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Light rings (LRs) play an important role in gravitational wave observations and black hole photographs.
In this paper, we investigate general features of LRs in stationary, axisymmetric, asymptotically flat
spacetimes with or without horizons. For a nonextremal black hole, we show explicitly that there always
exist at least two LRs propagating in opposite directions, where the outermost one is radially unstable. For
an extremal black hole, we show that there exists at least one retrograde LR. We find that there is at least
one LR which is angularly stable. The stability analysis does not involve any energy condition. Our method
also applies to horizonless spacetimes and we prove that LRs always appear in pairs. Only some natural and
generic assumptions are used in our proof. The results are applicable to general relativity as well as most
modified theories of gravity. In contrast to previous works on this issue, we obtain much stronger results
with a much more straightforward approach.
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I. INTRODUCTION

In recent years, many evidences, including gravitational
wave signals from the merger of a binary system observed
by LIGO and Virgo [1,2] and the image of M87* photo-
graphed by the Event Horizon Telescope [3–8], strongly
support the existence of astrophysical black holes in our
universe. Therein, the location of the last radially unstable
circular photon orbit is necessary to describe the dynamics
of the binary system from the inspiral phase to the ring
down [9–12]. More precisely, in the ring-down process, the
black hole dissipates through a set of quasinormal modes
leaving the gravitational wave footprint of the event
horizon, and the light ring (LR) is the outer boundary
for the quasinormal modes [13,14]. One expects gravita-
tional wave ring-down signals would give a generic feature
of any dynamical scenario: the existence of the light ring is
indispensable as the theoretical basis.
The size of a stationary black hole is closely connected

with its photon region, which is the set of all radially
unstable bound photon orbits and can be seen as a border
between light rays that escape to the far region and light
rays that fall into the black hole [15–24]. For example, the
well-known photon orbits with the radius r ¼ 3M in the
Schwarzschild spacetime constitute the border between
trapped and untrapped light rays. Among them, circular
photon orbits are called light rings. It is worth mentioning
that observable light rings must be unstable in the radial

direction, since these photons would fall into the black
holes or escape to infinity once perturbated. On the
contrary, if LRs are stable in the radial direction, they
would not be captured by telescopes and the images of
black holes would not be obtained. As a result, the radially
unstable LRs play an important role in both gravitational
wave detection and black hole shadow observation.
Therefore, the study of radially unstable LRs is essential
for black hole theories and observations.
Although LRs have been extensively discussed in recent

years, most of the works focus on specific spacetimes. A
major development in this research area was made in [25].
By using an elegant topological argument, the authors
found LRs outside a horizonless ultracompact object
(UCO) always exist in pairs. Very recently, the authors
employed this topological argument to a stationary, axi-
symmetric, asymptotically flat black hole spacetime, and
found that at least one standard LR exists outside the
nonextremal horizon for each rotation sense [26]. Along
this line, an extension to spherically symmetric black hole
with anti–de Sitter and de Sitter behaviors has been made in
[27]. These findings have greatly improved our under-
standing of LRs. However, there are still important issues
that remain unclear and unresolved. Firstly, in [25], the
topological argument is only suitable for those UCOs
which form dynamically from gravitational collapse, start-
ing from an approximately flat spacetime. However, there is
no general proof that a UCO must form in this way,
although it has been shown that some boson stars can be
formed dynamically from a spherically symmetric process
of gravitational collapse and cooling [28], as well as Proca
stars [29,30]. In addition, the topological argument is subtle
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because it requires a deformation of a sequence of off-shell
spacetimes that possess the two Killing vector fields [11].
It is not clear whether this can be done in general. Thus, it is
better to give a direct proof which requires no knowledge of
the history of UCO formation. Secondly, a nice formula
was derived in [25] which relates the null energy condition
to the stability of the LR. However, this formula is a
combination of the radial and angular directions. It cannot
answer whether the radial or the angular direction is stable.
In particular, the radial stability of LRs is very important for
the black hole shadow or the ring-down phase of a binary
system. Thirdly, the topological argument cannot predict
the existence of LRs on the equatorial plane when the
spacetime possesses the parity reflection symmetry. Finally,
the argument in [26] depends on the assumption that the
black hole is nonextremal, and does not apply to an
extremal black hole.
In this paper, we address all the unsolved issues above

