PHYSICAL REVIEW D 103, 104045 (2021)

Spinning test body orbiting around a Kerr black hole: Eccentric equatorial
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We use the frequency and time domain Teukolsky formalism to calculate gravitational-wave fluxes from
a spinning body on a bound eccentric equatorial orbit around a Kerr black hole. The spinning body is
represented as a point particle following the pole-dipole approximation of the Mathisson-Papapetrou-
Dixon equations. Reformulating these equations we are not only able to find the trajectory of a spinning
particle in terms of its constants of motion, but also to provide a method to calculate the azimuthal and the
radial frequency of this trajectory. Using these orbital quantities, we introduce the machinery to calculate
through the frequency domain Teukolsky formalism the energy and the angular momentum fluxes at
infinity, and at the horizon, along with the gravitational strain at infinity. We crosscheck the results obtained
from the frequency domain approach with the results obtained from a time domain Teukolsky equation

solver called Teukode.
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I. INTRODUCTION

An extreme mass ratio inspiral (EMRI) is one of the
most promising events expected to be detected with future
space-based gravitational wave (GW) detectors like Laser
Interferometer Space Antenna (LISA) [1]. An EMRI
occurs when a stellar mass compact object such as a
black hole (BH) or a neutron star (secondary object) is
trapped in the vicinity of a supermassive black hole
(SMBH) (primary object). Due to gravitational radiation
reaction the secondary is slowly spiralling into the
primary while emitting GWs. From these GWs it is
possible to extract information about the EMRI system
such as the masses of the objects, their spins etc. On a
more fundamental physics level, EMRIs detection are
expected to allow us to probe the strong gravity regime
around a SMBH [2].

Currently in order to extract information from a GW
signal, when it is detected by the terrestrial observatories, it
has to be uncovered from a dominating noise background.
To achieve this, matched filtering is employed, i.e., wave-
form templates for a wide range of parameters are matched
with the detected time series. It is expected that we will
have to use matched filtering for GW signal received by
LISA as well, but not to uncover the signal from the noise;
in LISA’s case we will use them to disentangle overlapping
GW signals from simultaneously detected sources. Because
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of this, accurate models of the GW waveform templates are
planned to be produced for a wide range of parameters.
To model GWs from an EMRI, first the trajectory of
the secondary object must be reproduced. The standard way
to do this is to apply the two timescale approximation [3].
In an EMRI the mass ratio g = /M lies between 10~ and
1074, where y is the secondary mass and M is the primary
mass. The energy changes at rate £/E = O(g) which is
very small. The timescale of the inspiral is, thus, of the
order O(q7'), i.e., g~! times larger than the orbital time-
scale. This allows us to break our analysis in two time-
scales, the fast orbital and the slow adiabatic dissipation in
the constants of motion. In the fast one, the trajectory of
the secondary over one orbital period is close to a trajec-
tory calculated without a dissipation. The secondary is
actually drifting between orbits characterized by a set of
constants of motion. In this setup, the azimuthal
coordinate of the inspiral can be expanded as
¢ =q ' p(qt) + ¢V (qt) + O(q). The first term of the
expansion is of adiabatic order and includes the contri-
bution from the time-averaged dissipative part of the first-
order self-force. The second term, which is of the order of
radians is called post-adiabatic and contains contributions
from the conservative part of the first-order self-force,
oscillating part of the dissipative part of the first order self-
force as well as the time-averaged dissipative part of the
second-order self-force. The spin of the secondary con-
tributes to the post-adiabatic term as is of the order of O(q)
[4,5]. In particular, for the spin magnitude S of a secondary
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compact object, like a Kerr BH or a neutron star, holds that
S < u?, hence the dimensionless spin parameter defined as
o =S/(uM) < q is of the same order as the mass ratio [6].
The phase ¢ is approximately proportional to the phase of
the GW. Hence, to accurately model the GW fluxes, all the
aforementioned terms must be taken into account.

In this work, we deal with the contribution of the
secondary spin to the post-adiabatic term, in the case of
bounded equatorial orbits around a Kerr BH. The descrip-
tion of a spinning test body moving on a curved back-
ground was for the first time studied in [7-9]. In particular,
Mathisson [10] managed to write the stress-energy tensor
of an extended test body as a sum of multipolar moments.
When the body is sufficiently small and compact, then it is
sufficient to take into account only the mass (monopole)
and the spin (dipole) leading to what is known as the pole-
dipole approximation, which essentially reduces the body
to a spinning test particle. Later on Papapetrou [11,12] was
able to employ the conservation law of the stress energy
tensor V, T* = 0 to derive the equations of motion for a
spinning particle. Finally, these equations were rewritten by
Tulczyjew [13], Dixon [14-17], and Wald [18] bringing
them to their modern form. MPD equations have been
studied in several works, see, e.g., [6,19-22]. Particularly,
these equations simplify when the particle is confined into
the equatorial plane of the Kerr spacetime [23]. In this case,
the motion can be determined by the following constants of
motion: the energy E, the component of the total angular
momentum paralle] to the axis of the central BH J, the
mass of the secondary yu, and the magnitude of its spin S.

In the present work, we rederive the equations of motion
for a spinning particle in the equatorial plane in a reduced
form. This allows us to find analytical formulas for the
constants of motion dependence on the eccentricity and the
semi-latus rectum and to provide a method to numerically
calculate the fundamental frequencies. These results are
then used to calculate the GW fluxes. To achieve this, we
employ the Teukolsky formalism and solve the GWs
perturbatively. Namely, we solve the Teukolsky equation
(TE) both in the frequency and in the time domain with a
spinning-particle as a source. In the frequency domain, the
formulas providing the energy and the angular momentum
fluxes to infinity and to the horizon from a spinning particle
following equatorial trajectories are novel. While, for the
calculations in the time domain, we introduce a new
approach to simulate the spinning source making the
computations more efficient. Due to the GW flux balance
law in an EMRYI, these fluxes equal to the rate of change of
the constants of motion of an inspiraling spinning particle
[5,24]. Hence, once these fluxes are obtained, then the
adiabatic term with the spinning-particle contribution to the
post-adiabatic term can be reconstructed.

This paper is organized as follows. Section II briefs the
dynamics of a spinning particle moving in a curved
spacetime. After covering the basics, the equations of

motion of a spinning particle are rederived in a reduced
form appropriate for eccentric equatorial orbits in a Kerr
BH background. Subsequently, the constants of motion and
the frequencies are calculated. Section III reviews the
Teukolsky formalism calculating the GW fluxes both in
the frequency and the time domain. Finally, the frequency
domain results are compared with the time domain results.
To make the main text more readable, we have concentrated
in a list all the dimensionless quantities we use in
Appendix A, Appendix B provides all the explicit formulas
for the frequency domain fluxes, while in Appendix C our
frequency domain results for a non-spinning object are
compared with the ones of [25]. Finally, Appendix D
provides tables from the frequency domain calculations
aiming to serve as reference for future works.

Throughout this paper, we use geometrized units where
the speed of light and the gravitational constant are
¢ =G = 1. The Riemann tensor is defined as R¥,; =
e =Ty + TV, 17, =T 17, where the comma
denotes partial derivative U, , = 9,U,,. A covariant deriva-
tive is denoted by a semicolon U,, =V,U, and
DU*/dr = U*,dx"/dr. The signature of the metric is
(=, +,+,+). Symmetrization of indices is denoted by
round brackets @, = (®,, + ®,,)/2. For some quan-
tities we prefer to use their dimensionless counterparts.
They are denoted by a hat, e.g., energy E = E/u, radial
coordinate 7# = r/M etc (see Appendix A).

II. A POLE-DIPOLE PARTICLE MOVING
ON THE EQUATORIAL PLANE
OF A KERR BLACK HOLE

The motion of a spinning test object in a curved
background is governed by the Mathisson-Papapetrou-
Dixon (MPD) equations [9,11,14] which read

DP* 1

a2 RS
DS
= Pro¥ — PUo¥, 1
= v =P (1)

where P* is the four-momentum of the particle, R¥,,; is the
Riemann tensor of the background spacetime, v# = dx*/dz
is the four-velocity, S* is the spin tensor of the particle and
D/dr = vV, is the covariant derivative along the world-
line parametrized by the proper time .

The stress-energy tensor 7+ for a spinning particle
with its trajectory parametrized by the coordinate time ¢
reads [26]

o _ 1 <P(Mf]v) 5., (Sa(ﬂtvu) 53) ) ’ 2)
V=g \ v v

where for Boyer-Lindquist (BL) coordinates & =
8(r—ry(1))8(0—0,(1))5(¢p — ¢,(t)) is the delta func-
tion located at the particle position (r,(t),0,(),¢,(1))

104045-2



SPINNING TEST BODY ORBITING AROUND A KERR BLACK ...

PHYS. REV. D 103, 104045 (2021)

parametrized by coordinate time. Note that by using the
conservation law T#., =0, it is possible to retrieve the
MPD equations.

Actually, the MPD system of equations is underdeter-
mined. The physical implication of the latter fact is that the
center of the mass of the spinning object is not defined. To
close the system of equations and to define the centre of the
mass, a spin supplementary condition (SSC) in the form
$#V,, = 0 has to be specified, where V, is a timelike vector
field. In this work, we use the Tulczyjew-Dixon (TD) SSC
[13,15]

Swp, =0, (3)

Under the TD SSC, the rest mass of the particle with respect
to the four-momentun

W2 = PP, )

and the magnitude of the spin
52 = Lgws (5)
=3 »

are conserved quantities (see, e.g., [19]). The conservation
of the above quantities is independent of the spacetime
background. The symmetries of the spacetime introduce for
each Killing vector & a specific quantity

1
C= éﬂP'u - Efy;ysﬂy’ (6)

which is conserved upon the evolution of the MPD
equations.

Instead of the spin tensor, it is sometimes more con-
venient to use the spin four-vector

1

S, =—z¢€

u 2 yu/m”tbslmv (7)

where €,,,,, is the Levi-Civita tensor and u” :== P¥/u is the

specific four-momentum. The inverse relation of this
equation reads

§Pe = —€P71°8 ug. (8)
After substituting Eq. (8) into Eq. (5), we can derive the

relation for the spin magnitude in terms of the spin four-
vector

§2 = $KS,. (9)

The spin four-vector is from the definition (7) orthogonal to
the four-momentum P,$* = 0, while from Eq. (8) one sees
it is orthogonal also to the spin tensor $#“S, = 0. Finally,

from Eq. (10) it can be shown that it is orthogonal to the
four-velocity v, 8" = 0 as well.

