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We study a viable connection between the circular-equatorial orbits and reflection symmetry across the
equatorial plane of a vacuum stationary axis-symmetric spacetime in general relativity. The behavior of the
circular equatorial orbits in the direction perpendicular to the equatorial plane is studied, and different
outcomes in the presence and in the absence of the reflection symmetry are discussed. We conclude that in
the absence of the equatorial reflection symmetry neither stable nor unstable circular orbit can exist on the
equatorial plane. Moreover, to address the observational aspects, we provide two possible examples
relating gravitational wave astronomy and the thin accretion disk which can put constraints on the
symmetry breaking parameters.
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I. INTRODUCTION

The Kerr metric uniquely describes a stationary, axis-
symmetric, and asymptotically flat black hole (BH)
solution of vacuum Einstein’s field equations in four
dimensions (assuming the regularity on and outside of
the horizon) [1–5]. Besides the stationary and axis-
symmetry properties, Kerr spacetime is also endowed with
an additional feature of reflection symmetry across the
equatorial plane. Even if the former characteristics are
likely to be associated with astrophysical objects with
rotation, both asymptotic flatness and equatorial reflection
symmetry can be relaxed in order to probe a larger domain
of compact objects other than BH. Various possible
distinctions between BHs and other exotic compact objects
based on tidal deformability [6–9], tidal heating [8,10–13],
multipole moments [10,14], echoes in postmerger [15–20],
and electromagnetic observations [20–24] have been pro-
posed in the literature. Similarly, distinguishing them on the
basis of equatorial reflection symmetry can be useful to
detect them or rule them out as viable astrophysical bodies.
Not only these studies provide a fresh outlook to model
astrophysical objects, but they also assign an observational
impact to it. In the present article, we aim to elaborate on
the equatorial reflection symmetry in a generic spacetime
and outline its possible theoretical and observational
implications in depth.
To study any particular effect appearing from spacetime

geometry, the ideal approach is, to begin with, the orbital
dynamics. Based on how orbits behave in a given space-
time, more involved astrophysical searches are constructed.

In Kerr, the orbital properties are well studied and exten-
sively explored in literature [25–27]. Similar exploration is
carried out for Kerr-NUT spacetime as well [28–30]. NUT
charge introduces an unique extension of the Kerr space-
time, and violates the equatorial reflection symmetry and
describes an asymptotically nonflat geometry [31,32].
While in Kerr we know stable/unstable equatorial circular
orbits exist, the same is not true in the presence of NUT
charge. In particular, neither stable nor unstable equatorial
circular orbits can exist for massive or massless particles in
Kerr-NUT spacetime [28,29]. In fact, this stark contrast
between Kerr and Kerr-NUT is the primary source of our
motivation to study further and investigate whether equa-
torial reflection symmetry and the existence of the equa-
torial circular orbits can be generically connected. We
introduce a perturbative approach for confronting equato-
rial circular geodesics in geometries where equatorial
reflection symmetry is absent. By assuming that the orbits
reside on the equatorial plane initially, we study the growth
of perturbation in time and aim to realize which parameters
engineer any possible deviation from the equatorial plane.
Assuming the perpendicular to θ ¼ π=2 is along the z axis,
we consider the z perturbation in our work. Because of the
absence of the equatorial reflection symmetry, it is likely
that the potential will not be an even function of z. As a
result, there will be an intrinsic force in the z direction that
will lift the orbits from the equatorial plane. To study this in
the context of a general stationary axis-symmetric metric,
we will consider Ernst’s potential and write metric com-
ponents in terms of it.
The existence of the planner circular orbits is crucial for

discussing physical effects relevant for various astrophysi-
cal models, such as binary, spectra of accreting black holes,
etc. The orbits in extreme mass ratio inspirals, which will
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be observed with LISA [33], are most likely to be generic
[34–36]. Binaries with stellar masses, as already detected
by gravitational wave detectors LIGO and VIRGO, can
have precession [37]. This means that the understandings
found in the current paper will not only have theoretical
grounds but also will have an observational impact, which
will be discussed later.
The rest of the manuscript is organized as follows. In

Sec. II, we start with the Ernst potential, and in Sec. III, we
will briefly discuss the geodesic equations in terms of the
metric components. The primary findings of the paper are
given in Secs. IV and V, respectively. In Sec. VI, we will
study the observational impacts of current findings, and
finally, we will conclude in Sec. VII.