and obtain satisfactory answers. In [26], the existence of a
standard LR was proved, which means that a LR is a saddle
point in the r − θ plane. To make a more precise prediction,
we introduce the normal light ring (NLR) to describe a light
ring which is radially unstable and angularly stable. By
analyzing the generic behaviors of a stationary, axisym-
metric, asymptotically flat black hole, we show that there
always exist at least two NLRs propagating in opposite
directions outside the nonextremal horizon. For extremal
rotating black holes, we find there exists at least one
retrograde NLR. By applying our method to horizonless
spacetimes, which represent untracompact objects, we
recover the previous result that LRs always exist in pairs
[25]. Obviously, the existence of an NLR is a stronger result
than the previous standard LR. More importantly, our proof
involves only the stationary solution, independent of its
history of formation. Our argument can also guarantee the
existence of LR on the equatorial plane when the spacetime
possesses a reflection symmetry.
The paper is organized as follows. In Sec. II, we

introduce some properties of null geodesics in axisym-
metric spacetimes. In Sec. III, we prove the existence of
LRs in axisymmetric black holes. In Sec. IV, we study LRs
in axisymmetric horizonless spacetimes. Conclusions and
discussions are given in Sec. V.

II. AXISYMMETRIC SPACETIME
AND NULL GEODESICS

Let us start with a stationary spacetime described by the
metric ds2 ¼ gttðr;θÞdt2 þ grrðr;θÞdr2 þ 2gtϕðr;θÞdtdϕþ
gθθðr;θÞdθ2 þ gϕϕðr;θÞdϕ2, where we have employed the
circularity of the spacetime, which gives grθ ¼ 0 under a
suitable gauge [31]. We also assume that the metric is at
least C2 smooth [25]. In terms of the coordinate system
ft; r; θ;ϕg, the Killing vectors can be represented by ∂t and
∂ϕ. In general, the 4-momentum of a photon is written as

pa ¼ _t

� ∂
∂t
�

a
þ _r

� ∂
∂r

�
a
þ _θ

� ∂
∂θ

�
a
þ _ϕ

� ∂
∂ϕ

�
a
; ð1Þ

where the dot denotes the derivative with respect to an
affine parameter. The Killing vectors ∂t and ∂ϕ give us the
conserved energy and angular momentum

E ¼ −gabpa

� ∂
∂t
�

a
¼ −gtt_t − gtϕ _ϕ; ð2Þ

L ¼ gabpa

� ∂
∂ϕ

�
a
¼ gϕϕ _ϕþ gtϕ_t; ð3Þ

respectively. Since papa ¼ 0 along a photon’s trajectory,
we have

gtt_t2 þ grr _r2 þ 2gtϕ_t _ϕþgθθ _θ
2 þ gϕϕ _ϕ

2 ¼ 0: ð4Þ

Combining Eqs. (2) and (3), it is not difficult to find

grr _r2 þ gθθ _θ
2 þ Vðr; θÞ ¼ 0; ð5Þ

where Vðr; θÞ ¼ − 1
D ðE2gϕϕ þ 2ELgtϕ þ L2gttÞ is the

effective potential with D≡ g2tϕ − gttgϕϕ. For convenience,
we introduce a new parameter

σ ¼ E
L
; ð6Þ

which is the inverse of the familiar impact parameter. Thus
the effective potential can be rewritten as [25]

V ¼ −
L2gϕϕ
D

ðσ −HþÞðσ −H−Þ; ð7Þ

where

H� ¼ −gtϕ �
ffiffiffiffi
D

p

gϕϕ
: ð8Þ

Then, we have

Hþ −H− ¼ 2
ffiffiffiffi
D

p

gϕϕ
ð9Þ

is always non-negative. In addition, if spacetimes of interest
contain black holes, denoting the horizon radius as rh, one
can show [26,32]

Djrh ¼ 0; ð10Þ

and D is always positive outside the horizon since D is the
determinant of the t − ϕ sector of the metric [26]. Thus
Hþ ¼ H− only occurs on the horzions of black holes and
Hþ > H− is always true for UCOs.
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Combining Eqs. (7) and (8), we find the LRs occur
at [33]

∂mHþ ¼ 0 and σ ¼ HþðrLR; θLRÞ; ð11Þ

or

∂mH− ¼ 0 and σ ¼ H−ðrLR; θLRÞ; ð12Þ

where m ∈ fr; θg and ðrLR; θLRÞ represent the coordinates
of the LR.
Note that for the LR associated with Hþ, we have

