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We study photon orbits in the background of (1þ 3)-dimensional static, spherically symmetric
geometries. In particular, we have obtained exact analytical solutions to the null geodesic equations
for light rays in terms of the Weierstraß function for space-times arising in the context of scale-dependent
gravity. The trajectories in the (x − y) plane are shown graphically, and we make a comparison with similar
geometries arising in different contexts. The light deflection angle is computed as a function of the running
parameter ξ, and an upper bound for the latter is obtained.
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I. INTRODUCTION

Light has always been of paramount importance in the
history of science. Indeed, over the years considerable
progress has been made observing the light reaching our
planet from distant sources. To mention just a few, the
absorption spectra of chemical elements, the accidental
discovery of the cosmic microwave background radiation
by Penzias and Wilson [1], and the bending of light during
the total solar eclipse in 1919, are only some examples
among many others. As far as gravity is concerned,
studying the motion of light rays and/or massive test
particles in a fixed gravitational background is one of
the principal ways to explore the physics of a given
gravitational field. For instance, in the case of Einstein’s
general relativity (GR) [2] and Schwarzschild geometry [3],
the explanation of the perihelion precession of the planet
Mercury around the Sun [4] as well as the bending of light
[4] during the total solar eclipse in May of 1919 (for a
historical review for the completion of 100 years of that
important event and the two British expeditions to Sobral,
Brazil, and to Príncipe Island, Africa, see [5]) comprise two
of the classical tests of GR [6].
Moreover, understanding how light propagates through

space in the presence of massive bodies is critical to our
understanding of the Universe, e.g. to characterize the
nature of dark energy and dark matter. Indeed, to under-
stand the gravitational lensing of distant galaxies, we need
to know precisely how light bends near the strong gravi-
tational fields of galaxies. This is a central piece of any

cosmological model [7], such as the standard Λ cold dark
matter model [8].
Despite its beauty and itsmany successful predictions that

have been confirmed over the years, there are still numerous
open questions concerning the quantum nature of GR. The
quest for a theory of gravity that incorporates quantum
mechanics in a consistent way is still one of the major
challenges in modern theoretical physics. Most current
approaches to the problem found in the literature (for a
partial list see e.g. [9–17] and references therein) seem to
share one particular property, i.e. the couplings that enter
into the action defining one’s favorite model, such as the
cosmological constant, the gravitational and electromag-
netic couplings etc., become scale-dependent quantities at
the level of an effective averaged action after incorporating
quantum effects. A posteriori this does not come as a
surprise, since scale dependence at the level of the effective
action is a generic feature of ordinary quantum field theory.
Due to the complexity of nonlinear partial differential

equations, analytical methods in most of the cases just
cannot work, and most of the gravitational effects can only
be understood employing either approximate or numerical
methods. Obtaining exact analytic expressions, however, is
always desirable for at least two reasons. The first reason is
that analytic expressions may serve as test beds for
numerical methods, and they are also a good starting point
for developing approximate approaches [18]. The second
reason is that analytic expressions enable a systematic
study of the complete parameter space, and of all possible
solutions, the structure and characteristics of which can be
explored [18]. This includes the derivation of observable
effects, such as the perihelion advance or light deflection. It
is only in this case that a systematic study of all effects may
be performed.
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The orbits of light rays in fixed gravitational back-
grounds of certain forms are described by solutions to
differential equations of elliptic or hyperelliptic type. The
theory of those functions was studied long time ago by
Jacobi [19], Abel [20], Riemann [21,22] and Weierstraß
[23]. A review of those achievements as well as a compact
description of the complete theory may be found in [24].
In particular, the motion of test particles in the
Schwarzschild space-time was completely analyzed by
Hagihara using elliptic functions back in 1931 [25].
More recently, over the last 15 years or so, elliptic
and hyperelliptic functions have been used to obtain
exact analytic solutions to the geodesic equation for
well-known geometries, such as Schwarzschild-(anti)–
de Sitter [26–28], Kerr [29] with a nonvanishing cosmo-
logical constant [30,31], regular black holes [32–35], and
higher-dimensional space-times [36,37].
Over the last years scale-dependent gravity has emerged

as an interesting framework with appealing properties. As it
is inspired by the renormalization group approach, it
naturally allows for a varying cosmological constant and
a varying Newton’s constant at the same time. Its impact on
black hole physics has been investigated in detail [38–53],
while recently some astrophysical and cosmological impli-
cations were studied as well [54–57]. In the present work
we propose to study the orbits of light rays in the back-
ground of two four-dimensional static, spherically sym-
metric space-times in the framework of scale-dependent
gravity. Our work in this article is organized as follows:
After this Introduction, in the next section we briefly review
the background geometry as well as the equations of
motion for test particles. In Sec. III we focus on null
geodesics for light rays, and obtain exact analytical
solutions describing photon orbits in a fixed gravitational
field for geometries arising in several different contexts
other than GR. Finally, we close our work in the last section
with some concluding remarks.

