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Gravitational-wave memory effects are identified by their distinctive effects on families of freely falling
observers: after a burst of waves pass by their locations, memory effects can cause lasting relative
displacements of the observers. These effects are closely related to the infrared properties of gravity,
including its asymptotic symmetries and conserved quantities. In this paper, we investigate the connection
between memory effects, symmetries, and conserved quantities in Brans-Dicke theory. We compute the
field equations in Bondi coordinates, and we define a set of boundary conditions that represent
asymptotically flat solutions in this context. Next, we derive the asymptotic symmetry group of these
spacetimes, and we find that it is the same as the Bondi-Metzner-Sachs group in general relativity. Because
there is an additional polarization of gravitational waves in Brans-Dicke theory, we compute the memory
effects associated with this extra polarization (the so-called “breathing” mode). This breathing mode
produces a uniform expansion (or contraction) of a ring of freely falling observers. After these breathing
gravitational waves pass by the observers’ locations, there are two additional memory effects that depend
on their initial displacements and relative velocities. Neither of these additional memory effects seems to be
related to asymptotic symmetries or conserved quantities; rather, they are determined by the properties of
the nonradiative region before and after the bursts of the scalar field and the gravitational waves. We discuss
the properties of these regions necessary to support nontrivial breathing-mode-type memory effects.
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I. INTRODUCTION

Since the first detection of gravitational waves (GWs) in
2015 from the merger of a binary black hole [1], ten
additional mergers of compact objects were discovered
during the first two observing runs of LIGO and Virgo [2].
During the third observing runs of LIGO and Virgo,
compact-binary-merger candidates were announced at a
rate of roughly one per week [3]. These discoveries, and the
rapid announcement of GW candidates, have opened the
new field of GW astronomy. Along with the discoveries,
numerous tests of gravity with GWs have been performed
to determine the consistency of the observed gravitational
waves with the predictions of general relativity (see, e.g.,
[4–10]). Compact binary mergers opened a new parameter
space of general relativity (GR) to be tested (the region of
strong curvature and high GW luminosities) which was less
well probed by tests of general relativity in the Solar
System or with binary pulsars. In this parameter space,
there are some types of relativistic phenomena that are only
likely to be measured for strongly curved and highly
radiating systems. One such class of effects that has yet

to be detected, but is under active investigation (see, e.g.,
[11–15]), is the class of gravitational-wave memory effects.
The best known GW memory effect (sometimes referred

to as the GW memory effect) is characterized by lasting
change in the GW strain after a burst of GWs pass by a GW
detector. One of the earliest explicit calculations of the GW
memory effect from gravitational scattering was performed
in Ref. [16] (see also [17,18]), though the possibility of a
nonvanishing GW strain at late times was discussed
previously (e.g., [19]). It was subsequently noted that
massless (or nearly massless) fields could also produce
the GW memory effect [20,21] including the nonlinear
effective stress energy of gravitational waves themselves
[22,23]. The GW memory effect has a distinctive obser-
vational signature, in that it causes a constant, enduring
displacement between nearby freely falling observers after
a burst of gravitational waves have passed. A number of
generalizations of the GW memory effect have been found
by considering asymptotic changes in bursts of other fields
(such as electromagnetism [24] or massless Yang-Mills
theory [25]) or in time integrals of the GW strain (e.g.,
[26,27]). Other GW memories have been found from
examining other kinds of lasting kinematical effects on
freely falling observers (such as lasting relative velocities*david.nichols@virginia.edu
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[28,29], relative changes in proper time [30,31], relative
rotations of parallel transported tetrads [31]) or through
other types of measurement procedures [32,33]. Also
important in the discovery of new GW memory effects
was the understanding of how certain GW memories are
closely related to symmetries, conserved quantities, and
soft theorems (see, e.g., [34]).
For understanding the relationship between memory

effects and the asymptotic structure of spacetime, two
approaches have been taken to study asymptotic flatness: a
covariant conformal completion of spacetime [35,36] and
calculations in particular coordinate systems adapted to the
spacetime geometry by Bondi, van der Burg, and Metzner
[37] and Sachs [38] or Newman and Unti [39]. We will
focus on the Bondi-Sachs approach to asymptotic flatness.
In this approach, coordinates are chosen that are well suited
to the null hypersurfaces and the null geodesics of the
spacetime. Boundary conditions can then be imposed on
the metric to determine a reasonable notion of a spacetime
that becomes asymptotically Minkowskian as the light rays
travel an infinite distance from an isolated source. Although
spacetime can be cast in an asymptotically Minkowskian
form at large Bondi radius r, the asymptotic symmetry
group of this spacetime does not reduce to the Poincaré
group of flat spacetime; rather, it becomes the infinite-
dimensional Bondi-Metzner-Sachs (BMS) group [37,40].
The structure of the BMS group is in some ways similar

to the Poincaré group: it contains the Lorentz transforma-
tions, but rather than having an additional four spacetime
translations as the remaining group elements, it has an
infinite-dimensional commutative group called the super-
translations [40] (the usual Poincaré translations are a
normal finite subgroup of the supertranslations). It is
possible to associate charges conjugate to these asymptotic
symmetries (see, e.g., [41–44]). These charges are con-
served in the sense that the difference in the charges
between two times is equal to the flux of the quantity
between these two times. Associated with the Lorentz
symmetries are the six components of the relativistic
angular momentum [which can be divided into center-of-
mass (CM) and spin parts], and corresponding to the
supertranslations are conserved quantities called super-
momenta. Note that there also have been proposals to
extend the Lorentz part of the symmetry algebra to include
all conformal Killing vectors on the 2-sphere called super-
rotations [45–47] (see also [48]) or all smooth vector fields
on the 2-sphere [49,50] (sometimes called super-Lorentz
symmetries [51]). The additional charges of these extended
BMS algebras are the super CM and superspin charges [52]
or the super angular momentum [27].
The connection between asymptotic symmetries, con-

served quantities, and GW memory can now be more
clearly stated with the nomenclature now set. Changes in
the supermomentum charges, generated by both massive
particles and massless fields, induce a nonzero GW

memory effect; in addition, when the GW memory effect
is present, the final state of the system is supertranslated
from a certain canonical asymptotic rest frame for the
system (see, e.g., [52]). Changes in the super angular
momentum charges can induce two additional types of GW
memory effects called spin [26] and CM [27] memory.
These memory effects are not necessarily related to a
spacetime that has been superrotated or super-Lorentz
transformed from a certain canonical frame, since such
solutions often are not asymptotically flat in the usual
sense [51,53].
While GW memory effects and their analogues for other

matter fields have now been much more carefully studied in
a number of contexts, they have not been studied as
systematically in modified theories of gravity. Modified
theories can have additional GW polarizations [54–56],
which could allow for additional types of GW memory
effects (see, e.g., [57–60]). In addition, as far as we are
aware, there is not a standard definition of asymptotic
flatness in these theories, nor is the set of asymptotic
symmetries of these solutions clearly understood. It is not
obvious, a priori, that modified theories of gravity generi-
cally have the same asymptotic properties as in general
relativity, or that their memory effects would be related to
symmetries and conserved quantities as in general rela-
tivity. A main aim of this paper is to develop a better
understanding of these relationships in a relatively simple
modification of general relativity known as Brans-Dicke
theory [61].
Brans-Dicke theory is one example of a scalar-tensor

theory, i.e., a theory in which there is a scalar field that
couples to gravity nonminimally (see, e.g., the review [62]).
Scalar-tensor theories have appeared in the contexts of
string theory, inflation [63,64], and the accelerated expan-
sion of the Universe [65–67]. In this paper, we will focus on
Brans-Dicke theory, with a massless scalar field. It is
known from calculations in linearized gravity and post-
Newtonian (PN) theory, the scalar field generates an
additional polarization of gravitational waves sometimes
called a “breathing mode” [54,68,69] (it produces a trans-
verse uniform expansion and contraction of a ring of freely
falling test masses). It was also noted (from the 2PN
calculation in [57,58]) that the GWmemory effect differs in
scalar-tensor theory from in general relativity.1 It was also

1Specifically, the energy radiated from the dipole moment of
the scalar field gives rise to a formally 1.5PN-order effect in the
tensor gravitational waveform that would appear at Newtonian
order in the waveform for nonspinning compact binaries, which
are inspiraling because of the emission of dipole radiation. This is
analogous to how the energy radiated in gravitational waves gives
rise to a 2.5PN-order effect that appears at Newtonian order in the
waveform for nonspinning compact-binary sources in GR
[70,71]. Because stationary black holes in Brans-Dicke theory
do not support scalar fields [72,73], the compact binary can have
at most one black hole to have this new scalar-dipole-sourced
GW memory effect.
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shown in [58] that the scalar, breathing polarization of the
GWs does not have a nonlinear-type memory effect at 2PN
order. Finally, it was observed that there is a new type of
nonhereditary, nonlinear term in the tensor waveform
arising from the scalar field that took on an analogous
form to the nonhereditary and nonoscillatory term found in
[74] (and discussed in [71]), which was shown to be related
to the spin memory effect in [75]. Our calculations in
Brans-Dicke theory in Bondi-Sachs coordinates allow us to
compute the memory effects using the fully nonlinear field
equations. This will provide us with the framework to
understand the presence (and absence) of the memory
effects computed at 2PN order in [57,58] (though we leave
the explicit calculations for future work) and to determine
the relevant radiative and nonradiative data needed to
compute these effects.
Scalar-tensor theories are frequently studied in two

different conformal frames, called the Jordan and
Einstein frames, respectively. In this paper, we find that
the Einstein frame is more convenient for determining the
asymptotic boundary conditions on the scalar field and
metric, because the field equations have the same form as
the Einstein-Klein-Gordon equations for a massless scalar
field. The statement of stress-energy conservation is more
complicated in the Einstein frame, however, because the
stress-energy tensor of all matter fields besides the scalar
field is no longer divergence-free, but equals a nontrivial
right-hand side involving gradients of the scalar field.
Consequently, test particles follow accelerated curves in
the Einstein frame (with an acceleration related to the
gradients of the scalar field in this frame) rather than
following the geodesics of the Einstein-frame metric. In the
Jordan frame, the modified Einstein equations are more
complicated than in the Einstein frame, but the stress-
energy tensor of all matter fields besides the scalar field is
divergence-free, and thus test particles follow the geodesics
of the Jordan-frame metric. It is therefore much simpler to
compute the response of a gravitational-wave detector to
any impinging gravitational waves in the Jordan frame.
Flanagan [76] has argued that all classical physical pre-
dictions (such as gravitational-wave memory effects) are
conformal-frame invariants. This allows us to compute the
memory effects in the Jordan frame, in which the compu-
tation is simpler, but to obtain a result that is independent of
the choice of conformal frame (after properly identifying
any potentially different conventions between the frames,
as discussed further in [76]).
The rest of the paper is organized as follows: In Sec. II,

we describe the conditions we use to define asymptotic
flatness in Brans-Dicke theory by examining the theory in
both Einstein and Jordan frames [77]. This includes
deriving the field equations of the theory in Bondi-Sachs
coordinates. In Sec. III, we compute the asymptotic
symmetries that preserve our definition of asymptotic
flatness in the previous part. We describe how the functions

in the metric must transform to maintain the Bondi gauge
conditions and the asymptotically flat boundary conditions.
In Sec. IV, we describe how the memory effects can be
measured through geodesic deviation and how the changes
in the charges related to (extended) BMS symmetries
constrain the different GW memory effects in Brans-
Dicke theory. We discuss our results and some future
directions in Sec. V.
Throughout this paper, we use units in which c ¼ 1, and

we use the conventions for the metric and curvature tensors
given in [78]. Greek indices (μ; ν; α;…) represent four-
dimensional spacetime indices, and uppercase Latin indices
ðA;B; C;…Þ represent indices on the 2-sphere. Indices
with a circumflex diacritic (e.g., α̂) represent those of an
orthonormal tetrad.
While we were completing this work, there appeared a

closely related work [79] investigating asymptotically flat
solutions and GW memory effects in scalar-tensor theories.
Our work and that of [79] agree on the boundary conditions
used to define asymptotically flat solutions in Brans-Dicke
theory and the leading-order symmetry vectors that pre-
serve these conditions and our gauge choices (though not
subleading corrections to extend these symmetries into the
spacetime). Our works differ in the choices of gauges, the
classes of spacetimes in which we compute memory
effects, and the procedures by which we compute the
scalar-type memory effect. We will comment in more detail
on the similarities and differences between our works at a
few points throughout the text.

