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We construct and analyze Kerr black holes (BHs) with synchronized axionic hair. These are the BH
generalizations of the recently constructed rotating axion boson stars [J. F. Delgado, C. A. Herdeiro, and E.
Radu, Rotating axion boson stars, J. Cosmol. Astropart. Phys. 06 (2020) 037]. Such BHs are stationary,
axially symmetric, asymptotically flat solutions of the complex Einstein-Klein-Gordon theory with a QCD
axionlike potential. They are regular everywhere on and outside the event horizon. The potential is
characterized by two parameters: the mass of the axionlike particle, ma, and the decay constant, f̃a. The
limit f̃a → ∞ recovers the original example of Kerr BHs with synchronized scalar hair [C. A. R. Herdeiro
and E. Radu, Kerr Black Holes with Scalar Hair, Phys. Rev. Lett. 112, 221101 (2014)]. The effects of the
nonlinearities in the potential become important for f̃a ≲ 1. We present an overview of the parameter space
of the solutions together with a study of their basic geometric and phenomenological properties, for an
illustrative value of the coupling that yields a non-negligible impact of the self-interactions.
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I. INTRODUCTION

Testing the Kerr hypothesis is a central goal of current
strong gravity research [1,2]. This is the hypothesis that
astrophysical black holes (BHs), when near equilibrium,
are well described by the Kerr metric [3]. This working
assumption is intimately connected with the no-hair con-
jecture [4], which states that the dynamically formed
equilibrium BHs have no other macroscopic degrees of
freedom beyond those associated with Gauss laws (and
hence gauge symmetries)—see e.g., [5–8] for reviews.
Over the past few years it has been realized that the Kerr

hypothesis can be challenged even within general relativity
(GR) and even with physically simple and reasonable
energy-matter contents, due to the discovery that free,
massive complex scalar or vector fields can endow the Kerr
BH with synchronized bosonic “hair” [9–12], see, e.g.,
[13–21] for generalizations. Moreover, if these fields are
sufficiently ultralight, this hair could occur in the mass
range of astrophysical BH candidates, spanning the interval
from a few solar masses, ∼M⊙ (stellar mass BHs), to
∼1010 M⊙ (supermassive BHs).
The existence of such hairy BHs circumvents various no-

scalar (and no-Proca) hair theorems—see e.g., [5,22,23].
Notwithstanding, the key test to the no-hair conjecture is a
dynamical one. Are these hairy BHs dynamically robust?
That is, can they form dynamically and be sufficiently

stable? The current understanding is that: (1) there are
dynamical formation channels, namely: (a) the superrading
instability [24] of the Kerr solution [25,26] and (b) mergers
of bosonic stars [27]; (2) these hairy BHs may, themselves,
still be afflicted by superradiant instabilities [28,29] but
these can be very long lived, with a timescale that can
exceed a Hubble time [30]. The evidence so far, therefore,
indicates BHs with synchronized ultralight bosonic hair are
an interesting challenge to the Kerr hypothesis even in GR.
This has led to different phenomenological studies, includ-
ing the study of their shadows [31–33] and their x-ray
phenomenology, namely the iron Kα line [34,35] and
Quasi-Periodic Oscillations (QPOs) [36].
An important outstanding issue is the fundamental

physics nature of the putative ultralight bosonic field that
could endow BHs with hair. Possible embeddings in high
energy physics have been suggested, such as the string
axiverse [37], which proposes a landscape of ultralight
axionlike particles emerging from string compactifications.
If these particles have sufficiently small couplings with
standard model particles, they are dark matter,1 only
observable via their gravitational effects, one ofwhichwould
be endowing spinning BHs with synchronized hair. The
QCDaxion, inwhich these axionlike particles are inspired, is
a pseudo-Nambu-Goldstone boson suggested by the Peccei-
Quinn mechanism [38] to solve the strong CP problem in
QCD [39,40]. It possesses a self-interactions potential
[41,42], characterized by two parameters: the mass of the
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1“Dark matter” here is understood as any particle that does not
interact with particles from the Standard Model.
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scalar fieldma and the decay constantfa. TheQCDaxionhas
inspired the study of other weakly interacting ultralight
bosons beyond the Standard Model [43–46], which are
regarded as plausible dark matter candidate. Such axionlike
particles occur, for instance, in string compactifications
[37,47]. Thus, it would be interesting to assess the gravita-
tional effects of such a potential for the axionlike particles
that could endow spinning BHs with synchronized hair. This
is the goal of the present paper.2

Kerr BHs with synchronized bosonic hair have a
solitonic limit, obtained when taking the BH horizon to
zero size, wherein they reduce to spinning boson stars.
In the case of the original model with a free, complex scalar
field, the solitonic limit yields the so-called, spinning
miniboson stars [50–52]. Recently, axion boson stars have
been constructed, wherein the complex scalar field is under
the action of a QCD axionlike potential [53,54], with the
two aforementioned parameters.3 In the limit when
fa → ∞, the potential reduces to a simple mass term,
and the axion boson stars reduce to miniboson stars. Thus,
in the same way that the hairy BHs in [9] are the BH
generalization of miniboson stars, we shall construct here
the BH generalizations of the rotating axion boson stars in
[53]. Moreover, we shall study the basic physical properties
and phenomenology of these BHs, hereafter dubbed Kerr
BHs with synchronized axionic hair (KBHsAH), or simply
“axionic BHs.”
This work is organized as follows. In Sec. II we

introduce the model together with the equations of motion
and the ansatz we used to solve them; we also present the
QCD potential. In Sec. III we display the numerical
framework to tackle the field equations and to obtain
the BH solutions, discuss the boundary conditions of the
problem and how to extract physical quantities from the
data. In Sec. IV we show the numerical results, presenting
the domain of existence of the numerical solutions together
with an analysis of some of their physical properties and
phenomenology. In Sec. V we present conclusions and
some final remarks.

