inconvenience can be
avoided by noticing that a coefficient e can be factored
out from the determinants (36) and canceled out in
Eq. (38). In this fashion, the solution (38) is valid even
for e¼0. Actually, this allows us to verify that for e ¼ 0
Eqs. (38) and (39) are identical to Eqs. (59) and (60)
given in [29].
There is a limit between the bounded and unbounded

equatorial orbits defined by a separatrix. The term
unbounded orbits includes orbits escaping to infinity
and orbits plunging to the central black hole. In the case
the separatrix splits plunging and bounded orbits, it
holds that R0

σðr̂1Þ ¼ 0 and R0
σðr̂2Þ < 0. The orbit with

R0
σðr̂1Þ ¼ 0 is an unstable circular orbit, while a trajec-

tory originating from r̂2 with energy and angular
momentum satisfying Eqs. (38) and (39) will asymp-
totically approach the circular orbit at r̂1 either evolved

forward or backward in time.1 For a given Kerr
parameter â and spin σ the effective potential Rσ

depends on Êðp; eÞ and Ĵzðp; eÞ, therefore the

FIG. 1. Separatrices for different Kerr parameters and spins.
Points (p, e) on the depicted lines correspond to orbits asymp-
totically approaching the unstable circular orbit lying at
r̂ ¼ p=ð1þ eÞ. For given e the semi-latus rectum p of the
separatrix decreases with increasing spin. Therefore, for a
spinning particle it is possible to approach the horizon closer
than a nonspinning particle. Note that even though the EMRI
relevant values of the secondary spin are σ ≤ q ≪ 1, we use
much higher spin values to make the differences between the
separatrices more prominent and visible. All plots are for Ĵz > 0.

1In the limiting case that r̂1 ¼ r̂2 the orbit is circular (e ¼ 0)
and marginally stable, since it holds that Rσðr̂1Þ ¼
R0
σðr̂1Þ ¼ R00

σðr̂1Þ ¼ 0. This orbit is often called the innermost
stable circular orbit (ISCO).
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separatrices can be plotted on the p–e plane splitting it
into two parts. In one part of the plane lie the bounded
orbits, while in the other part lie unbounded orbits or
initial conditions, which do not correspond to an orbit
(Fig. 1). We can see that for given e the semi-latus rectum p
of the separatrix decreases with increasing spin.
Figure 2 shows two cases of a separatrix on the Ĵz − Ê

plane along with a grid of constant p and e lines. Note that
the intersection point between the separatrix and the line
e ¼ 0 lying at the left lower corner of both panels of Fig. 2
represents ISCO.

D. Frequencies of eccentric equatorial orbits

The radial motion of a particle in the equatorial plane
parametrized by the time parameter λ has a period Λr. This
period can be defined as the time needed to go from the
apocenter to the pericenter and back. Hence, Λr can be
found by integrating the inversion of Eq. (25b), i.e.,

dλ
dr̂

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
Rσðr̂Þ

p ; ð40Þ

over the above two branches (first from r̂1 to r̂2 and then
from r̂2 to r̂1) with respect to the radius r̂. However, the
integration over one branch is equal to the integration over
the other. Hence, we can find theΛr by integrating Eq. (25b)
over the first branch to obtain the time elapsed during the first
branch and multiply the result by two [32], i.e.,

Λr ¼ 2

Z
r̂2

r̂1

dr̂ffiffiffiffiffiffiffiffiffiffiffi
Rσðr̂Þ

p : ð41Þ

The radial frequency can be defined asϒr ¼ 2π=Λr. Ifwe set
the initial radius to rðλ ¼ 0Þ ¼ r1, then the radius rðλÞ is an
even function and can be written as

rðλÞ ¼ rð0Þ þ
X∞
n¼1

rðnÞ cosðnϒrλÞ: ð42Þ

After substituting Eq. (42) to Eqs. (25a) and (25c) and
integrating them, we obtain

t̂ðλÞ ¼ Γλþ Δt̂ðλÞ;
ϕðλÞ ¼ ϒϕλþ ΔϕðλÞ; ð43Þ

where Γ and ϒ are frequencies with respect to λ and
functions Δt̂ðλÞ and ΔϕðλÞ are periodic with period Λr.
Note that since the function r̂ðλÞ is even, the functions
Vtðr̂ðλÞÞ and Vϕðr̂ðλÞÞ are even in λ as well. Hence, after
the aforementioned integration and the subtraction of the
linear term Γλ or ϒϕλ, respectively in Eq. (43), the
functions Δt̂ðλÞ and ΔϕðλÞ are odd and can be written
as series of sines.
The average rate of change of the azimuthal coordinate

and time with respect to λ is

ϒϕ ¼ 2

Λr

Z
r̂2

r̂1

Vϕðr̂Þffiffiffiffiffiffiffiffiffiffiffi
Rσðr̂Þ

p dr̂; ð44Þ

Γ ¼ 2

Λr

Z
r̂2

r̂1

Vtðr̂Þffiffiffiffiffiffiffiffiffiffiffi
Rσðr̂Þ

p dr̂: ð45Þ

These integrals can be solved in terms of Lauricella’s
hypergeometric functions [33]. However, for achieving
this, the exact values of the roots of the radial potential
r̂4Rσðr̂Þ, which is eighth order polynomial in r̂, must be
found. This task can be only performed numerically. Thus,
instead the integrals (41), (44) and (45) were calculated
directly numerically. These integrals have singular points at
r̂1 and r̂2, but this difficulty can be overcome. Namely, first
we factor out the roots

Rσðr̂Þ ¼ ðr̂ − r̂1Þðr̂2 − r̂ÞQðr̂Þ; ð46Þ

where r̂4Qðr̂Þ is sixth order polynomial. To remove the
singularities, an angle like coordinate χ ∈ ½0; πÞ is used by
applying the transformation

FIG. 2. Separatrices (black thick solid) in the Ĵz − Ê plane
along with lines of constant semi-latus rectum (grey solid) and
eccentricity (grey dashed) for Kerr parameter â ¼ −0.5 (top
panel) and â ¼ 0.5 (bottom panel). In both case the secondary
spin is σ ¼ 0.5. The eccentricity lines start at e ¼ 0 for lower
energies and reach e ¼ 1 when Ê ¼ 1 with step 0.1. The semi-
latus rectum ranges from p ¼ 10 to p ¼ 20 for â ¼ −0.5 and
from p ¼ 3 to p ¼ 20 for â ¼ 0.5 with step 1 in both plots. At a
separatrix the semi-latus rectum is the lowest and is increasing
with increasing Ĵz.
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r̂ ¼ p
1þ e cos χ

: ð47Þ

Then, the integrals take the form

Λr ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

p

Z
π

0

1ffiffiffiffiffiffiffiffiffi
JðχÞp dχ; ð48Þ

ϒϕ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

Λrp

Z
π

0

Vϕ

�
p

1þ e cos χ

�
1ffiffiffiffiffiffiffiffiffi
JðχÞp dχ; ð49Þ

Γ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

Λrp

Z
π

0

Vt

�
p

1þ e cos χ

�
1ffiffiffiffiffiffiffiffiffi
JðχÞp dχ; ð50Þ

where

JðχÞ ¼
X6
k¼0

ð1þ e cos χÞk
Xk
l¼0

jðpÞl jðeÞk−l
ð1 − e2Þk−lpl ð51Þ

is a polynomial in cos χ with coefficients

jðpÞ0 ¼ 1 − Ê2;

jðpÞ1 ¼ −2;

jðpÞ2 ¼ â2 þ 2â Ê xþ x2;

jðpÞ3 ¼ −2ðð1 − Ê2Þσ2 − Êσxþ x2Þ;
jðpÞ4 ¼ 4σ2;

jðpÞ5 ¼ −2âσðâσ þ xðÊσ þ xÞÞ;
jðpÞ6 ¼ σ2ðð1 − ÊÞσ − xÞðð1þ ÊÞσ þ xÞ

and

jðeÞ0 ¼ 1;

jðeÞ1 ¼ 2;

jðeÞ2 ¼ e2 þ 3;

jðeÞ3 ¼ 4ðe2 þ 1Þ;
jðeÞ4 ¼ e4 þ 10e2 þ 5;

jðeÞ5 ¼ 2ðe2 þ 3Þð3e2 þ 1Þ;
jðeÞ6 ¼ e6 þ 21e4 þ 35e2 þ 7:

The polynomial JðχÞ for σ ¼ 0 is identical to the poly-
nomial (40) in [31] with Carter constant Q ¼ 0 up to the
factor 1 − e2 due to a different definition of JðχÞ used
in [31].
We can define the frequencies with respect to the

coordinate time as

Ω̂r ¼
ϒr

Γ
¼ πpffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p R

π
0 Vtðr̂ðχÞÞ= ffiffiffiffiffiffiffiffiffi

JðχÞp
dχ

; ð52Þ

Ω̂ϕ ¼ ϒϕ

Γ
¼

R
π
0 Vϕðr̂ðχÞÞ= ffiffiffiffiffiffiffiffiffi

JðχÞp
dχR

π
0 Vtðr̂ðχÞÞ= ffiffiffiffiffiffiffiffiffi

JðχÞp
dχ

: ð53Þ

We have numerically verified the above frequency formulas
by comparing them with frequencies obtained by a direct
integration of the MPD equations for the respective
eccentric orbits. To integrate the MPD equations an implicit
Gauss-Runge-Kutta integrator was used as described
in [34].
The equatorial plane equations of motion (25) given in t,

r and ϕ can be rewritten in λ, t and ϕ parametrized by χ, i.e.,

dλ
dχ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p2JðχÞ

s
ð54Þ

dt̂
dχ

¼ Vt

�
p

1þ e cos χ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p2JðχÞ

s
ð55Þ

dϕ
dχ

¼ Vϕ

�
p

1þ e cos χ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p2JðχÞ

s
ð56Þ

These equations will be used later on, when the energy and
angular momentum fluxes are calculated.