II. BONDI-SACHS FRAMEWORK

In this section, we impose the Bondi-Sachs coordinate
conditions in Brans-Dicke theory, and we solve the field
equations in both the Einstein and the Jordan frames. We
begin with the Einstein frame, where it is easier to identify a
set of asymptotic boundary conditions that can be imposed
on the scalar field and on the metric that we use to define an
asymptotically flat solution in Brans-Dicke theory. We next
perform conformal transformation to the Jordan frame (in
which the stress-energy tensor of all other matter fields
besides the scalar field is divergence-free), and we find the
corresponding boundary conditions on the scalar field and
metric. We then solve the field equations of Brans-Dicke
theory in this frame. Our notation and conventions for the
Bondi-Sachs framework will parallel the ones used in
Ref. [80], which treats general relativity.

A. Einstein frame

We begin by investigating Brans-Dicke theory in the
Einstein frame. The action in the Einstein frame in the
absence of additional matter fields is given by [81]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
16π

−
1

2
g̃ρσð∇̃ρΦÞð∇̃σΦÞ

�
; ð2:1Þ
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where g̃ is the metric in the Einstein frame, R̃ is the Ricci
scalar, and Φ is a real scalar field. We also use units where
the gravitational constant in the Einstein frame GE satisfies
GE ¼ 1. We use ∇̃μ to denote the covariant derivative
compatible with g̃μν. Varying the action with respect to the
metric and the scalar field leads to the following equations
of motion for the theory:

Ẽμν ≡ R̃μν −
1

2
R̃g̃μν − 8πT̃ðΦÞ

μν ¼ 0; ð2:2aÞ

∇̃μ∇̃μΦ ¼ 0: ð2:2bÞ

The quantity T̃ðΦÞ
μν is the stress-energy tensor for the scalar

field, which is given by

T̃ðΦÞ
μν ¼ ∇̃μΦ∇̃νΦ − g̃μν

�
1

2
g̃ρσ∇̃ρΦ∇̃σΦ

�
: ð2:2cÞ

The field equations, therefore, have the same form as in the
Einstein-Klein-Gordon theory for a real scalar field Φ, so
their solutions will also have the same form as in the
Einstein-Klein-Gordon theory in general relativity. We will
review the solutions of these equations in Bondi coordi-
nates next.

1. Bondi gauge and field equations

First, we introduce Bondi-Sachs coordinates x̃μ ¼
ðũ; r̃; x̃AÞ. The quantity ũ is the retarded time, r̃ is an areal

coordinate (and ∂⃗ r̃ is a null vector field), and x̃A are
coordinates on the 2-sphere (with A ¼ 1, 2) [37,80]. The
conditions that define Bondi gauge are given by [37,80]

g̃r̃A ¼ g̃r̃ r̃ ¼ 0; det½g̃AB� ¼ r̃4qðx̃CÞ: ð2:3Þ

The function q is the determinant of a metric on the 2-
sphere, qABðxCÞ, which is restricted to be independent of ũ
and r̃. The Bondi gauge conditions fix four of the ten
functions in the metric, leaving six free functions. It is
conventional to write these six degrees of freedom as
follows:

g̃μνdx̃μdx̃ν ¼ −
Ṽ
r̃
e2β̃dũ2 − 2e2β̃dũdr̃

þ r̃2h̃ABðdx̃A − ŨAdũÞðdx̃B − ŨBdũÞ: ð2:4Þ

The functions Ṽ, β̃, ŨA, and h̃AB here depend on all four
Bondi coordinates x̃μ ¼ ðũ; r̃; x̃AÞ.
The modified Einstein equations (2.2a) and the scalar-

field equation (2.2b) satisfy an interesting hierarchy in
Bondi coordinates [37,80], which we will now further

elaborate. The functions Ṽ, β̃, and ŨA satisfy the so-called
“hypersurface equations.” The equations were given this
name because they do not involve derivatives with respect
to ũ, which in turn allows the functions Ṽ, β̃, and ŨA to be
determined on surfaces of constant ũ in terms of the 2-
metric h̃AB, the scalar field Φ, and “functions of integra-
tion” (i.e., functions of ũ and x̃A that will be constrained by
ũ ũ and ũ Ã components of the modified Einstein equa-
tions). The concrete form of the hypersurface equations can
be obtained from substituting the metric (2.4) into the field
equations in Eq. (2.2a), using the definition of the stress-
energy tensor in Eq. (2.2c), and considering the appropriate
components of the modified Einstein equations. The r̃ r̃
component yields the equation

∂ r̃β̃ −
r̃
16

h̃ACh̃BD∂ r̃h̃AB∂ r̃h̃CD ¼ 2πr̃∂ r̃Φ∂ r̃Φ; ð2:5aÞ

where h̃AB is the inverse of h̃AB. Once β̃ is determined in
terms of h̃AB (and its inverse), Φ, and their derivatives, then
it is also possible to use the r̃A components of the field
equations to solve for ŨA in terms of the same quantities
from the following equation:

∂ r̃½r̃4e−2β̃h̃AB∂ r̃ŨB� − 2r̃4∂ r̃

�
1

r̃2
D̃Aβ̃

�

þ r̃2h̃BCD̃B∂ r̃h̃AC − 16πr̃2∂ r̃Φ∂AΦ ¼ 0; ð2:5bÞ

where D̃A is the covariant derivative compatible with the 2-
metric h̃AB. Finally, from the trace of the AB components of
the field equations, it is then possible to solve for Ṽ in terms
of the same data:

2e−2β̃ð∂ r̃ṼÞ − R̃ −
e−2β̃

r̃2
D̃A½∂ r̃ðr̃4ŨAÞ�

þ 2h̃AB½D̃AD̃Bβ̃ − ðD̃Aβ̃ÞðD̃Bβ̃Þ�

þ 1

2
r̃4e−4β̃h̃ABð∂ r̃ŨAÞð∂ r̃ŨBÞ − 8πh̃AB∂AΦ∂BΦ ¼ 0:

ð2:5cÞ

Here R̃ is the Ricci scalar of 2-metric h̃AB. The remaining
two independent components of the modified Einstein
equations are called the evolution equations, and they arise
from the trace-free (with respect to hAB) part of ẼAB. It is
convenient to write this expression using a complex
polarization dyad composed of m̃A ¼ δAμm̃μ (which sat-

isfies m̃μ∇̃μũ ¼ 0) and ¯̃mA (the complex conjugate of m̃A).
The evolution is given by m̃Am̃BẼAB ¼ 0, which can be
written in terms of the metric functions as
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m̃Am̃B

�
r̃∂ r̃½r̃ð∂ ũh̃ABÞ� −

1

2
∂ r̃½r̃ Ṽ ð∂ r̃h̃ABÞ� − 2eβ̃D̃AD̃Beβ̃ þ h̃CAD̃B½∂ r̃ðr̃2ŨCÞ�

−
1

2
r̃4e−2β̃h̃ACh̃BDð∂ r̃ŨCÞð∂ r̃ŨDÞ þ r̃2

2
ð∂ r̃h̃ABÞðD̃CŨCÞ þ r̃2ŨCD̃Cð∂ r̃h̃ABÞ

− r̃2ð∂ r̃h̃ACÞh̃BEðD̃CŨE − D̃EŨCÞ − 8πe2β̃∂AΦ∂BΦ
�

¼ 0: ð2:5dÞ

We will discuss the evolution equations in more detail in
Sec. II B on the Jordan frame.
In vacuum general relativity, once the metric functions

β̃, ŨA, and Ṽ are determined on a hypersurface of
constant ũ, they can be used in the evolution equation
for the 2-metric h̃AB to evolve hAB to the next hyper-
surface; the hypersurface equations can then be solved
again in an iterative process. In Brans-Dicke theory,
however, one must jointly evolve the evolution equation
for h̃AB with the scalar field equation to obtain the data
h̃AB and Φ needed to solve the hypersurface equations.
For convenience, we give the scalar wave equation (2.2b)
when written in terms of the Bondi metric functions
below:

2∂ ũ∂ r̃Φþ D̃AðŨA∂ r̃ΦÞ þ ∂ r̃ðŨAD̃AΦÞ

−
1

r̃
ð−2ŨAD̃AΦ − 2∂ ũΦþ ∂ r̃Ṽ∂ r̃Φþ Ṽ∂ r̃∂ r̃ΦÞ

−
1

r̃2
½e2β̃h̃ABð2D̃Aβ̃D̃BΦþ D̃BD̃AΦÞ þ Ṽð∂ r̃ΦÞ� ¼ 0:

ð2:5eÞ

Aside from the additional complication that the scalar-
wave equation and evolution equation for h̃AB must be
solved as a coupled system, the form and the hierarchy of
the modified Einstein and scalar field equations in the
Einstein frame is similar to that of the Einstein equations
in vacuum general relativity.

2. Conditions for asymptotic flatness

We next study the asymptotic behavior of the metric
and the scalar field at large Bondi radius r. Because Ṽ, β̃,
and ŨA are determined by h̃AB and Φ, we must posit
boundary conditions on h̃AB and Φ; we can then deduce
the remaining conditions on the metric from the hyper-
surface equations (2.5a)–(2.5c) up to functions of inte-
gration. There are well-established definitions for
asymptotic flatness for the Einstein equations [37,38].
For the scalar field, we will assume that it satisfies the
following scaling as r̃ → ∞:

Φðũ; r̃; x̃AÞ ¼ Φ0 þ
Φ1ðũ; x̃AÞ

r̃
þOðr̃−2Þ; ð2:6Þ

where Φ0 is a constant.2

In GR, the action for a massless scalar field (and hence
the stress-energy tensor and equations of motion) is
independent of the value of Φ0 in Eq. (2.6). Thus, there
is no loss of generality by requiring that the constant value
of the scalar field is zero. The boundary condition on the
massless scalar field as r goes to infinity can then be given
by “Sommerfeld’s radiation condition”: limr→∞ rΦ is
finite. In Brans-Dicke theory, the constant value of the
scalar field is related to the asymptotic value of Newton’s
constant G. Setting Φ0 to zero, therefore, does have a
physical effect in Brans-Dicke theory (note, however, that
the precise value of the constant does not affect the stress-
energy tensor for the scalar field, nor does it affect the
equation of motion for the scalar field in vacuum). We thus
require a nonzero Φ0 in Eq. (2.6), and we do not employ
Sommerfeld’s radiation condition to write the limit of the
scalar field as r goes to infinity.
Similarly, we adopt the same expansion of the 2-metric

h̃AB as r̃ → ∞ as in GR:

h̃AB ¼ qABðx̃CÞ þ
c̃ABðũ; x̃CÞ

r̃
þOðr̃−2Þ: ð2:7Þ

The determinant condition of the Bondi gauge requires that
qABc̃AB ¼ 0. It is then convenient to define a covariant
derivative operator compatible with qAB, which will be
denoted by ðA. In addition, it is also helpful to raise (or
lower) capital Latin indices on 2-spheres of constant ũ and
r̃ with the 2-metric qAB (or qAB).
Next, we assume the functions β̃, ŨA, Ṽ, and h̃AB have

the following limits as r̃ approaches infinity3:

2With the expansion of h̃AB in Eq. (2.7) and with a polynomial
expansion of β̃; ŨA, and Ṽ in r̃−1 consistent with Eq. (2.8), one
can prove from the r̃−1 piece of Eq. (2.5e) that Φ0 is independent
of ũ; from the r̃−2 piece of Eq. (2.5e), one can show that Φ0 is
independent of x̃A.