II. METRIC COMPONENTS AND THE ERNST
POTENTIAL

We start with a stationary, axis-symmetric, and vacuum
spacetime written in cylindrical coordinates ðt; ρ; z;ϕÞ
within general relativity as [38,39]

ds2¼−Fðdt−ωdϕÞ2þ 1

F
½e2γðdρ2þdz2Þþρ2dϕ2�; ð1Þ

where F, ω, and γ are functions of ρ and z. Substituting the
metric in the Einstein equation, it is possible to find
governing equations for these entities. In passing, we
should note that the above metric may or may not be
asymptotically flat and remains general otherwise.
The above metric components can be written in a

more compact form by using the complex Ernst potential,
which is a combination of both a norm (λ) and twist (ω)
timelike Killing vector. In particular, λ ¼ −gtt ¼ F, and
ωμ ¼ ffiffiffiffiffiffi−gp

ϵμνγδξ
ν∇γξδ, where ξμ is the timelike killing

vector [39]. Given that the spacetime is stationary and axis
symmetric, both norm and twist are expected to be nonzero.
Finally, the Ernst potential takes the form

E ¼ F þ iψ ¼ ðρ2 þ z2Þ1=2 − ξ̃

ðρ2 þ z2Þ1=2 þ ξ̃
; ð2Þ

where ξ̃ can be written as [40]

ξ̃ ¼
X∞
j;k¼0

ajk
ρjzk

ðρ2 þ z2Þjþk : ð3Þ

The reasons to choose Ernst’s potential formalism as a tool
to express metric components are twofold. First, the metric
components can be written directly in terms of E. As a
result, from the behavior of E under the absence of the
symmetries, the nature of the orbits can easily be extracted.
Second, reflection symmetry manifests itself through the
values of ajk, making it easier to impose the presence or the
absence of equatorial reflection symmetry. The ajk is

nonzero only for non-negative, even j and non-negative
k. If there is reflection symmetry across the equatorial
plane, then ajk is real for even k and imaginary for odd k
[38,40–42]. However, as the present study remains general
as far as the equatorial reflection symmetry is concerned,
we restrain ourselves from making such assumptions. We
assume that ajk has both real and imaginary components for
both even and odd values of k.
In terms of F and ψ , the metric components gtt, gtϕ, and

gϕϕ, which will be of particular use, can be written as [38]

gtt ¼ −F; gϕϕ ¼ ðg2tϕ − ρ2Þ=gtt;

gtϕ ¼ −F
Z
z¼const

ρ

F2

∂ψ
∂z dρþ F

Z
ρ¼const

ρ

F2

∂ψ
∂ρ dz; ð4Þ

where the detailed calculations to arrive at the above
expressions are shown in Appendix A.

III. OFF-EQUATORIAL PERTURBATION OF THE
EQUATORIAL GEODESICS

To study the existence of equatorial circular orbits in a
generic spacetime with metric given in Eq. (1), we start
with the geodesic equations

ρ̈ ¼ 1

2

∂Vρ

∂ρ ; ̈z ¼ 1

2

∂Vz

∂z ; ð5Þ

where the dot defines a derivative with respect to the affine
parameter which we may call τ and Vρ and Vz are radial and
angular potentials, respectively. The above equations will
determine the locations of an orbit, while the conserved
energy and momentum are dictated by t and ϕ components.
Given that we are interested in orbits confined on a plane
and circular in nature, the above two equations would give
ρ̈ ¼ ̈z ¼ 0 in principle. However, as the equatorial reflec-
tion symmetry is not respected, the potential Vz is likely to
contain terms with the odd power of z such that
VzðzÞ ≠ Vzð−zÞ. One should be mindful that the condition
of circularity is not expected to be affected by the equatorial
reflection symmetry, and we may safely impose _ρ ¼ ρ̈ ¼ 0.
From the timelike constraint, UαUα ¼ −1, we arrive at the
expression

U tU t þ UρUρ þ UzUz þ UϕUϕ ¼ −1; ð6Þ
and finally [43]

Vz ¼ gzzðUzÞ2 ¼ −1 − gttE2 − gϕϕL2
z − 2gtϕELz; ð7Þ

where E and Lz are given as conserved energy and
momentum, respectively, appearing from the spacetime
symmetries. We will expand Vz about the equatorial plane,
i.e., z ¼ 0. Neglecting terms approximately OðδzÞ3 and
beyond, i.e., VzðδzÞ ¼ V0 þ ðδzÞV1 þ ðδzÞ2V2, we may
rewrite z equation in Eq. (5) as follows:
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2δ̈z ¼ V1 þ 2V2δz: ð8Þ