III. GRAVITATIONAL WAVE FLUXES

A. Teukolsky formalism

To calculate the GW fluxes we employ the Teukolsky
formalism. The GWs are described perturbatively using the
Weyl curvature scalar

Ψ4 ¼ −Cαβγδnαm̄βnγm̄δ; ð57Þ

where nμ and m̄μ are components of the Kinnersley tetrad

nμ ¼ 1

2Σ
ðϖ2;−Δ; 0; aÞ; ð58Þ

m̄μ ¼ ρffiffiffi
2

p ðia sin θ; 0;−1; i csc θÞ; ð59Þ

where ρ ¼ −ðr − ia cos θÞ−1. The Weyl scalar Ψ4 is zero
for the Kerr spacetime and its perturbation is governed by
the TE

sOsψðt; r; θ;ϕÞ ¼ 4πΣT ð60Þ

with spin weight s ¼ −2 for −2ψ ¼ ρ−4Ψ4 in the case of the
GWs [35].
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1. Frequency domain approach

This partial differential equation can be separated into
ordinary differential equations after a Fourier transform in t
and ϕ

−2ψ ¼
X∞
l;m

1

2π

Z
∞

−∞
dωe−iωtψ lmωðrÞ−2Saωlm ðθ;ϕÞ; ð61Þ

where −2Saωlm ðθ;ϕÞ is spin weighted spheroidal harmonic
function with spin weight −2 normalized as

Z
dΩj−2Saωlm ðθ;ϕÞj ¼ 1: ð62Þ

For simplicity we use the notation Saωlm ðθÞ ¼ −2Saωlm ðθ; 0Þ
for the angular part henceforth. To calculate the angular
function the Black Hole Perturbation Toolkit [36] has been
employed.
After the separation, an ordinary differential equation

Dψ lmωðrÞ ¼ T lmω ð63Þ

is obtained for the radial part ψ lmωðrÞ, where D is a
differential operator that can be found, e.g., in [35] and
T lmω is a source term discussed below. The asymptotic
behavior of the homogeneous solutions RlmωðrÞ of Eq. (63)
is discussed in [4,25]. To satisfy physical boundary con-
ditions, the solution must be purely outgoing at infinity and
purely ingoing at the horizon; in other words, we are
dealing with a retarded solution. We will denote a homo-
geneous solution satisfying the first condition as Rþ

lmω and a
solution satisfying the second condition as R−

lmω.
2 An

inhomogeneous solution satisfying boundary conditions
can be found using the Green function formalism as

ψ lmωðrÞ ¼ Cþ
lmωðrÞRþ

lmωðrÞ þ C−
lmωðrÞR−

lmωðrÞ; ð64Þ

where the amplitudes are

C�
lmωðrÞ ¼

1

W

Z
∞

rþ
Θ�ðr; r0ÞR

∓
lmωðr0ÞT lmωðr0Þ

Δ2ðr0Þ dr0 ð65Þ

with the invariant Wronskian

W ¼ Rþ
lmωðrÞ∂rR−

lmωðrÞ − ð∂rR
þ
lmωðrÞÞR−

lmωðrÞ
ΔðrÞ ð66Þ

and the Heaviside step functions defined as

Θþðr; r0Þ ¼ Θðr0 − rÞ; Θ−ðr; r0Þ ¼ Θðr − r0Þ: ð67Þ

Since we are interested in GW fluxes at the horizon and at
infinity, we will denote the relevant amplitudes as C−

lmω ≡
C−
lmωðr → rþÞ and Cþ

lmω ≡ Cþ
lmωðr → ∞Þ respectively. In

fact, the amplitudes are constant for r < r1 and r > r2.
The source term in (63) can be written as

T lmω ¼
Z

dtdθdϕΔ2ðT nn þ T nm̄ þ T m̄ m̄Þeiωt−imϕ; ð68Þ

where

T nn ¼ fð0Þnn ðr; θÞ ffiffiffiffiffiffi
−g

p
Tnn;

T nm̄ ¼ ∂rðfð1Þnm̄ðr; θÞ
ffiffiffiffiffiffi
−g

p
Tnm̄Þ

þ fð0Þnm̄ðr; θÞ
ffiffiffiffiffiffi
−g

p
Tnm̄;

T m̄ m̄ ¼ ∂rrðfð2Þm̄ m̄ðr; θÞ
ffiffiffiffiffiffi
−g

p
Tm̄ m̄Þ

þ ∂rðfð1Þm̄ m̄ðr; θÞ
ffiffiffiffiffiffi
−g

p
Tm̄ m̄Þ þ fð0Þm̄ m̄ðr; θÞ

ffiffiffiffiffiffi
−g

p
Tm̄ m̄:

ð69Þ

The functions fðiÞabðr; θÞ can be found in [29]. Projections of
the stress energy tensor onto a tetrad eðaÞμ read

Tab ¼
1ffiffiffiffiffiffi−gp ðC0

ab − Cσ
abÞδ3

−
1ffiffiffiffiffiffi−gp ∂ρððvtÞ−1SρðμvνÞδ3ÞeðaÞμ eðbÞν ; ð70Þ

where

C0
ab ¼ ðvtÞ−1PðμvνÞeðaÞμ eðbÞν ;

Cσ
ab ¼ ðvtÞ−1SρðμΓνÞ

ρλvλe
ðaÞ
μ eðbÞν : ð71Þ

The four-vectors Pμ and vμ as well as the spin tensor Sμν are
functions of time, the Christoffel symbols are evaluated at
the coordinates of the particle rpðtÞ, θpðtÞ, the delta
functions are functions of both the space coordinates r,
θ, ϕ and the coordinate time t and the square root of the

determinant
ffiffiffiffiffiffi−gp

, the functions fðiÞab and the tetrad legs e
ðaÞ
μ

are functions of r and θ. In our case, eðaÞμ , eðbÞμ are the
Kinnersley tetrad components nμ and m̄μ.
After integrating Eq. (68) over θ and ϕ and Eq. (65) over

r using rules for integrating delta function, we obtain a
relation for the amplitudes

C�
lmω ¼

Z
∞

−∞
dteiωt−imϕpðtÞI�lmωðrpðtÞ; θpðtÞÞ ð72Þ

where

2These functions are often denoted R∞
lmω and RH

lmω or RUp
lmω

and RIn
lmω.
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I�lmωðr; θÞ ¼
1

W

�
A0 − ðA1 þ B1Þ

d
dr

þðA2 þ B2Þ
d2

dr2
− B3

d3

dr3

�
R∓
lmωðrÞ: ð73Þ

The coefficients Ai in their general form can be found in
Appendix B.
Up to this point the derivation of GW fluxes holds for a

generic orbit of a spinning particle. In the following part,
we confine it to equatorial orbits with the spin parallel to the
z axis as described in Sec. II B.
Thanks to the fact that the quantity I�lmωðrpðtÞ;

π=2ÞeimðΩϕt−ϕpðtÞÞ is periodic in time with frequency Ωr
(see eg. [37] for details), we can write the amplitude as a
sum over discrete frequencies

C�
lmω ¼

X∞
n¼−∞

C�
lmnδðω − ωmnÞ; ð74Þ

ωmn ¼ mΩϕ þ nΩr: ð75Þ

The partial amplitudes can be calculated as Fourier coef-
ficients by integrating over one period Tr ¼ 2π=Ωr

C�
lmn ¼ Ωr

Z
Tr

0

dtI�lmωmn
ðrpðtÞ; π=2Þ

× expðiωmnt − imϕpðtÞÞ: ð76Þ

However, it is more convenient to integrate over the time
parameter λ

C�
lmn ¼ Ωr

Z
Λr

0

dλ
dt
dλ

I�lmωmn
ðrpðtðλÞÞ; π=2Þ

× expðiωmntðλÞ − imϕpðλÞÞ: ð77Þ

The integration over the two branches of the motion
(from r1 to r2 which correspond to λ from 0 to Λr=2 and
from r2 to r1 which correspond to λ from Λr=2 to Λr)
differs only by the sign of the radial velocity. Therefore, we
can break the integral to two integrals, the first from 0 to
Λr=2 and the second from Λr to Λr=2 (note the reverse
direction of integration). Using the identities (43) we can
write

ωmntðλÞ −mϕðλÞ ¼ nϒrλþ ωmnΔt −mΔϕ: ð78Þ

From the fact that Δt and Δϕ are series of sines with period
Λr, it holds ΔtðΛr − λÞ ¼ −ΔtðλÞ and ΔϕðΛr − λÞ ¼
−ΔϕðλÞ. After changing the integration variable to χ, we
can write the integral as a sum over the sign Dr ¼ � of the
radial velocity, on which the coefficients Ai depend, i.e.,

C�
lmn ¼ Ωr

Z
π

0

dχ
dλ
dχ

X
Dr¼�

dt
dλ

I�lmωmn
ðrðχÞ; π=2; DrÞ

× expðiDrðωmntðχÞ −mϕðχÞÞÞ; ð79Þ

where dλ=dχ comes from Eq. (54), I�lmωmn
comes from

Eq. (73) and tðχÞ, ϕðχÞ are calculated from Eqs. (55), (56).
The metric perturbation hμν ¼ OðqÞ which can be

defined as gexactμν ¼ gμν þ hμν þOðq2Þ, can be calculated
from the Weyl scalar Ψ4 [38]. GWs consist of two
polarizations and the metric perturbation can be written
as hμν ¼ hþeþμν þ h×e×μν where eþμν and e×μν are the polari-
zation tensors. At infinity, the relation between the strain
h ¼ hþ − ih× and the Weyl scalar is

Ψ4ðr → ∞Þ ¼ ḧ=2; ð80Þ

where the dots denote derivative with respect to the BL
coordinate time t. From Eqs. (61), (64), (74) and the
asymptotic behavior of Rþ

lmω it holds

h ¼ −
2

r

X
lmn

Cþ
lmn

ω2
mn

Saωmn
lm ðθÞe−iωmnðt−r�Þþimϕ; ð81Þ

where r� is tortoise coordinate defined as dr�=dr ¼ ϖ2=Δ.
The stress-energy tensor of the GW can be reconstructed
from the strain which yields the energy and angular
momentum fluxes at infinity

�
dE∞

dt

�
¼

X∞
l¼2

Xl

m¼−l

X∞
n¼−∞

jCþ
lmnj2

4πω2
mn

; ð82Þ

�
dJ∞z
dt

�
¼

X∞
l¼2

Xl

m¼−l

X∞
n¼−∞

mjCþ
lmnj2

4πω3
mn

ð83Þ

where the brackets denote time averaging. In the equa-
torial case, the average can be calculated over one period
Tr. Similar derivation can be made for the fluxes at the
horizon [39]

�
dEH

dt

�
¼

X∞
l¼2

Xl

m¼−l

X∞
n¼−∞

αlmn
jC−

lmnj2
4πω2

mn
; ð84Þ

�
dJHz
dt

�
¼

X∞
l¼2

Xl

m¼−l

X∞
n¼−∞

αlmn
mjC−

lmnj2
4πω3

mn
; ð85Þ

where

αlmn ¼
256ð2MrþÞ5PðP2 þ 3ϵ2ÞðP2 þ 16ϵ2Þω3

mn

jClmωmn
j2 ð86Þ

with ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=ð4MrþÞ, P ¼ ωmn −ma=ð2MrþÞ

and the Teukolsky-Starobinsky constant is
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jClmωj2 ¼ ððλlmω þ 2Þ2 þ 4aωðm − aωÞÞ
× ðλ2lmω þ 36aωðm − aωÞÞ
− ð2λlmω þ 3Þð48aωðm − 2aωÞÞ
þ 144ω2ðM2 − a2Þ: ð87Þ