∂2
mVðrLR; θLRÞ ¼

L2gϕϕ
D

∂2
mHþðrLR; θLRÞðHþ −H−Þ:

ð13Þ

For the LR associated with H−, we have

∂2
mVðrLR;θLRÞ ¼

L2gϕϕ
D

∂2
mH−ðrLR;θLRÞðH− −HþÞ: ð14Þ

Since Hþ > H− for any r that is not on the horizon, we see
that ∂2

mHþ has the same sign as ∂2
mV and ∂2

mH− has the
opposite sign. This property will be used in the stability
analysis.
Now we are ready to explore the nature of LRs in

axisymmetric black holes and horizonless spacetimes.

III. AXISYMMETRIC BLACK HOLES

We first consider axisymmetric black holes. Let us start
with the angular direction, i.e., m ¼ θ. Near the axis, as
shown in [26], ρ≡ ffiffiffiffiffiffiffigϕϕ

p goes to zero when θ → 0 and
θ → π. Also, we have

� ∂θρ > 0 θ → 0;

∂θρ < 0 θ → π:
ð15Þ

Thus we find

H� ≃� 1

ρ
→ �∞; ð16Þ

and

∂θH�∼ ∓ ∂θρ

ρ2
∼
�∓∞ θ → 0

�∞ θ → π
: ð17Þ

So, for any fixed r, H� can be viewed as a function of θ
ranging from 0 to π, as shown in Fig. 1. This means that for
each given r > rh, there always exists a θ ¼ θþ such that
Hþðr; θþÞ is a minimum in the θ direction. In this way, we
obtain a function θ ¼ θþðrÞ. Similarly, we have θ−ðrÞ
for H−.

In asymptotically flat spacetimes, H� → � 1
r sin θ as

r → ∞. Thus, we have

θ�ðr → ∞Þ ¼ π=2: ð18Þ

Next, we turn to the radial direction. For any fixed θ,H�
can be viewed as functions of r. To investigate general
features of LRs, it is crucial to analyze the behaviors
of H� at infinity and the horizons. For asymptotically flat
spacetimes, when r → ∞, we have gtϕ → 0, gtt → −1 and
gϕϕ → r2. Thus, H� → 0�.
Let us turn to the horizons and without loss of generality

we can set

gtϕðrhÞ > 0: ð19Þ

Then, from Eqs. (8) and (10), we have

H�jrh ¼ −
gtϕ
gϕϕ

����
rh

< 0: ð20Þ

Note that Hþ → 0þ as r → ∞ if θ ≠ 0 or π. We see
immediately that Hþ must change sign when approaching
infinity and possess at least one maximum outside the
horizon (see Fig. 2). Differing from the argument in [26],
our result holds for both nonextremal and extremal
black holes.
The argument for H− is not so simple because H− is

negative at r ¼ rh and r → ∞. Note that

∂rH−ðrhÞ ∼ −
∂rDðrhÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
DðrhÞ

p
gϕϕðrhÞ

þ gtϕðrhÞ∂rgϕϕðrhÞ − ∂rgtϕðrhÞgϕϕðrhÞ
g2ϕϕðrhÞ

;

ð21Þ

where we have used DðrhÞ ¼ 0. One can show that
∂rDðrhÞ > 0 for nonextremal horizons and ∂rDðrhÞ ¼ 0
for extremal horizons [26,32]. Thus,

FIG. 1. The functions Hþðr; θÞ and H−ðr; θÞ for a Kerr black
hole. We choose a ¼ −0.5 to ensure gtϕðrhÞ > 0. The minimum
of Hþ and the maximum of H− both correspond to minimum
values of the potential V in the θ direction.
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∂rH−ðrhÞ → −∞ ð22Þ

for nonextreme black holes, which means that H− must
possess a minimum outside the horizon for any constant θ.
However, the sign of ∂rH−ðrhÞ is undetermined for
extremal black holes and thus the minimum for H− may
not exist in general. The above results are clearly illustrated
in Fig. 2, which depicts H� for extremal and nonextremal
Kerr spacetimes.
The above argument holds for any constant θ in the range

