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In this paper, we extend the treatment of asymptotically decelerating spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetimes initiated in [M. E. Rojo and T. Heckelbacher, Phys. Rev. D 103,
064009 (2021).]. We show that a certain class of those metrics is ruled by the asymptotic algebra bmss,
which belongs to a one-parameter family of deformations of bms. Furthermore, we enlarge our ansatz to
include DiffðS2Þ transformations whose asymptotic algebra gbmss is a one-parameter deformation of
gbms. Therefore, the holographic algebras bmss and gbmss in FLRW can be related to their flat
counterparts through a cosmological holographic flow. Finally, we introduce a logarithmic ansatz in order
to account for cosmological black holes, which does not generally satisfy the peeling property but preserves
the asymptotic algebra.
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I. INTRODUCTION

Asymptotic symmetries in decelerating spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
times at future null infinity Iþ have been explored recently
in [1,2]. Both studies introduce a novel extension into a
cosmological setting of the original work developed by
Bondi, van der Burg, Metzner, and Sachs in asymptotically
flat spacetimes [3–5]. Rather surprisingly, the literature
concerning the infrared structure of cosmological space-
times is scarce. The first analysis of the asymptotic
symmetry group of asymptotically FLRW spacetimes dates
back to [6],1 although, in the last few years, some studies
have been performed [7–19].
In particular, in [1], we obtained supertranslation and

superrotation-like asymptotic diffeomorphisms consistent
with the global symmetries of FLRW, computed how the
asymptotic data is transformed under them, and studied the
effect of these diffeomorphisms on pure FLRW, Sultana-
Dyer, and cosmologically perturbed backgrounds. The
present work aims to deepen these findings by under-
standing the asymptotic symmetry algebra and extending
our ansatz to include DiffðS2Þ transformations and cosmo-
logical black holes.

Asymptotically AdS3 spacetimes were found to present
a two-dimensional conformal field theory (CFT) living on
their boundary in [20]. That result was fundamental toward
the formulation of the AdS=CFT correspondence [21]
and holography, the latter relating a quantum field theory
(QFT) living in the boundary of a gravity theory to its
gravitational bulk description. In this work, we show that
the asymptotic algebra of decelerating spatially flat FLRW
at Iþ is given by bmss ≃ ðwitt ⊕ wittÞ ⋉s ss and related
to its flat counterpart bms through a one-parameter family
of deformations contained in Wða; b; ā; b̄Þ [22,23], with
a¼b¼ ā¼ b̄¼−1þs

2
. This constitutes a precise manifesta-

tion of a cosmological holographic flow from asymptoti-
cally flat (s ¼ 0) to asymptotically flat FLRW (0 < s < 1)
spacetimes at Iþ at the level of asymptotic algebras.
Nevertheless, we are aware that in asymptotically flat

spacetimes, the inclusion of DiffðS2Þ transformations has
been argued to be necessary in order to address the
equivalence of the soft graviton theorems and the Ward
identities for asymptotic symmetries [24–26]. Therefore,
we have allowed for general local DiffðS2Þ transformations
and obtained their effect on the asymptotic data, as well as
the extended asymptotic algebra gbmss ≃ vectðS2Þ ⋉s ss.
It turns out the latter algebra is related to gbms in an
analogous way that bmss is to bms, supporting the
previous evidence for a cosmological holographic flow.
In addition, we realized that the Sultana-Dyer black hole

was not covered by our ansatz in [1]. Here, we transform
several inequivalent cosmological central inhomogeneities
to Bondi coordinates and observe that we have to include
logarithmic terms in r to account for the black holes, while
the white hole solutions are included in the metrics
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1This work suggests that the asymptotic symmetry group

reduces to the global symmetry group of FLRW. Nevertheless,
only pure gravitationally radiating, dust-filled universes with
negative spatial curvature were considered, while our analysis
deals with spatially flat universes, allowing for general matter
content. It would be interesting to apply modern techniques and
compare the results with Hawking’s analysis.
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described in [1,2]. Interestingly enough, candidate metrics
for primordial black holes [27,28] are now covered in our
asymptotic metrics. This broader ansatz, which resembles
the polyhomogeneous expansions in asymptotically flat
black holes [29], does not generally satisfy the 1

r peeling
behavior due to the presence ofOðr0Þ andOðlogðrÞÞ terms
in the Weyl tensor as r → ∞. Nonetheless, it preserves the
universal algebra gbmss at infinity.
The structure of this paper is as follows: In Sec. II, we

review the asymptotically decelerating spatially flat FLRW
spacetimes studied in [1] and explore compatibility with the
analysis performed in [2]. In Sec. III, we identify the
asymptotic symmetry algebra bmss and show that it
corresponds to a one-parameter family of deformations
of bms, revealing a cosmological holographic flow. In
Sec. IV, we enlarge our ansatz to include DiffðS2Þ diffeo-
morphisms, and in Sec. V, we show that the asymptotic
symmetry algebra gbmss can be again understood as a one-
parameter deformation of gbmss. In Sec. VI, cosmological
black holes are described in Bondi coordinates from the
perspective of Iþ, and we include them in our ansatz by
adding logarithmic terms in Sec. VII. Our conclusions are
contained in Sec. VIII, and we have collected the Lie
derivatives for the asymptotic metrics in the Appendix.

II. REVIEW OF ASYMPTOTICALLY
SPATIALLY FLAT FLRW SPACETIMES

In this section, we briefly review the treatment of
asymptotically decelerating spatially flat FLRW universes
at future null infinity Iþ introduced in [1] and compare it
with the analysis performed in [2].
Spatially flat FLRW spacetimes are related to flat

spacetimes by a Weyl transformation of the metric. In
Bondi coordinates,

u ¼ η −
ffiffiffiffiffiffiffiffi
xixi

q
; r ¼

ffiffiffiffiffiffiffiffi
xixi

q
;

z ¼ x1 þ ix2

x3 þ
ffiffiffiffiffiffiffiffi
xixi

p ; z̄ ¼ x1 − ix2

x3 þ
ffiffiffiffiffiffiffiffi
xixi

p ; ð2:1Þ

this reads as

ds2¼
�
rþu
L

�
2k
�
−du2−2dudrþ 4r2

ð1þ zz̄Þ2dzdz̄
�
; ð2:2Þ

where η is the conformal time, and k ¼ 2=ð3ωþ 1Þ ≥ 0,
with ω ¼ p=ρ being the equation of state parameter of the
fluid filling a decelerating universe.
To define spacetimes that asymptote to spatially flat