II. BACKGROUND GEOMETRY AND EQUATIONS
OF MOTION FOR TEST PARTICLES

A. Background geometry

Scale-dependent gravity is a formalism able to extend
classical GR solutions via the inclusion of scale-dependent
couplings which account for quantum features. Notice that
the corrections are assumed to be small. Avoiding the
details, in absence of matter content, we have two “run-
ning” couplings: (i) Newton’s constant Gk and (ii) the
cosmological constant Λk. We can also define the param-
eter κk ≡ 8πGk, with Gk being the running Newton’s
constant, alternatively as the Einstein’s constant. In addi-
tion, two extra fields need to be included: (i) the metric
tensor gμν and (ii) the arbitrary renormalization scale k. The
effective Einstein’s field equations, considering scale-
dependent couplings, are given by [46,48]

Gμν þ Λkgμν ≡ κkTeffec
μν ; ð1Þ

with Λk being the running cosmological constant, where
the effective energy-momentum tensor is defined by
[46,48]

κkTeffec
μν ¼ κkTM

μν − Δtμν; ð2Þ

whereTM
μν is the stress-energy tensor ofmatter (if any), while

the additional contribution due to the scale-dependent
Newton’s constant is computed to be [46,48]

Δtμν ≡Gkðgμν□ −∇μ∇νÞG−1
k : ð3Þ

To close the system of equations, we take advantage of the
null energy condition, we accept thatOðkðrÞÞ → OðrÞ, and
we only consider the radial variable.
Finally, the scale-dependent Schwarzschild-de Sitter

(SdS) solution is found to be [46,48]

fðrÞ ¼ fSdSðrÞ þ
ξ

2M

�
6M − 2rþ 3rξ

M
ðr − 4MÞ

þ 2r2ξ
M

ð1þ 6ξÞ ln
�
1þM

rξ

��
ð4Þ

where fSdSðrÞ is the lapse function of the usual SdS space-
time given by

fSdSðrÞ≡ 1 −
2M
r

−
1

3
Λr2 ð5Þ

with M being the mass of the object that generates the
gravitational field, Λ is the classical cosmological constant,
and ξ is a dimensionless parameter that measures the
deviation from the classical theory.
Assuming that ξ ≪ 1, taking the leading terms in ξ we

obtain the approximate expression [48]

fðrÞ ≈ fSdSðrÞ −
ξr
M

�
1 −

3M
r

�
: ð6Þ

Therefore in the following we shall consider static, spheri-
cally symmetric geometries of the form

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2½dθ2 þ sin2 θdϕ2� ð7Þ

characterized by a lapse function fðrÞ of the general form

fðrÞ ¼ fSdSðrÞ þ γrþ η ð8Þ

where the parameters γ, η may be either positive or
negative. Interestingly enough, it turns out that this is a
class of geometries including solutions in contexts other
than GR and scale-dependent gravity, such as Weyl
conformal gravity [58] and massive gravity [59,60]. For
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comparison reasons, in the discussion to follow we shall
show the photon orbits in the (x − y) plane for all three
space-times.
Here we should keep in mind that a regular scale-

dependent black hole solution was first obtained in [61]
(see also [62]), and the corresponding lapse function is
found to be

FðrÞ ¼ 1 −
2M
r

�
1þMξ

6r

�
−3
; ð9Þ

where M is the mass of the black hole, and ξ is the scale-
dependent parameter, which measures the deviation from
the classical theory. Expanding in powers of ξ we obtain an
approximate expression at leading order in ξ

FðrÞ ¼ 1 −
2M
r

þM2ξ

r2
þOðξ2Þ: ð10Þ

Notice that at this level of approximation, the geometry
looks like the Reissner-Nordström solution [63] for
charged black holes in GR, where ξ plays the role of the
electric charge. The orbits of test particles in the back-
ground of RN may be found precisely as in the
Schwarzschild case [64]. In the present work, for com-
parison reasons we shall show the photon orbits for this
geometry as well.