ð0; πÞ. So for each θ, there exists r ¼ rþ > rh such thatHþ
takes a maximum value in the r direction. Hence, we have a
function rþðθÞ defined in 0 < θ < π.
As we have discussed, an LR exists for the Hþ branch if

θþðrÞ and rþðθÞ intersect on the r − θ plane. It is
reasonable to assume that θþðrÞ and rþðθÞ are continuous
functions since spacetimes of interest possess C2 smooth-
ness. Note that rþðθÞ roughly divides the r − θ plane into
two regions.1 We label the two regions by I and II, where
region I is on the “left,” containing the coordinate origin.
Since the function θþðrÞ is defined on rh ≤ r ≤ ∞, θþðrhÞ
must lie in region I and from θþð∞Þ ¼ π=2 [see (18)], we
can conclude that θþð∞Þ must lie in region II. By
continuity, we see immediately that the two curves must
intersect at some point, which is at the location of the LR.
One may think that the intersection can be avoided if θþðrÞ
passes through θ ¼ 0 or θ ¼ π. However, this cannot
happen because the minimum value of θ cannot be 0 or
π as demonstrated in Fig. 1. The functions rþðθÞ and θþðrÞ
are plotted in Fig. 3, taking the Kerr black hole as an
example. Note that the LR is unstable in the radial direction
and stable in the angular direction thus we conclude that the
LR is a NLR. In addition, since HþðrÞ becomes positive
away from an ergosphere, we see from Fig. 2 that there
must be a NLR lying outside the ergosphere. The above
results hold for H− if the black hole is nonextremal.

When the spacetime adimits the reflection parity sym-
metry, it is easy to see that ∂θH ¼ 0 on the equatorial plane
θ ¼ π=2. Thus, θ�ðrÞ ¼ π=2, which means that there
always exist LRs on the equatorial plane.2

IV. AXISYMMETRIC HORIZONLESS SPACETIME

Horizonless spacetimes are interesting because they can
represent UCOs. First of all, it is easy to find that the
behavior of H�ðr; θÞ for a UCO is the same as those of a
black hole along the angular direction, i.e., there always
exists a minimum or a maximum in the θ direction for Hþ
or H−. As for the radial direction, the behavior of H�ðrÞ at
infinity obviously is the same as for black holes, i.e.,
H� → 0�. Since the horizon is absent, we can assume that
the metric components are regular everywhere. In addition,
we assume gtϕ > 0 and gtt < 0 for r → 0. This assumption
excludes the case that an ergosphere exists at the center of a
UCO, but still can cover a wide class of solutions.
Now we need to focus on the behavior of H� near the

center of the equatorial plane. Let r be the areal radius such
that r → 0 and gϕϕ → r2 near the center. For a UCO, the
metric should be regular at the center (see an example
in [38]). Thus we can assume that gtt → −k2, where k ≠ 0
is a constant, and gtϕ → prs where p is a positive constant
and s ≥ 0. Then, near the center we have

H� ∼
−prs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2r2s þ k2r2

p
r2

: ð23Þ

For s > 1, we can drop the r2s term in the square root and
find

2.4 2.6 2.8 3.0 3.2 3.4 3.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

FIG. 3. The functions r�ðθÞ and θ�ðrÞ for the Kerr black
hole with a ¼ −0.5. In particular, due to the reflection symmetry,
θþðrÞ ¼ θ−ðrÞ ¼ π=2 is a constant. In general, θ� is not
necessarily a constant. The intersection points between r�ðθÞ
and θ�ðrÞ are NLRs as expected.
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FIG. 2. The functions HþðrÞ and H−ðrÞ for Kerr black holes.
Left: we choose a ¼ −0.5 to ensure gtϕðrhÞ > 0, and set M ¼ 1
so that the Kerr black hole is nonextremal. Right: we choose
M ¼ 1 and a ¼ −1, which corresponds to an extremal Kerr black
hole. By imposing the boundary conditions, it is easy to see that
there are two radially unstable LRs for the nonextremal Kerr
black hole. However, there is only one LR, associated with Hþ,
for the extremal black hole.

1These two regions might be connected at the boundary
θ ¼ 0; π because rþðθÞ may not exist there.