The partial amplitudes C�
lmn are proportional to the

secondary mass μ and therefore, if we use dimensionless
quantities on the rhs, we obtain

�
dE∞

dt

�
¼ q2

X
l;m;n

jĈþ
lmnj2

4πω̂2
mn

≡ q2
X
l;m;n

FE∞
lmn; ð88Þ

�
dJ∞z
dt

�
¼ Mq2

X
l;m;n

mjĈþ
lmnj2

4πω̂3
mn

≡Mq2
X
l;m;n

F Jz∞
lmn ; ð89Þ

where we have defined the dimensionless fluxes FE∞
lmn and

F Jz∞
lmn that do not depend on the mass ratio q. The horizon

fluxes FEH
lmn and F JzH

lmn can be defined in a similar fashion.
We can write the dimensionless energy and angular
momentum loss as

�
dÊ∞

dt̂

�
¼ q

X
l;m;n

FE∞
lmn; ð90Þ

�
dĴ∞z
dt̂

�
¼ q

X
l;m;n

F Jz∞
lmn : ð91Þ

These fluxes can be used for calculating the evolution of
the orbital parameters p and e during an adiabatic approxi-
mation of an inspiral.

2. Time domain approach

To verify the frequency domain calculations, we numeri-
cally solved the TE (60) in the time domain. For this, we
have employed the time domain solver Teukode which is
described in [40–42]. Teukode uses the method of lines,
i.e., finite differences in space and Runge-Kutta for
evolution in time. Instead of using Kinnersley tetrad and
BL coordinates, it solves TE using Campanelli tetrad [43]
and hyperboloidal horizon-penetrating (HH) coordinates3

ðτ; ρ; θ;φÞ (for their definition see Eq. (10) in [41]). These
coordinates reach future null infinity Iþ (“scri”) and
horizon at finite radial coordinate ρS so no extrapolation
is needed to extract GW fluxes at infinity. Another
advantage is that the coordinate light speed at the bounda-
ries vanishes, therefore, no numerical boundary condition
must be imposed. After the decomposition into azimuthal
m-modes ψ ¼ P

m ψmeimφ the equation in (2þ 1)-dimen-
sional form reads

ðCττ∂2
τ þ Cτρ∂τ∂ρ þ Cρρ∂2

ρ þ Cθθ∂2
θ þ Cτ∂τ þ Cρ∂ρ

þ Cθ∂θ þ C0Þψm ¼ Ss; ð92Þ

where the coefficients Cττ; Cτρ;… are functions of ρ and θ
and Ss is the source term for spinning particle discussed
in [30].
The source term consists of derivatives of delta func-

tions up to third order. For accurate results proper repre-
sentation of delta functions must be used. Approximation
as Gaussian function and piecewise polynomials as
described in [44] were implemented to the Teukode.
According to [41], piecewise polynomial approximation is
more accurate for circular equatorial orbits and faster to
calculate than Gaussian approximation, whereas calcula-
tions with Gaussian approximation are more stable when
the particle is moving in ρ or θ direction. The third
derivative of the delta function, which is needed for
spinning particle, was implemented only as Gaussian
approximation in the previous works. In our work we
introduced to Teukode an approach suggested in [45],
which describes slightly different formulas for piecewise
polynomial approximation to construct delta function and
its derivatives. Teukode has been tested extensively on
circular equatorial orbits of a spinning particle in
[29,30,46–48], but in this work it is tested for the first
time on eccentric equatorial orbits of a spinning particle.

B. Numerical results

This Section discusses our numerical calculations
of GW fluxes in the frequency domain (as described in
Sec. III A 1) and compare them with time domain results
obtained from the Teukode (Sec. III A 2).
First we present our approach to calculate quantities

related to an orbit for given parameters â, σ, p and e. These
quantities include the energy and the angular momentum
from Eqs. (38) and (39) respectively, the orbital frequencies
Ω̂r and Ω̂ϕ from Eqs. (52) and (53) respectively and the
functions t̂ðχÞ and ϕðχÞ from Eqs. (55) and (56) respec-
tively. The integrals (52) and (53) were calculated numeri-
cally using methods built-in to Mathematica. We used
extended precision to 48 places, because high precision of
the parameters a and ω ¼ mΩϕ þ nΩr is needed for the
calculation of the radial function R�

lmω.
To calculate the energy and angular momentum fluxes

and the strain at infinity, one has to find the partial
amplitudes Ĉ�

lmn and Eq. (79) implies integration over χ.
The numerical integration errors depend on the employed
integration method and the number of points at which the
function is enumerated. For our purposes, a fractional
accuracy of the order of 10−6 is sufficient. Therefore, we
used the midpoint rule inducing an error of the order
OðN−2Þ to the integration, whereN is the number of points.
The advantage of the midpoint rule is that for given
accuracy, this method minimizes the number of points N3In this section ρ denotes the radial HH-coordinate.
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needed for the calculation. However, more complex
method can be implemented in the future to improve
the accuracy of this integration. The main oscillatory
part of Eq. (79) is contained in the exponential term
expðiDrðωmntðχÞ −mϕðχÞÞÞ. Figure 3 shows the behavior
of this oscillatory part for certain setups. The higher the
value of n is, the more the exponential function oscillates.
High frequency oscillations are present especially around
χ ¼ π in high eccentricity cases. The number of the points
N needed for the integration is calculated from the
maximum of the derivative of the function ωmntðχÞ −
mϕðχÞ with respect to χ, which in dimensionless quantities
reads ðω̂mnVtðr̂ðχÞÞ −mVϕðr̂ðχÞÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − e2Þ=JðχÞ

p
=p.

The radial functions R�
lmn were calculated using

the BHPToolkit [36], which employs the Mano-Suzuki-
Takasugi (MST) method [49] or a numerical integration
of the radial TE. The angular functions Sâ ω̂lm were also
calculated using the BHPToolkit which employs the
Leaver’s method [50].
The strain is calculated from Eq. (81) and the fluxes

are calculated from Eqs. (88). The range of l and n for given
m-mode was found in the following way. First we calculate
the coefficient Ĉþ

lmn for l ¼ maxðjmj; 2Þ for a range of n to
find the mode with the maximal jĈþ

lmnj. Then, we calculate
other l and n modes until the absolute value is less than a
chosen accuracy times the maximal mode. In our calcu-
lations, we have chosen accuracy 10−6. However, in some
cases the absolute value jĈþ

lmnj is not monotonous in n and
it drops suddenly for some n. Because of this, after such a
sudden decrease, amplitudes for more nmust be calculated.
In Fig. 4, the absolute values of the coefficients jĈþ

lmnj are
plotted for an orbit with â ¼ 0.9, σ ¼ −0.5, p ¼ 12,

e ¼ 0.2 and azimuthal number m ¼ 2 for different l and
n. We can see that, for given accuracy, only limited number
of modes is needed (for l ¼ m ¼ 2 it is 21n-modes) and the
absolute value of the amplitudes is decreasing exponen-
tially with jnj for sufficiently high jnj. Note that although
the astrophysical relevant value of the spin σ is of the same
order as the mass ratio q ≪ 1, it is possible to calculate the
GW fluxes for higher spins and then linearize the result in σ
to find the contribution of spin σ ≪ 1. We use also these
large values to make any deficiencies in our calculations
prominent.
In Appendix C we compare our coefficients Ĉ�

lmn and
fluxes FE∞

lmn and FEH
lmn with that of [25]. A simplified

version of our code calculating GW fluxes from circular
equatorial orbit of a spinning particle around a Kerr BH
was used to independently verify the results of [29]. These
results are discussed in detail in [51]. Tables of the values of
the partial amplitudes Ĉ�

lmn for future references are in
Appendix D.

1. Comparison of frequency domain
and time domain

To compare the time domain and the frequency domain
results, we have calculated the coefficients Ĉþ

lmn for some
range of l and n in the frequency domain for different
values of the spin σ and of the eccentricity e. We have used
these coefficients to find the respective strains and energy
fluxes at infinity. Then, these results have served as
reference values in our comparison with the azimuthal
m-mode of the strain at infinity multiplied by the radial
coordinate r̂hm and the energy fluxes at infinity FE∞

m
obtained in the time domain. Because of the fact that the
space discretization applied in Teukode induces numeri-
cal errors to the time domain calculations, we have run the
time domain calculations for several resolutions and tested
the convergence of the code.
To calculate the strains and the fluxes with in the time

domain with Teukode, we need to approximate the delta

FIG. 3. The real part of expðiDrðωmntðχÞ −mϕðχÞÞÞ for orbital
parameters â ¼ 0.9, σ ¼ −0.5, p ¼ 12, e ¼ 0.2 and m ¼ 2, n ¼
15 (top panel) and for orbital parameters â ¼ 0.9, σ ¼ −0.5,
p ¼ 12, e ¼ 0.8 and m ¼ 2, n ¼ 4 (bottom panel). The red dots
indicate the values at which the function is calculated during the
numerical integration.