B. Geodesic equations

As already mentioned before, we assume a fixed four-
dimensional static, spherically symmetric gravitational
background, which takes the general form

ds2 ¼ gttdt2 − grrdr2 − r2½dθ2 þ sin2 θdϕ2�: ð11Þ

The equation of motion for test particles is given by the
geodesic equation [35]

d2xμ

ds2
þ Γμ

ρσ
dxρ

ds
dxσ

ds
¼ 0 ð12Þ

where s is the proper time, while the Christoffel symbols
Γμ
ρσ are computed by [65]

Γμ
ρσ ¼ 1

2
gμλ

�∂gλρ
∂xσ þ ∂gλσ

∂xρ −
∂gρσ
∂xλ

�
: ð13Þ

The mathematical treatment is considerably simplified by
the observation that there are two first integrals of motion
(i.e., conserved quantities), precisely as in the Keplerian
problem in classical mechanics. To do that, we recognize
that for μ ¼ 1 ¼ t and μ ¼ 4 ¼ ϕ the geodesic equations
take the simple form

0 ¼ d
ds

�
gtt

dt
ds

�
ð14Þ

0 ¼ d
ds

�
r2
dϕ
ds

�
: ð15Þ

Taking advantage of the last two expressions, we can
introduce the following conserved quantities:

E≡ gtt
dt
ds

; L≡ r2
dϕ
ds

: ð16Þ

The above two quantities, fE;Lg, are identified to the
energy and angular momentum, respectively. Moreover,
assuming a motion on the (x − y) plane the geodesic
equation corresponding to the θ index is automatically
satisfied.
Thus, the only nontrivial equation is the one correspond-

ing to μ ¼ 2 ¼ r [35]

�
dr
ds

�
2

¼ 1

gttgrr

�
E2 − gtt

�
ϵþ L2

r2

��
ð17Þ

which may be also obtained from [35]

gμν
dxμ

ds
dxν

ds
¼ ϵ ð18Þ

where ϵ ¼ 1 for massive test particles, and ϵ ¼ 0 for
light rays.
At this point is advantageous to introduce an effective

potential

V2
eff ¼ gtt

�
ϵþ L2

r2

�
ð19Þ

after which the equation of motion takes the final simple
form [35]

�
dr
ds

�
2

¼ 1

gttgrr
½E2 − V2

eff �: ð20Þ

Finally, the orbit is found obtaining r as a function of ϕ,
which is found to be

�
dr
dϕ

�
2

¼
�
dr=ds
dϕ=ds

�
2

¼ r4

L2gttgrr

�
E2 − gtt

�
ϵþ L2

r2

��
:

ð21Þ

When the Schwarzschild ansatz is used (as in all cases of
interest here), the latter expression is simplified to be

RðrÞ≡
�
dr
dϕ

�
2

¼ r4

L2

�
E2 − gtt

�
ϵþ L2

r2

��
: ð22Þ
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The differential equation, since it is of first order, must be
supplemented by the appropriate initial condition. Clearly,
the precise shape of the orbits depends on (i) the back-
ground geometry, (ii) the values of ðE;LÞ, and (iii) the
initial condition.

III. EXACT ANALYTIC SOLUTIONS

In this section, first we shall obtain the general expres-
sion for the orbits in terms of the Weierstraß function [23],
and after that we shall show graphically the orbits in the
(x − y) plane for different values of the photon energy and
different initial conditions, and for each geometry
separately.

A. Case I

The general case take advantage of the metric compo-
nents as follows:

gtt ¼ fðrÞ ¼ 1 −
2M
r

−
1

3
Λr2 þ γrþ η ð23Þ

grr ¼ fðrÞ−1: ð24Þ

We recall that the above lapse function arises in several
nonstandard theories of gravity, such as Weyl gravity [58],
massive gravity [59,60], and scale-dependent gravity
[38,39,46,48] at leading order in ξ.
Focusing on photon orbits we set ϵ ¼ 0, and making the

change of variable u ¼ 1=r, the equation for the trajectories
uðϕÞ is written down as follows:

�
du
dϕ

�
2

¼ P3ðuÞ ¼ b3u3 þ b2u2 þ b1uþ b0 ð25Þ

where the corresponding coefficients are computed to be

b3 ¼ 2M ð26Þ

b2 ¼ −ð1þ ηÞ ð27Þ

b1 ¼ −γ ð28Þ

b0 ¼
1

3
Λþ

�
E
L

�
2

: ð29Þ

In order to obtain the solution in terms of the Weierstraß
function, ℘ðϕ − ϕin; g2; g3Þ, first we perform a linear trans-
formation of the form uðϕÞ ¼ AyðϕÞ þ B, where the
coefficients fA; Bg are given by

A ¼ 4

b3
ð30Þ

B ¼ −
b2
3b3

: ð31Þ

The initial equation ðdu=dϕÞ2 ¼ P3ðuÞ takes the form [66]

�
dy
dϕ

�
2

¼ 4y3 − g2y − g3 ð32Þ

where the Weierstraß cubic invariants g2, g3 can be
found [66]

g2 ¼
1

16

�
4b22
3

− 4b1b3

�
ð33Þ

g3 ¼
1

16

�
b1b2b3

3
− b0b23 −

2b32
27

�
: ð34Þ

To obtain a complete solution of the Weierstraß function,
℘ðϕ − ϕin; g2; g3Þ, the integration constant, ϕin, must be
determined. The last can be made by imposing the initial
condition uðϕ0Þ ¼ u0. The solution to the initial equation is
then given by

rðϕÞ ¼ 1

AyðϕÞ þ B
¼ 1

A℘ðϕ − ϕin; g2; g3Þ þ B
ð35Þ

provided that the discriminant

Δ≡ g32 − 27g23 ð36Þ

does not vanish, since whenΔ ¼ 0 the case is singular [26].
For more details on the Weierstraß function and its proper-
ties, the interested reader may want to consult [67]. For
those who are more familiar with the Jacobi elliptic
functions, the Weierstraß function may be expressed in
terms of them, see e.g. [68].
We recall that the formalism used up to now is valid for a

family of geometries, which are static, spherically symmet-
ric solutions in massive gravity, in Weyl conformal gravity
and in scale-dependent gravity (Schwarzschild-de Sitter
with varying cosmological constant andNewton’s constant).
To investigate those cases, we will show below in a series of
figures both the effective potential for photons as well as the
corresponding orbits for each case, varying the energy, the
initial angle and the running parameter ξ.
In Fig. 1we show the effective potential for eachgeometry,

for different values of the energy. Subsequently, in Fig. 2 we
show the trajectories for the scale-dependent Schwarzschild-
de Sitter black hole. Besides, in Figs. 3 and 4 we show the
photon orbits in massive and Weyl gravity, varying the
photon energy, E, and the initial angle ϕin.
We have considered four different values of the energy,

and for each one of those, we have assumed three different
values of the initial angle. The orbits hit the (0,0) point and
then bounce off, exhibiting a cardioid shape, which is
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FIG. 1. Effective potential for photons in the case of the class of geometries including three space-times considered in the first case
setting L ¼ 10;M ¼ 1;Λ ¼ 0.01. We plot, in each panel, the effective potential for photons and different energy regimes: (i) Left panel:
Scale-dependent Schwarzschild-de Sitter setting ξ ¼ 0.05. (ii) Middle panel: Massive gravity setting γ ¼ 0.005, η ¼ 0. (iii) Right panel:
Weyl conformal gravity setting γ ¼ 0.005; η ¼ −0.15.

FIG. 2. Photon orbits in the (x − y) plane (0 ≤ ϕ ≤ 2π) in the case of scale-dependent Schwarzschild-de Sitter geometry setting
L ¼ 10;M ¼ 1;Λ ¼ 0.01; ξ ¼ 0.05. To show the impact of the photon energy and initial conditions, we take four different energies, and
vary the initial angle as follows: (i) Top-left panel: E ¼ 0.80 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and
long dashing green line, respectively). (ii) Top-right panel: E ¼ 1.60 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line
and long dashing green line, respectively). (iii) Bottom-left panel: E ¼ 1.85 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing
red line and long dashing green line, respectively). (iv) Bottom-right panel: E ¼ 2.50 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line,
dashing red line and long dashing green line, respectively).
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deformed varying E and ϕin. The deformation becomes
more pronounced as the photon energy approaches the
maximum of the effective potential.
Finally, in Fig. 5 we show the impact of the running

parameter ξ on the shape of the photon orbits (in the case of
Schwarzschild-de Sitter geometry) setting L ¼ 10;M ¼ 1;
Λ ¼ 0.01; E ¼ 1, and varying ξ ¼ 0.01, 0.04, 0.07 from
outwards to inwards.