2Examples that LRs are not confined on equatorial planes can
be found in [34–37].
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H� ∼
−prs �

ffiffiffiffiffiffiffiffiffi
k2r2

p

r2
∼� 1

r
→ �∞: ð24Þ

For s ¼ 1, it is not difficult to see

H� ∼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2

p
− p

r
→ �∞: ð25Þ

For 0 < s < 1, we find

Hþ ∼
−prs þ prsð1þ α2r2−2sÞ1=2

r2
∼
α2p
2

r−s → ∞ ð26Þ

for a positive s, where we have defined α≡ k
p. However, for

the branch H−, we have

H− ∼ −
�

2

r2−s
þ α2

2rs

�
p → −∞: ð27Þ

Thus, for s > 0, we always have H� → �∞ as r → 0 and
H� → 0� as r → ∞. This implies, from the smoothness of
H�, that the maximum and the minimum of H� must
appear in succession.
Finally, for s ¼ 0, we have

H� ∼
−p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2r2

p
r2

¼ −1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2r2

p

r2
p; ð28Þ

as r → 0, which means Hþ → α2

2
p > 0 and H− → −∞. So

we need to further analyze the behavior ofHþ near r ¼ 0. It
is easy to see

∂rHþð0þÞ ¼ 0; and ∂2
rHþð0þÞ ¼ −

α4

4
p < 0: ð29Þ

Hence, ∂rHþ becomes negative just away from r ¼ 0,
which, again, indicates that possible extreme values of H�
must appear in pairs. The above results are illustrated
in Fig. 4.
Combining the radial and angular directions with the

arguments similar to the black hole case, we can conclude
that for a stationary, axisymmetric horizonless spacetime
with regular metric functions, Hþ or H− always leads to an

even number of LRs, where the inner one is stable in the
radial direction and the outer one is unstable. So the outer
one is a NLR. An illustration is given in Fig. 5.

V. DISCUSSION

To summarize, we have shown that there are at least two
NLRs outside a nonextremal stationary black hole, coro-
tating or counterrotating with the horizon. We demon-
strated that the counterrotating NLR must lie outside the
ergosphere. For an extremal stationary black hole, we find
there is at least one counterrotating NLR. For horizonless
spacetimes, we have proved that if a LR exists, there are at
least two NLRs, with the outer one being unstable in the
radial direction and the inner one being stable. In our
arguments, only some generic conditions have been used,
for instance, the asymptotically flat condition and the
behaviors of the metric near the horizon or the center of a
star. These results could play an important role in
gravitational wave observations and shadow imaging of
the Event Horizon Telescope.
Compared to the theorems proposed in [25,26], we have

made significant improvements in the following aspects.
First of all, our proof requires no knowledge of the history
of UCO formation, unlike the argument in [25]. Moreover,
our proof can guarantee the existence of a LR on the
equatorial plane if there exists one. The Cunha-Herdeiro
theorem in [26] predicts that one LR outside the black hole
must be a saddle point on the ðr; θÞ plane. But the stability
for the r or θ direction alone is unclear. In contrast, we
have analyzed the stability in each direction. We found
that the outermost LR is always unstable in the radial
direction and stable in the angular direction. Our results of
stability are more specific and do not rely on any energy
condition. We also considered the presence of ergosphere
and proved that the retrograde LRs must appear outside
the ergosphere. Finally, our argument, after some mod-
ifications, can naturally apply to extremal horizons.
However, for the extremal case, we can only guarantee

0 2 4 6 8

–  1

0

1

2

r

H+(r)

H–(r)

0 2 4 6 8

–6

–4

 –2

0

2

r

H+(r)

H–(r)

FIG. 4. The illustrated functions Hþ and H− with respect to r
for axisymmetric horizonless spacetimes. From the asymptotic
behaviors at r ¼ 0 and infinity, we see that there are either no
LRs, as shown on the left panel, or at least two LRs, as shown on
the right panel. The inner LR is stable in the radial direction and
the outer one is unstable. FIG. 5. An illustration of rþðθÞ and θþðrÞ for UCOs. r1þðθÞ and

r2þðθÞ are local minimums and maximums ofHþðrÞ, respectively.
The intersections correspond to LRs.
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the existence of one single LR which means that the
photon shell, which is bounded by the two LRs in the
nonextremal case, may not exist. Consequently, the closed
shadow curves might not exist at all or exist only for
observers with some inclination angles. It is possible that
the second LR can be found for some extremal black holes
and we shall leave this issue to future works.
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