FIG. 4. Absolute values of the partial amplitudes jĈþ
lmnj for

orbital parameters â ¼ 0.9, σ ¼ −0.5, p ¼ 12, e ¼ 0.2 and
azimuthal number m ¼ 2.
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functions representing the secondary body in the ρ and θ
directions. To do that we have used different combinations
of Gaussian functions and piecewise polynomials in these
directions. The accuracy appears to be higher when the
piecewise polynomial are used in both ρ and θ direction
or Gaussian function in ρ direction and piecewise poly-
nomial in θ direction, than in the other two possible
settings, i.e., Gaussian in both directions and Gaussian
in θ direction with piecewise polynomial in ρ direction.
When the piecewise polynomial is used in both directions,
calculations are faster and, therefore, we have used this
approximation in most cases. In our calculations, the strain
has been extracted at r ¼ ∞ and θ ¼ π=2 and the energy
flux has been averaged over two periods Tr starting at the
retarded coordinate around u ¼ 350M, where u ¼ t − r�.
In order to provide a first comparison of the frequency

and the time domain results, we use the relative difference
of the azimuthal mode m of the strain at r ¼ ∞ and
θ ¼ π=2

δhm ¼
����1 − htdm

hfdm

����; ð93Þ

where htdm is the strain calculated using Teukode and hfdm
is m-mode of the strain calculated in frequency domain
using Eq. (81) without the sum over m. Figure 5 shows
the relative difference of the azimuthal modes m ¼ 1, 2, 3,
4 of the strain as function of the retarded coordinate û.
In this plot, the strain calculated in the frequency domain
(the denominator of δhm) remains fixed, while each time
domain calculated evolution of the strain is performed
for different number of points in the ρ direction Nρ

(resolution). The delta function is approximated by a
piecewise polynomial for five resolutions (Nρ ¼ 1200,
1704,2400,3384,4800), while in one case is approximated
by a Gaussian function for Nρ ¼ 4800. We can see that the
relative difference δhm tends to decrease as the resolution
increases, but for the highest resolution Nρ ¼ 4800 the
numerical noise becomes significant. Though the Gaussian
approximation is less accurate, the amplitude of its noise is
relatively smaller than the amplitude of the noise for the
piecewise polynomial approximation with the same reso-
lution. We speculate that the cause of this numerical noise
comes from the fact that as the resolution increases, the
approximation becomes less smooth. Namely, we have
used a 12th order approximation of the delta function,
which is 12 points wide, for each resolution; therefore, the
higher the resolution is, the narrower and higher is the delta
function. Note that the m ¼ 1-mode has very small value
and the noise has relatively higher amplitude than inm ¼ 2,
3, 4 modes. The m ¼ 0-mode, which is not shown here,
although nonzero, has extremely small value allowing the
numerical noise to be dominant.

FIG. 5. The relative difference of the strain δhm from them ¼ 1
mode (top panel) to them ¼ 4 mode (bottom panel) as a function
of the retarded coordinate û at r ¼ ∞ and θ ¼ π=2. Each plotted
curve represents a case with different number of points in the ρ
direction Nρ. The piecewise polynomial approximation of the
delta function was used for all cases apart from one, for which the
Gaussian approximation with resolution 4800 was employed.
The parameters of the orbit are â ¼ 0.9, σ ¼ −0.5, p ¼ 12,
e ¼ 0.2. The initial noise is caused by zero initial data in time
domain.
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To further check our results, we have calculated the
relative difference of the energy fluxes

δFE∞
lm ¼

����1 − FE∞
lm;td

FE∞
lm;fd

����; ð94Þ

where FE∞
lm;td is the value calculated using Teukode and

FE∞
lm;fd is the value calculated with the frequency domain

approach summed over n. Figure 6 shows how the time
domain calculations of the dominant l ¼ m ¼ 2 mode of
the energy fluxes converges to the frequency ones as the
resolution increases. For this plot we have kept fixed the
Kerr parameter â ¼ 0.9, the semi-latus rectum p ¼ 12 and
the eccentricity e ¼ 0.2, while we have used for each curve
a different value of the secondary spin σ spanning from
−0.5 to 0.5. The relative difference in the fluxes should
converge to zero as the grid length Δρ ¼ ðρS − ρþÞ=Nρ

decreases (increasing resolution). However, the relative
differences do not converge to zero, because in the
frequency domain calculations we use the projection to
spin-weighted spheroidal harmonics Saωlm and Teukode
projects the strain to the spin-weighted spherical harmonics
Ylm ¼ S0lm. For the dominant mode the difference between
the projections to these functions is low because for low aω,
the spheroidal functions Saωlm can be approximated by the
spherical functions Ylm.
Because of the aforementioned projection issue, for a

proper comparison of the time and frequency domain
results, we must calculate the sum of the fluxes over l.
The relative difference

δFE∞
m ¼

����1 − FE∞
m;td

FE∞
m;fd

����; ð95Þ

for m ¼ 1, 2, 3 has been calculated for different secondary
spins σ in the frequency domain and in time domain we
used different resolutions (Nρ ¼ 1200, 1704, 2400, 3384,
4800). We can see in Fig. 7 that the relative differences
converge to zero as we expected. The lowest step Δρ
corresponding to the highest resolution Nρ ¼ 4800 shows
variance in the relative differences. This is caused by the
fact that the noise amplitude is the highest for the highest
resolution, which can be seen in Fig. 5. Especially in the
case m ¼ 1 where the energy flux is significantly lower

FIG. 6. The relative difference of the energy flux δFE∞
lm of the

l ¼ m ¼ 2 mode as function of the grid length in the ρ direction
of the time domain calculations. Note that the time domain
calculations have been projected on the Ylm basis, while the
frequency domain ones on the Saωlm . Each curve represents a
different value of the secondary spin, while the Kerr parameter
â ¼ 0.9, semi-latus rectum p ¼ 12 and eccentricity e ¼ 0.2
remain fixed.

FIG. 7. Comparison of frequency domain and time domain
results. The relative difference δFE∞

m¼1 (top panel), δFE∞
m¼2

(middle panel) and δFE∞
m¼3 (bottom panel) is plotted for different

values of the secondary spins σ spanning from −0.5 to 0.5. The
Kerr parameter â ¼ 0.9, the semi-latus rectum p ¼ 12 and the
eccentricity 0.2 are kept fixed for all the cases.
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than for m ¼ 2, the variance in the relative differences is
clearly visible. For the highest resolution, the relative
difference is higher for higher values of spin jσj. This
can be caused by the numerical noise in time domain
calculations induced by the non-smoothness of the piece-
wise polynomial approximation of the third derivative of
the delta function. Namely, the term with the third
derivative is proportional to the spin σ. For negative σ
the noise is relatively higher because the value of energy
flux for σ < 0 is lower than the flux for σ > 0 and thus the
noise is more dominant.
To check the dependence of our calculations on the value

of eccentricity, we have calculated the energy fluxes for
fixed Kerr parameter â ¼ 0.9, secondary spin σ ¼ 0.5 and
semi-latus rectum p ¼ 12, while the eccentricity e value
spans from 0.2 to 0.8. For each eccentricity we have
calculated the relative difference in the energy fluxes δFE∞

m
for m ¼ 1, 2, 3. Then, we have compared the dependence
of the relative difference on the resolution for different
eccentricities as in the case with the changing secondary
spin. This comparison is shown in Fig. 8. First, we have
calculated the dominant m ¼ 2 mode in time domain with
piecewise polynomial approximation of the delta function
in both ρ and θ direction (p-p), but for e ¼ 0.8 the noise is
increasing with the resolution and δFE∞

2 does not converge
to zero (purple line in the middle panel of Fig. 8).
Therefore, for m ¼ 2 and other modes, we performed
the time domain calculations for e ¼ 0.8 using the
Gaussian approximation in ρ direction and the piecewise
polynomial approximation in θ direction (G-p, red line in
all panels of Fig. 8). However, the m ¼ 1 mode has low
amplitude and the noise is therefore more significant and
the p-p approximation for e ¼ 0.6 and the G-p approxi-
mation for e ¼ 0.8 fails. Because of this, for m ¼ 1 mode
we repeated the calculation for e ¼ 0.6 with G-p approxi-
mation and for e ¼ 0.8 with Gaussian approximation in
both directions (G-G).
The fact that for the piecewise polynomial approximation

the noise has greater impact on higher eccentricities can be
explained as follows. The shape of the delta function depends
on the distance between the delta function and the two grid
points around it. Since the distance between these grid points
changes rapidly on a highly eccentric orbit, the shape of the
delta function changes rapidly as well. The greater is the
change in the shape, the greater is the noise. Thus, the
piecewise polynomial approximation is optimal for circular
trajectories. Moreover, higher eccentricities imply longer
periods of motion and thus longer runtime, which allows the
exponentially growing noise to reach higher values. For the
Gaussian approximation noise grows more slowly.
Figure 8 indicates that by choosing a proper delta

function approximation the relative difference δFE∞
m would

converge to zero for all m-modes and eccentricities e.

This choice currently seems to depend on the orbital para-
meters and modes. For example, the piecewise polynomial
approximation appears to be in general more efficient than
the Gaussian approximation, however its own limitation in
our example became prominent for high eccentricities and
modes corresponding to small flux or strain absolute
values, i.e., in modes that the numerical noise is dominant.

FIG. 8. Comparison of frequency domain and time domain
results. The relative difference δFE∞

m¼1 (top panel), δFE∞
m¼2

(middle panel) and δFE∞
m¼3 (bottom panel) is plotted for different

values of the eccentricity e spanning from 0.2 to 0.8. The Kerr
parameter â ¼ 0.9, the secondary spin σ ¼ 0.5 and the semi-latus
rectum p ¼ 12 are kept fixed for all the cases. If not specified, the
delta function is approximated by a piecewise polynomial in both
ρ and θ direction. For m ¼ 1, e ¼ 0.6 and m ¼ 2, e ¼ 0.8 the
delta function is approximated as Gaussian function in ρ direction
and piecewise polynomial in θ direction. For m ¼ 1, e ¼ 0.8 the
delta function is approximated as Gaussian function in both ρ and
θ directions.
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IV. SUMMARY

In this work, we have studied the motion of a spinning
particle in the equatorial plane of a Kerr black hole and
the GW fluxes from these orbits. The only possible
configuration of the spins in this setup is the spins to be
parallel or antiparallel. In this framework, we have
derived a reduced set of equations of motion equivalent
to the MPD equations with TD SSC. Taking advantage of
the fact that an orbit can be characterized by its constants
of motion, namely the energy E and the z component of
the total angular momentum Jz, we have provided
explicit formulas for the energy and the angular momen-
tum in terms of the eccentricity e and semi-latus rectum
p. Furthermore, through the reduced equations of motion
and by introducing a Mino-like time parameter λ, we
were able to find expressions allowing the numerical
calculation of the frequencies of the radial and azimuthal
motion. These expressions provide the frequencies with
respect to λ or the BL time.
The orbital findings were then implemented in the

calculation of the GW fluxes from the equatorial orbits in
the frequency domain. Namely, this work introduces the
formulas giving the strain h, the energy fluxes and the
angular momentum fluxes at infinity and at the horizon
from a spinning secondary moving on the equatorial
plane of a Kerr black hole. For this purpose, we have
developed a Mathematica code calculating the amplitudes
C�
lmn on which the frequency domain GW fluxes depend.