II. THE MODEL

The theory for which we shall obtain hairy BH solutions
is the Einstein-Klein-Gordon model, which describes a
massive complex scalar field, Ψ, minimally coupled to
Einstein’s gravity. The action of the theory is, using units
such that G ¼ c ¼ ℏ ¼ 1,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− gμν∂μΨ�∂νΨ − VðjΨj2Þ
�
; ð1Þ

where R is the Ricci scalar, Ψ is the complex scalar field
(“*” denotes complex conjugation) and V is the scalar self-
interaction potential. The equations of motion resulting
from the variation of the action with respect to the metric,
gμν, and scalar field, are

Eμν ≡ Rμν −
1

2
gμνR − 8πTμν ¼ 0; ð2Þ

□Ψ −
dV
djΨj2Ψ ¼ 0; ð3Þ

where

Tμν ¼ 2∂ðμΨ�∂νÞΨ − gμνð∂αΨ�∂αΨþ VÞ ð4Þ
is the energy-momentum tensor associated with the sca-
lar field.
A global Uð1Þ transformation Ψ → eiχΨ, where χ is a

constant, leaves the above action invariant; thus it is
possible to write a scalar 4-current [9], jμ ¼
−iðΨ�∂μΨ −Ψ∂μΨ�Þ which is conserved: Dμjμ ¼ 0.
The existence of this symmetry and conserved current
implies the existence of a conserved quantity—the Noether
charge—that can be computed by integrating the timelike
component of the 4-current,

Q ¼
Z
Σ
jt: ð5Þ

This quantity is interpreted as the number of scalar particles
in a given solution, albeit this relation only becomes
rigorous after field quantization. For solitonic solutions
(without an event horizon), moreover, Q is related with the
total angular momentum as [50,51]

J ¼ mQ: ð6Þ

This is a generic relation for rotating boson stars,
already observed in other models with a self-interactions
potential—see, e.g., [57].
As BH generalizations of the work done on rotating

axion boson stars [53], we are interested in stationary,
regular on and outside the event horizon, axisymmetric and
asymptotically flat solutions of the above equations of
motion. The spacetime generated by these solutions pos-
sesses two commuting Killing vector fields, ξ and η, which,
in a suitable coordinate system, can be written as ξ ¼ ∂t
and η ¼ ∂φ corresponding to stationarity and axisymmetry,
respectively. With these Killing vector fields, we can define
the following ansatz for the metric and the scalar field,
written in terms of the spheroidal coordinates, ft; r; θ;φg,

ds2 ¼ −e2F0Ndt2 þ e2F1

�
dr2

N
þ r2dθ2

�

þ e2F2r2sin2θðdφ −WdtÞ2; N ≡ 1 −
rH
r
; ð7Þ

2See also [48,49] for other potential impacts of axionic self-
interactions which may be used to constrain such self-
interactions.

3Axionic stars with real fields have been considered, e.g., in
[55,56].
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Ψ ¼ ϕeiðωt−mφÞ; ð8Þ

where fF1; F2; F0;W;ϕg are ansatz functions that depend
exclusively on the ðr; θÞ coordinates; rH is the radial
coordinate of the event horizon; ω is the angular frequency
of the scalar field; and m ¼ �1;�2;… is the azimuthal
harmonic index of the scalar field.
In this work, we aim to study BHs with a surrounding

axionlike scalar field; thus we specify the scalar self-
interaction potential as describing axion interactions.
Following [53,54], we will use the QCD axion potential
[58] to describe the axion interactions, added to a constant
term in order to obtain asymptotically flat solutions. The
potential in question has the form

VðϕÞ ¼ 2μ2af2a
B

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Bsin2

�
ϕ

2fa

�s #
; ð9Þ

where B ¼ z
ð1þzÞ2 ≈ 0.22 is a constant, in which z≡

mu=md ≈ 0.48 is the ratio between the up and down
masses, mu and md, respectively; μa and fa define the
axionlike particle (ALP) mass and quartic self-interaction
coupling, respectively, and are two free parameters. This
can be understood by performing an expansion of the
potential around ϕ ¼ 0,

VðϕÞ ¼ μ2aϕ
2 −

�
3B − 1

12

�
μ2a
f2a

ϕ4

þ 1þ 15Bð3B − 1Þ
360f4a

μ2aϕ
6 þ � � � : ð10Þ

In this way, we confirm μa is the ALP mass and fa is the
quartic self-interaction coupling,

ma ¼ μa; λa ¼ −
�
3B − 1

12

�
μ2a
f2a

: ð11Þ

For the case of the QCD axion, the relation between μa and
fa is given by Eq. (2.15) in [54]. In this work, we shall refer
to μa and fa as the ALP mass and decay constant,
respectively, and treat them as independent parameters.
We note that the above expansion is only valid on the
regime where ϕ ≪ fa. In fact, to leading order, only the
mass term remains. Therefore, as already noted in [53] for
the case of boson stars, for sufficiently large decay constant
fa, we expect the BH solutions to become very similar to
the original Kerr BHs with synchronized scalar hair,
obtained in [9].4

In a similar fashion to the family of Kerr BHs with
synchronized scalar hair, the solutions obtained in the work
are possible due to the so-called synchronization condition.
This condition can be interpreted as a synchronization
between the angular velocity of the event horizon, ΩH,
corresponding to the value of the metric function W at the
horizon, ΩH ¼ WðrHÞ, and the phase angular velocity of
the scalar field, ω=m, cf. (8):

ω ¼ mΩH: ð12Þ

Finally, let us mention that, as remarked in [53], the
potential (9) allows for the existence of solutions even in
the absence of the gravity term in the action (1). The
simplest case corresponds to (nongravitating) Q-ball-like
solitons in a flat spacetime background. As expected, these
solutions possess generalizations on a Kerr BH back-
ground. These bound states are in synchronous rotation
with the BH horizon, i.e., they still obey the condition (12)
and share most of the properties of the nonlinear Q-clouds
in [59]. A discussion of these aspects will be reported
elsewhere.