Since the MPD equations do not provide an evolution
equation for the four-velocity, it is convenient that for the
TD SSC exists an explicit relation of the four-velocity in
terms of the four-momentum and the spin tensor [27]. This
relation reads

m 28HR, o’ S
= (), (10)
H 4/‘ +Raﬁy6SaﬁS7
where m = —P,v* is the rest mass with respect to the

four-velocity o#. This mass m is not conserved under
the TD SSC, but it is used to conserve the normali-

zation v*v, = —1 during the MPD evolution. This leads
to [28]
2
m = ‘Ai'“, (11)
/./42/12 _ BSZ
where
A - 4/42 + Raﬂy(gsaﬁs}/é, (12)
B= 4h’<’7RK,,1”P’S’“‘Rﬂ,,w,,P”S‘””, (13)
K 1 Kp
h”:?S Syp- (14)

A. The Kerr spacetime background

Since our work deals with the motion of a spinning in the
Kerr spacetime, let us briefly introduce this spacetime. The
Kerr geometry in BL coordinates (z, r, 8, ¢) is described by
the metric

ds® = g,di2 + 2g,,dtd + 64,4
+ grrdr2 + g(‘)ﬁdgz’ (15)

where the metric coefficients are

B | 2Mr
I = s )

_ 2aMrsin*0
Gip = — — s
(@* — a®Asin®0)sin0
9pp = S )
>
Grr A
Gog = X (16)

with
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Y = r? + a*cos?0,
A =w?*—=2Mr,
w? =r*+a’. (17)

The Kerr spacetime is stationary and axisymmetric. This
provides two Killing vector fields, the timelike one (’;‘(‘t) and

the spacelike one 6’(‘ 4)- Due to these Killing vector fields,

Eq. (6) provides two constants of motion. In particular,
thanks to the timelike field, the energy

1
E—=-P,+ Eg’”’”SW (18)

is conserved, and thanks to the spacelike field, the
component of the total angular momentum parallel to
the rotational axis of Kerr (z axis)

1
JZ:Pd)_ig(/lﬂ,l/Slw (19)

is conserved. These two conserved quantities can be used to
parametrize the spinning particles orbits as discussed in
Sec. IIC.

B. Equatorial orbits

We are interested in equatorial orbits, where 8 = z/2. To
constrain the body to the equatorial plane, the v/ compo-
nent of the four-velocity must be always zero. The
orthogonality of the spin four-vector and the four-velocity
v,$* =0 implies that in order to achieve v? =0 for
arbitrary equatorial orbit all the components of the spin
four vector should be zero except from SO, ie.,

S, = Sy (20)

The spin is, therefore, parallel to the z axis. From the
orthogonality of the spin four-vector and the four-momen-
tum P,S* = 0, it holds that P = 0.

From Egs. (9) and (20) it can be shown that S, =
—v/900S where the sign is chosen such that the spin
magnitude is positive (negative) when the spin is parallel
(antiparallel) to the z axis. Then, from Eq. (8) the only
nonzero components of the spin tensor are

Str:—S”:—Su¢ _@:_%’
g r
S — _§¢ — Sy _gﬂ_&’
r g r
S
S = —§tr = sy, |00 — 2t (21)
g r

where ¢ is determinant of the metric. For Kerr spacetime on

equatorial plane, it holds \/—ggy/g = 1/r.

Let us recheck the setup for equatorial orbits in a Kerr
background. The total derivative with respect to proper time
of the 8 component of four-momentum can be expressed
from Eq. (1)

0
ddi; = —%RGW,(,U”SP” -1, PP, (22)
The right-hand side (rhs) of this equation is equal to zero
on the equatorial plane. Furthermore, Eq. (10) reduces
on the equatorial plane to v¥ = (m/y?)P?. This implies
that when v? = 0 then P, remains zero as well. Thus, the
particle stays on the equatorial plane by just demanding
that v/ = 0.

From Egs. (18), (19) and (21), P, and P, can be
expressed as functions of E and J,. These expressions in
dimensionless quantities read

-E-5aE-J,)
Uy = ) s

; : (23)

When we restrict the motion to the equatorial plane, it is
possible to reproduce the equations of motion for the
spinning particle from Eqgs. (10) and (4). In particular, we
can express u” from the normalization (4) as function of E
and J, and thanks to the fact that it holds

124°Ac?x? |

2S™R, o u S = P52 (24)

we can write the equations of motion as
ZGAUZ—; - %Vf(f), (25a)
nggj—Z - %V’(f) - i% R,(F).  (25b)
A, i—‘if - gV‘P(f), (25¢)

where

s 2(1-2). 50
A =13 G;§x2 , (25¢)
Vi=a (1 + ii)x + %QP,,, (25¢)
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N>
Rang—A<?+X2>, (25g)
vo— (1437 )4 4p (25h)

B Pz, N
A (o2 .
P,=xF- <a n > %, (25i)
r
x=J,—(a+o)E. (25j)

The rest mass with respect to v* can be expressed from (11)
as

2
m 1-%
—=A, 7 . (26)
7 —1+2A,—(2-A,)%

This expression is identical to Eq. (49) in [29].
Equations (25) are identical to the equations (2.19)—
(2.21) in [23] up to the parametrization with d%/dz =
m/u where 7 is the parametrization used in [23]. By
dividing Egs. (25b) and (25c) we obtain Eq. (19) in
[30]. Hence, we have checked the validity of the above
equations.

To simplify the equations of motion, it is useful to
reparametrize Eqs. (25) with a time parameter 4 which is
similar to the Mino time [24]. Equations (25) and (26)
imply that the relation between 7 and 4 is

dt o’ o’
— =7 1l——=[-14+2A, - 2-A,)—=|. (27
& \/( 2)(-142n - -0 %) @)

Then it holds df*/dA = V¥ where £ = (,7,0,¢) with
V% =0. V¥ can be interpreted as dimensionless four-
velocity with respect to A.

C. Constants of motion as orbital parameters

Let us see how we can use the constants of motion E, J,
to parametrize bounded equatorial orbits. To do that we
have to find first the roots of Eq. (25b), which will lead us
to the turning points of an equatorial eccentric orbit. The
function #*R,,(#) is an eighth order polynomial, hence it has
generally 8 roots. At least four of these roots are real as in
the nonspinning case, while four additional roots, which
come from the secondary spin’s terms, can be complex or
real. From these roots the two outermost ones 0 < 7| < 7,
are the candidates for being the turning points we are
seeking. Obviously for these two roots it has to hold that

R,(7,) = 0. (28)

To have a bound equatorial orbit between these two roots,
Eq. (25b) implies that R,(#) > 0 for | < 7 < 7. The latter

can be true only if for the derivative of R, (#) with respect to
7 it holds that
Ro(71) 20, Ro(F) <0. (29)
When the conditions (28), (29) are satisfied, then 7, is the
pericenter and 7, is the apocenter of an equatorial eccentric
orbit, and it also holds that £2 < 1.
Having found the turning points of an equatorial eccen-
tric orbit, we can parametrize each eccentric equatorial orbit

by its semi-latus rectum p and its eccentricity e, which
relate to the turning points as follows

7= s 12 30
=T 2 =T (30)
The inverse relations read
2P F PN
L L (31)
)”1+7'2 7"1+ 2

Equation (28) can be written as two quadratic equations
in terms of £ and J,. Using the same method as in
Appendix B of [31] we can rearrange the formulas (28)
for energy and angular momentum to arrive at

fiE? =2g,EJ. —hJ?—d; =0 i=1,2 (32)
where f| = f(#), f» = f(#,) etc. and
f(7) =a*(F+2)r+ 7

+o

ap) =227 (33)

These functions for ¢ = 0 are identical to the functions
(B.6)—(B.9) in [31] with z_ = 0. By manipulating Eq. (32)
properly, we arrive at

p_k + 265 + 21/5(5€> + pek — ni?)

. (34

P>+ 4né (34)

. E? —

J :p2 EK’ (35)
O

where
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Kk =dihy —dyhy,
€ =dg — drg1,
p = fihy = fah,
n=rf192— fa91,
6 = gihy — ol (36)

are the determinants appearing in [31]. Thanks to the
identity ep — kn = &{, where

(=difr=dafr, (37)

we can rearrange Eq. (34) as

2k + 2€6 — 2sgn(J.)5 /€ + k¢
B P>+ 4né

. (38)

Since for @ = ¢ = 0 the determinant & = 0 and the Eq. (35)
is singular, it is better to substitute E? into Eq. (35) and
rearrange it as follows

Gt 2in — sgn(J,)pr\/€® + k¢

: (p* + 4n&)E

. (39)

The signs of J . appearing in Eqgs. (38) and (39) have been
numerically verified for spin values |o| < 1.

The constants of motion £ and J . for given p and e have
two solutions corresponding to the corotating orbit and the
counterrotating orbit. We can choose the coordinates such
that the z axis is parallel to the total angular momentum,
i, J. > 0. This convention implies that @ > 0 corre-
sponds to corotating orbits and 4 < 0 to counterrotating
orbits. The spins of the secondary particle and of the central
black hole are parallel when do > 0 and antiparallel
when do < 0.

For e = 0, both the numerator and the denominator of
Eq. (38) become zero. This inconvenience can be
avoided by noticing that a coefficient e can be factored
out from the determinants (36) and canceled out in
Eq. (38). In this fashion, the solution (38) is valid even
for e=0. Actually, this allows us to verify that for e = 0
Egs. (38) and (39) are identical to Egs. (59) and (60)
given in [29].

There is a limit between the bounded and unbounded
equatorial orbits defined by a separatrix. The term
unbounded orbits includes orbits escaping to infinity
and orbits plunging to the central black hole. In the case
the separatrix splits plunging and bounded orbits, it
holds that R (7)) =0 and R,(#) < 0. The orbit with
R/(#)) =0 is an unstable circular orbit, while a trajec-
tory originating from 7, with energy and angular
momentum satisfying Eqs. (38) and (39) will asymp-
totically approach the circular orbit at 7, either evolved

a=-0.99

T T T

T T T

FIG. 1. Separatrices for different Kerr parameters and spins.
Points (p, e¢) on the depicted lines correspond to orbits asymp-
totically approaching the unstable circular orbit lying at
7= p/(1+e). For given e the semi-latus rectum p of the
separatrix decreases with increasing spin. Therefore, for a
spinning particle it is possible to approach the horizon closer
than a nonspinning particle. Note that even though the EMRI
relevant values of the secondary spin are ¢ < g < 1, we use
much higher spin values to make the differences between the

separatrices more prominent and visible. All plots are for fz > 0.

. . 1 .
forward or backward in time. For a given Kerr

parameter 4 and spin o the effective potential R,

depends on E(p,e) and J.(p,e), therefore the

'In the limiting case that #; = 7, the orbit is circular (¢ = 0)
and marginally stable, since it holds that R,(#)=
R(71) = RJ(#;) = 0. This orbit is often called the innermost
stable circular orbit (ISCO).
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1.000F
0.995 F
0.990
0.985F
0.980 f
0.975F
0970 F

0.965 |

<w 094}

0.92 -

0.90

0.88f

2.0 25 3.0 3.5 4.0

FIG. 2. Separatrices (black thick solid) in the J. — £ plane
along with lines of constant semi-latus rectum (grey solid) and
eccentricity (grey dashed) for Kerr parameter @ = —0.5 (top
panel) and @ = 0.5 (bottom panel). In both case the secondary
spin is ¢ = 0.5. The eccentricity lines start at ¢ = O for lower
energies and reach ¢ = 1 when £ = 1 with step 0.1. The semi-
latus rectum ranges from p = 10 to p =20 for @ = —0.5 and
from p = 3 to p = 20 for @ = 0.5 with step 1 in both plots. At a
separatrix the semi-latus rectum is the lowest and is increasing
with increasing J..

separatrices can be plotted on the p—e plane splitting it
into two parts. In one part of the plane lie the bounded
orbits, while in the other part lie unbounded orbits or
initial conditions, which do not correspond to an orbit
(Fig. 1). We can see that for given e the semi-latus rectum p
of the separatrix decreases with increasing spin.