3We assume that it is possible to impose these conditions at all
retarded times u. Given the structure of the Bondi-Sachs
equations as described in Sec. II A 1, these conditions can be
imposed on an initial hypersurface u ¼ const, but they will not
necessarily be preserved under evolution to future hypersurfaces.
It is possible to construct coordinate transformations that re-
impose the conditions Eq. (2.8) after evolution (see, e.g., [82,83]
for more details).
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lim
r̃→∞

β̃ ¼ lim
r̃→∞

ŨA ¼ 0; lim
r̃→∞

Ṽ
r̃
¼ 1; lim

r̃→∞
h̃AB ¼ qAB:

ð2:8Þ

The metric thus reduces to Minkowski spacetime in inertial
Bondi coordinates in this limit. Hou and Zhu independently
proposed similar conditions in [79]. Imposing these con-
ditions and radially integrating the hypersurface equations
in Eqs. (2.5a)–(2.5c) further, we then arrive at the solutions4

β̃ ¼ −
1

32r̃2
c̃ABc̃AB −

1

r̃2
πΦ2

1 þOðr̃−3Þ; ð2:9aÞ

ŨA ¼ −
1

2r̃2
ðBc̃AB þOðr̃−3 log r̃Þ; ð2:9bÞ

Ṽ ¼ r̃ − 2M̃ þOðr̃−1Þ: ð2:9cÞ

The function M̃ðũ; x̃AÞ is called the Bondi mass aspect and
is one of the functions of integration that arises from
integrating the hypersurface equations.

B. Jordan frame

Having determined the asymptotic falloff conditions in
the Einstein frame, we now consider the asymptotic
properties of the solutions in the Jordan frame, in which
it is more straightforward to understand the response of a
detector to the gravitational waves emitted from an isolated
system (because test particles follow geodesics of the
Jordan-frame metric). A solution in the Jordan frame can
be found from one in the Einstein frame by performing a
conformal transformation [84]

gμν ¼
1

λ
g̃μν; ð2:10Þ

where

λ ¼ exp ðΦ=ΩÞ; Ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

16π

r
: ð2:11Þ

The scalar field is called λ in this frame, and ω is the Brans-
Dicke parameter. In the limits in which ω → ∞ and λ
becomes nondynamical, general relativity is recovered. The
Brans-Dicke action in the Jordan frame is given by [61]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
λ

16π
R −

ω

16π
gμν

ð∂μλÞð∂νλÞ
λ

�
; ð2:12Þ

where R is the Ricci scalar of the Jordan-frame metric gμν.
The field equations are given by

Gμν ¼
1

λ
ð8πTðλÞ

μν þ∇μ∇νλ − gμν□λÞ; ð2:13aÞ

□λ ¼ 0; ð2:13bÞ

where Gμν is the Einstein tensor, □ ¼ gμν∇μ∇ν is the
covariant wave operator, and

TðλÞ
μν ¼ ω

8πλ

�
∇μλ∇νλ −

1

2
gμν∇αλ∇αλ

�
ð2:13cÞ

is the stress-energy tensor of the scalar field. It is also
convenient to define a tensor Eμν by

Eμν ≡ Gμν −
1

λ
ð8πTðλÞ

μν þ∇μ∇νλ − gμν□λÞ; ð2:14Þ

which vanishes when the equations of motion are satisfied.

1. Bondi gauge and asymptotic boundary conditions

We would now like to compute a metric in Bondi-Sachs
coordinates in the Jordan frame that is consistent with our
definition of asymptotic flatness in the Einstein frame. The
transformation in Eq. (2.11) implies that λ admits an
expansion in 1=r̃, in which the leading-order term is
constant: i.e.,

λðũ; r̃; x̃AÞ ¼ exp

�
Φ0

Ω

��
1þΦ1

Ω
1

r̃

�
þOðr̃−2Þ; ð2:15Þ

The conformal transformation of the metric in Eq. (2.10)
preserves the Bondi gauge conditions grr ¼ grA ¼ 0, but
the determinant condition becomes det½gAB� ¼ r̃4λ−2qðxCÞ.
Consequently, the final condition of the Bondi gauge will
not be satisfied in general (i.e., r̃ is not an areal radius in
the Jordan frame). It is possible to work in a set of
coordinates that do not impose the determinant condition
in Bondi gauge (as was done in [79]); however, when λ is
positive (as it is expected to be far from an isolated source,
since λ is related to the gravitational constant [54]), it is also
possible to redefine the radial coordinate so as to make it an
areal coordinate. The transformation that effects this
change is

u ¼ ũffiffiffiffiffi
λ0

p ; r ¼ r̃λ−1=2; xA ¼ x̃A; ð2:16Þ

where we have introduced the notation λ0 ¼ expðΦ0=ΩÞ.
The retarded time ũ is rescaled by λ0 so that the metric

4Note that in the expression forUA in Eq. (2.9b), the remainder
contains a term of order r̃−3 log r̃. The coefficient of the term that
scales as r̃−3 log r̃ is proportional to ðBD̃AB, where we have
denoted the r̃−2 part of h̃AB that is trace-free with respect to the
metric qAB by D̃AB. The order 1=r̃ part of the Einstein equa-
tion (2.5d) imposes that D̃AB satisfies ∂ ũD̃AB ¼ 0 (i.e., that it is
nondynamical, as the analogous quantity in general relativity is).
This will not be true of the analogous function in the Jordan
frame, as we discuss in Sec. II B.
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coefficient −gur becomes one as r → ∞. In the coordinates
ðu; r; xAÞ, the metric takes the Bondi form,

gμνdxμdxν ¼ −
V
r
e2βdu2 − 2e2βdudr

þ r2hABðdxA −UAduÞðdxB −UBduÞ;
ð2:17Þ

where V, β, UA, and hAB are functions of coordinates
xμ ¼ ðu; r; xAÞ. The metric satisfies all the Bondi gauge
conditions

grA ¼ grr ¼ 0; det½gAB� ¼ r4qðxCÞ: ð2:18Þ

By performing the conformal and coordinate transfor-
mation on the solutions of the field equations in the
Einstein frame [Eqs. (2.9a)–(2.9c)], we find that the
functions β, UA, and V should have the following forms:

β ¼ −
1

2r
Φ1

Ω
ffiffiffiffiffi
λ0

p þOðr−2Þ; ð2:19aÞ

UA ¼ −
1

2
ffiffiffiffiffi
λ0

p
r2
ððBcAB − ðAΦ1Þ þOðr−3 log rÞ; ð2:19bÞ

V ¼
�
1þ ∂uΦ1

Ω

�
rþOðr0Þ: ð2:19cÞ

Interestingly, in the limit as r goes to infinity, V=r goes as
1þ ∂uΦ1=Ω (i.e., whenΦ1 is dynamical, the leading-order
Minkowski part of the metric is expressed in noniner-
tial coordinates when the Bondi gauge conditions are
imposed). This occurs because the component of the
Ricci tensor, Ruu, scales as 1=rwhen ∂uΦ1 is nonvanishing,
as we discuss in more detail below and in Sec. IV. In
addition, β scales as Oðr−1Þ instead of Oðr−2Þ, as in the
Einstein frame (or in general relativity). Based on these
considerations, we expect that the metric functions will
have the following scaling with r in the Jordan frame:

β ¼ Oðr−1Þ; V ¼ OðrÞ; UA ¼ Oðr−2Þ: ð2:20Þ

We explicitly verify this by solving the field equations in
the next part.

2. Asymptotically flat solutions

The Bondi-Sachs field equations for Brans-Dicke theory
in the Jordan frame have a similar hierarchy as in
the Einstein frame. The trace-free part of hAB satisfies an
evolution equation, and the scalar field satisfies the curved-
space wave equation (also an evolution equation). The
remaining metric functions β, UA, and V can be solved
from hypersurface equations on surfaces of constant u in
terms of hAB, λ, and functions of integration known as

the Bondi mass aspect and angular momentum aspect.
The mass and angular momentum aspects satisfy the
conservation equations. The full expressions for these
equations are rather lengthy, though we give the expres-
sions for the scalar wave equation and the hypersurface
equations in Appendix. Thus, we will focus on determining
the metric functions and the evolution equations satisfied
by these functions when these quantities are expanded in a
series in 1=r.
As in the Einstein frame, it is necessary to assume an

expansion of the 2-metric hAB and the scalar field λ as series
in 1=r, and the expansions of the remaining quantities will
follow from the field equations and boundary conditions in
Eq. (2.20). For the scalar field, we have

λðu; r; xAÞ ¼ λ0 þ
λ1ðu; xAÞ

r
þ λ2ðu; xAÞ

r2
þ λ3ðu; xAÞ

r3

þOðr−4Þ: ð2:21Þ

The constant λ0 is related to the gravitational constant,
5 and

λ1 is the leading-order nonconstant part of the scalar field,
which is closely connected to the additional polarization of
the gravitational waves in Brans-Dicke theory. That λ in
Eq. (2.21) has a similar expansion in 1=r as Φ in Eq. (2.6)
follows from the relation between λ and Φ in Eq. (2.11).
For the 2-metric, we take the expansion to be

hAB ¼ qABðxCÞ þ
cABðu; xCÞ

r
þ dABðu; xCÞ

r2

þ eABðu; xCÞ
r3

þOðr−4Þ: ð2:22aÞ

The determinant condition in Bondi gauge fixes the part
of dAB and eAB that is proportional to qAB. Thus, we write
them as

dAB ¼ DAB þ 1

4
cFGcFGqAB; ð2:22bÞ

eAB ¼ EAB þ 1

2
cFGDFGqAB; ð2:22cÞ

where cAB,DAB, and EAB are trace-free with respect to qAB.
The tensor cABðu; xAÞ is closely related to the shear of
outgoing null geodesics at large r, and is thus also related to
the gravitational waves.
We now substitute the expansion of λ and hAB in

Eqs. (2.21) and (2.22a) into the field equations, solve
order by order in r−1, and compute the metric functions

5The relation between the gravitational constant and the scalar
field in Brans-Dicke theory is given by GðλÞ ¼ 4þ2ω

3þ2ω
1
λ . If one

assumes the experimentally measured value of G at infinity to be
1, λ0 can be written in terms of the Brans-Dicke parameter ω as
λ0 ¼ 3þ2ω

4þ2ω .
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and their corresponding evolution equations. We begin
with the curved-space, scalar wave equation in Eq. (2.13b).
The explicit forms, in Bondi coordinates, of Eq. (2.13b) and
the hypersurface equations in Eq. (2.13a) are given in
Appendix. We find that the assumption of λ0 ¼ const is
consistent with these field equations; at Oðr−2Þ, the wave
equation reduces to the expression ∂rð∂uλ1Þ ¼ 0, which
implies that ∂uλ1 ¼ NðλÞðu; xAÞ is an arbitrary function. An
analogous equation arises for the evolution of the tensor
cAB, which leads to ∂ucAB being unconstrained (and equal
to an arbitrary symmetric, trace-free tensor that gets called
the Bondi news tensor, which is defined below). To obtain
higher-order terms in the wave equation, we need to first
solve for some functions in the Bondi metric.
Next, integrating the rr, rA, and the trace of the AB

components of the modified Einstein equations presented
in Appendix, we find

β ¼ −
λ1
2λ0r

−
1

r2

�
1

32
cABcAB þ ω − 1

8λ20
λ21 þ

3λ2
4λ0

�

þOðr−3Þ; ð2:23aÞ

UA ¼ −
1

2r2

�
ðFcAF −

ðAλ1
λ0

�

þ 1

3r3

�
cADðFcDF −

1

λ0
cADðDλ1 þ

λ1
λ0

ðBcAB

−
λ1
λ20

ðAλ1 þ UAð1þ 3 log rÞ þ 6LA

�
þOðr−4Þ;

ð2:23bÞ

V ¼
�
1þ ∂uλ1

λ0

�
r − 2M þOðr−1Þ; ð2:23cÞ

respectively. Here Mðu; xAÞ is a function of integration.
While an analogous quantity is defined to be the Bondi
mass aspect in the Einstein frame or in GR, here we find it
convenient to define a slightly different quantity to be the
mass aspect (which is defined shortly below). The second
function of integration, the angular-momentum aspect LA,
can be obtained from the expression

LAðu; xAÞ ¼ −
1

6
lim
r→∞

�
r4e−2βhAB∂rUB

−rðBcAB þ r
ðAλ1
λ0

þ 3UA log r

�
: ð2:24Þ

The integration procedure allows for a term proportional to
log r=r3 in UA. The term UA is given by

UA ¼ −
2

3
ðB

�
DAB þ 1

2λ0
λ1cAB

�
: ð2:25Þ

We will only consider solutions with UA ¼ 0 in this paper
for reasons which we discuss below Eq. (2.30).