III. FRAMEWORK

A. Boundary conditions

To obtain numerical BH solutions appropriate boundary
conditions must be imposed that enforce the desired
physical behaviors. Such boundary conditions will now
be summarized.

(i) Asymptotically boundary conditions.—Asymptotic
flatness implies that all ansatz functions must go to
zero asymptotically,

lim
r→∞

Fi ¼ lim
r→∞

W ¼ lim
r→∞

ϕ ¼ 0: ð13Þ

(ii) Axial boundary conditions.—Axial symmetry, to-
gether with regularity on the symmetry axis, implies
that

∂θFi ¼ ∂θW ¼ ∂θϕ ¼ 0; at θ ¼ f0; πg: ð14Þ

Furthermore, we require the absence of conical
singularities, thus, F1 ¼ F2 on the axis. Since we
focus on even parity solutions, which typically
correspond to the fundamental solutions, they are
symmetric with respect to the equatorial plane.
Hence, one only needs to solve the equations of
motion in the range 0 ≤ θ ≤ π=2 and impose the
following boundary conditions:

∂θFi ¼ ∂θW ¼ ∂θϕ ¼ 0; at θ ¼ π

2
: ð15Þ

4Since the model herein considers a complex scalar field, there
are two light scalar degrees of freedom, interacting with each
other. This is different from the prototypical ALP, which
represents the light phase degree of freedom of a complex scalar,
while the magnitude is a heavy degree of freedom which can be
integrated out.
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(iii) Event horizon boundary conditions.—To simplify
the study of these boundary conditions, let us
introduce a radial coordinate transformation,
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
. With this coordinate transformation,

we can perform a series expansion of the ansatz
functions at the horizon, x ¼ 0, and find that

Fi ¼ Fð0Þ
i þ x2Fð2Þ

i þOðx4Þ; ð16Þ

W ¼ ΩH þOðx2Þ; ð17Þ

ϕ ¼ ϕð0Þ þOðx2Þ; ð18Þ

where Fð0Þ
i , Fð2Þ

i , ϕð0Þ are functions of θ. With these
series expansions, we can naturally impose the
following boundary conditions:

∂xFi ¼ ∂xϕ ¼ 0; W ¼ ΩH; at r ¼ rH: ð19Þ

B. Extracting physical quantities

The main physical quantities of interest for our analysis
are encoded in the metric functions evaluated either at the
horizon or at spatial infinity. For the former, we obtain the
horizon angular velocity by using the horizon boundary
condition mentioned in the previous sections, ΩH ¼ WjrH ,
together with Hawking temperature, TH, as well as the
horizon area, AH, through the following expressions:

TH¼ 1

4πrH
eðF0−F1ÞjrH ; AH¼2πr2H

Z
π

0

dθsinθeðF1þF2ÞjrH :

ð20Þ

The entropy of the computed BH follows from the
Bekenstein-Hawking formula, S ¼ AH=4. For the latter,
we can compute the ADM mass, M, and angular momen-
tum, J, through the asymptotic behavior of gtt and gtφ,

gtt ¼ −e2F0N þ e2F2W2r2sin2θ → −1þ 2M
r

þ � � � ;

gtφ ¼ −e2F2Wr2sin2θ → −
2J
r
sin2θ þ � � � : ð21Þ

The above quantities are mutually related through a
Smarr-type formula [60],

M ¼ 2THSþ 2ΩHðJ − JΨÞ þMΨ; ð22Þ

where we have introduced two new quantities, which
cannot be computed directly from the horizon or spacial
infinity data,

MΨ ¼ −2
Z
Σ
dSμ

�
Tμ
νξν −

1

2
Tξμ

�
;

JΨ ¼
Z
Σ
dSμ

�
Tμ
νη −

1

2
Tημ

�
; ð23Þ

corresponding to the scalar field mass and angular momen-
tum, respectively.5 In their definition, Σ is a spacelike
surface, bounded by the 2-sphere at infinity, S2∞, and the
spatial section of the horizon, H. Moreover, the angular
momentum of the scalar field is related to the Noether
charge which arises from the global Uð1Þ symmetry of the
scalar field, Q, as JΨ ¼ mQ. For a solution composed
entirely of axionic scalar hair (no horizon), the ADM
angular momentum must be equal to the angular momen-
tum of the scalar field; likewise, for a solution without
axionic scalar hair, the ADM angular momentum of the
solution equals the horizon angular momentum. Thus, in
order to evaluate how hairy a given BH solution is, we
define the following dimensionless parameter:

q≡ JΨ

J
¼ mQ

J
: ð24Þ

One easily sees that, when q ¼ 0, we have a bald BH,
corresponding to a Kerr BH. On the other end, when q ¼ 1,
we have a solution entirely composed of axionic hair,
which corresponds to a rotation axion boson star [53].
For any other value 0 < q < 1, we have a rotating BH
surrounded by a nontrivial, backreacting, massive rotating
axion scalar field.