Figure 2 shows two cases of a separatrix on the J L= E
plane along with a grid of constant p and e lines. Note that
the intersection point between the separatrix and the line
e = 0 lying at the left lower corner of both panels of Fig. 2
represents ISCO.

D. Frequencies of eccentric equatorial orbits

The radial motion of a particle in the equatorial plane
parametrized by the time parameter 4 has a period A,. This
period can be defined as the time needed to go from the
apocenter to the pericenter and back. Hence, A, can be
found by integrating the inversion of Eq. (25b), i.e.,

a1

(40)

over the above two branches (first from 7| to #, and then
from 7, to 7;) with respect to the radius 7. However, the
integration over one branch is equal to the integration over
the other. Hence, we can find the A, by integrating Eq. (25b)
over the first branch to obtain the time elapsed during the first
branch and multiply the result by two [32], i.e.,

A,:2/r2 a_ (41)

The radial frequency can be defined as Y, = 2z /A,. If we set
the initial radius to (4 = 0) = r|, then the radius (1) is an
even function and can be written as

r(2) = rl0 4 Z r cos(nY, ). (42)

n=1

After substituting Eq. (42) to Egs. (25a) and (25c) and
integrating them, we obtain

f(2) = TA+ AR(A).
$(A) = Tyd + Ag(A), (43)

where I' and T are frequencies with respect to A and
functions A7(1) and A¢(A) are periodic with period A,.
Note that since the function #(1) is even, the functions
V!(#(1)) and V#(#(A)) are even in 1 as well. Hence, after
the aforementioned integration and the subtraction of the
linear term I'A or Y A, respectively in Eq. (43), the
functions A7(1) and Ag(4) are odd and can be written
as series of sines.

The average rate of change of the azimuthal coordinate
and time with respect to 4 is

2[R VO(F)
Y, =— dr, (44)
’ A, i/ Ra(ﬂ
2 [ VI(F
_2 [V g (45)
A, 7 Ra(f)

These integrals can be solved in terms of Lauricella’s
hypergeometric functions [33]. However, for achieving
this, the exact values of the roots of the radial potential
7R, (#), which is eighth order polynomial in 7, must be
found. This task can be only performed numerically. Thus,
instead the integrals (41), (44) and (45) were calculated
directly numerically. These integrals have singular points at
71 and 75, but this difficulty can be overcome. Namely, first
we factor out the roots

R, (7) = (7 = 71)(F, = F)Q(F), (46)

where #Q(7) is sixth order polynomial. To remove the
singularities, an angle like coordinate y € [0, ) is used by
applying the transformation
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N p
=—. 47
" 1+ ecosy (47)

Then, the integrals take the form

A, 2@ / \/_ (48)

Zm/ ( +ecos;g) \/led;(, (49)

b= 2m/ ( +ecos;() \/led;(, (50)
where

6 k ) ()

J
_ 1 k ¢ 51
kE:o +ecosy) g =)y (51)

=

is a polynomial in cosy with coefficients

P =1-F,

i =2

W = 42aEx+ 22,

3§ = =2((1 = B)0? — Box + %),
) =4,

J¥) = —240(ac + x(Eo + x)),
i = (1= E)o = x)((1 + E)o + x)

and
=1,
i =2,
jy =3,

i =4 ),

A = e* +10e? + 5,

A =2(e2 +3)(3¢2 + 1),

jée> =ef +21e* +35¢° + 7.
The polynomial J(y) for ¢ = 0 is identical to the poly-
nomial (40) in [31] with Carter constant Q = O up to the
factor 1 —e? due to a different definition of J(y) used
in [31].

We can define the frequencies with respect to the

coordinate time as

A T, np
=T ise [=Vi(F()) /TG dy >

Q:&:HWf/wmw (53)
T EViGe)/ VI

We have numerically verified the above frequency formulas
by comparing them with frequencies obtained by a direct
integration of the MPD equations for the respective
eccentric orbits. To integrate the MPD equations an implicit
Gauss-Runge-Kutta integrator was used as described
in [34].

The equatorial plane equations of motion (25) given in ¢,
rand ¢ can be rewritten in 4, ¢ and ¢ parametrized by y, i.e.,

da 1 —¢?

by (et 54

e P 34
df p 1—¢?
— =V 55
dy (1 +e cosx) P (x) (55)
d¢ p 1 —é?
Ly 56
dy <1 + ecos;g) P2 (x) (56)

These equations will be used later on, when the energy and
angular momentum fluxes are calculated.

III. GRAVITATIONAL WAVE FLUXES

A. Teukolsky formalism

To calculate the GW fluxes we employ the Teukolsky
formalism. The GWs are described perturbatively using the
Weyl curvature scalar

Wy = —C,psn™m’n’m®, (57)

where n# and m* are components of the Kinnersley tetrad

1
nt = 7 (w?,—A,0,a), (58)
_ P ,. . .
m* = ——(iasin®,0,—1,icsc0), (59)
V2

where p = —(r —iacos@)~!. The Weyl scalar ¥, is zero
for the Kerr spacetime and its perturbation is governed by
the TE

SO (t,r,0,¢) = 4xXT (60)

with spin weight s = =2 for _,y = p~*¥, in the case of the
GWs [35].
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1. Frequency domain approach

This partial differential equation can be separated into
ordinary differential equations after a Fourier transform in ¢
and ¢

) 1 . '
= ZZE /_ " doe (1) 5S30.9). (6)

where _,S7*(0,¢) is spin weighted spheroidal harmonic
function with spin weight —2 normalized as

/ 40| _,5(0. )| = 1. (62)

For simplicity we use the notation S9%(8) = _,5%2(6,0)
for the angular part henceforth. To calculate the angular
function the Black Hole Perturbation Toolkit [36] has been
employed.
After the separation, an ordinary differential equation
DWlmw(r) = Tlma) (63)
is obtained for the radial part y,,(r), where D is a
differential operator that can be found, e.g., in [35] and
T 1me 18 a source term discussed below. The asymptotic
behavior of the homogeneous solutions R, () of Eq. (63)
is discussed in [4,25]. To satisfy physical boundary con-
ditions, the solution must be purely outgoing at infinity and
purely ingoing at the horizon; in other words, we are
dealing with a retarded solution. We will denote a homo-
geneous solution satisfying the first condition as R,  and a
solution satisfying the second condition as lewz An
inhomogeneous solution satisfying boundary conditions
can be found using the Green function formalism as

l//lmw( ) Cltnw( ) lmw( )+ Clmm( )Rl_mw(r)’ (64)

where the amplitudes are

Clj;na)(r) % @i( ) lmm(Az)%Tl;nw( )dr’ (65)

with the invariant Wronskian

lmw( )a lew( ) (a thnw( ))Rl_mw(r)

W= A(r)

(66)

and the Heaviside step functions defined as

O (r,r)=0("-r), O (r,/)=0(r-7r). (67)

H Up
and R, or R

>These functions are often denoted R® e

I Imaw
n
and R Imw*

Since we are interested in GW fluxes at the horizon and at
infinity, we will denote the relevant amplitudes as C;,,, =
Co(r—ry) and C =C; (r— o) respectively. In

Imw — ~ilmw
fact, the amplitudes are constant for r < r; and r > r,.

The source term in (63) can be written as
Tlmw = /dtd9d¢A2 (Trm + anh + Trh m>eiwt—im¢’ (68)
where

- fl(10ﬂ)(r 9) \/__ngm
nm - 8 ( nm(r 9)\/—Tnm>
+fnrh(r 9)\/__Tnn‘1’
r'nrh = 8rr( mm(r 9)\/_Tmm)

+ 0, (o (r O =0Tmm) + for (. 0) /=0T s
(69)

The functions f" b ) (r,0) can be found in [29]. Projections of
(a)

the stress energy tensor onto a tetrad e, ' read
Tu = ! % —Co,)8
ab — —_g( ab ab)
1

——— 0, ((v))"LsPlugp) 53 e(a)e,(,b), 70
\/_—g /J(( ) ) H ( )

where

0, = (vt)_lP(”v”>e,(,a)e£b),
co, = (v’)‘lS/’<”F”>plvle,(,a)el(,b>. (71)

The four-vectors P* and v* as well as the spin tensor S** are
functions of time, the Christoffel symbols are evaluated at
the coordinates of the particle r,(z), 6,(t), the delta
functions are functions of both the space coordinates r,

0, ¢ and the coordinate time ¢ and the square root of the

determinant /=g, the functions fiig and the tetrad legs e'”

are functions of r and 6. In our case, e,(,“) , e,(,b)

Kinnersley tetrad components n, and m,,.

After integrating Eq. (68) over 8 and ¢ and Eq. (65) over
r using rules for integrating delta function, we obtain a
relation for the amplitudes

are the

Ci = / die-mb O = (- (1).0,(1))  (72)

where
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1 d
0 Ag— (A B,)—
Ly (1,0) = W(O (A + l)d
d? d3
+(A2 + B2) d B%d )lew( ) (73)

The coefficients A; in their general form can be found in
Appendix B.

Up to this point the derivation of GW fluxes holds for a
generic orbit of a spinning particle. In the following part,
we confine it to equatorial orbits with the spin parallel to the
z axis as described in Sec. II B.

Thanks to the fact that the quantity I3, (r,(1),
7/2)e™@1=¢, () is periodic in time with frequency Q,
(see eg. [37] for details), we can write the amplitude as a
sum over discrete frequencies

lmw - Z Clmn w = a)mn)’ (74)

n=—co
Wy = MQy + N, (75)

The partial amplitudes can be calculated as Fourier coef-
ficients by integrating over one period 7, = 27/Q,

Cﬁnn - Qr/
0

X exp(iw,,,t —

dtlﬁm (ry(2),7/2)
img,(1)). (76)

However, it is more convenient to integrate over the time
parameter A

dr
Chn = [ 045 Fi, (1 (12). 52

X exp(iw,,,t(A) — img,(4)). (77)

The integration over the two branches of the motion
(from ry to r, which correspond to A from 0 to A,/2 and
from r, to r; which correspond to A from A,/2 to A,)
differs only by the sign of the radial velocity. Therefore, we
can break the integral to two integrals, the first from O to
A,/2 and the second from A, to A,/2 (note the reverse
direction of integration). Using the identities (43) we can
write

@pnt(2) = mp(A) = nY, A+ w,,, At — mA¢p. (78)
From the fact that At and A¢ are series of sines with period
A,, it holds At(A,—1) =—At(1) and AP(A,—1) =
—A¢p(4). After changmg the integration variable to y, we
can write the integral as a sum over the sign D, = + of the
radial velocity, on which the coefficients A; depend, i.e.,

lmn = /
X exp(iDr(wmnt(){) —m(y))). (79)

where di/dy comes from Eq. (54), I imw,, comes from
Eq. (73) and #(y), ¢(x) are calculated from Eqs. (55), (56).