We can now return to the scalar wave equation to solve
for the higher-order terms. The Oðr−3Þ and Oðr−4Þ parts of
the scalar wave equation determine that λ2 and λ3 evolve via
the equations

∂uλ2 ¼ −
1

2
Ð2λ1; ð2:26aÞ

∂uλ3 ¼ −
1

2λ0
∂uðλ1λ2Þ þ

1

2
Mλ1 −

1

4
ðÐ2 þ 2Þλ2

−
1

8λ0
λ1Ð2λ1 þ

1

4
cABðAðBλ1 þ

1

8
λ1ðAðBcAB

þ 1

2
ðBcABðAλ1: ð2:26bÞ

To simplify the notation slightly, we have introduced
the quantity Ð2 ¼ ðAðA to denote the Laplacian on the
2-sphere.
The evolution equations for hAB come from the trace-free

part of the AB components of the field equations

EAB −
1

2
gABgCDECD ¼ 0: ð2:27Þ

Because we have already imposed the field equation
hCDECD ¼ 0 to determine V, the term proportional to gAB
in Eq. (2.27) does not contribute. As a practical computa-
tionalmatter, it can bemore convenient to contract Eq. (2.27)
into a complex polarization dyadmA ¼ δAμmμ (and its com-
plex conjugate) wheremμ satisfiesmμ∇μu ¼ 0 [80,85,86] (a
similar procedure was performed in the Einstein frame).
Then the 2 degrees of freedom in the evolution equation can
be recast in terms of a single complex equation

mAmBEAB ¼ 0: ð2:28Þ

The Oðr0Þ part of Eq. (2.28) reduces to the equation
proportional to ∂rð∂ucABÞ ¼ 0. This implies that

∂ucAB ¼ NAB; ð2:29Þ

whereNAB is an arbitrary symmetric trace-free tensor, called
the news tensor. In GR, spacetimes with a vanishing news
tensor contain no gravitationalwaves [41]. TheOðr−1Þ terms
of Eq. (2.28) lead to the equation

∂u

�
DAB þ 1

2λ0
λ1cAB

�
¼ 0: ð2:30Þ

By taking ∂u of Eq. (2.25) and ðA of Eq. (2.30), then one can
see that one must have ∂uUA ¼ 0. Thus the choice UA ¼ 0
made above will not affect the dynamics ofDAB, but it does
impose a constraint on the allowed initial data for the quantity
DAB þ λ1cAB=ð2λ0Þ. The Oðr−2Þ part of Eq. (2.28) is a
significantly more complicated expression, which we give
below:
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∂uEAB ¼ −
1

2
DAB þ 1

2
cABM − ððBLAÞ þ

1

2
qABðCLC þ 1

4
cABcCDNCD þ 1

32

�
ðAðB −

1

2
qABÐ2

�
ðcEDcEDÞ

þ 1

6

�
ððBðcCAÞðDcCDÞ −

1

2
qABðEðcCEðDcCDÞ

�
þ 1

8
ϵCðAcBÞCðϵDEðEðFcDFÞ −

1

4λ20
ð4λ0DAB − λ1cABÞ∂uλ1

−
1

12λ20
ð3ωþ 7Þ

�
ðAλ1ðBλ1 −

1

2
qABðCλ1ðCλ1

�
þ 1

12λ20
ð3ωþ 2Þλ1

�
ðBðA −

1

2
qABÐ2

�
λ1

þ 1

4λ0

�
ðBðA −

1

2
qABÐ2

�
λ2 þ

1

12λ0
cABÐ2λ1 þ

3λ21
8λ20

NAB −
1

2λ0
λ2NAB −

1

3λ0
λ1cAB

−
1

6λ0

�
ðCλ1ððBcAÞC −

1

2
qABðCcCDðDλ1

�
þ 1

12λ0
ðCλ1ðCcAB þ 1

24λ0
λ1Ð2cAB: ð2:31Þ

We use this expression to understand the properties of the
angular momentum aspect LA in nonradiative regions of
spacetime in Sec. IV.
To complete our treatment of the field equations, we must

consider the conservation equations in Euu and EuA. These
equations result in conservation equations for the mass and
angular-momentum aspects. The equation for the mass
aspect comes from theOðr−2Þ part of Euu, and it is given by

∂uM ¼ −
1

8
NABNAB þ 1

4
ðAðBNAB

− ð3þ 2ωÞ 1

4λ20
ð∂uλ1Þ2 þ

1

4λ0
∂uÐ2λ1; ð2:32aÞ

where we have defined

Mðu; xAÞ ¼ Mðu; xAÞ − 1

4λ20
λ1∂uλ1 ð2:32bÞ

to be the Bondi mass aspect in the Jordan frame. With
this definition of M the average of the right-hand side of
Eq. (2.32a) over the 2-sphere is a nonpositive number:
i.e., the average value of M is a strictly decreasing
quantity. This makes M more closely analogous to the
Bondi mass aspect in general relativity, in which the
average value of the mass aspect gives rise to the well-
known Bondi mass-loss formula [37]. Note that M would
not necessarily satisfy this property, because λ1∂uλ1 ¼
∂uðλ21=2Þ is not necessarily a decreasing quantity. The
calculations of symplectic fluxes and charges in Sec. IV
would suggest one might also include the Ð2λ1 term in
the definition of the mass aspect, though we do not do
that above.
Finally, from the Oðr−2Þ part of EuA, the angular

momentum aspect satisfies a conservation equation of
the form

−3∂uLA ¼ ðAM −
1

4
ðEððEðFcAF − ðAðFcEFÞ þ

1

16
ðAðcEFNEFÞ − 1

2
ðCðcCFNAFÞ þ

1

4
cEFððANEFÞ

þ 1

8λ0
ðAÐ2λ1 −

1

4λ20
ð2þ 3ωÞðAλ1∂uλ1 þ

λ1
4λ20

ð4þ ωÞðA∂uλ1 þ
1

4λ0
∂uðcABðBλ1 − λ1ðBcABÞ: ð2:33Þ

To summarize, the structure of the Einstein equations is
very much like the Bondi-Sachs formalism for general
relativity [80] (though with an additional massless field).
There are unconstrained functions NAB ¼ ∂ucAB and
NðλÞ ¼ ∂uλ1 that determine the evolution of the different
functions in the expansion of the metric and scalar
fields. Then initial data must be given for λ1, λ2, λ3, M,
LA, cAB, and EAB. Initial data also must be given for
DAB, but because we did not allow log terms in our
expansion, these initial data are not independent of that
of λ1 and cAB. Our field equations have a slightly
different form than those given in [79], because of the
different gauge conditions that we use (note also that

[79] did not compute the evolution equations for EAB
or λ3).

III. ASYMPTOTIC SYMMETRIES

We now turn to computing the infinitesimal vector fields
ξ⃗ that preserve the Bondi gauge conditions and the
asymptotic form of the metric and the scalar field in
Brans-Dicke theory. Our treatment parallels that given in
[46] for general relativity. The scalar field is Lie dragged
along the generators of these asymptotic symmetries ξ⃗, so it
transforms as λ → λþ Lξλ (where we use Lξ to denote the

Lie derivative along ξ⃗). To preserve the Bondi gauge
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conditions, the following components of the metric must be
left invariant when the metric is Lie dragged along ξ⃗:

Lξgrr ¼ 0; LξgrA ¼ 0; gABLξgAB ¼ 0: ð3:1Þ

The four differential equations in Eq. (3.1) constrain the
four components of ξ⃗. Because these conditions rely only
upon the Bondi gauge and not the underlying theory, we
can expand the solution in Eq. (4.7) of [46] using our
solutions for β, UA, and hAB in the Jordan frame of Brans-
Dicke theory, which were computed in Sec. II. The results
are that

ξu ¼ fðu; xAÞ; ð3:2aÞ

ξr ¼ −
1

2
rðAYA þ 1

2
ðAðAf −

1

4r

�
cABðBðAf

þ 2ðAfðBcAB þ λ1
λ0

Ð2f

�
þOðr−2Þ; ð3:2bÞ

ξA ¼ YAðu; xAÞ − 1

r
ðAf þ 1

2r2

�
cABðBf þ 1

λ0
λ1ðAf

�

þ 1

r3

�
1

3
DABðBf −

1

16
cBCcBCðAf −

λ1
3λ0

cABðBf

þ λ2
2λ0

ðAf þ λ21
12λ20

ðω − 3ÞðAf
�
þOðr−4Þ: ð3:2cÞ

The functions of integration fðu; xAÞ and YAðu; xAÞ come
from radially integrating Eq. (3.1).
To maintain the asymptotic falloff conditions that we

have determined, we require that the remaining metric
components transform as follows:

Lξgur ¼ Oðr−1Þ; LξguA ¼ Oðr0Þ;
LξgAB ¼ OðrÞ; Lξguu ¼ Oðr0Þ: ð3:3Þ

Note that in GR Lξguu ¼ Oðr−1Þ; however, because in
Brans-Dicke theory in the Jordan frame guu is given by
guu ¼ −1þ ∂uλ1=λ0 þOðr−1Þ, we allow a change in guu at
Oðr0Þ (which occurs from the change in ∂uλ1). To express
the conditions that we use to constrain ξ⃗ and the change in
the metric coefficients, it is convenient to expand Lξgμν in a
series in r as

Lξgμν ¼
X
n

rnlðnÞμν ; ð3:4Þ

where n can be an integer and the coefficients lðnÞμν in the
expansion are functions of u and xA. Then one can show

from lð2ÞuA ¼ 0 that YA is independent of u, and from lð2ÞAB ¼ 0

that it is a conformal Killing vector on a 2-sphere: i.e.,

ðAYB þ ðBYA ¼ ψqAB; ð3:5Þ

where ψ ¼ ðAYA. The coefficient lð0Þur ¼ 0 restricts f to be
given by

f ¼ 1

2
uψ þ αðxAÞ: ð3:6Þ

The functions f and YA have the same form as in
general relativity. Thus, the different falloff conditions of
components of the metric in Brans-Dicke theory do not
alter the symmetries of the spacetime. The interpretation
of YA and α will, therefore, be the same as in GR: the
globally defined YA span a six-parameter algebra iso-
morphic to the proper, isochronous Lorentz algebra (and
the locally defined YA will be the infinite-dimensional
group of superrotation symmetries [45]) and α span the
infinite-dimensional commutative algebra of supertrans-
lations [37,40]. How the asymptotic Killing vectors ξ⃗ are
extended into the interior of the spacetime from future
null infinity is different in GR from in Brans-Dicke
theory in the Jordan frame. This will lead to the functions
in the metric transforming differently between the two
theories.
Before we compute the transformation of the metric

functions, it is necessary to determine how the functions λ1
and λ2 in the expansion of the scalar field transform as they
are Lie dragged along ξ⃗. We denote this transformation as
δξλ1 and δξλ2, and they can be computed from the Oðr−1Þ
and Oðr−2Þ of Lξλ, respectively. The result is