C. Numerical approach

To perform the numerical integration of the equations of
motion resulting from Eqs. (2) and (3) with the ansatz
Eqs. (7) and (8), it is useful to rescale key quantities by μa,

r → rμa; ϕ → ϕ
ffiffiffiffiffiffi
4π

p
; ω → ω=μa; ð25Þ

together with fa → fa
ffiffiffiffiffiffi
4π

p ≡ f̃a. This leads to the dis-
appearance of the ALP mass constant from the equations of
motion numerically solved, but all global quantities will be
expressed in terms of μa.
In our approach, by expanding the equations ofmotion,we

get a set of five coupled, nonlinear, elliptic partial differential
equations for the ansatz functions,F a ¼fF0;F1;F2;W;ϕg.
They are composed of the Klein-Gordon equation, Eq. (3),
together with the following combination of the Einstein
equations, Eq. (2):

Er
r þ Eθ

θ − Eφ
φ − Et

t ¼ 0; ð26Þ

5The scalar field potential VðjΨj2Þ enters (22) via theMΨ term.
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Er
r þ Eθ

θ − Eφ
φ þ Et

t þ 2WEt
φ ¼ 0; ð27Þ

Er
r þ Eθ

θ þ Eφ
φ − Et

t − 2WEt
φ ¼ 0; ð28Þ

Et
φ ¼ 0: ð29Þ

The remaining equations, Er
θ ¼ 0 and Er

r − Eθ
θ ¼ 0 are not

solved directly, instead, they are used as constraint equations
to evaluate the accuracy of the numerical solution. Typically
they are satisfied at the level of the overall numerical
accuracy.
Our numerical treatment can be summarized as follows.

We restrict the domain of integration to the region outside
the horizon. Using the aforementioned radial coordinate
transformation x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
, we transform the radial

region of integration from ½rH;∞Þ to ½0;∞Þ. Then, we
introduce a new radial coordinate that maps the semi-
infinite region ½0;∞Þ to the finite region [0, 1]. Such a map
can be defined in several ways, but in this work we choose
the new coordinate, x̄ ¼ x=ðxþ 1Þ. After this, the equa-
tions F a are discretized on a grid in x̄ and θ. Most of the
results presented here were obtained on an equidistant grid
with 251 × 30 points. The grid covers the integration region
0 ≤ x̄ ≤ 1 and 0 ≤ θ ≤ π=2.
The equations of motion have been solved subject to the

boundary conditions introduced above by using a profes-
sional package, entitled FIDISOL/CADSOL [61], which
employs a Newton-Raphson method with an arbitrary grid
and consistency order. This code uses the finite difference
method, providing also an error estimate for each unknown
function. For the solutions in this work, the maximal
numerical error for the functions is estimated to be on
the order of 10−3. The Smarr relation, Eq. (22), provides a
further test of the numerical accuracy, leading to error
estimates of the same order.
In our scheme, there are four input parameters: (i) the

decay constant f̃a in the potential, Eq. (9); (ii) the angular
frequency of the scalar field ω; (iii) the azimuthal harmonic
index m; and (iv) the radial coordinate of the event horizon
rH. The number of nodes n of the scalar field, as well as all
other quantities of interest mentioned before, are computed
from the numerical solution. For simplicity, we have
restricted our study to the fundamental configurations,
i.e., with a nodeless scalar field, n ¼ 0 and with m ¼ 1.
Also, from the results presented in [53], where the authors
studied axion boson stars with four different values for the
decay constant, f̃a ¼ f1.0; 0.1; 0.05; 0.03g, and showed
that only when the decay constant is small enough
(f̃a ¼ f0.05; 0.03g), the axion potential starts to affect
greatly the solutions, we shall illustrate the effect6 of the
axion potential on the hairy BHs by performing a thorough

study of the solutions with the specific decay constant
f̃a ¼ 0.05.

IV. NUMERICAL RESULTS

A. The domain of existence

At the end of the previous section, we fixed two of the
four input parameters of the problem (f̃a; m). Thus, the full
domain of existence is obtained by varying the remaining
two input parameters: the angular frequency of the scalar
field, ω, and the radial coordinate of the event horizon, rH.
Since it is impossible to obtain all possible BH solutions,
we obtained a very large number of them (∼30000) and we
have extrapolated this large discrete set of solutions into the
continuum, which defines the region where one can find the
BH solutions with axionic hair.
Such a region can be expressed and plotted in various

ways. In the left panel of Fig. 1 (main panel), we show it in
an ADM mass Mμa vs angular frequency ω=μa plane. We
can observe that most (but not all) of the numerical
solutions region is bounded by two specific lines,7

(i) The axion boson star line—corresponding to the
solitonic limit, in which both the event horizon
radius and area vanish, rH ¼ 0 and AH ¼ 0, and
the solutions have no BH horizon; therefore q ¼ 1.
Such a line is represented in both panels of Fig. 1 as
a red solid line.

(ii) The existence line—corresponding to specific sub-
set of vacuum Kerr BHs which can support sta-
tionary scalar clouds (with an infinitesimally small
ϕ), first discussed by Hod [62,63], thus having
q ¼ 0. These solutions are obtained by linearizing
the theory, and since, on that regime, the axion
self-interacting potential reduces to the mass
potential—cf. Eq. (10)—the existence line will be
the same as the one obtained for the family of Kerr
BHs with scalar hair. Such a line is represented in
both panels of Fig. 1 as a blue dotted line.