By solving the above equation, we arrive at

δzðτÞ ¼ V1

2ω2
þ A exp½−iωτ� þ B exp½iωτ�; ð9Þ

where we set V2 ¼ −ω2, and ω can be both real and
imaginary. If we assume that the initial conditions are
δzð0Þ ¼ _δzð0Þ ¼ 0, the above equation may be rewritten as

δzðτÞ ¼ −
V1

2ω2
þ V1

4ω2
fexpð−iωτÞ þ expðiωτÞg: ð10Þ

Depending on the value of ω, the above equation either
represent a hyperbola (Im½ω� ≠ 0), and a oscillatory
(Im½ω� ¼ 0) motion. For the Kerr-NUT spacetime, as we
have shown in Appendix B, Im½ω� ¼ 0, and the solution is
always oscillatory. For future purposes, we may note that in
case of a oscillatory solution we have

δzðτÞ ¼ −
V1

ω2
sin2ðωτ=2Þ; ð11Þ

which hints at an interesting property of this motion written
as follows. For a particular radius, this perturbation is either
positive or negative depending on the sign of V1, but never
switches sign. It indicates that it would never cross the
equatorial plane but approach it in each cycle. In short, the
hobbling from the equatorial plane would be one sided.
It should be mentioned that δzðτÞ in Eq. (11) vanishes at

τ ¼ 0 which reflects that no external perturbation is
applied.Any additional external perturbation may result
in some changes in the final expression, which we have not
studied in this article. Besides, one should also note how V1

and V2 are affecting the perturbation. While V1 is directly
proportional to its value, V2 is responsible for engineering
its nature. By setting V2 ¼ 0, we obtain a diverging nature
of the perturbation, as δzðτÞ ∼ τ2, and may not appropri-
ately model δzðτÞ. Keeping these points in mind, we will
keep V1 and V2 in the expression and ignore higher-order
corrections. Eventually, we will show that nonzero V1 is
connected to the absence of equatorial reflection symmetry,
which, as a result, does not allow a circular orbit to exist in
the equatorial plane, not even perturbatively.

IV. DECOMPOSITION OF THE ERNST
POTENTIAL

Referring to Eq. (3), we may state that equatorial
reflection symmetry in the potential comes through ajk.
For a clear exposition of our results, we separate out the real
and imaginary parts of ajk, i.e.,

ajk ¼ âjk þ iăjk; ð12Þ

where âjk and ăjk are the real and imaginary parts of the
ajk, respectively. If the equatorial reflection symmetry
exists, then ajk is real for even k and imaginary for odd
k [38,40–42],

ăjð2mÞ ¼ 0; âjð2mþ1Þ ¼ 0; ð13Þ

for all non-negative values of m. However, in the present
context, we should note again that the above equations are
not valid and are expected to be nonzero. With the above
expressions in hand, we now attempt to connect the
potential with ajk and start with decomposing ξ̃ in real
and imaginary parts as follows:

ξ̃ ¼ ξ̂þ iξ̆: ð14Þ

Therefore, we gather

ξ̂ ¼
X∞
j;k¼0

âjk
ρjzk

ðρ2 þ z2Þjþk ; ξ̆ ¼
X∞
j;k¼0

ăjk
ρjzk

ðρ2 þ z2Þjþk :

ð15Þ

By using Eqs. (3), (14), and (15), we may arrive at the
expression

F ¼ R − ξ̂2 − ξ̆2

ðR1=2 þ ξ̂Þ2 þ ξ̆2
; ψ ¼ −2R1=2ξ̆

ðR1=2 þ ξ̂Þ2 þ ξ̆2
; ð16Þ

where R ¼ ρ2 þ z2. For our purpose, we need to under-
stand the properties of the ∂Vz=∂z up to order of z, and
considering Vz up to order of z2. This would need the
knowledge of gtt, gtϕ, gϕϕ, F, and gtϕ up to the order of z2

and ψ up to the order of z3. Therefore, we need contribution
from âj0, âj1 and ăj0, ăj1 for our analysis. For the
expansion, we take z=ρ ≪ 1, and as a result, it is not
necessary for z to be very small as long as z ≪ ρ is
satisfied. Keeping up to the order of z3=ρ3, we rewrite ξ̂ and
ξ̆ as follows:

ξ̂ ¼
X
j

�
âj0
ρj

�
1 − j

z2

ρ2

�
þ âj1
ρjþ1

�
z
ρ
− ðjþ 1Þ z

3

ρ3

��
;

ξ̆ ¼
X
j

�
ăj0
ρj

�
1 − j

z2

ρ2

�
þ ăj1
ρjþ1

�
z
ρ
− ðjþ 1Þ z

3

ρ3

��
: ð17Þ

Using the results found in this section, we will find the
∂Vz=∂z in the next section.