δξλ1 ¼
1

2
λ1ψ þ YAðAλ1 þ f∂uλ1; ð3:7Þ

δξλ2 ¼ λ2ψ −
1

2
λ1Ð2f − ðCfðCλ1 þ YDðDλ2 þ f∂uλ2:

ð3:8Þ

Next, we can compute how the functions cAB,DAB,M, and
LA transform when Lie dragged along ξ⃗ given in Eq. (3.2).
We denote these quantities δξcAB and similarly for the other
three functions. The term δξcAB can be obtained directly

from the appropriate coefficients and components of lðnÞμν ,
but other terms also require removing the transformation of
combinations of δξλ1 and δξcAB that appear at the same
order in the metric. The expressions used to compute these
quantities are given below:

δξcAB ¼ lð1ÞAB; ð3:9aÞ

δξM ¼ 1

2
lð−1Þuu −

1

2

�
δξλ1
λ0

þ 3

2λ20
δξðλ1∂uλ1Þ

�
; ð3:9bÞ
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δξDAB ¼ lð0ÞAB −
1

4
qABδξðcCDcCDÞ; ð3:9cÞ

δξLA ¼ −
1

2
lð−1ÞuA þ 1

12
δξðcABðCcBCÞ

−
1

6λ0
δξðλ1ðBcBAÞ −

1

12λ0
δξðcABðBλ1Þ

þ 1

6λ20
δξðλ1ðAλ1Þ: ð3:9dÞ

Thus, we can compute δξM and δξcAB from the relevant

lðnÞμν and δξλ1 to be

δξcAB ¼ LYcAB þ fNAB −
1

2
ψcAB − 2ðAðBf þ qABÐ2f;

ð3:10aÞ

δξM¼ f∂uMþ 3

2
Mψ þ YAðAMþ 1

8
cABðAðBψ

þ 1

2
ðAfðBNAB þ 1

4
NABðAðBf −

λ1ψ

4λ0
þ 1

4λ0
ðAψðAλ1

þ 1

4λ0
Ð2f∂uλ1 þ

1

2λ0
ðAfðA∂uλ1: ð3:10bÞ

Then with the expression for δξcAB, it is possible to
compute the remaining two terms for δξDAB and δξLA.
They are given by

δξDAB ¼ LYDAB þ λ1
λ0

�
ðAðB −

1

2
qABÐ2

�
f

−
1

2λ0
f∂uðλ1cABÞ; ð3:10cÞ

for δξDAB and

δξLA ¼ f∂uLA þ LYLA þ LAψ þ 1

96
cCDcCDðAψ þ 1

6
DABðBψ −MðAf þ 1

12
ððCðCfðBcAB − cABðBðCðCfÞ

−
1

8
ðAðcBCðBðCfÞ þ

1

4
ððDðCcAD − ðAðBcBCÞðCf −

1

6
cABðBf −

1

6
ðBðAfðCcBC −

5

48
cBCNBCðAf

þ 1

6
cBCNABðCf −

1

12λ20
½cABλ0ðBf þ λ1ðωþ 4ÞðAf�∂uλ1 þ

1

24λ20
½6λ0λ2 þ ðω − 1Þλ21�ðAψ

−
1

12λ0
ð2λ1 þ 3∂uλ2ÞðAf −

5

24λ0
ðAðλ1ðCðCfÞ þ

λ1
12λ0

NABðBf −
1

12λ0
ððBðAfðBλ1 þ 3ðBðAλ1ðBfÞ; ð3:10dÞ

for δξLA. In deriving the expression for δξM, we used the
properties Ð2ψ ¼ −2ψ and Ð2YA ¼ −YA. To derive δξLA,
we also used the identities in [46]

2cCðAðBÞðCf − qABcCDðCðDf − cABÐ2f ¼ 0; ð3:11aÞ

2ðCcCðAðBÞf þ 2ððAcBÞCðCf

− 2ðCcABðCf − 2qABðCfðDcCD ¼ 0: ð3:11bÞ

The expressions in Eq. (3.10) will be useful for under-
standing the properties of metric in nonradiative regions,
which we discuss in Sec. IV soon hereafter. The GR limit of
our expressions agrees with the equivalent results in [47]
after taking into account differences in conventions. Our
results are similar to those in [79], but not identical, because
of the different gauge conditions that we use.
Before concluding this part, we note that because the

scalar field appears in the metric, we can check whether the
transformation of the metric is consistent with requiring
that the scalar field is Lie dragged along ξ⃗. We can obtain

δξλ1 from 2λ0l
ð−1Þ
ur , and we find that it agrees with Eq. (3.7).

We can also obtain δξð∂uλ1Þ from −λ0l
ð0Þ
uu , and we find that

it is equivalent to ∂uðδξλ1Þ, as it should be.

We can also explicitly compute the quantities δξðcABcABÞ
and δξððBcABÞ from Lie dragging the metric. The relevant
expressions for computing this are

δξðcABcABÞ ¼ 16lð−2Þur þ 4

λ20
ð3 − ωÞδξðλ1Þ2 −

24

λ0
δξλ2;

ð3:12aÞ

δξððBcABÞ ¼ 2lð0ÞuA þ 1

λ0
δξððAλ1Þ: ð3:12bÞ

Not surprisingly, we find that

δξðcABcABÞ ¼ δξcABcAB þ cABδξcAB; ð3:13aÞ
δξððBcABÞ ¼ ðBðδξcABÞ; ð3:13bÞ

as the latter relation was proven in GR in [46]. For
completeness, we give the expressions for these terms here

δξðcABcABÞ ¼ 2fNABcAB þ cABcABψ

þ 2cBCYAðAcBC − 4cABðAðBf; ð3:14aÞ

δξððBcABÞ ¼ −ðAðÐ2 þ 2Þf −
1

2
cABðBψ þ 1

2
ψðBcAB

þ LYðCcAC þ ðBðfNABÞ: ð3:14bÞ
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It does not seem possible to verify these types of relation-
ships with all of the terms that appear in Eq. (3.9). Thus, for
example, for the term δξðcABðCcBCÞ, we assumed it can be
written as the sum of δξcABðCcBC and cABδξðCcBC.

IV. GRAVITATIONAL-WAVE MEMORY EFFECTS

Gravitational-wave memory effects are commonly
defined for bursts of gravitational waves of finite duration
between two nonradiative regions before and after the
burst; they are also defined for sources of gravitational
waves that become asymptotically nonradiative in the
limits as u → �∞ at large Bondi radius r. In either case,
discussing GW memory effects requires a notion of a
nonradiative region of spacetime. In this section, we first
describe the properties of nonradiative regions in Brans-
Dicke theory, we then discuss the measurement of GW
memory effects through geodesic deviation, and we finally
discuss how the conservation equations constrain the GW
memory effects (thereby allowing them to be computed
approximately).

A. Nonradiative and stationary regions

1. Nonradiative regions

For general relativity, it is typical to consider regions of
vanishing Bondi news NAB and vanishing stress-energy
tensor. In the context of Brans-Dicke theory, wewill instead
consider regions where NAB ¼ 0, ∂uλ1 ¼ 0, and any other
stress energy from matter fields vanishes. These two
equations imply that λ1 and cAB must be independent of
u. Integrating Eqs. (2.26), (2.25), (2.32a), and (2.33), we
can then show that λ2, DAB, M, LA, and λ3 are given by

λ1 ¼ λð0Þ1 ðxAÞ; ð4:1aÞ

cAB ¼ cð0ÞABðxCÞ; ð4:1bÞ

λ2 ¼ −
u
2
Ð2λð0Þ1 þ λð0Þ2 ðxBÞ; ð4:1cÞ

DAB ¼ −
1

2λ0
λð0Þ1 cð0ÞAB; ð4:1dÞ

M ¼ Mð0ÞðxAÞ; ð4:1eÞ

LA ¼ −
u
3
ðAMð0Þ −

u
24λ0

ðAÐ2λð0Þ1

þ u
12

ðDððDðBcð0ÞAB − ðAðBc
ð0Þ
DBÞ þ Lð0Þ

A ðxEÞ; ð4:1fÞ

λ3 ¼
u2

16λ0
ðÐ2 þ 2ÞÐ2λð0Þ1 þ u

2

�
−
1

2
ðÐ2 þ 2Þλð0Þ2

þMð0Þλð0Þ1 þ 1

4λ0
λð0Þ1 Ð2λð0Þ1 þ 1

2
cABð0ÞðAðBλ

ð0Þ
1

þ 1

4
λð0Þ1 ðAðBcABð0Þ þ ðBcABð0ÞðAλ

ð0Þ
1

�
þ λð0Þ3 ðxCÞ: ð4:1gÞ

In a nonradiative region, EAB has the form

EAB ¼ u2Eð2Þ
AB þ uEð1Þ

AB þ Eð0Þ
ABðxCÞ; ð4:2aÞ

where the coefficients Eð2Þ
AB and Eð1Þ

AB are given by

Eð2Þ
AB ¼ 1

6

�
ðAðB −

1

2
qABÐ2

��
Mð0Þ −

1

4λ0
Ð2λð0Þ1

�
−

1

24
ððAϵBÞCðCðϵDEðEðFcð0ÞDFÞ; ð4:2bÞ

Eð1Þ
AB ¼ −ððAL

ð0Þ
BÞ þ

1

2
qABðCL

ð0Þ
C þ 1

2
Mð0Þcð0ÞAB þ 1

8
ϵCðAc

ð0Þ
BÞCðϵDEðEðFcð0ÞDFÞ

þ 1

6
ððAðcð0ÞBÞCðDc

DC
ð0Þ Þ −

1

12
qABðDðcð0ÞDCðEc

EC
ð0ÞÞ

þ 1

32

�
ðAðB −

1

2
qABÐ2

�
ðcð0ÞCDc

CD
ð0Þ Þ −

1

12λ0
λð0Þ1 cð0ÞAB þ 1

24λ0
λð0Þ1 Ð2cð0ÞAB

þ 1

12λ0
Ð2λð0Þ1 cð0ÞAB þ 1

12λ0
ðCλð0Þ1 ðCc

ð0Þ
AB −

1

6λ0
ððAc

ð0Þ
BÞCð

Cλð0Þ1 þ 1

12λ0
qABðDc

ð0Þ
DCð

Cλð0Þ1

þ 1

4λ0

�
ðAðB −

1

2
qABÐ2

�
λð0Þ2 þ 2þ 3ω

12ðλ0Þ2
λð0Þ1

�
ðAðB −

1

2
qABÐ2

�
λð0Þ1

−
3ωþ 7

12ðλ0Þ2
�
ðAλ

ð0Þ
1 ðBλ

ð0Þ
1 −

1

2
qABðCλ

ð0Þ
1 ðCλð0Þ1

�
; ð4:2cÞ

Eð0Þ
AB ¼ Eð0Þ

ABðxCÞ: ð4:2dÞ
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This expression will simplify considerably in some more
restrictive classes of nonradiative solutions that we discuss
next.