Figure 1 (left panel) exhibits a novel property of this
class of BHs: the solutions’ region is no longer totally
bounded by the boson star line in this particular represen-
tation. For large decay constant, f̃a, we recover the family
of Kerr BHs with synchronized scalar hair [9] (inset), for
which the solutions’ region is totally bounded by the boson
star line (together with an existence line—scalar clouds;
and extremal line—zero temperature BHs). The conse-
quence of this observation is that for certain frequencies,
the ADMmass is not maximized by a boson star, but rather
by a hairy BH.

6We have confirmed the existence of KBHsAH for various f̃a
ranging from 0.02 to 10.

7In fact, there is a third line corresponding to extremal hairy
BHs, which possess vanishing Hawking temperature. In this
work we have only studied the neighboring solutions of these
extremal BHs, but not the latter per se, which would require a
different metric ansatz.
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By changing the representation, however, and plotting
the domain of existence in the ADM angular momentum
Jμ2a vs angular frequency ω=μa plane—right panel of
Fig. 1—we see that, for the angular momentum, the boson
star line bounds all axionic BHs with decay constant
f̃a ¼ 0.05. Thus for all frequencies, the angular momentum
is maximized by a boson star.
Another distinctive feature of the domain of solutions of

the axionic BHs is the existence of a local maximum for the
mass and angular momentum at ω ∼ 0.9, which is not the
global maximum. For solutions with smaller angular
frequency, it is possible to have BHs with more mass
and angular momentum than the ones near the local
maximum; in fact, these quantities are maximized for
the solutions with the smallest possible value of angular
frequency. Such is not the case in the absence of the axionic
potential (inset of both panels in Fig. 1).
In Fig. 2 both the ADM angular momentum, J, and the

dimensionless spin, j, defined as j≡ J=M2, are exhibited
vs the ADM mass, M, on the left and right panels,
respectively. In the former, we can see that the axionic

BHs can have a higher mass and angular momentum than
their f̃a → ∞ counterparts (inset). We can also see a zigzag
of the boson star line. This behavior is explained by the
sudden drop on the ADM mass and angular momentum
around ω=μa ≈ 0.84—cf. Fig. 1. In the right panel, we see a
considerable violation of the Kerr bound, j ≤ 1 in part of
solution space. This already occurred for the f̃a → ∞ limit
(inset). Again, it is possible to visualize the zigzag behavior
of the boson star line.
Let us now study the horizon geometry of the axionic

BHs. Their event horizon has a spherical topology but a
spheroidal geometry, similarly to Kerr BHs. This can be
seen by studying the spatial cross section of the horizon,
through the induced metric,

dΣ2 ¼ r2H½e2F1ðrH;θÞdθ2 þ e2F2ðrH;θÞsin2θdφ2�: ð30Þ

Due to the rotation of the solutions, the horizon is squashed at
the poles. To show this, we compute the horizon circum-
ference along the equator, Le, and along the poles, Lp,
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Le¼2πrHeF2ðrH;π=2Þ; Lp¼2rH

Z
π

0

dθeF1ðrH;θÞ: ð31Þ

We define the sphericity as the ratio of both circumferences
above [64],

s ¼ Le

Lp
: ð32Þ

For values in which the sphericity is greater (lower) than 1,
the horizonwill be squashed (elongated) at the poles, leading
to an oblate (prolate) spheroid. From the left panel in Fig. 3
we see that all solutions have a sphericity larger than the
unity; thus all solutions have an oblate horizon, as expected.
Another physical quantity of interest associated with the

horizon is its linear velocity vH [20,64,65]. Such quantity
measures how fast the null geodesics generators of the
horizon rotate relatively to a static observer at spatial
infinity. Its definition is quite simple, only taking into
account the perimetral radius of the circumference located
at the equator, Re ≡ Le=2π, and the horizon angular
velocity, ΩH,

vH ¼ Le

2π
ΩH: ð33Þ

The horizon linear velocity is presented in the right panel of
Fig. 3. The central feature in this plot is the fact that all
solutions have horizon linear velocity smaller than the
unity, which, in the units we are using, corresponds to the
speed of light. Therefore, null geodesics generators of
the horizon never rotate relatively to the asymptotic
observer at superluminal speeds, even though some sol-
utions strongly violate the Kerr bound j ≤ 1.
A final insight about the horizon geometry of the axionic

BHs is obtained from investigating whether an isometric
embedding of the spatial sections of the horizon is possible
in Euclidean 3-space E3. For a Kerr BH, such embedding is

possible iff its dimensionless spin obeys j ≤ jðSÞ [66],
where jðSÞ ≡ ffiffiffi

3
p

=2 was dubbed the Smarr point [64]. For
j > jðSÞ the Gaussian curvature of the horizon becomes
negative in the vicinity of the poles [66], which prevents the
embedding (due to occurring at a fixed point of the
axisymmetry). As expected, this feature also occurs for
the axionic BHs. Due to the existence of scalar hair around
the BH, we have an extra degree of freedom, which
converts the Smarr point into a Smarr line. Such a line
is represented in both panels of Fig. 3 as a solid black line.
One observes that, for both the sphericity and the horizon
linear velocity, the Smarr line is not constant. This contrasts
with the behavior for f̃a → ∞; in that case, the sphericity of
the Smarr line was constant and equal to the value of the
Smarr point in Kerr [64]. Thus, the axion potential destroys
the constancy of the sphericity along the Smarr line.