B. Case II

In this case, the corresponding metric components are
given by

gtt ¼ FðrÞ ¼ 1 −
2M
r

þM2ξ

r2
ð37Þ

grr ¼ FðrÞ−1: ð38Þ

Similarly to the previous case, we can use the following
change of variable u ¼ 1=r, and also setting ϵ ¼ 0, the
equation for the trajectories uðϕÞ is written down as
follows:

�
du
dϕ

�
2

¼ P4ðuÞ ¼ −M2ξu4 þ 2Mu3 − u2 þ ðE=LÞ2

ð39Þ

with P4ðuÞ being a fourth degree polynomial in u. We can
simplify the problem reducing the order of the polynomial

FIG. 3. Photon orbits in the (x − y) plane (0 ≤ ϕ ≤ 2π) in the case of massive gravity setting
L ¼ 10;M ¼ 1;Λ ¼ 0.01; γ ¼ 0.005; η ¼ 0. To show the impact of the photon energy and initial conditions, we consider four
different energies, and vary the initial angle as follows: (i) Top-left panel: E ¼ 0.90 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line,
dashing red line and long dashing green line, respectively). (ii) Top-right panel: E ¼ 1.60 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue
line, dashing red line and long dashing green line, respectively). (iii) Bottom-left panel: E ¼ 1.88 and ϕini ¼ f0.5; 1.0; 1.5g (short
dashing blue line, dashing red line and long dashing green line, respectively). (iv) Bottom-right panel: E ¼ 2.50 and ϕini ¼
f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and long dashing green line, respectively).
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FIG. 4. Photon orbits in the (x − y) plane (0 ≤ ϕ ≤ 2π) in the case of Weyl gravity setting L ¼ 10;M ¼ 1;Λ ¼ 0.01; γ ¼ 0.005 and
η ¼ −0.15. To show the impact of the energy and initial conditions, we take four different energies, and vary the initial angle as follows:
(i) Top-left panel: E ¼ 0.75 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and long dashing green line,
respectively). (ii) Top-right panel: E ¼ 1.25 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and long dashing green
line, respectively). (iii) Bottom-left panel: E ¼ 1.44 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and long
dashing green line, respectively). (iv) Bottom-right panel: E ¼ 2.50 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line
and long dashing green line, respectively).

FIG. 5. Photon orbits in the case of scale-dependent
Schwarzschild-de Sitter geometry setting L ¼ 10;M ¼ 1;Λ ¼
0.01; E ¼ 1 and ξ ¼ 0.01, 0.04, 0.07 from outwards to inwards.

FIG. 6. Effective potential for photons in the case of regular
scale-dependent black holes setting L ¼ 10;M ¼ 1; ξ ¼ 0.05.
The different energy regimes are shown as well.
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if we take advantage of a single root of P4ðuÞ. Thus, we
can set u ¼ ð1=zÞ þ l to get a new equation for zðϕÞ of the
form [66]

�
dz
dϕ

�
2

¼ b3z3 þ b2z2 þ b1zþ b0 ð40Þ

where now the coefficients are computed to be

b3 ¼ −4l3M2ξþ 6l2M − 2l ð41Þ

b2 ¼ −6l2M2ξþ 6lM − 1 ð42Þ

b1 ¼ 2M − 4lM2ξ ð43Þ

b0 ¼ −M2ξ: ð44Þ

The new equation may be now solved exactly as before,
and therefore we find for rðϕÞ the expression

rðϕÞ ¼ A℘ðϕ − ϕin; g2; g3Þ þ B
1þ l½A℘ðϕ − ϕin; g2; g3Þ þ B� : ð45Þ

We then show in Fig. 6 the effective potential for photons,
and after that we plot the photon orbits for different
values of photon energy and initial angle ϕin, see Fig. 7.
Here, too, we have considered four different values of E,
and three different values of ϕin. All the features observed
in the geometries discussed before are observed here
as well.
Before we conclude our work, let us briefly discuss some

applications and observational consequences based on the
formalism used in the present article. In the strong field
limit [69,70] analytic expressions may be obtained, and
observables related to gravitational lensing, such as image