We plan to make this code publicly available through the
Black Hole Perturbation Toolkit repository. The fre-
quency domain results were, then, compared with time
domain results obtained from a TE solver called
Teukode. To improve the efficiency of Teukode, we
have implemented a piecewise polynomial to approximate
the delta functions and its derivatives in the spinning-
particle source term. The comparison has shown good
agreement between the frequency domain results with the
time domain ones.
To check the discretization error in the time domain

calculations introduced by the piecewise polynomial, we
have calculated the fluxes in time domain for different
resolutions and compared them with the respective fre-
quency domain results. The difference between the results
from these two approaches tend to consistently decrease
with increasing resolution. However, for the highest res-
olution, which we have implemented, the numerical noise
in the time domain calculations becomes significant. This
behavior occurs for different calculation setups. Namely,
we have checked our calculations by varying the secondary
spin while keeping the other parameters fixed and by
varying the eccentricities while keeping the other param-
eters fixed.
These calculations are part of the on-going effort to

build post-adiabatic gravitational waveforms modelling
gravitational waves emitted by extreme mass ratio

inspirals. In a future work, the frequency domain fluxes
will be used to find the adiabatic evolution of the orbit on
the equatorial plane under the influence of radiation
reaction. The influence of the secondary spin on the
change of the orbital parameters and phase of the GW
will be studied.

ACKNOWLEDGMENTS

The authors have been supported by the fellowship
Lumina Quaeruntur No. LQ100032102 of the Czech
Academy of Sciences. The authors would like to
acknowledge networking support by the GWverse
COST Action CA16104, “Black holes, gravitational
waves and fundamental physics”. V. S. would also like
to express gratitude for the hospitality of the Theoretical
Physics Institute at the University of Jena. We would
like to thank Sebastiano Bernuzzi, Enno Harms, Vojtěch
Witzany and Tomáš Ledvinka for useful discussions and
comments. This work makes use of the Black Hole
Perturbation Toolkit. Computational resources were sup-
plied by the project “e-Infrastruktura CZ” (e-INFRA
LM2018140) provided within the program Projects
of Large Research, Development and Innovations
Infrastructures.

APPENDIX A: LIST OF DIMENSIONLESS
QUANTITIES

Throughout this work, we use several quantities both in
their full form and dimensionless form. The dimensionless
form is denoted by a hat. Their list with relation between
the full and dimensionless form is in Table I. Some
quantities such as the time parameter λ or x are defined
only as dimensionless whereas other quantities are used
only in their full form.

TABLE I. List of dimensionless quantities.

t̂ ¼ t=M BL time
r̂ ¼ r=M BL radial coordinate
â ¼ a=M Kerr parameter
σ ¼ S=ðμMÞ Secondary spin
Ê ¼ E=μ Energy

Ĵz ¼ Jz=ðμMÞ Angular momentum
τ̂ ¼ τ=M Proper time
Δ̂ ¼ Δ=M2

ϖ̂2 ¼ ϖ2=M2

Ω̂r ¼ ΩrM Radial BL frequency

Ω̂ϕ ¼ ΩϕM Orbital BL frequency
ω̂ ¼ ωM Frequency
Ĉ0
ab ¼ C0

ab=μ
Ĉσ
ab ¼ Cσ

ab=μ
Ĉ�
lmn ¼ C�

lmnM
2=μ Partial amplitudes

û ¼ u=M Retarded coordinate
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APPENDIX B: FORMULAS FOR GW FLUXES

In this Appendix we derive the coefficients Ai ¼ Aiðr; θÞ
and Biþ1 ¼ Biþ1ðr; θÞ, i ¼ 0, 1, 2, in Eq. (73) for calcu-
lation of partial amplitudes of GWs from general bound
orbits of a spinning particle around a Kerr black hole. Then
we list explicit formulas for equatorial orbits with secon-
dary spin parallel to the z axis.
To find the form of the coefficients Ai and Biþ1 in

Eq. (73), the integrals (68) and (65) must be evaluated using
rules for integrating delta functions. We can classify the
parts of the coefficients Ai according to term from which
they originate:

A0 ¼
X

ab¼nn;nm̄;m̄ m̄

ðA0
ab0 þ Atϕ

ab0 þ Ar
ab0 þ Aθ

ab0Þ; ðB1Þ

A1 ¼
X

ab¼nm̄;m̄ m̄

ðA0
ab1 þ Atϕ

ab1 þ Ar
ab1 þ Aθ

ab1Þ; ðB2Þ

A2 ¼ A0
m̄ m̄ 0 þ Atϕ

m̄ m̄ 0 þ Ar
m̄ m̄ 1 þ Aθ

m̄ m̄ 1: ðB3Þ

The terms A0
abi originate from the first term of the stress-

energy tensor (70) containing the nonspinning part of Tμν

and parts containing Christoffel symbols. The terms Atϕ
abi

originate from the second term of (70) containing t and ϕ
derivative. Similarly, the terms Ar

abi or A
θ
abi originate from

the second term of Eq. (70) containing r or θ derivative
respectively. The subscripts ab denote the tetrad legs
in Eq. (69).
A0
abi can be found by integrating θ and ϕ after sub-

stituting the first term of Eq. (70) into Eq. (68) by
replacing θ → θpðtÞ, ϕ → ϕpðtÞ and then using inte-
gration by parts in Eq. (65), where the derivatives with
respect to r in (69) are shifted to the radial function R�

lmn to
obtain

A0
abi ¼ ðC0

ab − Cσ
abÞfðiÞab; ðB4Þ

where C0
ab and Cσ

ab are defined in Eq. (71).
To find the form of Atϕ

abi, we must perform integration by
parts in Eq. (68) where the t or ϕ derivative in the second
term of Eq. (70) are shifted to expðiω − imϕÞ because no
other functions depend on t and ϕ. From this, we get terms
multiplied by iω and−imϕ. After that, an integration over r
of Eq. (65) is done similarly as in the previous case and we
obtain

Atϕ
abi ¼

dτ
dt

ðiωStμ − imSϕμÞvνeðaÞðμ e
ðbÞ
νÞ f

ðiÞ
ab: ðB5Þ

The term Aθ
abi is derived in similar way. The derivative

with respect to θ in the second term in (70) is shifted to the

functions fðiÞab and the tetrad legs. The boundary term

vanishes because fðiÞabðr; 0Þ ¼ fðiÞabðr; πÞ ¼ 0. The final term
has the form

Aθ
abi ¼

dτ
dt

SθðμvνÞfðiÞab∂θðeðaÞμ eðbÞν Þ

þ dτ
dt

SθðμvνÞeðaÞμ eðbÞν ∂θf
ðiÞ
ab: ðB6Þ

Now let us focus on the term containing the r derivative
in Eq. (70). After substituting the stress-energy tensor (70)
into Eq. (69), the derivative of the delta function can be

shifted to the function fðiÞab and the tetrad legs. For example,
from the first term of T nm̄ we obtain

∂rðfð1Þnm̄ðr; θÞnμm̄ν∂rððvtÞ−1SrðμvνÞδ3ÞÞ
¼ ∂2

rðfð1Þnm̄ðr; θÞnμm̄νðvtÞ−1SrðμvνÞδ3Þ
− ∂rð∂rðfð1Þnm̄ðr; θÞnμm̄νÞðvtÞ−1SrðμvνÞδ3Þ ðB7Þ

After substituting Eq. (68) into Eq. (65) we can change
the order of the t and r integrals and integrate by parts.
From the second term in Eq. (B7) we obtain a term with

derivatives with respect to r of fðiÞab and the tetrad legs

Ar
abi ¼

dτ
dt

SrðμvνÞfðiÞab∂rðeðaÞμ eðbÞν Þ

þ dτ
dt

SrðμvνÞeðaÞμ eðbÞν ∂rf
ðiÞ
ab: ðB8Þ

From the second term in Eq. (B7) we obtain terms with one
order higher derivatives of the radial function R�

lmω, of
which the integration by parts we can perform to obtain the
coefficients

B1 ¼
X

ab¼nn;nm̄;m̄ m̄

Bab1; ðB9Þ

B2 ¼
X

ab¼nm̄;m̄ m̄

Bab2; ðB10Þ

B3 ¼ Bm̄ m̄ 3; ðB11Þ

where

Babðiþ1Þ ¼ −
dτ
dt

SrðμvνÞeðaÞμ eðbÞν fðiÞab: ðB12Þ

The functions fðiÞab ¼ fðiÞabðr; θÞ in the equatorial plane are
given by

fð0Þnn

�
r;
π

2

�
¼ −

2r2

Δ2

�
L†
1L

†
2 −

2ia
r

L†
2

�
Saωlm ðθÞjθ→π

2
; ðB13Þ

fð0Þnm̄

�
r;
π

2

�
¼ 2

ffiffiffi
2

p
r

Δ

�
iK
Δ

þ 2

r

�
L†
2S

aω
lm ðθÞjθ→π

2
; ðB14Þ
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fð1Þnm̄

�
r;
π

2

�
¼ 2

ffiffiffi
2

p
r

Δ
L†
2S

aω
lm ðθÞjθ→π

2
; ðB15Þ

fð0Þm̄ m̄

�
r;
π

2

�
¼

�
i∂r

�
K
Δ

�
− 2i

K
Δr

þ K2

Δ2

�
Saωlm

�
π

2

�
;

ðB16Þ

fð1Þm̄ m̄

�
r;
π

2

�
¼ −2

�
1

r
þ i

K
Δ

�
Saωlm

�
π

2

�
; ðB17Þ

fð2Þm̄ m̄

�
r;
π

2

�
¼ −Saωlm

�
π

2

�
; ðB18Þ

where

K ¼ ðr2 þ a2Þω − am; ðB19Þ

L†
n ¼ ∂θ −m csc θ þ aω sin θ þ n cot θ: ðB20Þ

Up to this point the analysis holds for generic orbits of a
spinning particle. When we constrain the particle on
equatorial orbits with its spin set parallel to the z axis,
then Sθμ ¼ 0 for all μ and, therefore, Aθ

abi ¼ 0. For the
presentation of the equatorial case, we prefer to use the
dimensionless quantities.
In the definition of C0

ab and Cσ
ab (71) we can replace the

derivative with respect to τ in vμ with derivative with
respect to λ and use the fact that Vt ¼ dt̂=dλ, Vr ¼ dr̂=dλ
and Vϕ ¼ dϕ=dλ. From Eqs. (23) and (25) we obtain