2. Stationary regions and the canonical frame

In general relativity, there are frames for stationary
regions in which the Bondi metric functions are indepen-
dent of u. We next discuss how the metric functions and
scalar field in nonradiative regions in Brans-Dicke theory
[given in Eq. (4.1)] simplify when there exist such frames
in the Jordan frame. To discuss this, it is useful to recall that
a vector field, such as LA, on the 2-sphere can be
decomposed into divergence- and curl-free parts as follows:

LA ¼ ðAρþ ϵABðBσ: ð4:3Þ

Similarly, a symmetric trace-free tensor such as cAB can be
decomposed as [19,87]

cAB ¼
�
ðAðB −

1

2
qABðCðC

�
Θþ ϵCðAðBÞðCΨ: ð4:4Þ

The terms without the antisymmetric tensor ϵAB in the last
two equations are often called the “electric (parity)” part
and the terms with ϵAB are called the “magnetic (par-
ity)” part.
If we require that the scalar field is also independent of u

in these regions, then the expression for λ2 in Eq. (4.1c)
requires that Ð2λ1 ¼ 0, or namely λ1 is constant. The
expression for LA in Eq. (4.1f) shows that the magnetic part

of cð0ÞAB, Ψ, vanishes (see, e.g., [52]). Together with the fact

that λð0Þ1 is constant, it also follows from Eq. (4.1f) that
Mð0Þ ¼ Mð0Þ is a constant. Because cAB is an electric-
parity tensor field, then it can be set to zero by performing a
supertranslation with α ¼ Θ=2 [see Eq. (3.10a)]. With

cAB ¼ 0 as well as λð0Þ1 and Mð0Þ being constant, then
by requiring λ3 is independent of time Eq. (4.1g) gives the

following condition on λð0Þ2 :

ðÐ2 þ 2Þλð0Þ2 ¼ 2Mð0Þλð0Þ1 : ð4:5Þ

This nonhomogeneous linear elliptic equation can be

written as the sum of the particular solution λð0Þ2 ¼
Mð0Þλð0Þ1 and a linear combination of the solutions to the
homogeneous equation

ðÐ2 þ 2Þλð0Þ2 ¼ 0: ð4:6Þ

The solution of the homogeneous equation is a super-
position of l ¼ 1 spherical harmonics. Finally, with these
conditions on the metric functions, this greatly simplifies

the form of EAB in Eq. (4.2a). That λð0Þ1 and Mð0Þ are

constants and that cð0ÞAB vanishes cause the coefficient in
Eq. (4.2b) to vanish; similarly, the lengthy expression in
Eq. (4.2c) reduces to the following much simpler equation:

ððAL
ð0Þ
BÞ −

1

2
qABðCL

ð0Þ
C ¼ 0: ð4:7Þ

To have smooth solutions Lð0Þ
A , then it must be a super-

position of the six electric-parity and magnetic-parity
l ¼ 1 vector spherical harmonics. The electric part of

Lð0Þ
A can be set to zero by performing a translation with

α ¼ κ=½Mð0Þ − λð0Þ1 =ð4λ0Þ�. The magnetic part could be
chosen to align with a particular axis by performing a
rotation if desired.
As in general relativity, this class of stationary regions in

Brans-Dicke theory admit a “canonical” frame, in which
M and λ1 are constant, cAB ¼ 0, and LA is composed of
l ¼ 1 magnetic-parity vector harmonics. Furthermore, the
scalar-field function λ1 is also constant, and the function λ2
is equal to the constant Mλ1 plus a superposition of l ¼ 1
spherical harmonics. For bursts of gravitational and scalar
radiation, there can be transitions between such stationary
regions where the initial stationary region is in the
canonical frame, but the final stationary region is super-
translated from its canonical frame, so that cAB is nonzero.
This nonzero cAB at late times is, in essence, the GW
memory effect (see, e.g., [30]); thus, transitions between
these stationary regions provide a sufficiently general arena
in which to study certain types of GW memory effects in
general relativity (these transitions were called BMS
vacuum transitions in [30]). Note that these types of
transitions also do not allow “ordinary” memory [88], so
they do not admit memory effects of full generality (see,
e.g., [89]).
However, in Brans-Dicke theory, because λ1 must be a

constant in both stationary regions in the canonical frames,
such a transition would significantly restrict the types of
possible memory effects that could occur. For the memory
effects related to the scalar radiation (discussed in greater
detail in the next part) such a transition would only allow
these scalar-type memory effects to have a uniform sky
pattern. As a result, considering only these types of
transitions between these frames will not be sufficiently
general to explore the full range of possible memory effects
in Brans-Dicke theory. A slight generalization would be to
consider transitions between stationary regions in which
one of the regions is both boosted and supertranslated from
the canonical frame. However, this still seems to be a
somewhat restrictive scenario, as it does not seem to admit
solutions that are superpositions of boosted massive bodies
with a scalar charge. As a result, we will next focus on a
slightly more general set of frames that is still somewhat
simpler than the nonradiative regions without restrictions.
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3. Nonradiative regions with vanishing
magnetic-parity shear

For a slightly more general set of solutions, though
which lack the full generality of the nonradiative regions,
we will consider regions of spacetime with vanishing stress
energy (not including the scalar field), NAB, ∂uλ1, and Ψ
(the magnetic-parity part of the shear). As the stationary
regions, it will again be possible to set cAB ¼ 0 by a
supertranslation to produce a “semicanonical” frame;
however, the mass-aspect and scalar-field functions Mð0Þ

and λð0Þ1 will no longer be constants, and will remain
arbitrary functions of xA as in Eq. (4.1) in this frame. This
will imply that λ2 depends linearly on u as in Eq. (4.1c),
DAB will vanish in this semicanonical frame, and the
electric part of LA will depend linearly on u, whereas
the part independent of u will contain both electric and
magnetic parts. Thus, transitions between nonradiative
regions of this type should be sufficiently general to capture
both the usual tensor-type and the scalar-type memory
effects, which will be discussed in greater detail below.
This was also the scenario considered by [79].

B. Geodesic deviation and GW memory effects

GW memory effects are frequently described by their
effects on families of nearby freely falling observers at
large distances r from a source of gravitational waves
[16,90,91]. The deviation vector X⃗ between a geodesic with
tangent u⃗ and a nearby geodesic satisfies the equation of
geodesic deviation

uγ∇γðuβ∇βXαÞ ¼ −Rβγδ
αuβXγuδ; ð4:8Þ

to linear order in the deviation vector Xα. It is then useful to
expand the vector Xα in terms of an orthonormal triad eα

î
with eα

î
uα ¼ 0 that is parallel transported along the geo-

desic with tangent uα. If uα is denoted by eα
0̂
, then eαμ̂ ¼

feα
0̂
; eα

î
g forms an orthonormal tetrad. It is also convenient

to introduce a dual triad eĵα with eα
î
eĵα ¼ δĵ

î
. The vector can

then be written in the form Xα ¼ XîðτÞeα
î
, where τ is the

proper time along the geodesic worldline. The equation of
geodesic deviation then reduces to the expression

Ẍî ¼ −R0̂ ĵ 0̂
îXĵ; ð4:9Þ

where the dot denotes d=dτ. Given a set of tetrad

coefficients Xî
0 ¼ Xîðτ0Þ and _Xî

0 ¼ _Xîðτ0Þ that represent
the initial separation and relative velocity of the nearby
geodesics, it is possible to solve for the change in the final
values of the tetrad coefficients of the separation vector,
which we denote by

ΔXî ¼ XîðτfÞ − Xîðτ0Þ: ð4:10Þ

We then expand this vector in a series to linear order in the
Riemann tensor as

ΔXî ¼ ΔXî
ð0Þ þ ΔXî

ð1Þ; ð4:11Þ

where the value ΔXî
ð0Þ is identical to the expected result in

flat spacetime

ΔXî
ð0Þ ¼ ðτf − τ0Þ _Xî

0: ð4:12Þ

The correction ΔXî
ð1Þ to the deviation vector to linear order

in the Riemann tensor is given by [33]

ΔXî
ð1Þ ¼ −Xĵ

0

Z
τf

τ0

dτ
Z

τ

τ0

dτ0R0̂ ĵ 0̂
î

− _Xĵ
0

Z
τf

τ0

dτ
Z

τ

τ0

dτ0
Z

τ

τ0
dτ00R0̂ ĵ 0̂

î: ð4:13Þ

Note that in the triple integral, the limits of integration on
the innermost integral run from τ0 to τ.
To compute ΔXî associated with a burst of gravitational

waves at large distances r from a source of GWs (and
thereby compute the GW memory effects), it will be
necessary to compute the leading 1=r parts of the
Riemann tensor components R0̂ ĵ 0̂

î, the geodesic with
tangent uα, the infinitesimal element of proper time dτ,
and the orthonormal triad eα

î
. In Bondi coordinates, with V

given by Eq. (2.23c), a vector u⃗ ¼ e⃗0̂ that is tangent to a
timelike geodesic to leading order in 1=r is given by

u⃗ ¼ ∂⃗u −
1

2λ0
_λ1∂⃗r þOðr−1Þ: ð4:14aÞ

The retarded time u is the proper time τ along the geodesic
at this order. A useful triad is given by

e⃗r̂ ¼ ∂⃗u −
�
1þ 1

2λ0
_λ1

�
∂⃗r þOðr−1Þ; ð4:14bÞ

e⃗Â ¼ 1

r
e⃗Â þOðr−2Þ; ð4:14cÞ

where e⃗Â is an orthonormal dyad associated with the metric
qAB. The nonzero tetrad components of the Riemann tensor
at Oðr−1Þ are given by

R0̂ Â 0̂ B̂ ¼ −
1

2r
c̈Â B̂ þ 1

2λ0r
δÂ B̂

̈λ1 þOðr−2Þ: ð4:15Þ

Note that if the Riemann tensor is decomposed into its
Weyl and Ricci parts, the relevant nonzero components are
given by
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C0̂ Â 0̂ B̂ ¼ −
1

2r
c̈Â B̂ þOðr−2Þ; ð4:16aÞ

R0̂ 0̂ ¼
1

λ0r
̈λ1 þOðr−2Þ: ð4:16bÞ

It then follows that the Ricci scalar, R, satisfies
R ¼ Oðr−2Þ.
Putting these results together, we find that the Oðr0Þ part

of ΔXî is the same as the flat-space result in Eq. (4.12), and
the Oðr−1Þ part is given by

ΔXð1Þ
Â

¼ 1

2r

�
ΔcÂ B̂ −

1

λ0
Δλ1δÂ B̂

�
XB̂
0

−
1

r

�
ΔCÂ B̂ −

1

λ0
ΔΛ1δÂ B̂

�
_XB̂
0

þ 1

2r
Δ
�
ucÂ B̂ðuÞ −

1

λ0
uλ1ðuÞδÂ B̂

�
_XB̂
0

þ Δu
2r

�
cÂ B̂ðu0Þ −

1

λ0
λ1ðu0ÞδÂ B̂

�
_XB̂
0

−
u0
2r

�
ΔcÂ B̂ −

1

λ0
Δλ1δÂ B̂

�
_XB̂
0 : ð4:17Þ

We have defined Δu ¼ uf − u0,

ΔCÂ B̂ ¼
Z

uf

u0

du cÂ B̂; and ΔΛ1 ¼
Z

uf

u0

du λ1; ð4:18Þ

in the third line of Eq. (4.17), the Δ of the quantity in
square brackets means to take the difference of the
quantity within the brackets at u ¼ uf and u ¼ u0.
Equation (4.17) contains (in addition to initial and
final data) six memory effects, which we will now
discuss in greater detail (or in the language of [33,92]
six persistent observables, three of which are memory
effects).
The first two collections of effects, ΔcÂ B̂ and ΔCÂ B̂,

have the same type of effect on nearby freely falling
observers as GW memory effects in GR: namely, they
produce a shearing (transverse to the propagation direc-
tion of the gravitational waves) of an initially circular
congruence of geodesics after a burst of GWs pass. The
tensor ΔcÂ B̂ was the first type of GW memory effect
identified in calculations, and it produces a lasting change
in the deviation vector between initially comoving
observers. When ΔcÂ B̂ is nonvanishing, then the tensor
ΔCÂ B̂ will be the sum of a term that grows with u after

the burst passes and a term ΔCð0Þ
Â B̂

that is independent of
u. For observers with an initial relative velocity, this will

cause ΔXð1Þ
Â

to have a shearing part that grows linearly
with u after the GWs pass (this effect is also sometimes
called the “subleading displacement memory”). The

electric- and magnetic-parity parts of the tensor ΔCð0Þ
Â B̂

are closely related to the spin and center-of-mass GW
memory effects that were more recently identified. The
tensor ΔcÂ B̂ was frequently described as being of electric
parity, but it was shown that there are sources of stress
energy that can produce a magnetic-parity ΔcÂ B̂
[87,89,93].