FLRW, we impose that they preserve the Bondi gauge [3–5],

grr ¼ 0; grA ¼ 0; ∂r det

�
gAB
a2r2

�
¼ 0; ð2:3Þ

where the indices A; B ∈ fz; z̄g label the angular coordi-
nates, and a ¼ ðrþu

L Þk is the scale factor. The determinant
condition leaves some gauge freedom on the metric of the
sphere. This condition can be strengthened by fixing the
determinant of the metric on the sphere entirely, which
constrains the metric up to rescaling. Any changes of the
spherical metric at leading order can be completely fixed by
choosing the Bondi frame that restricts the angular metric to
be the round metric on the sphere.
At the same time, we allow for scalar, vector, and tensor

perturbations that do not spoil spatial homogeneity, isot-
ropy, and flatness, and we leave the matter content of the
universe invariant in the limit r → ∞. Another requirement
is the closure of the expansion under asymptotic diffeo-
morphisms, meaning that such general transformations do
not generate higher order terms in the r expansion. Finally,
we demand that the components and the trace of the
Einstein tensor remain finite when dimensionally scaled.
In [1], these considerations led us to study the asymptotic

diffeomorphisms preserving the following ansatz:

ds2 ¼
�
rþ u
L

�
2k
�
−
�
1−Φ−

2m
r

�
du2

− 2

�
1−Ψ−

K
r

�
dudr− 2

�
rΘA þUA þ

1

r
NA

�
dudxA

þ ðð1þΩÞr2γAB þ rCAB þ hABÞdxAdxB
�
: ð2:4Þ

It represents an expansion in 1
r for r → ∞, where

γzz̄ ¼ 2
ð1þzz̄Þ2, γzz ¼ γz̄ z̄ ¼ 0 is the round metric on the

sphere, and the expansion coefficients Φ;Ψ;Ω; m; K;ΘA,
UA;NA; CAB, and hAB are functions of u, z, and z̄.
Φ, Ψ, Ω, m, and K transform as scalars under spatial

rotations, while ΘA, UA, and NA transform as vectors and
CAB and hAB as tensors. There can be possible interrelations
between some of those terms, and some might actually turn
out to produce physically unreasonable results. These are
issues that can only be fixed by an on-shell treatment. By
comparing the terms to the asymptotically flat expansions,
we expect the parameter m to be related to the mass of a
central inhomogeneity; CAB should be related to the
gravitational radiation and NA to the angular momentum
aspect of the spacetime. However, since our treatment is off
shell, a precise physical interpretation for each term can not
be given so far. We pursue a first step into that direction in
Sec. VI, where we analyze some examples of cosmological
black hole solutions.
In [2], the authors proposed a different ansatz, using a

more mathematical construction closer to the original BMS
analysis [3–5]. The language they employed is based on the
conformal completion à la Penrose [30], and their assump-
tions were different to ours. They used a time-independent
scale factor, which shifts the role of a pure FLRW as the
background metric but has the advantage of unveiling a
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geometrical structure such that the spacetimes contained in
their ansatz admit a cosmological null asymptote at infinity.
That is indeed useful because it permits one to identify
(locally) a Bondi-like frame and a boundary behaving
similarly to Iþ in asymptotically flat spacetimes. This
geometrical structure endows their spacetimes with an
asymptotic symmetry algebra governing them, which they
called bs ≃ soð1; 3Þ ⋉ ss, and it reduces to the original bms
when s ¼ 0. It is a semidirect sum of an algebra isomorphic
to the Lorentz algebra (conformal global isometries of S2)
with an infinite-dimensional Abelian algebra of supertrans-
lation-like generators parametrized by conformallyweighted
functions on S2. Nevertheless, the algebras bs for s ≠ 0 are
not isomorphic to the BMS algebra.
Besides, they required the trace of the stress-energy tensor

to be finite and its components to behave similarly to pure
FLRW near to the boundary at null infinity. It turns out that
the last requirement is too strong for our (more general)
ansatz, and one can easily check that the only compatible
metricswith it are those satisfyingΩ ¼ Ψ ¼ δΩ ¼ δΨ ¼ 0.2

In this case, our asymptotic diffeomorphisms are given by [1]

ξ ¼ ξuðu; z; z̄Þ∂u þ
	
rξrðVÞðz; z̄Þ þ ξrð0Þ þ 1

r
ξrð1Þ



∂r

þ
	
VBðz; z̄Þ þ 1

r
ξBð1Þ þ 1

r2
ξBð2Þ



∂B; ð2:5Þ

with

ξrðVÞ ¼ −
1

2ð1þ kÞDAVA;

ξu ¼ u
2

ð1þ 2kÞ
ð1þ kÞ DAVA þ fðz; z̄Þ; ð2:6Þ

ξBð1Þ ¼ −DBξu;

ξBð2Þ ¼ 1

2
ðCABDAξ

u þ KDBξuÞ; ð2:7Þ

ξrð0Þ ¼ 1

1þ k

	
−
1

2
DAξ

Að1Þ −
1

2
ΘADAξ

u þ kuξrðVÞ − kξu


;

ð2:8Þ

ξrð1Þ ¼ 1

2ð1þ kÞ ½C
A
BΘADBξu

− 2kð1þ ΩÞðu2ξrðVÞ − uξrð0Þ − uξuÞ
−DAξ

Að2Þ − UADAξ
u�; ð2:9Þ

and the asymptotic data transforms under them as [1]

δΦ ¼ VADAΦþ ξu∂uΦ − 2∂uξ
rð0Þ − 2kð1 −ΦÞξrðVÞ

− 2ð1 −ΦÞ∂uξ
u þ 2ΘA∂uξ

Að1Þ ð2:10Þ

δm ¼ ξu∂umþ VADAm − kð1 −ΦÞξu
− ðð1 − 2kÞm − kuð1 −ΦÞÞξrðVÞ − kð1 −ΦÞξrð0Þ
þ K∂uξ