B. Other properties

1. Ergoregions

An ergoregion is a part of a spacetime, outside the event
horizon, wherein the norm of the asymptotically timelike
Killing vector ξ ¼ ∂t becomes positive and thus the vector
becomes spacelike. Ergoregions are associated with the
possibility of energy extraction from a spinning BH, via the
Penrose process [67,68], or superradiant scattering [24]. In
the context of BHs with synchronized hair, the superradiant
instability of vacuum Kerr BHs in the presence of ultralight
scalar fields is one of the possible channels of formation of
these hairy BHs [25,26]. Thus, it is of relevance to analyze
ergoregions for the axionic BHs.
Kerr BHs possess an ergoregion whose boundary has

a spherical topology and touches the BH horizon at the
poles—such surface is called an ergosphere. For the
axionic BHs in the f̃a → ∞ limit, the ergoregions can
be more complicated [28]. Some solutions have a Kerr-like
ergoregion; but others have a more elaborate ergoregion
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FIG. 3. The sphericity, s (left panel), and the horizon linear velocity, vH (right panel), as a function of the event horizon radial
coordinate, rHμa. The black solid line corresponds to the Smarr line, which, in contrast with the f̃a → ∞ limit, is no longer constant for
the sphericity. Below (above) it, we have (do not have) embeddable BH horizons in Euclidean 3-space. The white region in the far left
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topology, with two disjoint parts, one Kerr-like and another
of toroidal topology. The latter were dubbed ergo-Saturns.
The toroidal ergoregion is inherited from the miniboson
star environment around the horizon, since these stars
develop such ergoregions, when sufficiently compact.
Such ergotorii also occur for spinning axion boson stars
[53]. Thus, we expect some axionic BHs to develop an
ergo-Saturn. This is confirmed in Fig. 4. We have found
that the ergoregion of axionic BHs follows a qualitatively
similar distribution to that of their f̃a → ∞ limit: there are
solutions which possess an ergosphere and others that
develop an ergo-Saturn. The latter occur on the far left of
the domain of existence in Fig. 4, where the most massive
BHs exist, having the lowest possible values of the angular
frequency of the scalar field.

2. Light rings and timelike innermost
stable circular orbits

A phenomenological aspect of importance is the struc-
ture of circular orbits (COs) of both massless and massive
particles around a BH. In particular, the (timelike) inner-
most stable circular orbit (ISCO) and the (null) light rings
(LRs) are of special relevance. The former is associated
with a cutoff frequency of the emitted synchrotron radiation
generated from accelerated charges in accretion disks; the
latter is related to the real part of the frequency of BH
quasinormal modes [69], as well as to the BH shadow [70].
The structure of COs can be obtained as follows. Given

the geometry in Eq. (7), we can compute the effective
Lagrangian for equatorial, θ ¼ π=2, geodesic motion as

2L ¼ e2F1

N
_r2 þ e2F2r2ð _φ −W_tÞ2 − e2F0N_t ¼ ϵ; ð34Þ

where all ansatz functions depend only on the radial
coordinate r, the dot, ˙, denotes the derivative with respect

to the proper time, and ϵ ¼ f−1; 0g for massive (timelike)
particles and massless (lightlike) particles, respectively.
Due to the existence of two Killing vector fields, we can
write _t and _φ in terms of the energy E and angular
momentum L of the particle,

E ¼ ðe2F0N − e2F2r2W2Þ_tþ e2F2r2W _φ; ð35Þ

L ¼ e2F2r2ð _φ −W_tÞ: ð36Þ

Inverting the above system of equations and replacing the
result into the effective Lagrangian, Eq. (34), we can obtain
an equation for _r, which defines a potential VðrÞ,

_r2¼VðrÞ≡e−2F1N

�
ϵþe2F0

N
ðE−LWÞ2−e2F2

L2

r2

�
: ð37Þ

In order to obtain COs, both the potential and its
derivative must be zero, i.e., VðrÞ ¼ V 0ðrÞ ¼ 0.
Depending on whether we are considering massless or
massive particles, these two equations will yield different
results.
For massless particles, the first equation, VðrÞ ¼ 0, will

give two algebraic equations for the impact parameter of
the particle, bþ ≡ Lþ=Eþ and b− ≡ L−=E−, corresponding
to corotating and counterrotating orbits, respectively. The
second equation, V 0ðrÞ ¼ 0, together with the impact
parameters, will give the radial coordinate of the corotating
and counterrotating LRs.Whenever it is possible to obtain a
real solution for the radial coordinate, the BH pos-
sesses LRs.
In Fig. 5, we show the distribution of hairy BHs with a

different number of LRs in the angular frequency, ω=μa vs
angular momentum, Jμ2 plane. The left panel shows the
counterrotating case, whereas the right panel shows the
corotating case. In both cases, it is always possible to have
at least one LR, as for the Kerr BH. In the counterrotating
case, however, if the surrounding scalar field is compact
enough, an extra pair of LRs emerge, leading to a hairy BH
with three LRs. This is the case of a large set of hairy BHs
with low values of ω=μa. In fact, we see the same behavior
for the free scalar field case (inset plot); even the solid black
line separating the two regions has a qualitatively similar
shape. The radial coordinate of the several LRs is shown in
Figs. 6 and 7 as a blue dashed line.
For massive particles, VðrÞ ¼ V 0ðrÞ ¼ 0 will yield two

algebraic equations for the energy and angular momentum
of the particle, fEþ; Lþg and fE−; L−g corresponding to
corotating and counterrotating orbits, respectively. Their
stability can be verified by analyzing the sign of the second
derivative of the potential VðrÞ. Given a BH solution it will
have three distinct regions concerning (timelike) COs:

(i) No circular orbits (No COs)—Whenever we obtain
an imaginary solution for the energy and angular
momentum of the massive particle, a region without
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FIG. 4. Ergoregions. BHs with axionic hair have an ergosphere
in the light blue region and an ergo-Saturn in the dark blue region.
The inset shows the free scalar field case (f̃a → ∞), for
comparison.
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any COs emerges. Such a region is shaded in light
red, in Figs. 6 and 7.