The second two terms, Δλ1 and ΔΛ1, are memory
effects related to the passage of the scalar field. These
effects cause an initially circular congruence of geo-
desics to undergo a relative uniform expansion (or
contraction) in the direction transverse to the propaga-
tion direction of the scalar radiation.6 Thus, for initially
comoving observers, a nonzero Δλ1 would cause a

uniform, transverse change in ΔXð1Þ
Â
. When Δλ1 is

nonvanishing, then ΔΛ1 would also be a sum of a
term that grows with u after the burst of scalar field and

a term ΔΛð0Þ
1 that is independent of u; thus, the

deviation vector ΔXð1Þ
Â

would have an expanding (or
contracting) part that grows linearly with u for observers
with an initial relative velocity. The scalar-field memory
effect Δλ1 had been discussed in the context of post-
Newtonian theory in [57] or in gravitational collapse in

[59,60], for example. The quantity ΔΛð0Þ
1 is the scalar-

field analog of the CM memory, and it seems to have
not been discussed previously.
We turn in the next part of this section to how the

different memory scalars and tensors—ΔcÂ B̂, ΔCÂ B̂, Δλ1,
and ΔΛ1—are constrained (or not constrained) by the
asymptotic field equations of Brans-Dicke theory and
the properties of the nonradiative regions before and after
the passages of the gravitational waves and the radiative
scalar field.

C. Constraints on GW memory effects from fluxes
of conserved quantities

Memory effects were defined in [33] to be the subset
of the persistent observables that are associated with
symmetries and conserved quantities at spacetime

6It is possible to define a suitably adapted Newman-Penrose
tetrad [94] with lμ ¼ ∇μu and with a complex dyad chosen
to have only its 2-sphere indices nonvanishing and to be
normalized to one: mAm̄A ¼ 1. The spin coefficient ρ ¼
−mμm̄ν∇νlμ then can be expanded at large Bondi radius r in
this tetrad as

ρ ¼ −
1

r2
mAm̄B∇B∇Au ¼ 1

r
þ λ1
2λ0r2

þOðr−3Þ: ð4:19Þ

As ρ is one of the “optical scalars” and its real part corresponds to
the expansion of a congruence to which lμ is tangent, this
provides a second geometrical viewpoint on how λ1 causes a
type of expansion at large r.
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boundaries, such as null infinity. A commonly used
procedure for computing these conserved quantities
related to symmetries is due to Wald and Zoupas [44],
who computed the “conserved” quantities associated with
BMS symmetries at null infinity in vacuum general
relativity. The word “conserved” is used in quotes,
because these quantities (also called “charges”) are not
constant along cross sections (or “cuts”) of null infinity,
but change so that the difference of the charges between
the cuts is equal to the flux of the charge integrated
over the region of null infinity between the cuts. The
flux had been computed previously by Ashtekar and
Streubel [42], and it is consistent with the result in [44].
In Bondi coordinates and in general relativity, the change
in the charges, ΔQξ, can be concisely expressed by the
expression

ΔQξ ¼ −
1

32πG

Z
du d2ΩNABδξcAB; ð4:20Þ

where δξcAB is given in Eq. (3.10a) and d2Ω ¼ffiffiffi
q

p
dx1dx2 is the two-dimensional volume element asso-

ciated with the metric qAB (see, e.g., [52]). The charge is
given by the Komar formula [95], with an additional
prescription needed to make the charge integrable in
radiative regions.
The formalism for computing conserved quantities out-

lined in [44] can be applied to a large class of gravitational
theories that can be derived from a Lagrangian, such as
Brans-Dicke theory. In the Einstein frame, the action has
the form of the Einstein-Klein-Gordon theory. Wald and
Zoupas noted in [44] that having a minimally coupled
scalar field causes stress-energy terms to be added to the
flux, but will otherwise not greatly change the charges.
However, they posited that rΦ has a finite limit to null
infinity, which would require that Φ0 ¼ 0. We checked
whether having a constant Φ0 that is nonzero would alter
the flux, and because this nonzero Φ0 is constant, and we
found that it did not. Wald and Zoupas also mentioned in
[44] that a conformally coupled scalar field, such as in
Brans-Dicke theory in the Jordan frame, would also only
add terms to the flux. However, they did not specify
whether the kinetic term for the scalar field must have
the canonical form (as in the Einstein frame), which it does
not in the Jordan frame. Consequently, we computed the
flux of the charges associated with a BMS symmetry in the
Jordan frame in Bondi coordinates. We found that the
integral of the flux over a region of future null infinity is
given by

ΔQξ⃗ ¼ −
λ0
32π

Z
du d2Ω

�
NABδξcAB

þ 6þ 4ω

ðλ0Þ2
∂uλ1δξλ1

�
: ð4:21Þ

Note that by combining Eqs. (2.2c) and (2.11), expanding λ
as in Eq. (2.21), and using Eq. (3.7), then we find that the
term ð3þ 2ωÞ∂uλδξλ=ð16πÞ in Eq. (4.21) is theOðr−2Þ part
of λ0T

ðΦÞ
uν ξν. Thus, the result is consistent with the expect-

ations of Wald and Zoupas for a conformally coupled scalar
field, despite the noncanonical form of the kinetic term for λ
(and the flux is then conformally invariant as required
in [44]).

1. Displacement memory and electric-parity
part of ΔcAB

For computing the GW memory effect connected
with the electric-parity part of ΔcÂ B̂, we should specialize
the flux expression for a supertranslation vector field

ξ⃗ ¼ αðxAÞ∂⃗u. Restricting Eqs. (3.10a) and (3.7) to a
supertranslation, and integrating by parts for terms involv-
ing ðA (there are no boundary terms on the 2-sphere), we
can show that the expression in Eq. (4.21) can be written as

ΔQðαÞ ¼ −
λ0
32π

Z
du d2Ωα

�
NABNAB − 2ðAðBNAB

þ 6þ 4ω

ðλ0Þ2
ð∂uλ1Þ2

�
: ð4:22Þ

It will next be useful to make a few definitions and to relate
some of the quantities in Eq. (4.22) to quantities that we
have computed earlier in the paper.
The term proportional to ðAðBNAB depends only on the

electric part of NAB (and thus the electric part of ΔcAB,
when the integral with respect to u is performed). With the
definition of cAB in Eq. (4.4) and of the news tensor in
Eq. (2.29), we can write the term ðAðBNAB as

2ðAðBNAB ¼ Ð2ðÐ2 þ 2Þ∂uΘ: ð4:23Þ

With the equation for the Bondi mass aspect (2.32a), it is
possible to show that the supertranslation charge (i.e., the
supermomentum) needed to satisfy Eq. (4.22) is given by

QðαÞ ¼
λ0
4π

Z
d2Ωα

�
M −

1

4λ0
Ð2λ1

�
: ð4:24Þ

Note that when α ¼ 1, this corresponds to a time trans-
lation, and the associated conserved charge is the energy.
Solutions of physical interest have non-negative energy.
Because Ð2λ1 vanishes when integrated over the 2-sphere,
this implies that the integral of M over S2 must be non-
negative, or the 2-sphere integral ofM must be greater than
or equal to the same integral of 1

4λ2
0

λ1∂uλ1. Finally, it will be

helpful to define α times the change in the energy radiated
by the gravitational waves and the scalar field λ as
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ΔEðαÞ ¼
λ0
32π

Z
du d2Ωα

�
NABNAB þ 6þ 4ω

ðλ0Þ2
ð∂uλ1Þ2

�
:

ð4:25Þ

Then Eq. (4.22) can be written as

Z
d2Ω αÐ2ðÐ2 þ 2ÞΔΘ ¼ 32π

λ0
ðΔEðαÞ þ ΔQðαÞÞ: ð4:26Þ

The supertranslations α are allowed to be any smooth
function on the 2-sphere. By choosing for α an appro-
priate basis of functions that span this space of smooth
functions on S2 (e.g., spherical harmonics), it is then
possible to use Eq. (4.26) to determine the coefficients of
ΔΘ expanded in these basis functions in terms of the
expansion coefficients of the energy flux and the change
in the supermomentum charges. In other words, suppos-
ing that the energy flux ΔEðαÞ is known for some given
radiative data NAB and ∂uλ1, and that the early- and late-
time nonradiative data through ΔM and Δλ1 are also
known, then it is possible to determine the corresponding
electric-parity memory effect in ΔcAB. The computation
of this memory effect is not substantially different from
in general relativity; the main difference is that it is
necessary to provide both radiative (∂uλ1) and non-
radiative (Δλ1) data for the scalar field, in addition to
the radiative (NAB) and nonradiative (ΔM) gravitational
data. We will use this procedure to calculate the memory
effect from compact binaries in Brans-Dicke theory in
future work.
The two types of sources of GWmemory in Eq. (4.26)—

i.e., ΔEðαÞ and ΔQðαÞ—are often called “null” and “ordi-
nary” memory, respectively, in general relativity [88]. The
word “null” refers to the fact that it is sourced by massless
fields (including gravitational waves), and the word “ordi-
nary” refers to the fact that it is sourced by ordinary massive
particles (and fields). The specific components of the
spacetime curvature and matter stress-energy tensor
responsible for producing the ordinary and null memory
are distinct and distinguishable in GR. How to classify the
contributions of a scalar field to the ordinary and null
memory is not as immediately obvious in Brans-Dicke
theory as it is in GR, because (i) massive objects can have
“scalar charges” (nontrivial stationary scalar field configu-
rations of the massless scalar) in Brans-Dicke theory, and
(ii) the radiative and the static parts of the scalar field both
appear at leading order in 1=r. While in GR all terms
involving the scalar field would be treated as null memory,
in Brans-Dicke theory, we will consider one part of the
scalar field to contribute to the null memory and another
part to contribute to the ordinary memory. Specifically,
because the term quadratic in ∂uλ1 in the energy flux ΔEðαÞ
has the form of a flux of energy per solid angle, we will
consider it to be null memory. The term proportional to

Ð2Δλ1 enters in the charge ΔQðαÞ and is linear in λ1, so we
treat it as a source of ordinary memory for the shearing GW
memory ΔcAB.

7

Because the right-hand side of (4.26) is determined by
the changes in M and Δλ1 (for the term ΔQðαÞ) and the
change in the flux of tensor and scalar waves (for the term
ΔEðαÞ), then we can solve for ΔΘ in Eq. (4.26) in terms of a
sum of these two contributions. We will then write this
solution for the total potential as a sum of two terms

ΔΘ ¼ ΔΘðnÞ þ ΔΘðoÞ; ð4:27Þ

which correspond to the solutions for the null and ordinary
parts, separately. This splitting will be useful in discussing
the CM memory effect in the next part.
Last, note that no constraints on the magnetic-parity part

of ΔcAB are found from supermomentum conservation.
Thus, it would be classified as a persistent observable rather
than a memory effect in the language of [33].