rð0Þ − ∂uξ
rð1Þ þm∂uξ

u þ UA∂uξ
Að1Þ

þ 1

2
ξAð1ÞDAΦþ ΘA∂uξ

Að2Þ ð2:11Þ

δK ¼ ξu∂uK þ VADAK þ K∂uξ
u − ΘAξ

Að1Þ

þ 2kðuξrðVÞ − ξu − ξrð0ÞÞ þ 2kKξrðVÞ ð2:12Þ

δCAB ¼ ξu∂uCAB þ LVCAB þ ð1þ 2kÞCABξ
rðVÞ

þ LξCð1ÞγAB þ ΘADBξ
u þ ΘBDAξ

u

þ 2γABðð1þ kÞξrð0Þ − kuξrðVÞ þ kξuÞ ð2:13Þ

δΘA ¼ ξu∂uΘA þ LVΘA þ ð1þ 2kÞΘAξ
rðVÞ

− ∂Aξ
rðVÞ þ ΘA∂uξ

u þ ∂uξ
ð1Þ
A ð2:14Þ

δUA ¼ ξu∂uΘA þ LVUA þ LξCð1ÞΘA

þ 2kΘAðξu þ ξrð0Þ − uξrðVÞÞ −DAξ
rð0Þ þ KDAξ

rðVÞ

− ð1 −ΦÞDAξ
u þUA∂uξ

u þ CAB∂uξ
Bð1Þ

þ 2kUAξ
rðVÞ þ ΘAξ

rð0Þ þ ∂uξ
ð2Þ
A ð2:15Þ

δNA ¼ ξu∂uNA þ LVNA − ð1 − 2kÞNAξ
rðVÞ þ NA∂uξ

u

þ LξCð1ÞUA þ LξCð2ÞΘA þ KDAξ
rð0Þ −DAξ

rð1Þ

þ 2mDAξ
u þ 2kUAðξrð0Þ þ ξu − uξrðVÞÞ

þ 2kΘAðu2ξrðVÞ − uðξrð0Þ þ ξuÞ þ ξrð1ÞÞ þ ΘAξ
rð1Þ

þ hAB∂uξ
Bð1Þ þ CAB∂uξ

Bð2Þ: ð2:16Þ

Indeed, we have checked that this restricted ansatz and
diffeomorphisms are equivalent to those of [2] at the
boundary r → ∞. The main difference is that they use a
nondynamical scale factor (denoted by r̃2k), while our scale
factor ðrþ uÞ2k is dynamical. Nevertheless, if we factorize
r2k in our scale factor and multiply the remaining part to the
rest of the asymptotic metric expansion, both metrics
coincide. The advantage of our approach is that the back-
ground metric is clearly pure FLRW, while their ansatz
includes FLRW as an infinite expansion, but not as the
base spacetime. This permits us to have a better intuition
on the physical meaning of the different asymptotic data.
Nevertheless, their approach turns out to be more suited to
deal with transformations of metrics to Bondi coordinates

2Ω ¼ δΩ ¼ 0 is a natural choice due to the remaining gauge
freedom to fix the Bondi-frame [1]. However, Ψ ¼ δΨ ¼ 0
has a deeper meaning, related to the conformal structure at
infinity [2,30,31].
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and lets them identify the aforementioned geometrical
structure.3

In order to make it easier for the reader who wants to
compare both approaches, we display a rough dictionary
between the coefficients in both works:

s ¼ k
1þ k

; F ↔ ξu; XA ↔ VA;

UA
ð1Þ ↔ ΘA; βð1Þ ↔ −

1

2
K: ð2:17Þ

Using it, one can readily visualize a universal structure.
Our leading order algebra at r → ∞, r ¼ constant coin-
cides with that of [2] if one replaces ð1þ sÞ ↔ 1þ2k

1þk . In that
limit, our diffeomorphisms become

ξ½fðz; z̄Þ; VAðz; z̄Þ� ¼
�
f þ u

2

ð1þ 2kÞ
ð1þ kÞ DAVA

�
∂u

þ VA∂A; ð2:18Þ

leading to

ξ½f̂; V̂A� ¼ ½ξ½f; VA�; ξ½f0; V 0A�� ⇒

f̂ ¼ VADAf0 þ
ð1þ 2kÞ
2ð1þ kÞ fDAV 0A − V 0ADAf

−
ð1þ 2kÞ
2ð1þ kÞ f

0DAVA

V̂A ¼ VBDBV 0A − V 0BDBVA: ð2:19Þ

Thus, we obtained the algebra bmss ≃ ðwitt ⊕ wittÞ ⋉s
ss,

4 which is equivalent to bs ≃ soð1; 3Þ ⋉ ss of [2] when
replacing ð1þ sÞ ↔ 1þ2k

1þk and restricting to the six VA that
are global conformal Killing vectors (CKV) on S2.
As a result, the subset of metrics with Ω ¼ Ψ ¼ δΩ ¼

δΨ ¼ 0 is geometrically privileged. Therefore, in order to
unify and compatibilize treatments, we will restrict to it in
what follows.

III. bmss AS A DEFORMATION OF bms

Some aspects of the algebra bmss have been explored in
[2]. Here, we take a different approach and expand it in
terms of the basis of z; z̄ monomials on S2. Our objectives
are to express the algebra in terms of a more suited basis
and to use it to relate it to the family of deformations of
bms, Wða; b; ā; b̄Þ, discovered in [22].
Taking into account that bms is proposed to govern flat

holography and bmss appears to play a similar role in
decelerating spatially flat FLRW holography, we wonder
whether there exists a deformation relating both that could

be interpreted as an s-cosmological holographic flow.
Besides, the family of deformations Wða; b; ā; b̄Þ has been
found to interpolate between bms (Wð− 1

2
;− 1

2
;− 1

2
;− 1

2
Þ)

and near-horizon symmetries (Wða; a; a; aÞ, [32]), which
are expected to play a major role in the description of black
hole microstates. As a consequence, it is interesting to
develop a similar analysis for bmss, which could even-
tually lead to the near horizon symmetry algebra for
cosmological black holes.
Let us first define the basis of z; z̄ monomials on S2:

fmn¼
zmz̄n

1þ zz̄
; Vz

m¼−zmþ1; Vz̄
m ¼−z̄mþ1; ð3:1Þ

and the basis vectors Tmn ¼ ξðfmn; 0Þ, Lm ¼ ξð0; Vz
mÞ,

and L̂m ¼ ξð0; Vz̄
mÞ. In terms of them, the nonvanishing

commutators of (2.19) become

½Lm;Ln� ¼ ðm − nÞLmþn; ½L̂m; L̂n� ¼ ðm − nÞL̂mþn;

½Lm; L̂n� ¼ 0; ð3:2Þ

½Lm; Tpq� ¼
	ðmþ 1Þ

2
ð1þ sÞ − p



Tmþp;q

− s
1

1þ zz̄
Tmþpþ1;qþ1; ð3:3Þ

½L̂n; Tpq� ¼
	ðnþ 1Þ

2
ð1þ sÞ − q



Tp;qþn

− s
1

1þ zz̄
Tmþ1;qþnþ1: ð3:4Þ

From the first commutators, we obtain a witt ⊕ witt
algebra. However, the last two commutators are more
difficult to interpret. In fact, expanding 1

1þzz̄, we observe
that for s ≠ 0, the commutator does not finitely close, in the
sense that we obtain infinitely many generators involving
Tmþpþr;qþr and Tpþr;qþnþr with r ∈ N. This already points
to s ¼ 0 being a critical point of a flow.
Nevertheless, if we use instead the basis of conformally

weighted smooth functions on S2,

f̃mn ¼
zmz̄n

ð1þ zz̄Þð1þsÞ ⇒ T̃pq ¼ ξðf̃mn; 0Þ; ð3:5Þ

we find

½Lm; T̃pq� ¼
	ðmþ 1Þ

2
ð1þ sÞ − p



T̃mþp;q ð3:6Þ

½L̂n; T̃pq� ¼
	ðnþ 1Þ

2
ð1þ sÞ − q



T̃p;qþn; ð3:7Þ

that is, bmss ≃ ðwitt ⊕ wittÞ ⋉s ss. The Lm act on S2

as conformal Killing vectors, and the operators T̃pq

3We will make use of both approaches in Sec. VII.
4We will explore bmss in more detail in Sec. III.
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correspond to functions on S2 with conformal weight 1þ s,
which is an ideal of conformally weighted supertranslations
that noncentrally extend the conformal algebra spanned by
the Lm.
It is clear that this algebra corresponds to a one-

parameter deformation of bms in the generators T̃pq

and the ½Lm; T̃pq�, ½L̂n; T̃pq� commutators. Taking into
account that the parameter governing this deformation
(0 ≤ s ¼ k