V. RESULTS

In this section, we express the relevant quantities as a
series expansion in z and only keep terms up to z2 terms in
the potential. Based on our earlier discussions, here, wewill
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derive V1 for a general stationery, axis-symmetric metric.
By substituting Eq. (17) into Eq. (16), we arrive at

F ¼ 1þP
3
0 giz

i=ρi

1þP
3
0 fiz

i=ρi
≡X3

0

Fizi;

ψ ¼
P

3
0 ψ izi=ρi

ρ2ð1þP
3
0 fiz

i=ρiÞ≡
X3
i¼0

Ψi
zi

ρi
; ð18Þ

where the coefficients can be expressed as follows:

f0 ¼
X
j

âj0
2

ρjþ1
þ
�X

j;j0

1

ρjþj0þ2
fâj0âj00 þ â → ăg

�
;

f1 ¼
X
j

âj1
2

ρjþ2
þ
�X

j;j0

1

ρjþj0þ3
2fâj0âj01 þ â → ăg

�

f2 ¼ 1þ
X
j

− âj0
2

ρjþ1

�
j −

1

2

�
þ
�X

j;j0

1

ρjþj0þ2

×

�
−âj0âj00ðjþ j0Þ þ âj1âj01

ρ2
þ â → ă

��

g0 ¼
X
j

âj0
2

ρjþ1
− f0; g1 ¼

X
j

âj1
2

ρjþ2
− f1

g2 ¼
X
j

− âj0
2

ρjþ1

�
j −

1

2

�
þ 2 − f2

ψ0 ¼
X
j

ăj0
2

ρj−1
; ψ2 ¼

X
j

− ăj0
2

ρj−1

�
j −

1

2

�
;

ψ1 ¼
X
j

ăj1
2

ρj
; ψ3 ¼

X
j

− ăj1
2

ρj

�
jþ 1

2

�
ð19Þ

F0¼
1þg0
1þf0

; F1¼
g1ð1þf0Þ−f1ð1−g0Þ

ðf0þ1Þ2 ;

F2¼
g2ð1þf0Þ2þðf2g0þg1f1−f2Þð1þf0Þþf21ð1þg0Þ

ðf0þ1Þ3 ;

Ψ0¼
ψ0

ρ2ð1þf0Þ
; Ψ1¼

ψ1ð1þf0Þ−f1ψ0

ρ2ð1þf0Þ2

Ψ2¼
ð1þf0Þ2ψ2−ðf1ψ1þf2ψ0Þð1þf0Þþf21ψ0

ρð1þf0Þ3
ð20Þ

Ψ3 ¼
ð1þ f0Þ3ψ3 − ð1þ f0Þ2ðf1ψ2 þ f2ψ1 þ f3ψ0Þ

ρ2ð1þ f0Þ4

þ ð1þ f0Þðf21ψ1 þ 2f1f2ψ0Þ − ψ0f31
ρ2ð1þ f0Þ4

; ð21Þ

which are functions of ρ only and independent of z. By
employing these expressions, we can obtain the derivatives
of the metric components, gtt, gtϕ, and gϕϕ [given in
Eq. (4)], which are essential for our study. We start with

the following expression for gtϕ and obtain the derivative of
gtϕ and gϕϕ,

gtϕ ¼ −F
X
i

zi
Z

Iidρ0 þ N ¼ −F
X
i

ziI i þ
X
i

Nizi;

ð22Þ

ρ2
∂gtϕ
∂z ¼ −ðF1I0 − N1 þ F0I1Þ

− 2zðF1I1 þ F2I0 − N2 þ F0I2Þ;
∂gϕϕ
∂z ¼ 1

ρ2
½F1 þ 2F2z�; ð23Þ

where we have used Eq. (18), and the expressions for N1,
N2, I0, I1, and I2 are given as

N1 ¼
ρΨ0

0

F0

;

N2 ¼
Ψ1

0

2F0

−
Ψ1

2ρF0

;

I0 ¼
Ψ1

F2
0

; I1 ¼
2Ψ2F0 − 2F1Ψ1ρ

ρF3
0

;