The metric perturbation #,, = O(g) which can be
defined as g,*" = g, + hy,, + (’)( %), can be calculated
from the Weyl scalar ¥, [38]. GWs consist of two
polarizations and the metric perturbation can be written
as hy,, = h e, + hye;, where e, and e}, are the polari-
zation tensors. At infinity, the relation between the strain
h = h, —ih, and the Weyl scalar is

d/1 lma) (r()()’ﬂ/szr)

W, (r = o) = h/2, (80)

where the dots denote derivative with respect to the BL
coordinate time f. From Egs. (61), (64), (74) and the

asymptotic behavior of R} it holds
2 C} i (1= i
_ _= § mn Qa®y, —i@,,, (t=1")+ime¢
" " imn (U%nn Slm (a)e s ’ (81)

where 7* is tortoise coordinate defined as dr*/dr = @w?/A.
The stress-energy tensor of the GW can be reconstructed
from the strain which yields the energy and angular
momentum fluxes at infinity

(F)-EriEt e

<dJOO>
where the brackets denote time averaging. In the equa-
torial case, the average can be calculated over one period

T,. Similar derivation can be made for the fluxes at the
horizon [39]

(558 Sl

ISP I L LY

=2 m=—ln=—o

=2 m=—ln=—oc Winn
I S G m|C,,
SPRPIPILEE =
where
256(2Mr., )’ P(P* + 3€?)(P? + 16€?)w;,,
almn — ( +) ( 2)( ) (86)

|Clmwmn

with €= VM?—a*/(4Mr,), P = w,,

and the Teukolsky-Starobinsky constant is

—ma/(2Mr,)
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‘Clmw|2 = ((ﬂlma} + 2)2 + 4610)(1’}1
(ﬂlmw + 36aw(m
— (2o + 3)(48aw(m — 2aw))

+ 1440*(M? - a?). (87)

- aw))

- aw))

The partial amplitudes C7; ~are proportional to the
secondary mass u and therefore, if we use dimensionless
quantities on the rhs, we obtain

() oLt =iy @

lLm,n

<d‘l > 22m| lmn =M 2Zflmn’ (89)
Lm,n

where we have defined the dimensionless fluxes F fn"‘,’l and
F lj;;f: that do not depend on the mass ratio g. The horizon

J.H . o .
fluxes FEH and F;:" can be defined in a similar fashion.
We can write the dimensionless energy and angular
momentum loss as

<dE°°> Y (90)

Lm,n

dJje Joo
< d;‘ > = qulmn' (91)

lm,n

These fluxes can be used for calculating the evolution of
the orbital parameters p and e during an adiabatic approxi-
mation of an inspiral.

2. Time domain approach

To verify the frequency domain calculations, we numeri-
cally solved the TE (60) in the time domain. For this, we
have employed the time domain solver Teukode which is
described in [40—42]. Teukode uses the method of lines,
i.e., finite differences in space and Runge-Kutta for
evolution in time. Instead of using Kinnersley tetrad and
BL coordinates, it solves TE using Campanelli tetrad [43]
and hyperboloidal horizon-penetrating (HH) coordinates’
(7, p, 0, @) (for their definition see Eq. (10) in [41]). These
coordinates reach future null infinity Z* (“scri”) and
horizon at finite radial coordinate pg so no extrapolation
is needed to extract GW fluxes at infinity. Another
advantage is that the coordinate light speed at the bounda-
ries vanishes, therefore, no numerical boundary condition
must be imposed. After the decomposition into azimuthal
m-modes y = >, w,,e™? the equation in (2 + 1)-dimen-
sional form reads

*In this section p denotes the radial HH-coordinate.

(C,e02 + C,,0,0, + C,,05 + Cpp03 + C,0, + C,0,
+ Cﬂaﬁ + CO)Wm - Ssv (92)

where the coefficients C,,, C,,, ... are functions of p and ¢
and §; is the source term for spinning particle discussed
in [30].

The source term consists of derivatives of delta func-
tions up to third order. For accurate results proper repre-
sentation of delta functions must be used. Approximation
as Gaussian function and piecewise polynomials as
described in [44] were implemented to the Teukode.
According to [41], piecewise polynomial approximation is
more accurate for circular equatorial orbits and faster to
calculate than Gaussian approximation, whereas calcula-
tions with Gaussian approximation are more stable when
the particle is moving in p or € direction. The third
derivative of the delta function, which is needed for
spinning particle, was implemented only as Gaussian
approximation in the previous works. In our work we
introduced to Teukode an approach suggested in [45],
which describes slightly different formulas for piecewise
polynomial approximation to construct delta function and
its derivatives. Teukode has been tested extensively on
circular equatorial orbits of a spinning particle in
[29,30,46-48], but in this work it is tested for the first
time on eccentric equatorial orbits of a spinning particle.

B. Numerical results

This Section discusses our numerical calculations
of GW fluxes in the frequency domain (as described in
Sec. Il A 1) and compare them with time domain results
obtained from the Teukode (Sec. IIT A 2).

First we present our approach to calculate quantities
related to an orbit for given parameters 4, o, p and e. These
quantities include the energy and the angular momentum
from Egs. (38) and (39) respectively, the orbital frequencies
Q, and Q¢ from Egs. (52) and (53) respectively and the
functions 7(y) and ¢(y) from Egs. (55) and (56) respec-
tively. The integrals (52) and (53) were calculated numeri-
cally using methods built-in to Mathematica. We used
extended precision to 48 places, because high precision of
the parameters a and @ = mQy + n€2, is needed for the
calculation of the radial function R% .

To calculate the energy and angular momentum fluxes
and the strain at infinity, one has to find the partial
amplitudes C’ﬁ,m and Eq. (79) implies integration over y.
The numerical integration errors depend on the employed
integration method and the number of points at which the
function is enumerated. For our purposes, a fractional
accuracy of the order of 107 is sufficient. Therefore, we
used the midpoint rule inducing an error of the order
O(N72) to the integration, where N is the number of points.
The advantage of the midpoint rule is that for given
accuracy, this method minimizes the number of points N
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FIG. 3. The real part of exp(iD,(®,,,t(x) — m¢(x))) for orbital
parameters d = 0.9,6 =-05,p=12,e=02andm =2, n =
15 (top panel) and for orbital parameters @ = 0.9, ¢ = —0.5,
p=12,e =0.8 and m = 2, n = 4 (bottom panel). The red dots
indicate the values at which the function is calculated during the
numerical integration.

needed for the calculation. However, more complex
method can be implemented in the future to improve
the accuracy of this integration. The main oscillatory
part of Eq. (79) is contained in the exponential term
exp(iD, (@, t(y) — me(x))). Figure 3 shows the behavior
of this oscillatory part for certain setups. The higher the
value of n is, the more the exponential function oscillates.
High frequency oscillations are present especially around
x = & in high eccentricity cases. The number of the points
N needed for the integration is calculated from the
maximum of the derivative of the function w,,,t(y) —
ma(y) with respect to y, which in dimensionless quantities
reads (@, V' (7(x)) = mV?(#(x)))/ (1 = €2)/J (x)/ p-

The radial functions Rj,, ~were calculated using
the BHPToolkit [36], which employs the Mano-Suzuki-
Takasugi (MST) method [49] or a numerical integration
of the radial TE. The angular functions S?¢ were also
calculated using the BHPToolkit which employs the
Leaver’s method [50].

The strain is calculated from Eq. (81) and the fluxes
are calculated from Eqgs. (88). The range of / and n for given
m-mode was found in the following way. First we calculate

the coefficient C; for [ = max(|m|,2) for a range of n to

find the mode with the maximal |C; |. Then, we calculate
other / and n modes until the absolute value is less than a
chosen accuracy times the maximal mode. In our calcu-
lations, we have chosen accuracy 107, However, in some
cases the absolute value |C; | is not monotonous in 7 and
it drops suddenly for some n. Because of this, after such a

sudden decrease, amplitudes for more n must be calculated.
In Fig. 4, the absolute values of the coefficients |C; | are

Imn

plotted for an orbit with ¢ =0.9, ¢ = -0.5, p =12,

—— 7T — 77—

107

107

107"

FIG. 4. Absolute values of the partial amplitudes |C; | for
orbital parameters @ = 0.9, 6 = —-0.5, p=12, ¢ =0.2 and
azimuthal number m = 2.

e = 0.2 and azimuthal number m = 2 for different / and
n. We can see that, for given accuracy, only limited number
of modes is needed (for [ = m = 2 itis 21n-modes) and the
absolute value of the amplitudes is decreasing exponen-
tially with |n| for sufficiently high |n|. Note that although
the astrophysical relevant value of the spin o is of the same
order as the mass ratio ¢ < 1, it is possible to calculate the
GW fluxes for higher spins and then linearize the result in o
to find the contribution of spin ¢ <« 1. We use also these
large values to make any deficiencies in our calculations
prominent.

In Appendix C we compare our coefficients Ci;,, and
fluxes FE® and FE with that of [25]. A simplified
version of our code calculating GW fluxes from circular
equatorial orbit of a spinning particle around a Kerr BH
was used to independently verify the results of [29]. These
results are discussed in detail in [51]. Tables of the values of
the partial amplitudes Cf,, for future references are in
Appendix D.

1. Comparison of frequency domain
and time domain

To compare the time domain and the frequency domain
results, we have calculated the coefficients C‘?;nn for some
range of / and n in the frequency domain for different
values of the spin ¢ and of the eccentricity e. We have used
these coefficients to find the respective strains and energy
fluxes at infinity. Then, these results have served as
reference values in our comparison with the azimuthal
m-mode of the strain at infinity multiplied by the radial
coordinate #h,, and the energy fluxes at infinity JFL*®
obtained in the time domain. Because of the fact that the
space discretization applied in Teukode induces numeri-
cal errors to the time domain calculations, we have run the
time domain calculations for several resolutions and tested
the convergence of the code.

To calculate the strains and the fluxes with in the time
domain with Teukode, we need to approximate the delta
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functions representing the secondary body in the p and 6
directions. To do that we have used different combinations
of Gaussian functions and piecewise polynomials in these
directions. The accuracy appears to be higher when the
piecewise polynomial are used in both p and € direction
or Gaussian function in p direction and piecewise poly-
nomial in @ direction, than in the other two possible
settings, i.e., Gaussian in both directions and Gaussian
in @ direction with piecewise polynomial in p direction.
When the piecewise polynomial is used in both directions,
calculations are faster and, therefore, we have used this
approximation in most cases. In our calculations, the strain
has been extracted at r = oo and 6 = /2 and the energy
flux has been averaged over two periods T, starting at the
retarded coordinate around u = 350M, where u = r — r*.