1þk < 1) is directly related to the equation of
state of the base FLRWuniverse, that bms is expected to be
the holographic algebra in flat holography, and that bmss
plays the same role for asymptotically decelerating spa-
tially flat FLRW,5 this looks like a cosmological holo-
graphic flow deformation.
It turns out that the nontrivial deformations of bms have

been studied in [22,23] and denoted by Wða; b; ā; b̄Þ with
arbitrary a; b ∈ R:

½Lm;Ln� ¼ ðm − nÞLmþn; ½L̂m; L̂n� ¼ ðm − nÞL̂mþn;

½Lm; L̂n� ¼ 0 ð3:8Þ

½Lm; T̃pq� ¼ −½pþ bmþ a�T̃mþp;q ð3:9Þ

½L̂n; T̃pq� ¼ −½qþ b̄nþ ā�T̃p;qþn: ð3:10Þ

One can quickly realize that bms is given by Wð− 1
2
;− 1

2
;

− 1
2
;− 1

2
Þ, and bmss is given by Wð− 1þs

2
;− 1þs

2
;

− 1þs
2
;− 1þs

2
Þ. Two concrete physically interesting cases

correspond to radiation (k ¼ 1 ↔ s ¼ 1
2
, Wð− 3

4
;− 3

4
;

− 3
4
;− 3

4
Þ) and dust (k¼2↔s¼ 2

3
, Wð− 5

6
;− 5

6
;− 5

6
;− 5

6
Þ).

For the decelerating range of s, these algebras are generic
deformations of bms [23], meaning that their deformations
also lie in Wða; b; ā; b̄Þ.
As a final comment, note that due to symmetries

shifting a ↔ −a in Wða; b; ā; b̄Þ, it might be indeed
possible to relate bmss to the algebra of accelerating
spatially flat FLRW. Future studies of this algebra
and their deformations shall be performed in order to
unveil the exciting secrets of cosmological holography
and its relation to flat holography [26], near horizon
symmetries for cosmological black holes [18], fluid-gravity
duality and membrane paradigm [33], Virasoro extension
Ŵð− 1þs

2
;− 1þs

2
;− 1þs

2
;− 1þs

2
Þ, its deformations [22,23],

and much more.

IV. DiffðS2Þ TRANSFORMATIONS

So far, our ansatz only included conformal Killing
vectors on the sphere. This was enforced by requiring that

the leading order contribution to the metric on the sphere be
given by the round metric. If we want to allow for general
diffeomorphisms on the two-sphere, we have to relax that
condition by allowing the diffeomorphisms to change the
form of the metric on the sphere at leading order as well.
The ansatz for the metric generalizes, therefore, to

ds2 ¼
�
rþ u
L

�
2k
�
−
�
1−Φ−

2m
r

�
du2 − 2

�
1−

K
r

�
dudr

− 2
�
rΘA þUA þ

1

r
NA

�
dudxA

þ ðr2qAB þ rCAB þ hABÞdxAdxB
�
; ð4:1Þ

where qAB is now a general metric on the sphere.
Transforming this metric with the diffeomorphisms given
in (2.5), weobtain theLie derivatives given inAppendixA 1.
In this section, the indices of the quantities on the sphere are
raised and lowered by qAB, and DA denotes the covariant
derivative with respect to qAB. To make the transformations
consistent with Bondi gauge and the falloffs required by our
ansatz, we have to impose conditions on the coefficients of
(2.5). Bondi gauge requires that

Lξgrr ¼LξgrA¼ 0 and ∂rdet

�
gABþLξgAB

a2r2

�
¼ 0: ð4:2Þ

The condition on Lξgrr is automatically fulfilled by
the ansatz. The condition on LξgrA gives the following
restrictions:

ξð1ÞA ¼ −DAξ
u; ð4:3Þ

ξð2ÞA ¼ 1

2
ðKDAξ

u − CABξ
Bð1ÞÞ: ð4:4Þ

To satisfy the determinant condition,we have to demand that
qABCAB ¼ 0 and that qABSAB ¼ CABFAB, where SAB and
FAB are defined in (A6). This leaves the leading order
contribution to the spherical metric arbitrary, which means
that the coefficient ξrðVÞ in the expansion (2.5) is a free
parameter. A possibleway to completely fix the gauge of our
ansatz is to require that the determinant not only verifies
(4.2) but that the determinant of the metric remains fixed
under the diffeomorphisms. This leads to the requirement,

0 ¼ qABFAB

¼ 4ð1þ kÞξrðVÞ þ qABξu∂uqAB þ 2DAVA: ð4:5Þ

To solve this equation, we demand that

∂uqAB ¼ 0 and ξrðVÞ ¼ −
1

2ð1þ kÞDAVA: ð4:6Þ

5In fact, this is not completely right; as we will see later, a
larger algebra gbmss ≃ vectðS2Þ ⋉s ss is possibly the full holo-
graphic algebra, exactly as gbms is expected to be in flat
holography [24,25]. We will come back to this point in Sec. IV.
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Physically, this means that qAB contains no dynamical
degrees of freedom. We can now impose the falloff
conditions of our ansatz (4.1) to get further restrictions
on the asymptotic transformations. The only additional
requirements come from LξguA ¼ OðrÞ, Lξguu ¼ Oð1Þ,
and Lξgur ¼ Oðr−1Þ. Together, they give

∂uVA ¼ ∂uξ
rðVÞ ¼ 0 ð4:7Þ

∂uξ
u ¼ −ð1þ 2kÞξrðVÞ

⇒ ξu ¼ fðz; z̄Þ þ u
2

1þ 2k
ð1þ kÞDAVA: ð4:8Þ

We conclude that the asymptotic transformations and the
asymptotic algebra are very similar to the superrotations
given in (2.18), with the only difference that VA are not
required to be conformal Killing vectors but arbitrary
DiffðS2Þ transformations on the sphere. This translates
into the fact that the asymptotic algebra is now given by
gbmss ≃ vectðS2Þ ⋉s ss.

V. gbmss AS A DEFORMATION OF gbms

In Sec. IV, we have extended our analysis to non-CKVon
S2, equivalent to (infinitesimal) DiffðS2Þ transformations,
and we have found the asymptotic algebra gbmss ≃
vectðS2Þ ⋉s ss. Besides being expected to play a major
role in holography for asymptotically spatially flat FLRW,
this algebra constitutes, to our knowledge, the first defor-
mation in the literature of gbms. Both algebras constitute
noncentral extensions of vectðS2Þ, the algebra of DiffðS2Þ,
which appears ubiquitously in several physical systems like
fluids on the sphere [34], membranes [35–37], flat holog-
raphy [24–26], and black hole entropy [38]. As a conse-
quence, it is of ultimate relevance to study this algebra.
Let us note the following before proceeding:
(i) In this section, we will show, following a similar

analysis as in Sec. III, how gbmss looks in a better
suited basis and how it relates exactly in the same
way to gbms as bmss to bms, pointing to the
existence of a similar family of deformations
as the family Wða; b; ā; b̄Þ for bms. Nevertheless,
although no deformations of vectðS2Þ have yet been
found,6 it is well known that (the area-preserving
part of) the algebra does not admit any central
extension [39]. Therefore, it is very likely that there
will not exist a family of deformations equivalent to
Ŵða; b; ā; b̄Þ for gbms.