I2 ¼
3Ψ3F2

0 − 4F1Ψ2F0ρ − 2F2F0Ψ1ρ
2 þ 3F2

1Ψ1ρ
2

F4
0ρ

2
;

ð24Þ

where Ψ0
i ¼ ∂Ψi∂ρ . It is now easy to evaluate the derivative of

gtt by using Eqs. (23) and (25). Finally, we can obtain the
expression for ∂VzðzÞ=∂z by using Eq. (7) and the
derivatives of the metric components. The result is as
folllows:

V1 ¼ −E2

�
−
I2
0F1

ρ2
þ 2I0I1F0

ρ2
þ F1

F2
0

−
2I0N1

ρ2
þ 2

I2
0F1

ρ2

�

−
L2
z

ρ2
F1 þ 2

ELz

ρ2
ðF0I1 þ F1I0 − N1Þ: ð25Þ

It is easy to notice that in general V1 ≠ 0 from Eq. (25).
The consequence of nonzero V1 has already been discussed
in Sec. III. It may be possible that, even though the z-
independent term is nonzero for each of the derivatives, in
some special cases, these terms may add up to give a
vanishing z-independent term. In particular, one may ask
whether it is possible to choose conserved energy and
momentum in such a way that it would result in V1 ¼ 0.
Indeed, we find this can be a possibility; however, both the
energy and momentum need to be in consonance with
_ρ ¼ ρ̈ ¼ 0, too, which can put the further restriction in its
motion. For example, in the Kerr-NUT spacetime, it is not
possible to choose energy and momentum in such a way
that it would describe a circular geodesic confined on the
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equatorial plane [29]. Therefore, while this is a valid
possibility, it does not describe a general outcome of our
findings.
For a quick follow-up of the above analysis where the

equatorial reflection symmetry is respected, we focus on
the z-independent term. Here, the z-independent part
depends only on F0, F1, I0, I1, and N1. When equatorial
reflection symmetry is present, ăjð2mÞ ¼ 0 and
âjð2mþ1Þ ¼ 0; hence, f1 ¼ g1 ¼ ψ0 ¼ ψ2 ¼ 0. This implies
F1 ¼ Ψ0 ¼ Ψ2 ¼ I1 ¼ I1 ¼ N1 ¼ 0. Therefore, the V1 in
Eq. (25) vanishes. It is remarkable that in the case of
equatorial reflection symmetry the z0 terms in every term
that constitutes ∂Vz∂z vanish and, as a result, V1 vanishes. This
indicates that the presence of circular equatorial orbit
implies the presence of the reflection symmetry.

VI. OBSERVATIONAL PROSPECTS AND
POSSIBLE CONSTRAINTS

We explore a possible connection between the equatorial
reflection symmetry and equatorial circular orbits and
arrive at the conclusion that in the absence of the equatorial
reflection symmetry circular orbit cannot exist on the
equatorial plane. The parameters which break the reflection
symmetry will engineer to elevate the orbit from the
equatorial plane and boost it with a force. However, if
we assume these parameters are small enough, we can still
naively assume the orbits to be equatorial and still perform
some astrophysical calculations [44]. Nonetheless, this
would introduce a test bed to execute several observational
expeditions to confirm the existence of stable orbits and
equatorial reflection symmetry. In fact, the observation of
stable circular equatorial orbit will be a telltale signature of
the presence of reflection symmetry or a very mild violation
of it. For the present purpose, we outline a few such
examples where the violation of equatorial reflection
symmetry may be detectable by observation. For other
theoretical and observable impacts, check Refs. [45–47].

A. Gravitational wave astronomy

Consider a binary system prepared in such a way that the
spins of the components are either aligned or antialigned
with the orbital angular momentum. With time due to the
push from V1, the spins will not stay (anti)aligned even if
they were prepared in an (anti)aligned manner. This will
result in a nonzero in-plane spin component ðχpÞ (check
Ref. [48] for the definition). Therefore, for equatorial
reflection symmetry violating bodies in a binary, χp
measurement should be nonzero. Hence, nonzero χp can
arise in several different ways. One is due to the formation
mechanism of binaries, which has components that respect
equatorial reflection symmetry yet introduce a nonzero χp
possibly due to spin effects. Another reason for nonzero χp
would be due to the absence of equatorial reflection