Ĉ0
nn ¼

dλ
dt̂

V2
n

Σσ
; ðB21Þ

Ĉ0
nm̄ ¼ dλ

dt̂
Vm̄Vnð2r̂3 þ σ2Þ
2Σσðr̂3 þ 2σ2Þ ; ðB22Þ

Ĉ0
m̄ m̄ ¼ dλ

dt̂
r̂V2

m̄

ðr̂3 þ 2σ2Þ ; ðB23Þ

Ĉσ
nn ¼

dλ
dt̂

σ

2r̂2Σσ

�
2âV2

n −
Δ̂ðr̂3 þ 2σ2Þ

r̂3 − σ2
Vnxþ ðâ2 − r̂ÞVrx

�
; ðB24Þ

Ĉσ
nm̄ ¼ dλ

dt̂
iσ

2
ffiffiffi
2

p
r̂Σσ

�
−
â2 − r̂
Δ

ð2V2
n þ ðVrÞ2Þ − â2 − r̂2

Δ̂
VnVr þ 3âσ2

r̂Σσ
Vnx − âVrxþ Δ̂ðr̂3 þ 2σ2Þ

2r̂Σσ
x2
�
; ðB25Þ

Ĉσ
m̄ m̄ ¼ dλ

dt̂
σ

Σσ

�
−
â

Δ̂
ð2V2

n þ 2VnVr þ ðVrÞ2Þ þ i

r̂
ffiffiffi
2

p ð2Vn þ VrÞVm̄

�
; ðB26Þ

where

Vn ¼ Vtnt þ Vrnr þ Vϕ
nϕ
M

¼ −
Pσðr̂Þ þ Vr

2
; ðB27Þ

Vm̄ ¼ Vtm̄t þ Vϕ
m̄ϕ

M
¼ −

ixðr̂3 þ 2σ2Þffiffiffi
2

p
Σσ

: ðB28Þ

We can rewrite the expressions for Atϕ
abi, Ar

abi, and
Babðiþ1Þ into dimensionless quantities as

Âtϕ
abi ¼

dλ
dt̂

ðiω̂Ŝtða − imŜϕðaÞVbÞf̂
ðiÞ
ab

�
r̂;
π

2

�
; ðB29Þ

Âr
abi ¼

dλ
dt̂

ðŜrð∂ r̂aVbÞ þ ŜrðbV∂ r̂aÞÞfðiÞab
�
r̂;
π

2

�

þ dλ
dt̂

ŜrðaVbÞ∂ r̂f̂
ðiÞ
ab

�
r̂;
π

2

�
; ðB30Þ

B̂abðiþ1Þ ¼ −
dλ
dt̂

ŜrðaVbÞf̂
ðiÞ
ab

�
r̂;
π

2

�
; ðB31Þ

where we used the dimensionless projections of Sμν into the
tetrad

Ŝtn ¼
1

μM
ðStrnr þ SrϕnϕÞ ¼

σðxϖ̂2 − 2âVnÞ
2r̂Σσ

; ðB32Þ

Ŝrn ¼
1

μM
ð−Strnt þ SrϕnϕÞ ¼ −

σxΔ̂
2r̂Σσ

; ðB33Þ

Ŝϕn ¼
1

μ
ð−Stϕnt − SrϕnrÞ ¼

σðâx − 2VnÞ
2r̂Σσ

; ðB34Þ

Ŝtm̄ ¼ 1

μM
Stϕm̄ϕ ¼ −

iσϖ̂2Vrffiffiffi
2

p
Δ̂Σσ

; ðB35Þ

Ŝrm̄ ¼ 1

μM
ð−Strm̄t þ Srϕm̄ϕÞ ¼ −

iσPσðr̂Þffiffiffi
2

p
Σσ

; ðB36Þ

Ŝϕm̄ ¼ −
1

μ
Stϕm̄t ¼ −

iσâVrffiffiffi
2

p
Δ̂Σσ

: ðB37Þ
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The quantities V∂ r̂a and Ŝr∂ r̂a can be understood as
dimensionless projections on the differentiated tetrad ∂re

μ
ðaÞ

V∂ r̂n ¼ M

�
Vt∂rnt þ Vr∂rnr þ Vϕ

∂rnϕ
M

�

¼ ðâ2 − r̂ÞPσðr̂Þ
r̂ Δ̂

; ðB38Þ

V∂ r̂m̄ ¼ M

�
Vt∂rm̄t þ Vϕ

∂rm̄ϕ

M

�

¼ Vm̄

r̂
−
i

ffiffiffi
2

p
âPσðr̂Þ
Δ̂

; ðB39Þ

Ŝr∂ r̂n ¼
1

μ
ð−Str∂rnt þ Srϕ∂rnϕÞ ¼

σðâ2 − r̂Þx
r̂2Σσ

; ðB40Þ

Ŝr∂ r̂m̄ ¼ 1

μ
ð−Str∂rm̄t þ Srϕ∂rm̄ϕÞ

¼ −
iσð2âxþ Pσðr̂ÞÞffiffiffi

2
p

r̂Σσ

; ðB41Þ

where the covariant components of the tetrad are

nμ ¼
1

2Σ
ð−Δ;−Σ; 0; aΔ sin2 θÞ; ðB42Þ

m̄μ ¼ −
ρffiffiffi
2

p ðia sin θ; 0;Σ;−iϖ2 sin θÞ: ðB43Þ

APPENDIX C: COMPARISON WITH
[PHYS. REV. D 73, 024027 (2006)]

This section compares our frequency domain calcula-
tions for a nonspinning particle with results obtained in
[25]. In that work, the GW fluxes were calculated
from generic orbits of a nonspinning particle moving
around a Kerr black hole using Teukolsky formalism with
the fractional accuracy of the energy flux l, m-modes set
to 10−6.
We have compared our data with theirs for an equatorial

orbit around a Kerr black hole with â ¼ 0.3, p ¼
8.463649 ¼ 1.7r̂ISCO and e ¼ 0.3. In particular, we have
compared our energy fluxes FE∞

lmn, F
EH
lmn and amplitudes

Ĉ�
lmn with their data. In the top panel of Fig. 9, we plot

the difference between our calculated fluxes FE∞
lmn and the

fluxes FE∞
lmnDH calculated in [25] normalized by the

maximum of FE∞
lmn over n for each lm-mode

δFE∞
lmn ¼

jFE∞
lmn − FE∞

lmnDHj
maxnmin≤n≤nmax

FE∞
lmn

: ðC1Þ

FIG. 9. Differences between our frequency domain results and
the results obtained in [25]. Top panel: the difference δFE∞

lmn
between the fluxes normalized by maxnmin≤n≤nmax

jFE∞
lmnj. Bottom

panel: the difference δĈþ
lmn between the coefficients normalized

by maxnmin≤n≤nmax
jĈþ

lmnj.

FIG. 10. Differences between our frequency domain results and
the results obtained in [25]. Top panel: the difference δFEH

lmn
between the fluxes normalized by maxnmin≤n≤nmax

jFEH
lmnj. Bottom

panel: the difference δĈ−
lmn between the coefficients normalized

by maxnmin≤n≤nmax
jĈ−

lmnj.
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We can see that for each lmn-mode the error is less than
10−6 of the maximal value for given l and m. In a similar
way, we have compared the coefficients Ĉþ

lmn using the
quantity

δCþ
lmn ¼

jĈþ
lmn − Ĉþ

lmnDHj
maxnmin≤n≤nmax

jĈþ
lmnj

: ðC2Þ

The result of this comparison is shown in the bottom panel
of Fig. 9. The normalized difference for the coefficients
Ĉþ
lmn is higher than in the flux comparison, because the flux

is calculated from the second power of Ĉþ
lmn and the error is

thus relatively smaller. Similar comparison was calculated

for the horizon fluxesFEH
lmn and Ĉ

�
lmn. The result is shown in

Fig. 10. Although the accuracy is less than 10−6 for some
modes, the contribution from the horizon fluxes is smaller
than from the fluxes to infinity and the overall accuracy
remains higher.

APPENDIX D: DATA TABLES

In this appendix we present data tables of the partial
amplitudes C�

lmn (Tables II–V) for an orbit with orbital
parameters â ¼ 0.9, σ ¼ −0.5, p ¼ 12, e ¼ 0.2. The con-
stants of motion and the fundamental frequencies calcu-
lated from the Eqs. (38), (39), (53) and (52) are

TABLE II. List of partial amplitudes C�
l1n for an orbit with orbital parameters â ¼ 0.9, σ ¼ −0.5, p ¼ 12, e ¼ 0.2.