In order to provide a first comparison of the frequency
and the time domain results, we use the relative difference
of the azimuthal mode m of the strain at r = co and
0=mx/2

td
i

Sh,, :‘1 ~ i (93)

where A% is the strain calculated using Teukode and Af¢
is m-mode of the strain calculated in frequency domain
using Eq. (81) without the sum over m. Figure 5 shows
the relative difference of the azimuthal modes m = 1, 2, 3,
4 of the strain as function of the retarded coordinate .
In this plot, the strain calculated in the frequency domain
(the denominator of 64,,) remains fixed, while each time
domain calculated evolution of the strain is performed
for different number of points in the p direction N,
(resolution). The delta function is approximated by a
piecewise polynomial for five resolutions (N, = 1200,
1704,2400,3384,4800), while in one case is approximated
by a Gaussian function for N, = 4800. We can see that the
relative difference 64, tends to decrease as the resolution
increases, but for the highest resolution N, = 4800 the
numerical noise becomes significant. Though the Gaussian
approximation is less accurate, the amplitude of its noise is
relatively smaller than the amplitude of the noise for the
piecewise polynomial approximation with the same reso-
lution. We speculate that the cause of this numerical noise
comes from the fact that as the resolution increases, the
approximation becomes less smooth. Namely, we have
used a 12th order approximation of the delta function,
which is 12 points wide, for each resolution; therefore, the
higher the resolution is, the narrower and higher is the delta
function. Note that the m = 1-mode has very small value
and the noise has relatively higher amplitude than in m = 2,
3, 4 modes. The m = 0-mode, which is not shown here,
although nonzero, has extremely small value allowing the
numerical noise to be dominant.

0.010}
0.005F
ohy
0.001 |

5.x107 |

0.005 —— 4800 —— 3384 —— 2400

—— 1704 —— 1200 —— 4800, Gauss

0.001 H

~4 [
sh, 5.x10

1.x107 |

5.x107° [

0.005

0.001 ¢

5.x107 |

1.x107™

5.x107° |

0.005F

iy i

0.001 ¢

mm I""

i ‘ w,
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5.x107 |

o, w
W'J |
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FIG.5. The relative difference of the strain 64, from the m = 1
mode (top panel) to the m = 4 mode (bottom panel) as a function
of the retarded coordinate 7 at r = oo and @ = /2. Each plotted
curve represents a case with different number of points in the p
direction N,. The piecewise polynomial approximation of the
delta function was used for all cases apart from one, for which the
Gaussian approximation with resolution 4800 was employed.
The parameters of the orbit are @ = 0.9, 6 = 0.5, p =12,
e = 0.2. The initial noise is caused by zero initial data in time
domain.
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FIG. 6. The relative difference of the energy flux 6FE of the
[ = m = 2 mode as function of the grid length in the p direction
of the time domain calculations. Note that the time domain
calculations have been projected on the Y, basis, while the
frequency domain ones on the Sj”. Each curve represents a
different value of the secondary spin, while the Kerr parameter
a =0.9, semi-latus rectum p =12 and eccentricity e = 0.2
remain fixed.

To further check our results, we have calculated the
relative difference of the energy fluxes

Finc
SF oo :'1 - ff%d , (94)

where F£%, is the value calculated using Teukode and
F g is the value calculated with the frequency domain
approach summed over n. Figure 6 shows how the time
domain calculations of the dominant / = m = 2 mode of
the energy fluxes converges to the frequency ones as the
resolution increases. For this plot we have kept fixed the
Kerr parameter @ = 0.9, the semi-latus rectum p = 12 and
the eccentricity e = 0.2, while we have used for each curve
a different value of the secondary spin ¢ spanning from
—0.5 to 0.5. The relative difference in the fluxes should
converge to zero as the grid length Ap = (ps—p,)/N,
decreases (increasing resolution). However, the relative
differences do not converge to zero, because in the
frequency domain calculations we use the projection to
spin-weighted spheroidal harmonics S§7¥ and Teukode
projects the strain to the spin-weighted spherical harmonics
Y, = S?m. For the dominant mode the difference between
the projections to these functions is low because for low aw,
the spheroidal functions Sj can be approximated by the
spherical functions Y/,.

Because of the aforementioned projection issue, for a
proper comparison of the time and frequency domain
results, we must calculate the sum of the fluxes over [
The relative difference

4800 3384 2400 1704 1200

0.010}

0.005]

6FE®
0.001}

5.x107*

0.002
0.001 |

5.x10™
sFEe ]

2.x107*

1.x107 F

- 0=05

0.002 - 4
0.001 1

OFE® [ ]
5.x107 | b

2.x107* b

Tx107% 0
0.002 0.003 0.004 0.005 0.006 0.007

Ap

FIG. 7. Comparison of frequency domain and time domain
results. The relative difference 6FE®, (top panel), 6FE®,
(middle panel) and 6F fn°:"3 (bottom panel) is plotted for different
values of the secondary spins ¢ spanning from —0.5 to 0.5. The
Kerr parameter @ = 0.9, the semi-latus rectum p = 12 and the

eccentricity 0.2 are kept fixed for all the cases.

‘7:E )

_ T omud
Eco
fm,fd

SFE :‘1 , (95)

for m =1, 2, 3 has been calculated for different secondary
spins ¢ in the frequency domain and in time domain we
used different resolutions (N, = 1200, 1704, 2400, 3384,
4800). We can see in Fig. 7 that the relative differences
converge to zero as we expected. The lowest step Ap
corresponding to the highest resolution N, = 4800 shows
variance in the relative differences. This is caused by the
fact that the noise amplitude is the highest for the highest
resolution, which can be seen in Fig. 5. Especially in the
case m = 1 where the energy flux is significantly lower
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than for m = 2, the variance in the relative differences is
clearly visible. For the highest resolution, the relative
difference is higher for higher values of spin |o|. This
can be caused by the numerical noise in time domain
calculations induced by the non-smoothness of the piece-
wise polynomial approximation of the third derivative of
the delta function. Namely, the term with the third
derivative is proportional to the spin ¢. For negative o
the noise is relatively higher because the value of energy
flux for o < 0 is lower than the flux for ¢ > 0 and thus the
noise is more dominant.

To check the dependence of our calculations on the value
of eccentricity, we have calculated the energy fluxes for
fixed Kerr parameter @ = 0.9, secondary spin ¢ = 0.5 and
semi-latus rectum p = 12, while the eccentricity e value
spans from 0.2 to 0.8. For each eccentricity we have
calculated the relative difference in the energy fluxes 5F L
for m =1, 2, 3. Then, we have compared the dependence
of the relative difference on the resolution for different
eccentricities as in the case with the changing secondary
spin. This comparison is shown in Fig. 8. First, we have
calculated the dominant m = 2 mode in time domain with
piecewise polynomial approximation of the delta function
in both p and @ direction (p-p), but for e = 0.8 the noise is
increasing with the resolution and 5% does not converge
to zero (purple line in the middle panel of Fig. 8).
Therefore, for m =2 and other modes, we performed
the time domain calculations for e = 0.8 using the
Gaussian approximation in p direction and the piecewise
polynomial approximation in € direction (G-p, red line in
all panels of Fig. 8). However, the m = 1 mode has low
amplitude and the noise is therefore more significant and
the p-p approximation for e = 0.6 and the G-p approxi-
mation for e = 0.8 fails. Because of this, for m = 1 mode
we repeated the calculation for e = 0.6 with G-p approxi-
mation and for e = 0.8 with Gaussian approximation in
both directions (G-G).

The fact that for the piecewise polynomial approximation
the noise has greater impact on higher eccentricities can be
explained as follows. The shape of the delta function depends
on the distance between the delta function and the two grid
points around it. Since the distance between these grid points
changes rapidly on a highly eccentric orbit, the shape of the
delta function changes rapidly as well. The greater is the
change in the shape, the greater is the noise. Thus, the
piecewise polynomial approximation is optimal for circular
trajectories. Moreover, higher eccentricities imply longer
periods of motion and thus longer runtime, which allows the
exponentially growing noise to reach higher values. For the
Gaussian approximation noise grows more slowly.

Figure 8 indicates that by choosing a proper delta
function approximation the relative difference 675 would
converge to zero for all m-modes and eccentricities e.
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FIG. 8. Comparison of frequency domain and time domain
results. The relative difference SFL® (top panel), 6FE®,
(middle panel) and 6.F 510:03 (bottom panel) is plotted for different
values of the eccentricity e spanning from 0.2 to 0.8. The Kerr
parameter @ = 0.9, the secondary spin ¢ = 0.5 and the semi-latus
rectum p = 12 are kept fixed for all the cases. If not specified, the
delta function is approximated by a piecewise polynomial in both
p and 0 direction. For m =1, ¢ = 0.6 and m = 2, ¢ = 0.8 the
delta function is approximated as Gaussian function in p direction
and piecewise polynomial in @ direction. For m = 1, e = 0.8 the
delta function is approximated as Gaussian function in both p and
6 directions.

This choice currently seems to depend on the orbital para-
meters and modes. For example, the piecewise polynomial
approximation appears to be in general more efficient than
the Gaussian approximation, however its own limitation in
our example became prominent for high eccentricities and
modes corresponding to small flux or strain absolute
values, i.e., in modes that the numerical noise is dominant.

104045-15



SKOUPY and LUKES-GERAKOPOULOS

PHYS. REV. D 103, 104045 (2021)

IV. SUMMARY

In this work, we have studied the motion of a spinning
particle in the equatorial plane of a Kerr black hole and
the GW fluxes from these orbits. The only possible
configuration of the spins in this setup is the spins to be
parallel or antiparallel. In this framework, we have
derived a reduced set of equations of motion equivalent
to the MPD equations with TD SSC. Taking advantage of
the fact that an orbit can be characterized by its constants
of motion, namely the energy E and the z component of
the total angular momentum J,, we have provided
explicit formulas for the energy and the angular momen-
tum in terms of the eccentricity ¢ and semi-latus rectum
p. Furthermore, through the reduced equations of motion
and by introducing a Mino-like time parameter 4, we
were able to find expressions allowing the numerical
calculation of the frequencies of the radial and azimuthal
motion. These expressions provide the frequencies with
respect to 4 or the BL time.

The orbital findings were then implemented in the
calculation of the GW fluxes from the equatorial orbits in
the frequency domain. Namely, this work introduces the
formulas giving the strain 4, the energy fluxes and the
angular momentum fluxes at infinity and at the horizon
from a spinning secondary moving on the equatorial
plane of a Kerr black hole. For this purpose, we have
developed a Mathematica code calculating the amplitudes
Cit,. on which the frequency domain GW fluxes depend.
We plan to make this code publicly available through the
Black Hole Perturbation Toolkit repository. The fre-
quency domain results were, then, compared with time
domain results obtained from a TE solver called
Teukode. To improve the efficiency of Teukode, we
have implemented a piecewise polynomial to approximate
the delta functions and its derivatives in the spinning-
particle source term. The comparison has shown good
agreement between the frequency domain results with the
time domain ones.

To check the discretization error in the time domain
calculations introduced by the piecewise polynomial, we
have calculated the fluxes in time domain for different
resolutions and compared them with the respective fre-
quency domain results. The difference between the results
from these two approaches tend to consistently decrease
with increasing resolution. However, for the highest res-
olution, which we have implemented, the numerical noise
in the time domain calculations becomes significant. This
behavior occurs for different calculation setups. Namely,
we have checked our calculations by varying the secondary
spin while keeping the other parameters fixed and by
varying the eccentricities while keeping the other param-
eters fixed.