symmetry. This means that there will be a degeneracy
between the formation channel and equatorial reflection
symmetry violation, and it becomes uncertain to arrive at a
unique conclusion.
This possible degeneracy can be broken by measuring

the multipole moments of a compact object. It is well
known that for axis-symmetric bodies there can be two sets
of multipole moments: one is the mass moment (Ml), and
another is the current moment (Sl). For a metric solution
with the equatorial reflection symmetry like Kerr, both the
odd mass and even current moments would identically
vanish. However, for a simple illustration of these moments
in a Kerr-NUT spacetime which is known to break the
equatorial reflection symmetry, one immediately notices
that all the orders for mass and current multipole moments
would survive [44]. From an observation perspective, there
now exists contemporary tools to measure the quadrupole
moment in a binary [10,14]. If reflection symmetry is
violated, then it is likely that the metric will have nonzero
M2lþ1 and/or S2l, i.e., classes of fuzzball solutions [49–56].
Hence, measuring a nonzero S2 will be a signature of
breaking of reflection symmetry, along with the nonzero χp
observation.

B. Constraints from the accretion disk

If the metric of these objects does not respect equatorial
reflection symmetry, then there should be some imprint of
such violation on the matter distribution around it. In such
cases, depending on the value of V1, we may expect the
matter to be distributed in off-equatorial planes. This, as a
result, can give a possible opportunity to constraint V1 from
observation. For example, if we assume that there is a
deviation from the reflection symmetry, we gather from
Eq. (11) that farthest a particle can go from the equatorial
plane isD ∼ j V1

ω2 j. Depending on the model, the radius of an
accretion disk around a BH can have radius r ∼ Rð M

M⊙
Þ,

where R ∼ ð10 − 106Þ km. Traditional thin accretion disks
can have scale height h ∼ :01r [57,58]. Therefore, to ensure
a disk structure consistent with most of the observation, we
have D < h, which translates to

				V1

ω2

				 < 104 km
�

ζ

:01

��
R

106 km

��
M
M⊙

�
; ð26Þ

where ζ ¼ h=r. For a given accretion disk, we may be able
to constrain the reflection breaking parameters from obser-
vation, which may provide useful information about the
central object. Since the accretion phenomenon is observed
with x-ray observations, it requires investigating if it is
possible to probe equatorial reflection symmetry from the
x-ray observations. The observed time variability in the
x-ray flux emitted by accreting compact objects (i.e.,
quasiperiodic oscillations [59–62]) can possibly shed some
light in this regard. Currently, the underlying mechanism is
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not very well understood, except the belief that these fluxes
originate from the innermost region of the accretion flow
[63]. Since the physics of accretion disks is very complex, it
is challenging to extract accurate information. We will
leave such studies for the future.

VII. CONCLUSION

We have studied the perturbation of the circular-equa-
torial orbits of a general stationary axis-symmetric metric in
the z direction. In the process, we have identified a set of
parameters that are the potential source of the equatorial
reflection symmetry violation, namely, ăjð2mÞ and âjð2mþ1Þ.
We have shown that, in general, when these parameters are
zero (nonzero) equatorial reflection symmetry is present
(absent), and the small oscillation solution across the
equatorial plane is present (absent). This leads us to
conclude that the very existence of equatorial circular orbit
is an indication that the geometry respects equatorial
reflection symmetry, while it may not be true the way
around. To be precise, equatorial circular geodesics may
not exist even if the spacetime respects the equatorial
reflection symmetry. For example, this can be simply
stemmed from the fact that the conserved momentum
and energy are not favorable to host any bound equatorial
circular geodesic.
In this paper, we argue that in the case of equatorial

reflection symmetry violation it is unlikely to have a
measurement with χp ¼ 0. This can be addressed by
properly identifying the orbital parameters that will be
representative of symmetry violation, and possibly depend
on ăjð2mÞ and âjð2mþ1Þ. Therefore, to break this stalemate,
we need to confront the multipolar structure of the object
which would consist of both odd mass multipole moments
and even current multipole moments in case the symmetry
is violated. By measuring the S2 and M3 components, it
would be sufficient to confirm this claim. We also con-
strained equatorial reflection symmetry violating parame-
ters for the stellar and supermassive objects. To our
knowledge, this is the first time such a kind of constraint
has been found.

ACKNOWLEDGMENTS

Both the authors are indebted to Sukanta Bose, Sumanta
Chakraborty, Naresh Dadhich, Prasun Dhang, Ranjeev
Misra, Sanjit Mitra, and Kanak Saha for useful comments
and also suggesting changes for the betterment of the
article. S. D. would like to thank University Grants
Commission (UGC), India, for providing a senior research
fellowship, and S. M. is thankful to the Department of
Science and Technology, Government of India, for finan-
cial support.