(ii) Unstable circular orbits (UCOs)—In this region, it
is possible to obtain real solutions for the energy and
angular momentum, but the sign of the second
derivative of the potential VðrÞ is positive, implying
that COs are unstable. Such a region is shaded in
light yellow, in Figs. 6 and 7.

(iii) Stable circularorbits (SCOs)—In this region, it is also
possible to obtain real solutions for the energy and

angular momentum, but now the second derivative of
the potential VðrÞ has a negative sign, thus implying
that COs are stable. Such a region is shaded in light
green, in Figs. 6 and 7.

The ISCO, as the name entails, is the innermost stable
circular orbit, i.e., the stable CO with the smallest radial
coordinate. At this orbit, the second derivative of the
potential vanishes, as it corresponds to the transition
between the SCOs region and the UCOs region. The
ISCO is represented as a solid red line in Figs. 6 and 7.
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In Fig. 6 we present the structure of counterrotating COs
for four sets of hairy BHs with constant q ¼ f0.5; 0.8;
0.9; 0.999g. For each set of BHs, we have constructed a
plot showing the maximal value of the scalar field,ϕmax, as a
function of the radial coordinate x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
. This

ensures that every horizontal line (lines with constant
ϕmax) corresponds to a unique BH solution making it easier
to analyze the structure of COs.
The first observation from Fig. 6 is that, by increasing q,

it is possible to obtain solutions with larger ϕmax. This is
reasonable since by increasing q the BHs become hairier. Let
us now analyze each individual plot. For the case where q ¼
0.5 (right bottom panel), the structure of the counterrotating
COs for all BHs is identical to the one for Kerr. There is only
one LR and one ISCO, which separates the No COs region
from the UCOs region, and separates the UCOs region from
the SCOs region, respectively. At large enough x we only
have SCOs, but as we approach the horizon, we reach the
ISCO and consequently enter the UCOs region. If we
continue towards the horizon, we eventually cross the LR
and enter the NoCOs region. The radial coordinate of the LR
and ISCO increases monotonically with the increase of the
maximal value of the scalar field.
For the case where q ¼ 0.8 (left bottom panel) most of

the structure is similar, but a new feature emerges. Starting
at the regime where there are BHs with a dilute scalar field
(ϕmax < 0.11), their structure is the same as for Kerr, but for
BHs with ϕmax > 0.11 and ϕmax < 0.15 an extra region of
UCOs appears besides the one already present between the
LR and the ISCO, and disconnected from the latter. The
new region appears as a single point around xμa ≈ 4.8 and
increases in size as ϕmax increases until its inner boundary
merges with the ISCO. For ϕmax > 0.15, the structure is
again the same as that of Kerr, but now the radial coordinate
of the ISCO is significantly larger than for BHs with a more
dilute scalar field. In fact, there is a discontinuity when we
study the evolution of the radial coordinate of the ISCO as

it changes with the maximum value of the scalar field, as
one can see in the left bottom panel of Fig. 6.
In the q ¼ 0.9 case (right top panel), we have a structure

similar as for the q ¼ 0.8 when we consider BHs with
ϕmax < 0.21, but, for the remaining BHs, the scalar field
environment is compact enough to develop a pair of extra
LRs. Such pairs give rise to a new region of No COs,
disconnected from the already existing one between the
event horizon and innermost LR. It starts as a single point
for a BH with ϕmax ≈ 0.21; then it grows in size until its
inner boundary (one of the LRs) merges with the innermost
LR, connecting both regions of No COs. At the same time,
the ISCO also merges with the LRs, meaning that such BH
has a degenerate point in which two LRs and the ISCO
converge. For BHs with a larger value of ϕmax, a Kerr-like
structure again emerges, but now both the LR and the ISCO
appear at a larger radial coordinate than for small ϕmax.
Lastly, in the q ¼ 0.999 case (left top panel), the most

complex structure is observed. This case inherits the several
features discussed in the previous cases, such as the existence
of two different and disconnected UCOs and No COs
regions, but also presents a new one. For BHs with
ϕmax > 0.18, a third region of UCOs between the two
already existing ones. This third region starts as a single
point and increases slowly in size as ϕmax increases until its
inner boundary connects with the ISCO, and the innermost
region of UCOs merges with this new region. Although it is
not visible in the left top panel of Fig. 6, one can draw the
conclusion that there is a BH with larger ϕmax for which the
innermost two LRs together with the ISCO converge to the
same single point, akin towhat happened in theq ¼ 0.9 case.
Now we turn to the corotating COs. In Fig. 7 we

followed the same idea that we used to study the counter-
rotating COs and plotted four sets of BHs solutions with
constant q ¼ f0.5; 0.8; 0.9; 0.999g in the ϕmax vs x plane.
Figure 7 manifests that the structure of corotating COs is
much simpler than the counterrotating one; only the
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q ¼ 0.999 case presents significant differences from the
other ones; the structure of the latter is the same as for a
Kerr BH. Moreover, the radial coordinate of the corotating
LR and ISCO is always smaller than the one of the
counterrotating LR and ISCO, as it is for the Kerr BH [71].
Let us comment on the qualitatively different q ¼ 0.999

case (first panel of Fig. 7). For BHs with a dilute scalar
field, a Kerr-like structure is observed; but above ϕmax ≈
0.14 a second region of UCOs emerges. This region exists
until we reach a BH with ϕmax ≈ 0.30, where both regions
of UCOs merge together. For BHs with slighter larger ϕmax
a second region of UCOs again emerges, but now this
region occurs at large radii, quickly decreasing to smaller
radii as ϕmax increases. Although not shown in this panel,
we can predict that this new region of UCOs will converge,
as the previous one, with the already existing and closer to
the event horizon UCOs region.