FIG. 7. Photon orbits in the (x − y) plane (0 ≤ ϕ ≤ 2π) for a regular scale-dependent black hole with L ¼ 10;M ¼ 1; ξ ¼ 0.05 To
show the impact of the energy and initial conditions, we take for different energies and vary the initial angle as follows: (i) Top-left panel:
E ¼ 0.90 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and long dashing green line, respectively). (ii) Top-right
panel: E ¼ 1.75 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and long dashing green line, respectively).
(iii) Bottom-left panel: E ¼ 1.94 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and long dashing green line,
respectively). (iv) Bottom-right panel: E ¼ 2.50 and ϕini ¼ f0.5; 1.0; 1.5g (short dashing blue line, dashing red line and long dashing
green line, respectively).
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angle and magnification, are computed in terms of the
strong deflection coefficients, see e.g. [62,71]. For well-
known geometries, such as the Schwarzschild and
Reissner-Nordström space-times, the expressions for the
strong deflection coefficients are shown in the Appendix of
[72]. A detailed investigation of the strong field limit for the
geometries discussed here lies outside the scope of this
work. It would be interesting, however, to address that
issue, and we certainly hope to be able to do so in a
forthcoming publication.
Finally, in the discussion to follow we shall use the data

on the solar eclipse that occurred in 1919, which was
measured by the Eddington expedition [73], and was
reanalyzed much later in [74], to constrain the running
parameter ξ, which is the only free parameter in scale-
dependent gravity as the cosmological constant as well as
the solar mass are known.
The deflection angle is given by [71]

α ¼ −π þ 2

Z
∞

r0

drffiffiffiffiffiffiffiffiffiffiffi
P3ðrÞ

p ð46Þ

where r0 is the closest distance to the deflecting object,
determined by dr=dϕ ¼ 0, or equivalently, P3ðr0Þ ¼ 0. To
compute the integral it is more convenient to introduce a
new dimensionless parameter, z≡ 1 − r0=r. The deflection
angle now is given by

α ¼ −π þ
Z

1

0

2r0dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1zþ c2z2 þ c3z3

p ð47Þ

where the coefficients ci are found to be

c1 ¼ −6Mr0 þ 2r20 þ ξr20ð6r20 − r0=MÞ ð48Þ

c2 ¼ 6Mr0 − 2r20 − 3ξr20 ð49Þ

c3 ¼ −2Mr0: ð50Þ

The theoretical prediction for the deflection angle as a
function of the running parameter, ξ, assuming an impact
parameter

b≡ L=E ¼ R⊙ ¼ 6.96 × 108 m ð51Þ

is shown in Fig. 8. The strip from 1.79 to 2.01 denotes
the allowed observational range, α ¼ 1.9� 0.11 [5].
Our results show that ξ must not exceed the value
ξ� ¼ 2.6 × 10−12. Therefore we obtain for the first time
here an upper bound for the running parameter

ξ ≤ 2.6 × 10−12: ð52Þ

IV. CONCLUSION

We have studied the orbits of light rays in the gravita-
tional background of (1þ 3)-dimensional geometries with
spherical symmetry arising in theories other than general
relativity, such as scale-dependent gravity, massive gravity
and Weyl conformal gravity. In particular, we have
obtained exact analytical solutions to the null geodesic
equations in terms of the Weierstraß function. The effective
potential for photons as well as the trajectories in the
(x − y) plane have been shown graphically for several
values of the photon energy, the integration constant (initial
conditions) and the running parameter. In the case of scale-
dependent Schwarzschild-de Sitter geometry, the light
deflection angle is computed as a function of the running
parameter, and an upper bound for the latter is obtained.
This work opens to us the possibility of testing such

classes of alternative theories of gravity at any scale, for
instance, around neutron stars and astrophysical black
holes, or around supermassive black holes at the center
of galaxies. More importantly, it may be used to generalize
the gravitational lensing of galaxies, which is fundamental
to further understand the content as well as other important
aspects of the Universe.
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FIG. 8. Prediction for light deflection near our Sun in the case
of scale-dependent Schwarzschild-de Sitter geometry. We show
the deflection angle (in arcsec) as a function of the running
parameter ξ. The allowed strip 1.9� 0.11 is shown as well.
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