APPENDIX A: METRIC COMPONENTS IN
TERMS OF THE ERNST POTENTIAL

In this section, we will derive gtϕ in terms of the Ernst
potential. To our knowledge, this has not been computed
explicitly in the literature. If the metric is stationary and
axis symmetric, then there will exist a timelike Killing
vector field ξα and an axial Killing vector field Aα. Then, it
is possible to define a vector field ωα, defined as

ωα ¼ ϵαβγδξ
α∇βξγ; ðA1Þ

which satisfies ∇½αωβ� ¼ 0. Therefore, we can define a
twist potential ψ as ωα ¼ ∂αψ .
In the cylindrical coordinate system ðt; ρ; z;ϕÞ, the

nonzero components can be found as

ωρ ¼ −ðgρρgzzÞ1=2gzz½gtϕ∂zgtt þ gϕϕ∂zgtϕ�

¼ 1

ρ
g2tt∂z

�
gtϕ
gtt

�
;

ωz ¼ ðgρρgzzÞ1=2gρρ½gϕϕ∂ρgtϕ þ gtϕ∂ρgtt�

¼ −
1

ρ
g2tt∂ρ

�
gtϕ
gtt

�
: ðA2Þ

From Eq. (A2), it is simple to find gtϕ as

gtϕ
gtt

¼
Z

ρ

g2tt
∂ρψdz −

Z
ρ

g2tt
∂zψdρ: ðA3Þ

APPENDIX B: EXAMPLE OF A EQUATORIAL
REFLECTION SYMMETRY BREAKING
SPACETIME—KERR-NUT GEOMETRY

To display the connection between equatorial symmetry
and circular orbits explicitly, we consider an example,
namely, Kerr-NUT spacetime, where the reflection sym-
metry is known to be violated [29]. The nonexistence of
equatorial circular orbits in Kerr-NUT geometry was first
claimed in Ref. [28] and recently explored further in
Ref. [29]. In the present context, though, we will be
more involved in studying the perturbation equation in
the theta direction and discuss the near equatorial plane
behavior.
The Kerr-NUT spacetime is a solution to vacuum

Einstein field equations and describes a stationary, axis-
symmetric, and asymptotically nonflat spacetime. To dis-
cuss the nature of the angular perturbation, we need to
consider the angular geodesic equation in Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ,

Vθ ¼ ð_θÞ2 ¼
�
dθ
dτm

�
2

¼ ðλsin2θ þ ðLz − aEÞ2sin2θ

− ðEP − LzÞ2 − sin2θðlþ a cos θÞ2Þ; ðB1Þ
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where τm is the Mino time, a dot defines a derivative with
respect to it, and Vθ can be defined as angular potential
[29]. The quantities λ, E, Lz, l, and a are defined as Carter
constant, energy, momentum, NUT charge, and angular
momentum, respectively, and ρ and P are given by ρ2 ¼
r2 þ ðlþ a cos θÞ2 and P ¼ a sin2 θ − 2l cos θ. Let us now
assume that the particle is initially confined on the
equatorial plane and we expect to study the perturbation
originated from the term θ̈. By setting _θ ¼ 0 and θ ¼ π=2,
we gather λ ¼ l2, which identically vanishes for zero NUT
charge, i.e., in the case of Kerr spacetime. In addition to
_θ ¼ 0, to have a planner orbit, we need to ensure θ̈ ¼ 0,
too, which warrants that _θ ¼ 0 remains satisfied along the
trajectory. This is where the NUT charge comes into play
and engineers to disobey θ̈ ¼ 0. Even then, the θ̈ equation
can be useful to extract information about the variation of θ
near to the equatorial plane, which we will do next. Let us
start by introducing the equation

θ̈ ¼ 1

2

dVðθÞ
dθ

; ðB2Þ
which we need to write in terms of the coordinate time,
such that it can be useful for an asymptotic observer. To
execute this task, we may unfold θ̈ as

d2θ
dτ2

¼
�
d2θ
dt2

��
dt
dτ

�
2

þ
�
dθ
dτ

��
dt
dτ

�
−1
�
d
dt

�
dt
dτ

�
dt
dτ

�
;