These calculations are part of the on-going effort to
build post-adiabatic gravitational waveforms modelling
gravitational waves emitted by extreme mass ratio

inspirals. In a future work, the frequency domain fluxes
will be used to find the adiabatic evolution of the orbit on
the equatorial plane under the influence of radiation
reaction. The influence of the secondary spin on the
change of the orbital parameters and phase of the GW
will be studied.
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APPENDIX A: LIST OF DIMENSIONLESS
QUANTITIES

Throughout this work, we use several quantities both in
their full form and dimensionless form. The dimensionless
form is denoted by a hat. Their list with relation between
the full and dimensionless form is in Table I. Some
quantities such as the time parameter A or x are defined
only as dimensionless whereas other quantities are used
only in their full form.

TABLE I. List of dimensionless quantities.

t/M BL time

r/M BL radial coordinate
a/M Kerr parameter
S/ (uM) Secondary spin
Energy

By oy S
I
S
~
=

=J./(uM) Angular momentum
=17/M Proper time
=A / M2
&2 = o’/ M?
Q=M Radial BL frequency
Qy = QM Orbital BL frequency
o = oM Frequency
C:vgb = Cgb/ H
a = Cop/H
CE,, =Ch M?/u Partial amplitudes
a=u/M Retarded coordinate
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APPENDIX B: FORMULAS FOR GW FLUXES

In this Appendix we derive the coefficients A; = A;(r, )
and B; | = B;(r,0), i =0, 1, 2, in Eq. (73) for calcu-
lation of partial amplitudes of GWs from general bound
orbits of a spinning particle around a Kerr black hole. Then
we list explicit formulas for equatorial orbits with secon-
dary spin parallel to the z axis.

To find the form of the coefficients A; and B; | in
Eq. (73), the integrals (68) and (65) must be evaluated using
rules for integrating delta functions. We can classify the
parts of the coefficients A; according to term from which
they originate:

Ay = Z (AQ0 + Al + Al +A%,).  (B1)
ab=nn.nm,mm
A= Y (A% + AL +AL +A%), (B2
ab=nm.,mm
AZZAOmmo +A£7(1pmo +A:hml+A§1ml (B3)

The terms AY,. originate from the first term of the stress-
energy tensor (70) containing the nonspinning part of T+
and parts containing Christoffel symbols. The terms AZ/,’”.
originate from the second term of (70) containing ¢ and ¢
derivative. Similarly, the terms A7, or A%, originate from
the second term of Eq. (70) containing r or 6 derivative
respectively. The subscripts ab denote the tetrad legs
in Eq. (69).

Agbi can be found by integrating € and ¢ after sub-
stituting the first term of Eq. (70) into Eq. (68) by
replacing 0 — 0,(1), ¢ — ¢,(1) and then using inte-
gration by parts in Eq. (65), where the derivatives with
respect to r in (69) are shifted to the radial function R;; , t
obtain

Agbi = (Cgh - CZb)f (;137 <B4)

where CO and C?, are defined in Eq. (71).

To find the form of Aa";l, we must perform integration by
parts in Eq. (68) where the ¢ or ¢ derivative in the second
term of Eq. (70) are shifted to exp(iw — im¢) because no
other functions depend on ¢ and ¢. From this, we get terms
multiplied by iw and —im¢. After that, an integration over r
of Eq. (65) is done similarly as in the previous case and we

obtain

w _d7

abi — 4 (iwS™ — imSW)”yeEZ) e:(zl)j)fgz' (B5)

The term A%, is derived in similar way. The derivative
with respect to € in the second term in (70) is shifted to the

functions fﬁf,z and the tetrad legs. The boundary term

vanishes because fs;(r, 0) = ff;g(r, z) = 0. The final term

has the form

dz a
Al =3 "0 f el )
dr

+3; SOWy) el el 9, £ (B6)

Now let us focus on the term containing the r derivative
in Eq. (70). After substituting the stress-energy tensor (70)
into Eq. (69), the derivative of the delta function can be

shifted to the function f' E;Z and the tetrad legs. For example,
from the first term of 7 ,; we obtain

B,(f (r, O)n,m, 0, ((v") 71§70 6))
- az(fnm(r 9) ﬁ’l (7)[) lSr(ﬂvb)63)
-0 (8 ( nm( 9) y)( ) lsryv )53)

After substituting Eq. (68) into Eq. (65) we can change
the order of the ¢ and r integrals and integrate by parts.
From the second term in Eq. (B7) we obtain a term with

(B7)

derivatives with respect to r of ffl'g and the tetrad legs

d i a
Ay = —TS“”v”)fi,lar(e,S lel”)

dr

dr
—I—d Srig) ,fub (B3)
From the second term in Eq. (B7) we obtain terms with one
order higher derivatives of the radial function Rj, , of
which the integration by parts we can perform to obtain the
coefficients

Bi= Y Ban (BY)

ab=nn.nm,mmn
B, = Z B, (B10)

ab=nm,mm
B3 = By 3. (B11)

where
d7 ) (@) (b))

Bap(it) :_ES ey ey f - (B12)

The functions f{(fl), = fi’g(r, 0) in the equatorial plane are
given by

of 7\ _
fnn <r52>

0, 7\ _2V2r (K2 e
n(r5) =25 (K0Sl (B14)

2ia
-5 (ﬁ cf- ﬁ’)s;z;:w)m, (B13)
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2\/§r

L383(6) o (B15)

m( =
fnﬁl(r’2>
o (5} <o K K g (2
SAVY VN 2)

(B16)

Up to this point the analysis holds for generic orbits of a
spinning particle. When we constrain the particle on
equatorial orbits with its spin set parallel to the z axis,
then S% = 0 for all u and, therefore, A%, = 0. For the
presentation of the equatorial case, we prefer to use the
dimensionless quantities.

In the definition of Cgb and C¢, (71) we can replace the
derivative with respect to 7 in v* with derivative with
respect to A and use the fact that V! = di/dA, V" = d7/dA
and V¢ = d¢/dA. From Egs. (23) and (25) we obtain

2) b3 V3 N (M V2
o (r, —) - <—> (B18) 0 _ o
2 m\2 "l E, (B21)
where 20 dAV,V, (27 + 62)
g n,P ) B
K = (r*+ a*)w — am, (B19) £ 2%,(F +20°)
A i 7V,
& 0 _
Ly =0y —mcscO+ awsind+ncotd. (B20) Crin = di (A +26%) (B23)
|
A di o A(P +26%)
Co = ———|2aVi - —= 5 Va —-7V'x B24
™= 472y, < P @) > (B24)
. dl o 42 — 7 a 3do? A(P +262)
T — 2V2 + (V)?) - V Vr+ Vux—avVix + ———>x |, B25
=Sy (- A @V () W2y ey ST (e
Ao di o d 2 r r r
|
where where we used the dimensionless projections of S#* into the
tetrad
P,(F)+Vr
V, = Vin, + Vn, + V1o — (F) + ., (B27) o a
M 2 ar L, o(x®* —2av,)
§y=—A(8"n,+8%n,) =———F—", (B32)
iy (P + 20%) M 27%,
Vn'1 - Vtﬁ’lt + V{/) - —\/572. (B28)
o . A
8 = —(=8"n, + §ny) = -2 (B33)
We can rewrite the expressions for Afj;l, A’ and uM 2F%,
Bp(iy1) Into dimensionless quantities as N
G0 :l(_gtcﬁnt —Sn,) = M, (B34)
v AL A Y " 27%,
Ay = 37 (108" = imS? )V for <f, 5), (B29)
. 1 icw?V"
Sy, = - (B35)
. dl T VR Ay,
Agpi = & (8" 0,aVn) + S 6V, a>)f§2 <f ;) H V245,
A 1 ioP,(7)
di &, T T =—(=S8"m, + S"m,) = -—2-2, (B36
+ 58 WV 0i ) ( 2) (B30) i = g ST STg) = === (B36)
; Ao, o 20 (7 7 §0, = Ly, — 100V B37
ab(i+1) = — 35 @V fab (V, E) . (B31) u i V2As, (B37)
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The quantities V;,, and S"afa can be understood as
dimensionless projections on the differentiated tetrad a,e’(‘a)

0,
Vo = M(Vfa,n, F VO, + VP M""’)

(& = P)Py(7)

=, B38
FA (B38)
_ (9,m¢
Von=M(VOm,+ VP
Via V24P, (7
_Va_ V28P,(7) (B39)
r A
ar 1 , " o(a* —#)x
S 9, :;(—S’ d,n, + 80,n,) = ~ Py (B40)
or 1 ra rp 9
S ;i :;(—S 3,mt + S 8,m¢)
_ _ia(de—i-Pa(f))’ (B41)
V27,
where the covariant components of the tetrad are
=5 (=A,=%,0,aA sin? ), (B42)
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FIG. 9. Differences between our frequency domain results and
the results obtained in [25]. Top panel: the difference 6FE®

lmn

between the fluxes normalized by max, <., |FL2|. Bottom

panel: the difference 6C;,  between the coefficients normalized

by MaAXy, <1<y | Clmn |

i, = -2~ (iasin6,0,=,

== (B43)

—iw?sinf).

APPENDIX C: COMPARISON WITH
[PHYS. REV. D 73, 024027 (2006)]

This section compares our frequency domain calcula-
tions for a nonspinning particle with results obtained in
[25]. In that work, the GW fluxes were calculated
from generic orbits of a nonspinning particle moving
around a Kerr black hole using Teukolsky formalism with
the fractional accuracy of the energy flux [/, m-modes set
to 1076,

We have compared our data with theirs for an equatorial
orbit around a Kerr black hole with ¢ =03, p=
8.463649 = 1.7 ;g5co and e = 0.3. In particular, we have
compared our energy fluxes Fre FEH and amplitudes
Ci, with their data. In the top panel of Fig. 9, we plot
the difference between our calculated fluxes % and the

fluxes FE@ . calculated in [25] normalized by the
maximum of F£® over n for each /m-mode

_ |‘7:lmn

6}-lmn — flmnDH

(C1)

maX"mm RS/ Flmn

10—6 +
10—8 +

0—1 0L
SFE"

I'mn

10—12 L
10—14 L

10—16 +

10-4.
107

1078

- 107 ¢
6CImn
1078 ¢

107°

107k

FIG. 10. Differences between our frequency domain results and
the results obtained in [25]. Top panel: the difference 5FEH
between the fluxes normalized by max, <., |Fhi|. Bottom
panel: the difference 6C;,,, between the coefficients normalized

by maxnmin <n<hpax | Clmn |
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We can see that for each /mn-mode the error is less than
107 of the maximal value for given [ and m. In a similar
way, we have compared the coefficients C’;;,m using the
quantity
|Cltnn - CltnnDH|

Tl

Tiin SN SMmax | Imn

+
6Clmn -
max

(C2)

The result of this comparison is shown in the bottom panel
of Fig. 9. The normalized difference for the coefficients

C;  is higher than in the flux comparison, because the flux

is calculated from the second power of ¢ o, and the error is
thus relatively smaller. Similar comparison was calculated

for the horizon fluxes ¥ and Ci,, The result is shown in
Fig. 10. Although the accuracy is less than 107 for some
modes, the contribution from the horizon fluxes is smaller
than from the fluxes to infinity and the overall accuracy

remains higher.