l m n RefCþ
lmng ImfCþ

lmng RefC−
lmng ImfC−

lmng
2 1 −6 5.167891 × 10−10 −1.467715 × 10−9 4.763386 × 10−9 7.282975 × 10−8

2 1 −5 1.335467 × 10−9 −4.271458 × 10−9 9.287132 × 10−9 3.018417 × 10−7

2 1 −4 2.722364 × 10−9 −1.043309 × 10−8 −5.859804 × 10−10 1.237186 × 10−6

2 1 −3 3.539058 × 10−9 −1.824696 × 10−8 −1.435506 × 10−7 5.014982 × 10−6

2 1 −2 1.292175 × 10−9 −1.244299 × 10−8 −1.084857 × 10−6 2.011327 × 10−5

2 1 −1 2.025147 × 10−10 4.098935 × 10−9 −6.110857 × 10−6 7.974254 × 10−5

2 1 0 −8.063520 × 10−7 −5.100353 × 10−6 −4.159829 × 10−5 4.294392 × 10−4

2 1 1 −1.456843 × 10−6 −6.201949 × 10−6 −3.035062 × 10−5 2.643207 × 10−4

2 1 2 −1.100808 × 10−6 −3.735099 × 10−6 −1.503776 × 10−5 1.150093 × 10−4

2 1 3 −5.586369 × 10−7 −1.633602 × 10−6 −6.182375 × 10−6 4.266183 × 10−5

2 1 4 −2.230519 × 10−7 −5.891306 × 10−7 −2.272133 × 10−6 1.441687 × 10−5

2 1 5 −7.504175 × 10−8 −1.849669 × 10−7 −7.750262 × 10−7 4.582582 × 10−6

2 1 6 −2.190751 × 10−8 −5.168866 × 10−8 −2.508722 × 10−7 1.395109 × 10−6

2 1 7 −5.569707 × 10−9 −1.283265 × 10−8 −7.819832 × 10−8 4.114092 × 10−7

2 1 8 −1.192995 × 10−9 −2.742169 × 10−9 −2.371637 × 10−8 1.184135 × 10−7

3 1 −6 4.142460 × 10−10 −9.135246 × 10−10 1.272727 × 10−8 1.107665 × 10−8

3 1 −5 9.739033 × 10−10 −2.513096 × 10−9 4.917854 × 10−8 4.243317 × 10−8

3 1 −4 1.677799 × 10−9 −5.375419 × 10−9 1.880053 × 10−7 1.599580 × 10−7

3 1 −3 1.428809 × 10−9 −6.372160 × 10−9 7.093426 × 10−7 5.919756 × 10−7

3 1 −2 −3.968943 × 10−10 3.427931 × 10−9 2.633559 × 10−6 2.144669 × 10−6

3 1 0 −1.196768 × 10−7 −6.663590 × 10−7 4.292987 × 10−5 3.279176 × 10−5

3 1 1 2.815396 × 10−7 1.022378 × 10−6 2.784472 × 10−5 2.044711 × 10−5

3 1 2 3.393782 × 10−7 9.521505 × 10−7 1.277421 × 10−5 8.974092 × 10−6

3 1 3 1.975341 × 10−7 4.622740 × 10−7 4.983533 × 10−6 3.333072 × 10−6

3 1 4 8.151849 × 10−8 1.663691 × 10−7 1.766440 × 10−6 1.119246 × 10−6

3 1 5 2.659713 × 10−8 4.876757 × 10−8 5.874042 × 10−7 3.508458 × 10−7

3 1 6 7.014470 × 10−9 1.180811 × 10−8 1.866093 × 10−7 1.045302 × 10−7

3 1 7 1.392344 × 10−9 2.201409 × 10−9 5.728150 × 10−8 2.993285 × 10−8

4 1 0 −6.611595 × 10−10 −3.354890 × 10−9 1.778200 × 10−6 −9.269538 × 10−7

4 1 1 3.327272 × 10−9 1.078814 × 10−8 1.293272 × 10−6 −7.573044 × 10−7

4 1 2 5.489708 × 10−9 1.347987 × 10−8 6.508828 × 10−7 −4.275336 × 10−7

4 1 3 3.989895 × 10−9 8.004271 × 10−9 2.704943 × 10−7 −1.991900 × 10−7

4 1 4 1.899103 × 10−9 3.250073 × 10−9 9.959920 × 10−8 −8.225436 × 10−8

4 1 5 6.514413 × 10−10 9.782216 × 10−10 3.367305 × 10−8 −3.122972 × 10−8

5 1 1 2.035370 × 10−9 6.185810 × 10−9 −1.963261 × 10−8 −1.023901 × 10−7

5 1 3 −1.411206 × 10−9 −2.593480 × 10−9 −8.203217 × 10−9 −2.319941 × 10−8

5 1 4 −1.152085 × 10−9 −1.783264 × 10−9 −3.940505 × 10−9 −8.863485 × 10−9
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TABLE III. List of partial amplitudes C�
l2n for the same orbit as in Table II.

l m n RefCþ
lmng ImfCþ

lmng RefC−
lmng ImfC−

lmng
2 2 −4 −1.646357 × 10−9 −2.613368 × 10−10 2.350051 × 10−8 1.728856 × 10−9

2 2 −3 −5.171809 × 10−9 −3.499305 × 10−10 1.187803 × 10−7 1.441103 × 10−8

2 2 −2 1.563190 × 10−7 −1.253110 × 10−8 2.380182 × 10−6 3.978260 × 10−7

2 2 −1 −4.066035 × 10−5 6.801245 × 10−6 −9.742181 × 10−5 −2.076711 × 10−5

2 2 0 3.858210 × 10−4 −8.824264 × 10−5 5.307355 × 10−4 1.379732 × 10−4

2 2 1 3.970205 × 10−4 −1.089118 × 10−4 4.287891 × 10−4 1.314682 × 10−4

2 2 2 2.406528 × 10−4 −7.404687 × 10−5 2.175548 × 10−4 7.698517 × 10−5

2 2 3 1.138352 × 10−4 −3.764006 × 10−5 8.960040 × 10−5 3.602218 × 10−5

2 2 4 4.644175 × 10−5 −1.599176 × 10−5 3.266409 × 10−5 1.474535 × 10−5

2 2 5 1.715753 × 10−5 −5.997531 × 10−6 1.098058 × 10−5 5.516737 × 10−6

2 2 6 5.901325 × 10−6 −2.047506 × 10−6 3.482534 × 10−6 1.934221 × 10−6

2 2 7 1.922706 × 10−6 −6.480880 × 10−7 1.056831 × 10−6 6.456290 × 10−7

2 2 8 6.002221 × 10−7 −1.923652 × 10−7 3.097499 × 10−7 2.073768 × 10−7

2 2 9 1.810496 × 10−7 −5.403652 × 10−8 8.825836 × 10−8 6.461080 × 10−8

2 2 10 5.321319 × 10−8 −1.460369 × 10−8 2.456752 × 10−8 1.967628 × 10−8

2 2 11 1.545017 × 10−8 −3.880442 × 10−9 6.695307 × 10−9 5.913216 × 10−9

2 2 12 4.635476 × 10−9 −9.455299 × 10−10 1.752615 × 10−9 1.779985 × 10−9

2 2 13 1.168229 × 10−9 −1.713718 × 10−10 4.702090 × 10−10 4.920492 × 10−10

3 2 −1 −2.396250 × 10−7 5.060581 × 10−8 1.890430 × 10−6 −9.847625 × 10−7

3 2 0 3.649975 × 10−6 −1.111405 × 10−6 3.187469 × 10−5 −1.653879 × 10−5

3 2 1 4.889631 × 10−6 −1.883465 × 10−6 3.015258 × 10−5 −1.566972 × 10−5

3 2 2 3.536010 × 10−6 −1.615521 × 10−6 1.793053 × 10−5 −9.383274 × 10−6

3 2 3 1.888741 × 10−6 −9.843758 × 10−7 8.495665 × 10−6 −4.500460 × 10−6

3 2 4 8.370027 × 10−7 −4.845333 × 10−7 3.503785 × 10−6 −1.888329 × 10−6

3 2 5 3.260656 × 10−7 −2.055320 × 10−7 1.314468 × 10−6 −7.241796 × 10−7

3 2 6 1.154284 × 10−7 −7.798475 × 10−8 4.601592 × 10−7 −2.603261 × 10−7

3 2 7 3.790759 × 10−8 −2.708873 × 10−8 1.527743 × 10−7 −8.912589 × 10−8

3 2 8 1.170216 × 10−8 −8.743846 × 10−9 4.863519 × 10−8 −2.937305 × 10−8

3 2 9 3.415775 × 10−9 −2.649605 × 10−9 1.496262 × 10−8 −9.389021 × 10−9

3 2 10 9.324112 × 10−10 −7.609938 × 10−10 4.474358 × 10−9 −2.926757 × 10−9

4 2 −1 −4.819515 × 10−8 1.102927 × 10−8 1.244599 × 10−7 −4.205354 × 10−7

4 2 0 1.025155 × 10−6 −3.437785 × 10−7 1.114267 × 10−6 −4.056764 × 10−6

4 2 1 3.046028 × 10−7 −1.313240 × 10−7 9.753818 × 10−7 −3.881701 × 10−6

4 2 2 −1.647969 × 10−7 8.570891 × 10−8 5.323946 × 10−7 −2.357344 × 10−6

4 2 3 −2.043076 × 10−7 1.234177 × 10−7 2.267391 × 10−7 −1.142665 × 10−6

4 2 4 −1.208388 × 10−7 8.265904 × 10−8 8.153936 × 10−8 −4.822614 × 10−7

4 2 5 −5.386171 × 10−8 4.095780 × 10−8 2.551314 × 10−8 −1.851227 × 10−7

4 2 6 −2.029400 × 10−8 1.691104 × 10−8 6.938177 × 10−9 −6.628891 × 10−8

4 2 7 −6.788401 × 10−9 6.130268 × 10−9 1.566483 × 10−9 −2.250158 × 10−8

4 2 8 −2.068407 × 10−9 2.005378 × 10−9 2.389387 × 10−10 −7.319933 × 10−9

5 2 0 7.342146 × 10−9 −2.652971 × 10−9 −9.489133 × 10−8 −1.219765 × 10−7

5 2 1 1.759299 × 10−9 −8.273581 × 10−10 −1.010641 × 10−7 −1.194663 × 10−7

5 2 2 −3.657312 × 10−9 2.102053 × 10−9 −7.026352 × 10−8 −7.612572 × 10−8

5 2 3 −4.181570 × 10−9 2.831232 × 10−9 −3.875359 × 10−8 −3.833430 × 10−8

5 2 4 −2.657863 × 10−9 2.069513 × 10−9 −1.841952 × 10−8 −1.655902 × 10−8

5 2 5 −1.274114 × 10−9 1.121653 × 10−9 −7.882070 × 10−9 −6.404217 × 10−9
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TABLE IV. List of partial amplitudes C�
l3n for the same orbit as in Table II.