ðB3Þ
and one easily notices that the second term goes to zero, as
we assume _θ ¼ 0 in the first place. Bringing together
Eqs. (B2) and (B3) and writing θðtÞ as θðtÞ ¼ π=2þ δθðtÞ,
we arrive at the following expression:

�
d2δθðtÞ
dt2

��
dt
dτ

�
2

¼ 1

2

dVðθÞ
dθ

: ðB4Þ

The expression of U t ¼ dt=dτ can be derived from
U t ¼ −gttEþ gtϕLz, where the metric components can
be found in Ref. [29]. Finally, assuming δθðtÞ ≪ 1 and
terms with δθðtÞ2, δθðtÞδθ0ðtÞ, δθðtÞδθ00ðtÞ, and beyond are
neglected, we gather

C3δθ00ðtÞ þ C2δθðtÞ þ C1 ¼ 0; ðB5Þ

where a prime denotes a differentiation with respect to t.
The expressions for C1, C2, and C3 are given as

C1 ¼ lfað2E2 − 1Þ − 2ELzg;
C2 ¼ L2

z þ 4E2l2 − a2ðE2 − 1Þ;

C3 ¼
1

Δ2
fEðr2 þ l2Þ2 − 2aLzðl2 þMrÞ

þ a2Eðrðrþ 2MÞ þ 3l2Þg; ðB6Þ

where Δ ¼ r2 − 2Mrþ a2 − l2 becomes zero on the event
horizon. The above equation has a generic solution of the
form

δθðtÞ ¼ −
C1
C2

þ A cosωtþ B sinωt; ðB7Þ

where A and B are integration constants to be evaluated
from the initial conditions and ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

C2=C3
p

. It is interest-
ing to point out that C3 diverges on the horizon, and ω
becomes zero, which no longer describes equatorial
timelike circular orbits. This is in consonance with the
fact that on the null surface of event horizon no timelike
circular orbit can exist. With the initial condition
δθðt ¼ 0Þ ¼ δθ0ðt ¼ 0Þ ¼ 0, the above equation turns
out to be

δθðtÞ ¼ −
C1
C2

ð1 − cosωtÞ ¼ −
2C1
C2

sin2ðωt=2Þ: ðB8Þ

which may oscillate on either side of θ ¼ π=2, depending
on the signs of C1 and C2. Finally, we should say some
words regarding the nature of the oscillations and how it is
different from the Kerr case. It is easy to realize that the
oscillation solely depends on C1 and C2, and among them,
C2 is always positive as far as we are concerned with bound
circular geodesics, i.e., E ≤ 1. Coming to C1, it can only
vanish if we have l ¼ 0 or find a radius which satisfies
ð2E2 − 1Þ ¼ 2ELz. It turns out that the later option is ruled
out as far as one is interested with equatorial circular orbits
in NUT spacetime [29], and one is left with no choice but to
set l ¼ 0 to stop the oscillation. Therefore, the NUT charge,
which is entirely responsible for breaking the equatorial

FIG. 1. In this figure, we demonstrate how a circular orbit in
Kerr-NUT spacetime is slowly evolving from the equatorial
plane. The radius of the circular orbit is considered to be
r ¼ 20M, where M is the mass of the black hole.
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symmetry, also engineers to angular perturbation. In
passing, we should also mention the similar scenario in
connection to massless particles. In this case, too, it is
possible to arrive at an equation equivalent to Eq. (B8),

only with the expressions of C1, C2, and C3 changed as
follows:

C1 ¼ 2ElfaE − Lzg;
C2 ¼ L2

z þ E2ð4l2 − a2Þ þ l2;

C3 ¼
1

Δ2
fEðr2 þ l2Þ2 − 2aLzðl2 þMrÞ

þ a2Eðrðrþ 2MÞ þ 3l2Þg; ðB9Þ

The expression for C1 can be set to zero by two possible
ways, namely, l ¼ 0 and aE ¼ Lz. Like the earlier case, the
later option can never give rise to a circular geodesic, and
we need to choose l ¼ 0. Therefore, the massless case is
also in agreement with our claim that the NUT charge is
solely responsible for having no equatorial circular orbits.
For a typical set of parameters, we have shown in Figs. 1
and Fig. 2 how the NUT charge is influencing a circular
orbit which starts from the equatorial plane. Along with
time, the NUT charge pushes the orbit from the equatorial
plane, and the orbit slowly deviates. Note that the general
study representing the same for an arbitrary spacetime with
no equatorial symmetry is already presented in Sec. V. For
other specific examples, check Refs. [64,65].
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