APPENDIX D: DATA TABLES

In this appendix we present data tables of the partial
amplitudes C7. =~ (Tables 1I-V) for an orbit with orbital
parameters d = 0.9, 6 = —0.5, p = 12, ¢ = 0.2. The con-
stants of motion and the fundamental frequencies calcu-

lated from the Egs. (38), (39), (53) and (52) are

TABLEIL List of partial amplitudes Cj;,, for an orbit with orbital parameters & = 0.9,6 = —0.5, p = 12, ¢ = 0.2.
I m n Re{C},,} Im{C;,,, } Re{C},,,} Im{C},,,}

2 1 -6 5.167891 x 10710 —1.467715 x 107° 4.763386 x 10~ 7.282975 x 1078
2 1 -5 1.335467 x 107° —4.271458 x 107° 9.287132 x 10~° 3.018417 x 1077
2 1 —4 2.722364 x 10~° —1.043309 x 1078 —5.859804 x 10710 1.237186 x 10°
2 1 -3 3.539058 x 10~° —1.824696 x 1078 —1.435506 x 1077 5.014982 x 107°
2 1 -2 1.292175 x 107° —1.244299 x 1078 —1.084857 x 107° 2.011327 x 1073
2 | -1 2.025147 x 10710 4.098935 x 10~ —6.110857 x 107° 7.974254 x 1075
2 1 0 —8.063520 x 1077 —5.100353 x 107° —4.159829 x 1075 4294392 x 104
2 1 1 —1.456843 x 107° —6.201949 x 107° —3.035062 x 1073 2.643207 x 10~
2 1 2 —1.100808 x 1076 —3.735099 x 10~° —1.503776 x 1075 1.150093 x 104
2 1 3 —5.586369 x 1077 —1.633602 x 107° —6.182375 x 107° 4266183 x 1075
2 1 4 —2.230519 x 1077 —5.891306 x 1077 —2.272133 x 107° 1.441687 x 1075
2 1 5 —7.504175 x 1078 —1.849669 x 1077 —7.750262 x 1077 4.582582 x 107°
2 1 6 —2.190751 x 1078 —5.168866 x 1078 —2.508722 x 1077 1.395109 x 107°
2 1 7 —5.569707 x 1077 —1.283265 x 1078 —7.819832 x 1078 4.114092 x 1077
2 1 8 —1.192995 x 10~ —2.742169 x 10~ —2.371637 x 1078 1.184135 x 1077
3 1 -6 4.142460 x 10710 —9.135246 x 10710 1.272727 x 1078 1.107665 x 1078
3 1 -5 9.739033 x 10~10 —2.513096 x 10~ 4917854 x 1078 4243317 x 1078
3 1 —4 1.677799 x 10~° —5.375419 x 10~ 1.880053 x 1077 1.599580 x 1077
3 1 -3 1.428809 x 10~° —6.372160 x 10~ 7.093426 x 1077 5.919756 x 1077
3 1 -2 —3.968943 x 10710 3.427931 x 10~ 2.633559 x 1070 2.144669 x 107°
3 1 0 —1.196768 x 1077 —6.663590 x 1077 4.292987 x 1073 3.279176 x 1073
3 1 1 2.815396 x 1077 1.022378 x 107 2.784472 x 1075 2.044711 x 1073
3 1 2 3.393782 x 1077 9.521505 x 1077 1.277421 x 1075 8.974092 x 107
3 1 3 1.975341 x 1077 4.622740 x 1077 4.983533 x 107° 3.333072 x 107°
3 1 4 8.151849 x 108 1.663691 x 1077 1.766440 x 107° 1.119246 x 107°
3 1 5 2.659713 x 1078 4.876757 x 1078 5.874042 x 1077 3.508458 x 1077
3 1 6 7.014470 x 10~° 1.180811 x 1078 1.866093 x 1077 1.045302 x 1077
3 1 7 1.392344 x 10~° 2.201409 x 107° 5.728150 x 1078 2.993285 x 1078
4 1 0 —6.611595 x 10710 —3.354890 x 10~ 1.778200 x 107° —9.269538 x 1077
4 1 1 3.327272 x 107° 1.078814 x 1078 1.293272 x 107 —7.573044 x 1077
4 1 2 5.489708 x 107 1.347987 x 1078 6.508828 x 1077 —4.275336 x 1077
4 1 3 3.989895 x 10~ 8.004271 x 10~ 2.704943 x 1077 —1.991900 x 1077
4 1 4 1.899103 x 10~ 3.250073 x 107~ 9.959920 x 1078 —8.225436 x 1078
4 1 5 6.514413 x 10710 9.782216 x 10710 3.367305 x 1078 —3.122972 x 1078
5 1 1 2.035370 x 10~° 6.185810 x 10~° —1.963261 x 1078 —1.023901 x 1077
5 1 3 —1.411206 x 107° —2.593480 x 107° —8.203217 x 107° —2.319941 x 1078
5 1 4 —1.152085 x 10~ —1.783264 x 10~ —3.940505 x 10~ —8.863485 x 10~
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TABLE III.  List of partial amplitudes C75, for the same orbit as in Table I

l m n Re{C},} Im{C;,,} Re{C},.} Im{C;,,,}

2 2 —4 —1.646357 x 107° —2.613368 x 10710 2.350051 x 1078 1.728856 x 10~°
2 2 -3 —5.171809 x 10~° —3.499305 x 10710 1.187803 x 1077 1.441103 x 1078
2 2 -2 1.563190 x 1077 —1.253110 x 108 2.380182 x 107° 3.978260 x 1077
2 2 -1 —4.066035 x 1075 6.801245 x 107° —9.742181 x 1073 —2.076711 x 1073
2 2 0 3.858210 x 10~ —8.824264 x 1073 5.307355 x 10~ 1.379732 x 1074
2 2 1 3.970205 x 10~ —1.089118 x 10~* 4287891 x 10~4 1.314682 x 104
2 2 2 2.406528 x 1074 —7.404687 x 107> 2.175548 x 107* 7.698517 x 1075
2 2 3 1.138352 x 10~ —3.764006 x 107> 8.960040 x 107 3.602218 x 1072
2 2 4 4.644175 x 1075 —1.599176 x 107> 3.266409 x 1075 1.474535 x 1073
2 2 5 1.715753 x 1073 —5.997531 x 107° 1.098058 x 1075 5.516737 x 107°
2 2 6 5.901325 x 1076 —2.047506 x 107° 3.482534 x 107° 1.934221 x 107°
2 2 7 1.922706 x 107° —6.480880 x 1077 1.056831 x 107° 6.456290 x 1077
2 2 8 6.002221 x 1077 —1.923652 x 1077 3.097499 x 1077 2.073768 x 1077
2 2 9 1.810496 x 1077 —5.403652 x 1078 8.825836 x 1078 6.461080 x 108
2 2 10 5.321319 x 1078 —1.460369 x 108 2456752 x 1078 1.967628 x 1078
2 2 11 1.545017 x 1078 —3.880442 x 107° 6.695307 x 1079 5.913216 x 107
2 2 12 4.635476 x 1079 —9.455299 x 10710 1.752615 x 107° 1.779985 x 107
2 2 13 1.168229 x 107° —1.713718 x 10~1° 4.702090 x 10~10 4.920492 x 10~10
3 2 -1 —2.396250 x 1077 5.060581 x 1078 1.890430 x 107© —9.847625 x 1077
3 2 0 3.649975 x 10°° —1.111405 x 107° 3.187469 x 1075 —1.653879 x 1073
3 2 1 4.889631 x 107° —1.883465 x 107° 3.015258 x 1073 —1.566972 x 107>
3 2 2 3.536010 x 1076 —1.615521 x 107° 1.793053 x 1075 —9.383274 x 107°
3 2 3 1.888741 x 107° —9.843758 x 1077 8.495665 x 107° —4.500460 x 107°
3 2 4 8.370027 x 1077 —4.845333 x 1077 3.503785 x 107° —1.888329 x 10°°
3 2 5 3.260656 x 1077 —2.055320 x 1077 1.314468 x 107° —7.241796 x 1077
3 2 6 1.154284 x 1077 —7.798475 x 1078 4.601592 x 1077 —2.603261 x 1077
3 2 7 3.790759 x 1078 —2.708873 x 1078 1.527743 x 1077 —8.912589 x 108
3 2 8 1.170216 x 1078 —8.743846 x 107° 4.863519 x 1078 —2.937305 x 1078
3 2 9 3.415775 x 107° —2.649605 x 10~° 1.496262 x 108 —9.389021 x 10~
3 2 10 9.324112 x 10710 —7.609938 x 1010 4.474358 x 107° —2.926757 x 107°
4 2 -1 —4.819515 x 1078 1.102927 x 10~8 1.244599 x 1077 —4.205354 x 1077
4 2 0 1.025155 x 107° —3.437785 x 1077 1.114267 x 107° —4.056764 x 107°
4 2 1 3.046028 x 1077 —1.313240 x 1077 9.753818 x 1077 —3.881701 x 107°
4 2 2 —1.647969 x 1077 8.570891 x 1078 5.323946 x 1077 —2.357344 x 107°
4 2 3 —2.043076 x 1077 1.234177 x 1077 2.267391 x 1077 —1.142665 x 107°
4 2 4 —1.208388 x 1077 8.265904 x 1078 8.153936 x 1078 —4.822614 x 1077
4 2 5 —5.386171 x 108 4.095780 x 108 2.551314 x 108 —1.851227 x 1077
4 2 6 —2.029400 x 1078 1.691104 x 1078 6.938177 x 1079 —6.628891 x 1078
4 2 7 —6.788401 x 10~° 6.130268 x 10~° 1.566483 x 10~° —2.250158 x 1078
4 2 8 —2.068407 x 10~° 2.005378 x 1070 2.389387 x 10710 —7.319933 x 10~°
5 2 0 7.342146 x 107 —2.652971 x 107° —9.489133 x 1078 —1.219765 x 1077
5 2 1 1.759299 x 107° —8.273581 x 10710 —1.010641 x 1077 —1.194663 x 1077
5 2 2 —3.657312 x 107 2.102053 x 10~ —7.026352 x 1078 —7.612572 x 1078
5 2 3 —4.181570 x 107° 2.831232 x 107 —3.875359 x 107% —3.833430 x 1078
5 2 4 —2.657863 x 107 2.069513 x 107 —1.841952 x 1078 —1.655902 x 1078
5 2 5 —1.274114 x 107° 1.121653 x 107 —7.882070 x 107° —6.404217 x 107°
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TABLE IV. List of partial amplitudes C3, for the same orbit as in Table II

l

n

Re{C;} 1}

Imn

Im{C;} }

Imn

Re{ C;’I‘H’l }

Im{ C;’I‘H’l }

DO LML UL bR bR BB DRBE R DR DA DR WWLLWWLLWWWLWWWWWWWW

L L) LY LY LY LY LY WD LD L L LD LD L)LY LY L)LY L L L)L LYWL LL W WL WWWLWWLWWWWWWWWww|[S

=3
-2
-1

0NN AW~

=]