V. CONCLUSIONS AND REMARKS

In this work, we have constructed and analyzed BHs
with synchronized axionic hair, which are BH generaliza-
tions of the rotating axion boson stars recently found in
[53]—see also [54]. These are stationary, axisymmetric,
asymptotically flat and regular on and outside the event
horizon solutions of the Einstein-Klein-Gordon equations
of motion with a QCD axionlike potential, Eq. (9). This
family of axionic BHs is described by three parameters: the
radial coordinate of the event horizon, rH, the angular
frequency of the scalar field, ω, and the decay constant of
the QCD potential, f̃a. In this work, we have thoroughly
scanned the space of solutions with decay constant
f̃a ¼ 0.05, since, from the results found in [53], this yields
a case with considerable impact of the axion potential, and
hence considerable differences from the free scalar field
case, obtained as the f̃a → ∞ limit. The latter yields the
original example of Kerr BHs with synchronized scalar hair
[9]. Even larger deviations from this original example may
occur for even smaller f̃a, but then the numerics to obtain
such solutions becomes more challenging.
When comparing the axionic BHs with their free scalar

field counterparts [9], there are both differences and
similarities. Some key differences are: (i) axionic BHs
can have more mass and angular momentum and lower
values of the angular frequency of the scalar field; (ii) the
existence of a local maximum for the mass and angular
momentum, which does not exist for the f̃a → ∞ case;
(iii) the presence of a small region of frequencies where the
mass of axionic BHs is no longer bounded by the axion
boson stars. In such a region, we have a degeneracy of
solutions with the same angular frequency and ADM mass,
but such degeneracy is easily lifted by specifying any other
physical quantity; (iv) the variation of the sphericity along
the Smarr line, which, in the free scalar field case was

constant and equal to the sphericity of the Smarr point for
Kerr BHs, but varies for axionic BHs.
Concerning the similarities, we may emphasize: (i) the

clear violation of the Kerr bound, j ≤ 1; (ii) the sphericity
and horizon linear velocity are bounded by the same
existence line. Thus, both families can only have the same
values of sphericity and horizon linear velocity as the Kerr
ones, which implies that all BHs have a horizon which is an
oblate spheroid and the rotation of its null generators
(relatively to a static observer at spatial infinity) never
exceeds the speed of light; (iii) the topology of the
ergoregions is either an ergosphere or an ergo-Saturn. In
both families, the ergo-Saturn only appears for the sol-
utions with the lower values of angular frequency.
In this work, we also presented a study of the structure of

COs. Counterrotating COs show a more complex structure
than the corotating COs counterpart. Concerning the
former, we saw that solutions with low or moderate
amounts of hair (e.g., q ¼ 0.5) will have a structure similar
to the Kerr one. For very hairy solutions (q ≥ 0.8), a new
region of UCOs can emerge, as well as a new region of No
COs when the axionic hair outside the event horizon is
compact enough to yield an extra pair of LRs. In the
extreme case, where most of the BH solution is composed
of axionic hair (q ¼ 0.999), it is possible to have a third
region of UCOs, leading to an intercalation of SCOs and
UCOs regions.
Let us briefly comment on energy conditions. In [53], it

was shown that the weak energy condition (WEC) and the
dominant energy condition (DEC) always hold for the case
of axion boson stars, whereas the strong energy condition
(SEC) could be violated, and in fact, it is violated for a zero
angular momentum observer (ZAMO). For the BH gener-
alization we can prove, following [53], that the WEC and
DEC are never violated, but the SEC can be violated, for
instance, for a ZAMO.
Let us also make some brief remarks on the dynamical

properties of these solutions, although an in-depth analysis
is beyond the scope of this work. In the f̃a → ∞ these hairy
BHs reduce to the solutions in [9]. These are known to be
afflicted from superradiant instabilities but these can be
very long lived [28–30]. On the other hand, such BHs can
form from the superradiant instability of Kerr [25,26] or,
potentially, even from mergers of bosonic stars [27]. On the
other hand, in the limit of vanishing horizon, the solutions
described herein reduced to the axionic spinning bosonic
stars [53]. Recently it has been argued that the axionlike
potential has a stabilizing effect for these stars [72,73], in
some regions of the parameter space, as the spinning
minibosonic stars are afflicted by a nonaxisymmetric insta-
bility [74]. As such, it may be that the axionlike potential also
helps the dynamical robustness of the hairy BHs discussed
here. We hope to address this open question in future work.
Due to the groundbreaking results presented by the LIGO-

Virgo collaboration detecting several gravitational waves
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events, starting with [75], as well as the results by the EHT
collaboration on the first image of a shadow of the M87
supermassive BH [76], two possible and interesting direc-
tions to follow up on this work are: (1) to study the possible
gravitational waves generated by the collision of two axionic
hairy BHs, both in the head-on scenario, as well as in the
more realistic scenario of an in-spiral binary system.
Recently [77] such collisions were made for Proca stars
[78] obtaining a suggestive agreement with the particular
gravitational wave event GW190521 [79]; (2) and to study
the shadow of axionic hairyBHs, to analyze the impact of the
QCD axionlike potential in the BH shadows. This would be a
generalization of the analysis in [31].
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