(ii) We work in a local basis, which turns out to be
overcomplete for vectðS2Þ and singular at the
poles. The situation is analogous to that of local

superrotations where it was argued that the singu-
larities could be understood in terms of cosmic string
punctures [40]. We are not aware of a similar
interpretation for the basis we use in this section,
but it should be related because it still contains the
de-Witt generators as a subalgebra.

(iii) We use as a basemetric γAB, which is the roundmetric
onS2. This choice is nontrivial in this case because the
non-CKVonS2within localDiffðS2Þ transformations
is allowed to change; γABðz; z̄Þ → qABðz; z̄Þ.

Let us first define the basis of conformally weighted z; z̄
monomials on S2,

fmn ¼
zmz̄n

ð1þ zz̄Þð1þsÞ ; Vz
m;n ¼ −zmþ1z̄n;

Vz̄
m;n ¼ −zmz̄nþ1; ð5:1Þ

and the basis vectors T̃mn ¼ ξðfmn; 0ÞLm;n ¼ ξð0; Vz
m;nÞ,

and ˆLm;n ¼ ξð0; Vz̄
m;nÞ. In terms of them, the nonvanishing

commutators of (2.19) become

½Lm;n;Lr;s� ¼ ðm − rÞLmþr;nþs;

½ ˆLm;n; ˆLr;s� ¼ ðn − sÞL̂mþr;nþs; ð5:2Þ

½Lm;n; ˆLr;s� ¼ −rL̂mþr;nþs þ nLmþr;nþs; ð5:3Þ

½Lm;n; T̃pq� ¼
	ðmþ 1Þ

2
ð1þ sÞ − p



T̃pþm;qþn; ð5:4Þ

½ ˆLm;n; T̃pq� ¼
	ðnþ 1Þ

2
ð1þ sÞ − q



T̃pþm;qþn; ð5:5Þ

which is gbmss ≃ vectðS2Þ ⋉s ss.
It is clear that this algebra corresponds to a one-parameter

deformation of gbms in the ½Lm;n; T̃pq�, ½ ˆLm;n; T̃pq� com-
mutators. The same comments at the end of Sec. III apply
here accordingly.

VI. COSMOLOGICAL BLACK HOLES

Our aim in this section is to transform three inequivalent
representatives of asymptotically spatially flat FLRW
central inhomogeneities to Bondi coordinates. This will
permit us to uncover a pattern for this class of solutions,
which will motivate the logarithmic ansatz of Sec. VII.
First, we consider the Thakurta solution [41], which

represents the late time attractor of a larger class of
solutions, the so-called Faraoni-Jacques or generalized
McVittie [42,43]. Besides, this metric was used in [28]
to describe a potential model for primordial black holes.
Next, we move on to Sultana-Dyer black and white
holes [44], which have been studied in more detail in
[27] and also try to set the basis for describing primordial
black holes, which expand with the universe flow [27].

6In a work in progress, we are studying the possible deforma-
tions of vectðS2Þ.
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Finally, we turn to Vaidya black and white holes [45],
representing inhomogeneities decoupled from the cosmo-
logical flow, which aim to be a simplified model of
astrophysical black holes.
The matter fields of the solutions studied in this section

are only relevant to our analysis in that the resulting
Einstein tensor satisfies the falloff conditions mentioned
in Sec. II, being that the trace and every component of the
Einstein tensor is finite. It can easily be checked that each
of the following examples fulfils these requirements.
Some studies on the physical feasibility of these metrics

have been performed [27,43,46], uncovering possible
pathologies, like near horizon superluminality, or advocat-
ing doubts on whether or not they really represent black
hole solutions. Nevertheless, they constitute the building
blocks of potentially more realistic solutions (e.g.,
Lemaitre-Tolman-Bondi [47]) and should be included in
our ansatz in the same way that the Schwarzschild solution
belongs to asymptotically flat spacetimes.

A. Thakurta black hole

The nonrotating Thakurta black hole [41] corresponds to
superimposing a FLRW background over a Schwarzschild
black hole in areal coordinates,7

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ aðtÞ2

	
dr2

1 − 2m
r

þ r2dΩ2




¼ a2ðηÞ
	
−
�
1 −

2m
r

�
dη2 þ dr2

1 − 2m
r

þ r2dΩ2



: ð6:1Þ

Using η ¼ uþ rþ 2m log ð r
2m − 1Þ, we can write the pre-

vious metric in Bondi coordinates:

ds2 ¼
�
uþ rþ 2m log ð r

2m − 1Þ
L

�
2k

×

	
−
�
1 −

2m
r

�
du2 − 2dudrþ 2r2γzz̄dzdz̄



: ð6:2Þ

Before we continue, let us note that the metrics of the
form,

ds2 ¼ ðAηþ B2η2Þ2
	
−
�
1 −

2m
r

�
dη2 þ 4m

r
dηdr

þ
�
1þ 2m

r

�
dr2 þ 2r2γzz̄dzdz̄



; ð6:3Þ

have been proposed to describe primordial black holes in
[28] and have the same transformation to Bondi coordinates
in the large-r regime, being clearly included in our

logarithmic expansion of section VII for k ¼ 2, after
expanding the scale factor in series.

B. Sultana-Dyer black hole

The Sultana-Dyer solution [44] consists of a time-
dependent Kerr-Schild transformation of Minkowski.
The resulting metric is given by

ds2¼ a2ðηÞ
	
−dη2þdr2þ r2dΩþ2m

r
ðdη�drÞ2



; ð6:4Þ

where � correspond, respectively, to black hole and white
hole solutions.8 The Sultana-Dyer black hole solution is
equivalently written as

ds2 ¼
�
η

L

�
2k
	
−
�
1 −

2m
r

�
dη2 þ 4m

r
dηdr

þ
�
1þ 2m

r

�
dr2 þ 2r2γzz̄dzdz̄



: ð6:5Þ

In order to transform to conformal Schwarzschild,
we have to reverse the Kerr-Schild transformation
such that dη̄ ¼ dη − 2m

r−2m dr, η̄ ¼ η − 2m log ð r
2m − 1Þ.