10
11
12
13
-2
-1

[
PO =, O OO WNPAWNNRO—~=,NDNOOVNTNWN P WD —=O

—1.004997 x 10~°
4716853 x 1077
—1.300363 x 107>
5.305191 x 1073
8.900651 x 1075
7.612663 x 107>
4744130 x 107>
2.434203 x 1075
1.092213 x 1073
4.438184 x 1076
1.670164 x 107°
5.909836 x 1077
1.988825 x 1077
6.409344 x 1078
2.020696 x 108
6.131692 x 107
1.679868 x 10~°
2.685489 x 10~°
—1.147948 x 1077
6.392598 x 1077
1.316270 x 10°°
1.323400 x 10°°
9.395536 x 1077
5.364249 x 1077
2.629183 x 1077
1.149548 x 1077
4.595850 x 1078
1.708722 x 108
5.977998 x 10~°
1.986521 x 107°
7.907117 x 10710
—4.398249 x 1078
3.218695 x 1077
3.455801 x 1077
1.711208 x 1077
3.896109 x 1073
—1.094717 x 1078
—1.726012 x 1078
—1.143495 x 1078
—5.747543 x 107°
—2.468744 x 107°
-9.509418 x 10710
2.515496 x 107°
3.001379 x 10~°
1.275195 x 107°
—7.270147 x 10710

—7.760638 x 10~°
2.003985 x 107°
—4.030524 x 1075
1.331426 x 10~*
1.911136 x 10~*
1.447861 x 104
8.189333 x 10>
3.884905 x 107>
1.635785 x 107>
6.316315 x 10=°
2.283624 x 107°
7.840535 x 1077
2.581659 x 1077
8.217920 x 1078
2.531856 x 1078
7.692513 x 107°
2.245018 x 10~
1.028336 x 108
—3.145041 x 1077
1.390373 x 107°
2.399175 x 107°
2.090102 x 107°
1.315492 x 10°
6.771760 x 1077
3.032417 x 1077
1.224621 x 1077
4.564687 x 1078
1.595567 x 1078
5.284213 x 107°
1.675756 x 107~
2.853014 x 107°
—1.123248 x 1077
6.453677 x 1077
5.738309 x 1077
2.430505 x 1077
4.837181 x 1078
—1.206677 x 1078
—1.709111 x 1078
—1.026788 x 108
—4.714943 x 107°
—1.860621 x 107°
—6.710533 x 10710
4721206 x 10~
4.619049 x 1077
1.660290 x 10~°
—7.155788 x 10710

3.558851 x 107
—3.882412 x 1077

4.310309 x 107°
—9.633994 x 107°
—1.135235 x 1073
—7.199807 x 107°
—3.482019 x 107°
—1.438478 x 1076
—5.363338 x 1077
—1.863735 x 1077
—6.164127 x 1078
—1.969217 x 1078
—6.141824 x 107°
—1.884840 x 10~°
—5.716907 x 10710
—1.717137 x 10710
—5.246898 x 10~
—2.488432 x 1078

1.950153 x 1077
—2.124982 x 107°
—2.891155 x 107°
—2.242899 x 107°
—1.324312 x 107°
—6.609932 x 1077
—2.939162 x 1077
—1.200513 x 1077
—4.593515 x 1078
—1.668689 x 1078
—5.810556 x 10~°
—1.953240 x 107°
—6.478361 x 107°

1.317613 x 1078
—3.389273 x 1077
—4.536955 x 1077
—3.512562 x 1077
—2.071569 x 1077
—1.031213 x 1077
—4.563110 x 1078
—1.850203 x 10°%
—7.009564 x 10~°
—2.514576 x 107°
—8.623420 x 10710
—8.984566 x 107°
—1.151088 x 1078
—9.081402 x 107°
—2.769497 x 10~°

1.588115 x 1078
—1.922022 x 10¢
2.366988 x 1073
—5.865711 x 1073
—7.650771 x 1075
—5.358218 x 107°
—2.851315 x 1073
—1.289482 x 107>
—5.227212 x 107°
—1.957612 x 107°
—6.902951 x 1077
—2.321446 x 1077
—7.513658 x 1078
—2.356231 x 1073
—7.198380 x 10~°
—2.149742 x 107°
—6.287407 x 10710
—2.373154 x 1078
1.857823 x 1077
—2.014665 x 107°
—2.717792 x 107°
—2.082785 x 107°
—1.210354 x 107°
—5.923846 x 1077
—2.573399 x 1077
—1.023073 x 1077
—3.795772 x 1078
—1.331898 x 108
—4.462024 x 107°
—1.437145 x 107°
—3.587094 x 10~10
5.278265 x 10710
—7.785256 x 1077
—1.859315 x 107
5.820222 x 10~
8.090550 x 107°
6.536982 x 10~
4.089656 x 107°
2.179864 x 10~
1.037791 x 10~
4.537261 x 10710
1.854954 x 10710
9.229790 x 10~
1.262076 x 1078
1.067007 x 1078
3.789745 x 107
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TABLE V. List of partial amplitudes C3;, for the same orbit as in Table II

l m n Re{C},} Im{C} .} Re{C},.} Im{C;,,,}

4 4 -3 1.030232 x 1077 —2.987138 x 1078 2.594938 x 1078 —1.364431 x 1078
4 4 -2 —3.167459 x 10° 1.235891 x 10=° —5.564356 x 1077 2.832212 x 1077
4 4 -1 2.493681 x 1075 —1.203041 x 1073 3.475072 x 10° —1.718247 x 107°
4 4 0 —3.730632 x 107> 2.123841 x 1073 —4.314063 x 107° 2.079650 x 107°
4 4 1 —8.092430 x 1073 5.277164 x 1073 —9.355450 x 107° 4413471 x 107°
4 4 2 —7.619630 x 107> 5.574275 x 107° —8.650047 x 107° 4.008745 x 107°
4 4 3 —5.089773 x 1075 4.112353 x 1073 —5.704990 x 107° 2.607445 x 107°
4 4 4 —2.773635 x 1073 2.444478 x 107 —3.087320 x 107° 1.397110 x 107°
4 4 5 —1.316378 x 1073 1.252512 x 107 —1.461746 x 107° 6.575647 x 1077
4 4 6 —5.647802 x 107° 5.750074 x 107° —6.277339 x 1077 2.818301 x 1077
4 4 7 —2.243064 x 107° 2.424266 x 107° —2.501089 x 1077 1.125120 x 1077
4 4 8 —8.381942 x 1077 9.546192 x 1077 —9.388208 x 1078 4248119 x 1078
4 4 9 —2.980940 x 1077 3.554223 x 1077 —3.356380 x 1078 1.533473 x 1078
4 4 10 —1.020168 x 1077 1.261960 x 1077 —1.152115 x 108 5.334443 x 107
4 4 11 —3.378335 x 1078 4.299271 x 1078 —3.820558 x 10~° 1.799074 x 10~°
4 4 12 —1.082123 x 1078 1.416903 x 108 —1.229874 x 107° 5.909993 x 10710
4 4 13 —2.922436 x 107° 4787284 x 107° —3.860830 x 10710 1.899575 x 10710
4 4 14 —1.034014 x 107° 1.406801 x 10~° —1.182908 x 10710 5.976449 x 10~
5 4 -2 —1.875445 x 1078 7.933698 x 107° —3.023775 x 107 5.361340 x 107
5 4 —1 1.928140 x 1077 —1.021033 x 1077 3.348964 x 108 —5.960966 x 1078
5 4 0 —3.581359 x 1077 2.267803 x 1077 —1.071155 x 1077 1.920896 x 1077
5 4 1 —8.885218 x 1077 6.538335 x 1077 —2.097613 x 1077 3.803623 x 1077
5 4 2 —9.357029 x 1077 7.847094 x 1077 —2.025645 x 1077 3.727819 x 1077
5 4 3 —6.840485 x 1077 6.445750 x 1077 —1.413811 x 1077 2.650546 x 1077
5 4 4 —4.007050 x 1077 4.196831 x 1077 —8.077376 x 1078 1.548634 x 1077
5 4 5 —2.013663 x 1077 2.324005 x 1077 —4.013179 x 1078 7.900370 x 1078
5 4 6 —9.029619 x 1078 1.140120 x 1077 —1.795737 x 1078 3.645112 x 1078
5 4 7 —3.705473 x 1078 5.087027 x 108 —7.399921 x 10~° 1.555748 x 10738
5 4 8 —1.416211 x 1078 2.102079 x 1078 —2.851190 x 10~ 6.238100 x 107°
5 4 9 —5.102297 x 10~° 8.148365 x 107 —1.038250 x 107 2.376195 x 107
5 4 10 —1.757070 x 10~° 2.997933 x 107° —3.601133 x 10710 8.670269 x 10710
5 4 11 —5.830642 x 10710 1.054002 x 107° —1.196530 x 10710 3.049759 x 10710
6 4 -2 —8.666245 x 1079 3.877093 x 10~ 1.065444 x 10710 7.051137 x 10710
6 4 -1 1.052404 x 1077 —5.945050 x 1078 —9.799602 x 10710 —5.966157 x 10~°
6 4 0 —2.657233 x 1077 1.812153 x 1077 4.508872 x 107° 2.519233 x 1078
6 4 1 —3.867479 x 1077 3.097707 x 1077 9.373712 x 107° 4.799473 x 1078
6 4 2 —2.693825 x 1077 2.488393 x 1077 9.932362 x 107° 4.656984 x 1078
6 4 3 —1.291963 x 1077 1.359028 x 1077 7.665334 x 10~ 3.290682 x 1078
6 4 4 —4.680907 x 1078 5.556090 x 10~% 4.860330 x 107° 1.910878 x 1078
6 4 5 —1.257609 x 1078 1.673105 x 1078 2.686650 x 10~ 9.678828 x 10~°
6 4 6 —1.863538 x 107 2.764762 x 107° 1.340226 x 107° 4.427345 x 107°
6 4 7 4381872 x 10710 —7.223455 x 10~10 6.169229 x 10~10 1.870247 x 107°
6 4 8 5248114 x 10719 —9.583384 x 10710 2.660845 x 10710 7.408825 x 10710
7 4 0 —1.681887 x 107° 1.221218 x 107° 8.419294 x 10710 6.223333 x 10710
7 4 1 —2.629027 x 107 2.263383 x 107° 1.494752 x 107 1.045267 x 107
7 4 2 —1.825947 x 107° 1.832837 x 10~ 1.524851 x 10~ 1.004491 x 10~
7 4 3 —7.525698 x 10710 8.711420 x 10710 1.156468 x 10~? 7.142646 x 10710
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E

Q,/) = 0.022671787375747548523093927931917807
Q, = 0.017744448092313388568850328609190010

0.961918749642517680134729458401233368989...
J. = 3.322244358788816670183960181110056686457...

Only modes with |C}, | > 107 are listed for 1 <m < 4.
The accuracy of the dominant modes should be at six
significant digits, but for lower modes, the accuracy drops.
This accuracy depends mostly on the accuracy of the radial

function Rif, and the coordinates #(y) and ¢(y).
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