l m n RefCþ
lmng ImfCþ

lmng RefC−
lmng ImfC−

lmng
3 3 −3 −1.004997 × 10−9 −7.760638 × 10−9 3.558851 × 10−9 1.588115 × 10−8

3 3 −2 4.716853 × 10−7 2.003985 × 10−6 −3.882412 × 10−7 −1.922022 × 10−6

3 3 −1 −1.300363 × 10−5 −4.030524 × 10−5 4.310309 × 10−6 2.366988 × 10−5

3 3 0 5.305191 × 10−5 1.331426 × 10−4 −9.633994 × 10−6 −5.865711 × 10−5

3 3 1 8.900651 × 10−5 1.911136 × 10−4 −1.135235 × 10−5 −7.650771 × 10−5

3 3 2 7.612663 × 10−5 1.447861 × 10−4 −7.199807 × 10−6 −5.358218 × 10−5

3 3 3 4.744130 × 10−5 8.189333 × 10−5 −3.482019 × 10−6 −2.851315 × 10−5

3 3 4 2.434203 × 10−5 3.884905 × 10−5 −1.438478 × 10−6 −1.289482 × 10−5

3 3 5 1.092213 × 10−5 1.635785 × 10−5 −5.363338 × 10−7 −5.227212 × 10−6

3 3 6 4.438184 × 10−6 6.316315 × 10−6 −1.863735 × 10−7 −1.957612 × 10−6

3 3 7 1.670164 × 10−6 2.283624 × 10−6 −6.164127 × 10−8 −6.902951 × 10−7

3 3 8 5.909836 × 10−7 7.840535 × 10−7 −1.969217 × 10−8 −2.321446 × 10−7

3 3 9 1.988825 × 10−7 2.581659 × 10−7 −6.141824 × 10−9 −7.513658 × 10−8

3 3 10 6.409344 × 10−8 8.217920 × 10−8 −1.884840 × 10−9 −2.356231 × 10−8

3 3 11 2.020696 × 10−8 2.531856 × 10−8 −5.716907 × 10−10 −7.198380 × 10−9

3 3 12 6.131692 × 10−9 7.692513 × 10−9 −1.717137 × 10−10 −2.149742 × 10−9

3 3 13 1.679868 × 10−9 2.245018 × 10−9 −5.246898 × 10−11 −6.287407 × 10−10

4 3 −2 2.685489 × 10−9 1.028336 × 10−8 −2.488432 × 10−8 −2.373154 × 10−8

4 3 −1 −1.147948 × 10−7 −3.145041 × 10−7 1.950153 × 10−7 1.857823 × 10−7

4 3 0 6.392598 × 10−7 1.390373 × 10−6 −2.124982 × 10−6 −2.014665 × 10−6

4 3 1 1.316270 × 10−6 2.399175 × 10−6 −2.891155 × 10−6 −2.717792 × 10−6

4 3 2 1.323400 × 10−6 2.090102 × 10−6 −2.242899 × 10−6 −2.082785 × 10−6

4 3 3 9.395536 × 10−7 1.315492 × 10−6 −1.324312 × 10−6 −1.210354 × 10−6

4 3 4 5.364249 × 10−7 6.771760 × 10−7 −6.609932 × 10−7 −5.923846 × 10−7

4 3 5 2.629183 × 10−7 3.032417 × 10−7 −2.939162 × 10−7 −2.573399 × 10−7

4 3 6 1.149548 × 10−7 1.224621 × 10−7 −1.200513 × 10−7 −1.023073 × 10−7

4 3 7 4.595850 × 10−8 4.564687 × 10−8 −4.593515 × 10−8 −3.795772 × 10−8

4 3 8 1.708722 × 10−8 1.595567 × 10−8 −1.668689 × 10−8 −1.331898 × 10−8

4 3 9 5.977998 × 10−9 5.284213 × 10−9 −5.810556 × 10−9 −4.462024 × 10−9

4 3 10 1.986521 × 10−9 1.675756 × 10−9 −1.953240 × 10−9 −1.437145 × 10−9

5 3 −2 7.907117 × 10−10 2.853014 × 10−9 −6.478361 × 10−9 −3.587094 × 10−10

5 3 −1 −4.398249 × 10−8 −1.123248 × 10−7 1.317613 × 10−8 5.278265 × 10−10

5 3 0 3.218695 × 10−7 6.453677 × 10−7 −3.389273 × 10−7 −7.785256 × 10−9

5 3 1 3.455801 × 10−7 5.738309 × 10−7 −4.536955 × 10−7 −1.859315 × 10−9

5 3 2 1.711208 × 10−7 2.430505 × 10−7 −3.512562 × 10−7 5.820222 × 10−9

5 3 3 3.896109 × 10−8 4.837181 × 10−8 −2.071569 × 10−7 8.090550 × 10−9

5 3 4 −1.094717 × 10−8 −1.206677 × 10−8 −1.031213 × 10−7 6.536982 × 10−9

5 3 5 −1.726012 × 10−8 −1.709111 × 10−8 −4.563110 × 10−8 4.089656 × 10−9

5 3 6 −1.143495 × 10−8 −1.026788 × 10−8 −1.850203 × 10−8 2.179864 × 10−9

5 3 7 −5.747543 × 10−9 −4.714943 × 10−9 −7.009564 × 10−9 1.037791 × 10−9

5 3 8 −2.468744 × 10−9 −1.860621 × 10−9 −2.514576 × 10−9 4.537261 × 10−10

5 3 9 −9.509418 × 10−10 −6.710533 × 10−10 −8.623420 × 10−10 1.854954 × 10−10

6 3 0 2.515496 × 10−9 4.721206 × 10−9 −8.984566 × 10−9 9.229790 × 10−9

6 3 1 3.001379 × 10−9 4.619049 × 10−9 −1.151088 × 10−8 1.262076 × 10−8

6 3 2 1.275195 × 10−9 1.660290 × 10−9 −9.081402 × 10−9 1.067007 × 10−8

6 3 4 −7.270147 × 10−10 −7.155788 × 10−10 −2.769497 × 10−9 3.789745 × 10−9
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TABLE V. List of partial amplitudes C�
l4n for the same orbit as in Table II.

l m n RefCþ
lmng ImfCþ

lmng RefC−
lmng ImfC−

lmng
4 4 −3 1.030232 × 10−7 −2.987138 × 10−8 2.594938 × 10−8 −1.364431 × 10−8

4 4 −2 −3.167459 × 10−6 1.235891 × 10−6 −5.564356 × 10−7 2.832212 × 10−7

4 4 −1 2.493681 × 10−5 −1.203041 × 10−5 3.475072 × 10−6 −1.718247 × 10−6

4 4 0 −3.730632 × 10−5 2.123841 × 10−5 −4.314063 × 10−6 2.079650 × 10−6

4 4 1 −8.092430 × 10−5 5.277164 × 10−5 −9.355450 × 10−6 4.413471 × 10−6

4 4 2 −7.619630 × 10−5 5.574275 × 10−5 −8.650047 × 10−6 4.008745 × 10−6

4 4 3 −5.089773 × 10−5 4.112353 × 10−5 −5.704990 × 10−6 2.607445 × 10−6

4 4 4 −2.773635 × 10−5 2.444478 × 10−5 −3.087320 × 10−6 1.397110 × 10−6

4 4 5 −1.316378 × 10−5 1.252512 × 10−5 −1.461746 × 10−6 6.575647 × 10−7

4 4 6 −5.647802 × 10−6 5.750074 × 10−6 −6.277339 × 10−7 2.818301 × 10−7

4 4 7 −2.243064 × 10−6 2.424266 × 10−6 −2.501089 × 10−7 1.125120 × 10−7

4 4 8 −8.381942 × 10−7 9.546192 × 10−7 −9.388208 × 10−8 4.248119 × 10−8

4 4 9 −2.980940 × 10−7 3.554223 × 10−7 −3.356380 × 10−8 1.533473 × 10−8

4 4 10 −1.020168 × 10−7 1.261960 × 10−7 −1.152115 × 10−8 5.334443 × 10−9

4 4 11 −3.378335 × 10−8 4.299271 × 10−8 −3.820558 × 10−9 1.799074 × 10−9

4 4 12 −1.082123 × 10−8 1.416903 × 10−8 −1.229874 × 10−9 5.909993 × 10−10

4 4 13 −2.922436 × 10−9 4.787284 × 10−9 −3.860830 × 10−10 1.899575 × 10−10

4 4 14 −1.034014 × 10−9 1.406801 × 10−9 −1.182908 × 10−10 5.976449 × 10−11

5 4 −2 −1.875445 × 10−8 7.933698 × 10−9 −3.023775 × 10−9 5.361340 × 10−9

5 4 −1 1.928140 × 10−7 −1.021033 × 10−7 3.348964 × 10−8 −5.960966 × 10−8

5 4 0 −3.581359 × 10−7 2.267803 × 10−7 −1.071155 × 10−7 1.920896 × 10−7

5 4 1 −8.885218 × 10−7 6.538335 × 10−7 −2.097613 × 10−7 3.803623 × 10−7

5 4 2 −9.357029 × 10−7 7.847094 × 10−7 −2.025645 × 10−7 3.727819 × 10−7

5 4 3 −6.840485 × 10−7 6.445750 × 10−7 −1.413811 × 10−7 2.650546 × 10−7

5 4 4 −4.007050 × 10−7 4.196831 × 10−7 −8.077376 × 10−8 1.548634 × 10−7

5 4 5 −2.013663 × 10−7 2.324005 × 10−7 −4.013179 × 10−8 7.900370 × 10−8

5 4 6 −9.029619 × 10−8 1.140120 × 10−7 −1.795737 × 10−8 3.645112 × 10−8

5 4 7 −3.705473 × 10−8 5.087027 × 10−8 −7.399921 × 10−9 1.555748 × 10−8

5 4 8 −1.416211 × 10−8 2.102079 × 10−8 −2.851190 × 10−9 6.238100 × 10−9

5 4 9 −5.102297 × 10−9 8.148365 × 10−9 −1.038250 × 10−9 2.376195 × 10−9

5 4 10 −1.757070 × 10−9 2.997933 × 10−9 −3.601133 × 10−10 8.670269 × 10−10

5 4 11 −5.830642 × 10−10 1.054002 × 10−9 −1.196530 × 10−10 3.049759 × 10−10

6 4 −2 −8.666245 × 10−9 3.877093 × 10−9 1.065444 × 10−10 7.051137 × 10−10

6 4 −1 1.052404 × 10−7 −5.945050 × 10−8 −9.799602 × 10−10 −5.966157 × 10−9

6 4 0 −2.657233 × 10−7 1.812153 × 10−7 4.508872 × 10−9 2.519233 × 10−8

6 4 1 −3.867479 × 10−7 3.097707 × 10−7 9.373712 × 10−9 4.799473 × 10−8

6 4 2 −2.693825 × 10−7 2.488393 × 10−7 9.932362 × 10−9 4.656984 × 10−8

6 4 3 −1.291963 × 10−7 1.359028 × 10−7 7.665334 × 10−9 3.290682 × 10−8

6 4 4 −4.680907 × 10−8 5.556090 × 10−8 4.860330 × 10−9 1.910878 × 10−8

6 4 5 −1.257609 × 10−8 1.673105 × 10−8 2.686650 × 10−9 9.678828 × 10−9

6 4 6 −1.863538 × 10−9 2.764762 × 10−9 1.340226 × 10−9 4.427345 × 10−9

6 4 7 4.381872 × 10−10 −7.223455 × 10−10 6.169229 × 10−10 1.870247 × 10−9

6 4 8 5.248114 × 10−10 −9.583384 × 10−10 2.660845 × 10−10 7.408825 × 10−10

7 4 0 −1.681887 × 10−9 1.221218 × 10−9 8.419294 × 10−10 6.223333 × 10−10

7 4 1 −2.629027 × 10−9 2.263383 × 10−9 1.494752 × 10−9 1.045267 × 10−9

7 4 2 −1.825947 × 10−9 1.832837 × 10−9 1.524851 × 10−9 1.004491 × 10−9

7 4 3 −7.525698 × 10−10 8.711420 × 10−10 1.156468 × 10−9 7.142646 × 10−10
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Ê ¼ 0.961918749642517680134729458401233368989…

Ĵz ¼ 3.322244358788816670183960181110056686457…

Ω̂ϕ ¼ 0.022671787375747548523093927931917807

Ω̂r ¼ 0.017744448092313388568850328609190010

Only modes with jCþ
lmnj > 10−9 are listed for 1 ≤ m ≤ 4.

The accuracy of the dominant modes should be at six
significant digits, but for lower modes, the accuracy drops.
This accuracy depends mostly on the accuracy of the radial
function R�

lmn and the coordinates tðχÞ and ϕðχÞ.
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