Finally, to transform to Bondi coordinates, we use η̄ →
uþ rþ 2m log ð r

2m − 1Þ. As a result, we obtain

ds2 ¼
�
uþ rþ 4m logð r

2m − 1Þ
L

�
2k
	
−
�
1 −

2m
r

�
du2

− 2dudrþ 2r2γzz̄dzdz̄



: ð6:6Þ

A similar analysis for the white hole reveals that the
logarithms in the changes of coordinates cancel each other,
and we find

ds2¼
�
uþ r
L

�
2k
	
−
�
1−

2m
r

�
du2−2dudrþ2r2γzz̄dzdz̄



;

ð6:7Þ

which is a solution in our expansion (2.4) [1].
Let us finally comment that the metrics of this form,

replacing the scale factor by a combination of radiation
phase pasted to matter dominated phase, have been
proposed to describe primordial black holes in [27] and
have an identical transformation to Bondi coordinates in the
large-r regime, being clearly included in our logarithmic
expansion of Sec. VII for k ¼ 2, after expanding the scale
factor in series.7This conformal time η agrees with the one used in pure

FLRW, being, therefore, the appropriate one to be compared with
our asymptotic expansion. 8Note that this metric equals Vaidya when ma2ðηÞ → m.
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C. Vaidya black hole

Vaidya’s cosmological black and white holes [45] are
obtained from that application of a conformal transforma-
tion over Minkowski such that we obtain spatially flat
FLRW in conformal coordinates and then perform a time-
independent Kerr-Schild transformation over it:

ds2 ¼ a2ðηÞ
	
−dη2 þ dr2 þ r2dΩþ 2m

ra2ðηÞ ðdη� drÞ2


:

ð6:8Þ
The black hole solution is then written as

ds2 ¼
�
η

L

�
2k
	
−
�
1 −

2m
rðηLÞ2k

�
dη2 þ 4m

rðηLÞ2k
dηdr

þ
�
1þ 2m

rðηLÞ2k
�
dr2 þ 2r2γzz̄dzdz̄



: ð6:9Þ

The exact transformation of this equation to Bondi
coordinates is far from obvious to us. Nevertheless, in
the limit r → ∞, η ∼ r, we obtain

ds2 ¼ a2ðrÞ
	
−
�
1 −

2m
a2ðrÞr

�
du2 − 2dudrþ 2r2γzz̄dzdz̄



;

ð6:10Þ
upon solving the differential equation,

dη ¼ drþ 4m

ðηðrÞL Þ2kr − 2m
dr; ð6:11Þ

in order to find ηðrÞ such that a2ðrÞ ¼ ðηðrÞL Þ2k. Expanding
around r → ∞,

dη¼ drþ 4m
ðηLÞ2kr

�
1þ 2m

ðηLÞ2kr
þ 4m2

ðηLÞ4kr2
þ�� �

�
dr; ð6:12Þ

we solve the first order expansion in the limit η ∼ r → ∞,

dη ¼ drþ 4m
ðηLÞ2kr

drþ � � � ⇒ η ∼ r −
2mL2k

k
r−2k k ≠ 0

η ∼ rþ 4m logðrÞ k ¼ 0: ð6:13Þ

This permits us to check that Vaidya black hole is
expressible in terms of logarithms and k powers of 1=r
in the region determined by η ∼ r → ∞, while it is not clear
whether this metric is analytically expressible in terms of
our ansatz in general.9

An exact analysis for the white hole reveals that

ds2 ¼
�
uþ r
L

�
2k
	
−
�
1 −

2m
ðuþr

L Þ2kr
�
du2

− 2dudrþ 2r2γzz̄dzdz̄



; ð6:14Þ

which turns out to be much simpler than the black hole, but
it still presents subtleties because k can be fractional and
our 1

r expansion would not contain this example (exactly as
in the black hole case). Nevertheless, the physically
relevant cases of radiation and dust have k ¼ 1 and
k ¼ 2, respectively, so both do not require any fractional
expansion and are included in our ansatz (2.4) [1].
Before moving on, we would like to comment on the

possibility of primordial Vaidya black hole solutions.
Metrics of this form, replacing the scale factor by a
combination of radiation phase pasted to matter dominated
phase, have been explored in [27] and have a similar
transformation to Bondi coordinates in the large-r regime
as the one explored in this section for k ¼ 2.
Physical interpretation
These coordinate transformations highlight the fact that

the ansatz for asymptotically spatially flat FLRW space-
times presented in [1,2] (Sec. II) covers only white hole
solutions, whereas we observe more involved scale factors
for the black holes that need a logarithmic ansatz (Sec. VII).
This might be indeed related to the fact that white holes can
be qualitatively regarded as an inversion of the arrow of
time in black hole solutions, meaning that the black hole
horizon is distinguished from Iþ, and its coupling to the
cosmological flow manifests in the scale factor as a
growing portion of spacetime, from which, nothing can
reach any more Iþ. On the contrary, the white hole horizon
has no effect on Iþ more than its shared “topological” m
contribution due to the singularity at r ¼ 0.
In fact, we realize that the cases of Thakurta and Sultana-

Dyer are similar, the only difference being the conformal
time used to build them. In both, the inhomogeneity
expands with the universe, while Vaidya differs because
it detaches from the expansion of the universe, possessing a
shrinking event horizon and leading to complicated ana-
lytical dependence from the perspective of Iþ.
It is also worth noting that Vaidya’s metric points out the

special role of 2k ∈ N backgrounds, which do not require a
fractional 1=r expansion. Precisely the physically favored
radiation (k ¼ 1) and matter (k ¼ 2) dominated universes
present this distinguished feature.

VII. LOGARITHMIC EXPANSION

As we saw in the analysis in Sec. VI and in [1], black
hole models are not covered by the ansatz (2.4), since the
expansion at r → ∞ involves logarithmic terms. These
logarithmic terms in the scale factor diverge toward Iþ.

9Note that one could try to solve (6.11) in the limit η ∼ r → ∞.
Although the solutions turn out to be very complicated hyper-
geometric functions, in the large r regime, one can observe
logarithmic and polynomial behavior in 1

r.
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Since the retarded time u is finite at null infinity, the log
term will always dominate over the u term in the scale
factor, and we, therefore, cannot write the metric at null
infinity in the form of a time-dependent scale factor a2 ∝
ðuþ rÞ2k times an asymptotically flat part. Let us take as an
example the Sultana-Dyer black hole (6.6) and factorize the
scale factor in the following way:

a2 ¼
�
uþ rþ 4m log ð r

2m − 1Þ
L

�
2k

¼
�
r
L

�
2k
�
1þ uþ 4m log ð r

2m − 1Þ
r

�
2k

: ð7:1Þ

The first term is divergent at Iþ, so we will extract it to be
the asymptotic scale factor. The second part of (7.1) is finite

and differentiable at null infinity, so we can expand it in
terms of logm r

rn :

�
1þ uþ 4m log ð r

2m − 1Þ
r

�
2k

¼ 1þ 2kðuþ 4m log r
2mÞ

r

þ… ð7:2Þ

In order to generalize our ansatz to include cosmological
black hole solutions, we conclude that we have to choose a
time-independent asymptote and expansion that includes
logarithmic terms. This approach is similar to [2], apart
from the logarithmic terms. The most general ansatz we can
write down, which includes logarithmic terms in the
expansion and is finite and differentiable at null infinity,
apart from an r-dependent scale factor, is given by

ds2 ¼
�
r
L

�
2k
�
−
�
1 −Φ −

2mþ A log r
B

r

�
du2 − 2

�
1 −

K þ E log r
F

r

�
dudr

þ 2

�
rΘA þUA þGA log

r
HA

�
dudxA þ

�
r2qAB þ rCAB þ rMAB log

r
NAB

�
dxAdxB

�
; ð7:3Þ

where qAB is a general metric on the sphere, such that the
same arguments as for Sec. IV apply. To preserve Bondi
gauge, we now have to demand that

qABCAB ¼ qABMAB log
r

NAB
¼ 0: ð7:4Þ

To compare the asymptotic symmetry algebra of the above
ansatz to the previous ansatz with a time-dependent scale
factor, we calculate the Lie derivatives of the above metric
with respect to the diffeomorphisms from (2.5) (see
Appendix A 2). If we impose the same gauge condition
on the determinant of qAB as in Sec. IV, together with

∂uqAB ¼ 0, we discover that the asymptotic diffeomor-
phisms at leading order are exactly the same as the ones
from Sec. IV. The algebra is not spoiled by introducing
logarithmic terms in the expansion and, therefore, applies
to cosmological black holes as well. As a final point, we
want to comment on the form of the Weyl tensor for metrics
like (7.3). For technical reasons, we consider as an example
(7.3) with all the logarithmic terms given by 4m logðr=2mÞ
and the only other nonzero coefficient being mðu; z; z̄Þ.
This corresponds to the asymptotic expansion of the
Sultana-Dyer black hole with a time dependent mass.
For this case, some nonvanishing components of the Weyl
tensor are given by10

Wruru ¼
�
r
L

�
2k
�
−
2m
r3

−
1

r4
ð4kmðuþ 4m logðr=2mÞÞÞ þ � � �

�
; ð7:5Þ

WruAu ¼
�
r
L

�
2k
�
3∂um
2r2

þ 3kDAmðuþ 4m logðr=2mÞÞ
r3

þ � � �
�
: ð7:6Þ

We can observe that the appearance of the logarithmic
terms in the expansion spoils the peeling property of the
Weyl tensor, building, therefore, a major difference with
respect to the Schwarzschild solution within the asymp-
totically flat case.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we delved into some properties arising
from the novel asymptotically decelerating spatially flat
FLRW spacetimes at Iþ proposed in [1,2]. Our major goals
were to develop a better understanding of the geometry
behind our ansatz (2.4) [1], to obtain the asymptotic algebra
ruling such asymptotic spacetimes, to extend our ansatz in10We choose the same index convention as in [31].
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order to admit cosmological black hole solutions, and to
allow not only for conformal Killing vectors (CKV) on S2,
but also for general local DiffðS2Þ transformations. On the
way, we discovered a striking universal structure where the
asymptotic algebra can be precisely related to the asymp-
totically flat one through a one-parametric family of
deformations.
Summary of results
Let us summarize our most important results:
(i) We have compared the geometrical treatment and

asymptotic metrics studied in [2] with (2.4). Even
though they come from completely different ap-
proaches, the subset Ω ¼ Ψ ¼ δΩ ¼ δΨ ¼ 0 is
equivalent at r → ∞ to the metrics in [2], while
the incursion into the bulk appears to differ. There-
fore, these metrics inherit a distinguished geomet-
rical meaning, and we restricted our analysis to them
in this paper.

(ii) The asymptotic algebra ruling the restricted set of
metrics is given by bmss ≃ ðwitt ⊕ wittÞ ⋉s ss,
which reduces to bs ≃ soð1; 3Þ ⋉ ss of [2], when
restricting the infinite set of superrotation generators
to the six global CKV on S2.
We delved into its structure and found that bmss

is a one-parametric family of deformations, con-
tained in the generic loci a ¼ b ¼ ā ¼ b̄ ¼ − 1þs

2
of

the broader family of deformations Wða; b; ā; b̄Þ of
bms [22,23]. This result reveals a cosmological
holographic flow at the level of algebras, connecting
flat (s ¼ 0) and decelerating spatially flat FLRW
(0 < s < 1) spacetimes at Iþ.

(iii) We augmented our ansatz to allow for local non-
CKV on S2, also called local DiffðS2Þ transforma-
tions, besides superrotations. We computed the
asymptotic diffeomorphisms preserving these sets
of asymptotic metrics and how they act on the
asymptotic data. In addition, we investigated the
asymptotic algebra governing these spacetimes at
Iþ, gbmss ≃ vectðS2Þ ⋉s ss. The latter algebra is
related to gbms in a similar way that bmss is to
bms, supporting the previous evidence for a cos-
mological holographic flow and providing, to our
knowledge, the first deformation of gbms in the
literature.

(iv) We studied cosmological black and white hole
solutions from the perspective of Iþ using Bondi
coordinates, noticing that white hole solutions are
naturally included in the previous ansatz [1,2], but
black hole solutions require a logarithmic expansion.
Moreover, we strikingly found in Vaidya’s metric
that only the physical cases 2k ∈ N (k ¼ 1 radiation
and k ¼ 2 dust) can be described using 1

rn expansions
with integer n. Otherwise, we would have to extend
our ansatz to fractional n expansions in order to

include this central inhomogeneities detached from
the flow.

(v) From the study of these solutions, we built a
logarithmic expansion in Sec. VII, which includes
the cosmological black holes and preserves the
asymptotic algebra but presents many new unknown
coefficients that are more difficult to interpret.
Furthermore, this logarithmic ansatz does not satisfy,
in general, the peeling property due to presence of
Oðr0Þ (caused by the space filling fluid in FLRW,
which is absent in flat spacetimes) and OðlogðrÞÞ
terms in the Weyl tensor. Although Thakurta and
Sultana-Dyer solutions factorize the logarithm in the
scale factor and verify the peeling property, after a
generic asymptotic transformation, the new metrics
do not satisfy it anymore.

Future research
Finally, we briefly list some open questions and espe-

cially interesting research directions.
(i) The treatment performed in this paper, as well as in

previous works [1,2], is off shell. This means that,
although the gauge has been fixed, there is no direct
and unique correspondence between the asymptotic
coefficients and the maximum of 6 degrees of
freedom. An on-shell implementation, including
asymptotic charges, for general relativity or alter-
native gravity theories is necessary toward practical
quantitative applications and future testability. Un-
fortunately, it is not even clear how the global
charges, mass, and angular momentum can be
globally defined for cosmological settings [48],
contrary to the ADM or Bondi charges in asymp-
totically flat spacetimes.

(ii) During the period of elaboration of this work, we
tried to transform anisotropies that asymptote to
spatially flat FLRW, like Thakurta-Kerr [41,49] or
Bianchi Type I, to Bondi coordinates, in order to
interpret them in our ansatz. We did not succeed, the
main reason being that one must solve very difficult
differential equations. Nonetheless, it would be
illuminating to dispose of such metrics to analyze
their properties. It would also be interesting to
consider charged black holes [50], which would
require an analysis of the asymptotic symmetries of
the Maxwell field in FLRW background.

(iii) Extension to accelerating spatially flat FLRW
might be possible to achieve by means of indirectly
using the properties of the deformation algebras
Wða; b; ā; b̄Þ [22,23]. In fact, we speculate that the
asymptotic symmetry algebra for accelerating
spacetimes at the cosmological horizon might be
given also by bmss ≃Wð− 1þs

2
;− 1þs

2
;− 1þs

2
;− 1þs

2
Þ

(gbmss in the extended case), but more work is
necessary to prove such a statement.
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(iv) The deformation relations found in [22,23], between
the near horizon algebras (Wð0; 0; 0; 0Þ [38],
Wða; a; a; aÞ [32]), and bms≃Wð−1

2
;−1

2
;−1

2
;−1

2
Þ,

make us hope that gbmss plays a fundamental role
for describing the microstates of cosmological black
holes (and, possibly, cosmological horizons). Future
research in this direction is highly encouraged.

(v) Prominent physical applications include the cosmo-
logical, especially the less studied scalar and vector,
memory effects, and scattering amplitudes in order
to complete the cosmological infrared triangle
[51,52] and to dig into holography in cosmological
spacetimes.

As a final note, let us finish by pointing out two recent
observations that might add phenomenological relevance to
the metrics studied in this paper. First, tension has been
found against the standard cosmological paradigm assert-
ing that we live in a FLRW with accelerated expansion
(coming from the experimental results found in [53]).

In [54,55], it is suggested that the experimental data might
actually be incompatible with the cosmological principle
and, more concretely, with dark energy and accelerating
expansion. This agrees with the work of [56], which argues
that the S-matrix formulation of quantum gravity excludes
de-Sitter vacua. Second, candidate metrics for describing
primordial black holes in [27,28] are included in our ansatz
of Sec. VII.
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APPENDIX: LIE DERIVATIVES

1. DiffðS2Þ expansion
The Lie derivatives of (4.1) with respect to the DiffðS2Þ generators include:

a−2Lξguu ¼ 2r½ΘA∂uVA − ∂uξ
rðVÞ� þ ½VADAΦþ ξu∂uΦþ 2UA∂uVA − 2∂uξ

rð0Þ − 2kð1 −ΦÞξrðVÞ
þ2K∂uξ

rðVÞ − 2ð1 −ΦÞ∂uξ
u þ 2ΘA∂uξ

Að1Þ�

þ 2

r
½ξu∂um − kð1 −ΦÞξu − ðð1 − 2kÞm − kuð1 −ΦÞÞξrðVÞ

− kð1 −ΦÞξrð0Þ þ VADAmþ 1

2
ξAð1ÞDAΦþ K∂uξ

rð0Þ − ∂uξ
rð1Þ

þm∂uξ
u þUA∂uξ

Að1Þ þ ΘA∂uξ
Að2Þ þ NA∂uVA� þOðr−2Þ ðA1Þ

a−2Lξgur ¼ ½−ð1þ 2kÞξrðVÞ − ∂uξ
u� þ 1

r
½ξu∂uK þ VADAK þ K∂uξ

u − ΘAξ
Að1Þ

þ2kðuξrðVÞ − ξu − ξrð0ÞÞ þ 2kKξrðVÞ� þOðr−2Þ ðA2Þ

a−2LξgrA ¼ −qABξBð1Þ −DAξ
u þ 1

r
ðKDAξ

u − CABξ
Bð1Þ − 2qABξBð2ÞÞ þOðr−2Þ ðA3Þ

a−2LξguA ¼ qAB∂uVBr2 þ r½ð1þ 2kÞΘAξ
rðVÞ þ LVΘA − ∂Aξ

rðVÞ þ CAB∂uVB þ ξu∂uΘA þ ΘA∂uξ
u þ qAB∂uξ

Bð1Þ�
þ ½ð2kΘA þ ∂uUAÞξu þ ð1þ 2kÞΘAξ

rð0Þ þ 2kξrðVÞðUA − uΘAÞ þ LVUA þ LξCð1ÞΘA −DAξ
rð0Þ þ KDAξ

rðVÞ

− ð1 −ΦÞDAξ
u þ hAB∂uVB þ UA∂uξ

u þ CAB∂uξ
Bð1Þ þ qAB∂uξ

Bð2Þ�

þ 1

r
½ξu∂uNA þ NA∂uξ

u þ LVNA − ð1 − 2kÞNAξ
rðVÞ þ KDAξ

rð0Þ −DAξ
rð1Þ

þ 2mDAξ
u þ 2kUAðξrð0Þ þ ξu − uξrðVÞÞ þ 2kΘAðu2ξrðVÞ − uðξrð0Þ þ ξuÞ þ ξrð1ÞÞ þ ΘAξ

rð1Þ þ CAB∂uξ
Bð2Þ

þ hAB∂uξ
Bð1Þ þ LξBð1ÞUA þ LξBð2ÞΘA� þOðr−2Þ ðA4Þ

a−2LξgAB ¼ r2FAB þ rSAB þ KAB; ðA5Þ
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with

FAB ¼ 2ð1þ kÞξrðVÞqAB þ ξu∂uqAB þ LVqAB;

SAB ¼ 2qABðð1þ kÞξrð0Þ − kuξrðVÞ þ kξuÞ þ LξAð1ÞqAB þ ΘADBξ
u þ ΘBDAξ

u þ ð1þ 2kÞCABξ
rðVÞ þ LVCAB þ ξu∂uCAB;

KAB ¼ 2kqABðu2ξrðVÞ − uξrð0Þ − uξuÞ þ 2ð1þ kÞqABξrð1Þ þ LξAð2ÞqAB þ UADBξ
u þ UBDAξ

u þ LξAð1ÞCAB

þ 2khABξrðVÞ þ ξu∂uhAB þ LVhAB: ðA6Þ

2. Logarithmic expansion

The Lie derivatives of (7.3) with respect to the DiffðS2Þ generators include:

Lξguu ¼
�
r
L

�
2k
fð2ΘA∂uVA − ∂uξ

rðVÞÞrþOðr0Þg ðA7Þ

Lξgur ¼
�
r
L

�
2k
f−ð1þ 2kÞξrðVÞ − ∂uξ

u þOðr−1Þg ðA8Þ

LξgrA ¼
�
r
L

�
2k
f−DAξ

u − qABξBð1Þ þOðr−1Þg ðA9Þ

LξguA ¼
�
r
L

�
2k
fqAB∂uVBr2 þOðrÞg ðA10Þ

LξgAB ¼
�
r
L

�
2k
fr2ðLVqAB þ 2ð1þ kÞqABξrðVÞ þ ξu∂uqABÞ þOðrÞg: ðA11Þ
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