2. Subleading displacement memory and ΔCAB

In the BMS group, there are also symmetries para-
metrized by the vector field on the 2-sphere, YA. This vector
field is required to be a conformal Killing vector on the 2-
sphere from Eq. (3.5); the space of such vector fields that
are globally defined form a six-dimensional algebra, which
is isomorphic to the Lorentz algebra of (3þ 1)-dimensional
Minkowski spacetime. There have also been proposals to
consider extensions of the BMS algebra that enlarge the
symmetry algebra by including either all the conformal
Killing vectors on the 2-sphere that have complex-analytic
singularities [45,46] or all smooth vector fields on the 2-
sphere [49,50]. When the Wald-Zoupas prescription was
applied to these extended BMS algebras, it was found that
there needed to be an additional term to the flux (or the
change in the charges) to maintain that the difference in the
charges was equal to the flux [52]. For the smooth vector
fields, it was shown that this related term could be absorbed
into the definition of the charges [51]. This new term was
closely related to a new type of GW memory effect called
GW spin memory [26]. There was also a second type of
new GW memory related to these extended symmetries

7There is a second possibility that one might have considered
the change in Ð2Δλ1 to be a scalar GW memory that is
constrained at the same time as the tensor-type memory through
the flux ΔEðαÞ and the change in the integral of α times the mass
aspectM. However, this is not a viable option, because to specify
the properties of the initial and final nonradiative states, one has
to specify the nonradiative value of the scalar field λ1 (analo-
gously to how one has to specify the value of the mass aspectM.
Thus, there is no freedom to constrain the value of λ1 through the
memory equation (4.26). This does have the noteworthy conse-
quence that to determine the tensor-type memory ΔΘ, one needs
to know the scalar memory Δλ1 to be able to compute the term
ΔÐ2λ1 that enters into the ordinary memory ΔQðαÞ.
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called GW CM memory [27]. These two new memory
effects are related to the electric- and magnetic-parity parts
of the subleading displacement memory in ΔCAB. We now
discuss the computation of these effects in Brans-Dicke
theory.

First, we write the change in the charges associated with

an extended BMS algebra element ξ⃗ ¼ YA∂⃗A for a smooth
vector field YA. Starting from Eq. (4.21) and integrating by
parts to simplify the expression, we find

ΔQðYÞ ¼ −
λ0
32π

Z
du d2ΩYA

�
u
2
ðA

�
2ðBðCNBC − NBCNBC −

6þ 4ω

ðλ0Þ2
ð∂uλ1Þ2

�
þ 1

2
ðAðcBCNBCÞ

þ NBCðAcBC − 2ðBðcACNBCÞ þ 2ωþ 3

ðλ0Þ2
ð∂uλ1ðAλ1 − λ1ðA∂uλ1Þ

�
þ ΔF ðYÞ; ð4:28Þ

where ΔF ðYÞ is the additional term needed to relate the
change in the charges to the flux integral. It is given by

ΔF ðYÞ ¼
λ0
64π

Z
d2ΩYAϵABðBÐ2ðÐ2 þ 2ÞΔΣ; ð4:29Þ

where we introduced the notation of [75] for the u integral
of Ψ

ΔΣ ¼
Z

duΨ; ð4:30Þ

and where Ψ determines the magnetic-parity part of cAB
in Eq. (4.4).8 The GW spin memory effect is related to
the quantity ΔΣ, which determines the magnetic-parity
part of ΔCAB. In the absence of magnetic-parity dis-
placement memory ΔcAB, the spin memory will be
independent of u, and given by just the magnetic-parity

part of ΔCð0ÞAB.
Let us now make a few additional definitions. Note that

in Eq. (4.28), there is a term that is linear in the news tensor
NAB, such as the term that gives rise to the displacement
memory; however, the term in (4.28) is multiplied by u.
When this term is integrated over u, the resulting quantity
has dimensions or strain multiplied by time, as the GW spin
memory. It was argued in [27] that a quantity related to this
term is responsible for a new type of GW memory called
GW CM memory. Specifically, consider the quantity
defined by u times the u integral of ∂uΘ, with the part
of ∂uΘ responsible for the ordinary memory ΔΘðoÞ; i.e.,

ΔK ¼
Z

du u∂uðΘ − ΘðnÞÞ: ð4:31Þ

Then the integral of the term in square brackets in
Eq. (4.21) can be written in the form

ΔCðYÞ ¼ −
λ0
64π

Z
d2ΩYAðAÐ2ðÐ2 þ 2ÞΔK: ð4:32Þ

Finally, define the remaining terms in Eq. (4.28) to be

ΔJ ðYÞ ¼
λ0
64π

Z
du d2ΩYA

�
ðAðcBCNBCÞ

þ 2NBCðAcBC − 4ðBðcACNBCÞ

þ 4ωþ 6

ðλ0Þ2
ð∂uλ1ðAλ1 − λ1ðA∂uλ1Þ

�
; ð4:33Þ

which are the moments of the change in the super angular
momentum with respect to the vector field YA. With these
definitions, Eq. (4.28) reduces to the expression

ΔQðYÞ ¼ −ΔJ ðYÞ þ ΔCðYÞ þ ΔF ðYÞ: ð4:34Þ

Using the evolution equation for the Bondi mass aspect
(2.33), we can show that the definition of the charge needed
to satisfy Eq. (4.28) is given by

QðYÞ ¼
λ0
8π

Z
d2ΩYA

�
−uðA

�
M −

1

4λ0
Ð2λ1

�
− 3LA

þ 1

32
ðAðcBCcBCÞ þ

1

4λ0
ðA

�
3λ2 þ

ω − 1

2λ0
ðλ1Þ2

�

−
1

4λ0
ðcABðBλ1 − λ1ðBcABÞ

�
: ð4:35Þ

Next, it is useful to consider decomposing the vector field
YA into gradient and curl parts via the expression

YA ¼ ðAβðxCÞ þ ϵABðBγðxCÞ ð4:36Þ

(for smooth functions β and γ) and to treat the case of
divergence- and curl-free vector fields YA separately. This
will allow us to isolate the GW spin and CM memory
effects.
CM memory and electric-parity YA. Let us first special-

ize to YA ¼ ðAβ. The term ΔF ðYÞ vanishes for vector fields

8The modification to the charge defined in [51] is similar to the
quantity ΔF ðYÞ, but instead of ΔΣ, a term proportional to uΨ was
used instead.
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YA of this type. After integrating by parts, this means that
we can determine the CM memory through the equation

Z
d2ΩβÐ4ðÐ2 þ 2ÞΔK ¼ 64π

λ0
ðΔJ ðβÞ þ ΔQðβÞÞ: ð4:37Þ

In the above equation, we have defined Ð4 ¼ ðÐ2Þ2, and
we have let ΔQðβÞ and ΔJ ðβÞ given in Eqs. (4.35) and
(4.33) be the change in the charges and in a part of the flux
associated with the vector field YA ¼ ðAβ. The procedure
for computing the CM memory works similarly to that for
computing the standard GW memory described by the
potential ΔΘ: (i) first pick a basis of functions for the
smooth function β on S2 to determine the coefficients of
ΔK expanded in this basis (perhaps most usefully, spherical
harmonics); (ii) then provide radiative (and some non-
radiative) data in the functions λ1, cAB, and their u
derivatives to evaluate the basis-function coefficients of
the flux term ΔJ ðβÞ; (iii) next specify the nonradiative data
inM, LA, cAB, λ1, and λ2 to evaluate the coefficients of the
change in the charges ΔQðβÞ; (iv) finally, solve for the
relevant coefficients of ΔK by acting on it with the elliptic
operator Ð4ðÐ2 þ 2Þ and performing the integral. Some
interesting differences from the standard GW memory are
that the flux term involves cAB and λ1 in addition to ∂uλ1
and NAB, and the charge involves cAB, LA, and λ2 in
addition to λ1 and M.
Spin memory and magnetic-parity YA. Next we shall

discuss vector fields given by YA ¼ ϵABðBγ. In this case, it
is the term ΔCðYÞ that vanishes, and one can solve for the
spin memory through the equation

Z
d2ΩγÐ4ðÐ2 þ 2ÞΔΣ ¼ −

64π

λ0
ðΔJðγÞ þ ΔQðγÞÞ: ð4:38Þ

The prescription used to determine the coefficients of the
potential ΔΣ when expanded in a basis of functions on S2

works nearly identically to that for the expansion of ΔK for
the spin memory. The main difference is that fewer non-
radiative data are needed to determine the spin memory.
Specifically, because the quantities ðAλ2 and ðAM enter
into the charge as gradients, then these terms will vanish for
a magnetic-parity vector field of the form YA ¼ ϵABðBγ.
Thus, computing the spin memory does not require knowl-
edge of the functions λ2 and M.

D. Summary and discussion

To summarize, in asymptotically flat general relativity in
Bondi coordinates, there are four types of memory effects
that are encoded in the electric- and magnetic-parity parts
of the tensors ΔcAB and ΔCAB. All four memory effects can
be measured through geodesic deviation, and they produce
a type of shearing of a family of deviation vectors pointing
from some fiducial timelike worldline far from a source of

gravitational waves. The memory effects encoded in ΔcAB
are related to the dependence of the final deviation vector
on the initial deviation vector; the memory effects encap-
sulated in ΔCAB are connected to the dependence of the
final deviation on the initial relative velocity of the
deviation vector. Three of the four memory effects were
constrained by conservation laws for charges associated
with the (extended) BMS algebra. Specifically, the electric-
parity part of ΔcAB is constrained through the statement of
supermomentum conservation associated with the super-
translation symmetries of the BMS group. The electric- and
magnetic-parity parts ofΔCAB were determined through the
conservation of super angular momentum conjugate to the
super-Lorentz symmetries of the extended BMS algebra.
The magnetic-parity part of ΔcAB does not seem to have
any conservation equation that constrains its value (and
thus might be classified as just a persistent observable).
In our treatment of asymptotically flat solutions of

Brans-Dicke theory in Bondi coordinates, we observed
that there were a total of six types of memory effects: the
four that exist in general relativity, and two more that are
related to the leading-order dynamical part of the scalar
field, λ1. The two new memory effects also could be
measured through geodesic deviation, though they would
produce an expansion (or contraction) of the family of
deviation vectors pointing orthogonally away from a given
worldline (a so-called “breathing” mode). The memory
effect Δλ1 was related to the amplitude of this effect which
depends on the initial deviation vector, and the effect in
ΔΛ1 corresponded to the scale of the effect depending on
the initial relative velocity of the nearby worldlines. The
quantities Δλ1 and ΔΛ1 were not constrained by any
conservation laws associated with conserved quantities
in asymptotically flat spacetimes in Brans-Dicke theory
(so they would also just be persistent observables). Rather,
because the symmetries of asymptotically flat solutions of
Brans-Dicke theory are the same as those of general
relativity, the same three types of memory effects are
constrained by the fluxes of conserved quantities as in
general relativity. Because the definition of the flux and
charges includes additional radiative and nonradiative data
(namely, ∂uλ1, λ1, and λ2), the precise expressions used for
computing the memory effects and the data necessary to
compute these effects differ in Brans-Dicke theory from the
expressions used in general relativity.

V. CONCLUSIONS

In this paper, we investigated asymptotically flat sol-
utions of Brans-Dicke theory in Bondi-Sachs coordinates.
We solved the field equations of this theory, and we found
that they have a similar structure to the Bondi-Sachs form
of the Einstein equations in general relativity. The expan-
sions of the metric and the Ricci tensor in series in 1=r (r
being the areal radius) have somewhat different forms from
the equivalent quantities in general relativity. Specifically,
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the Ricci tensor in Bondi coordinates scales as 1=r, which
allows for a scalar (or breathing-mode) gravitational-wave
polarization not present in general relativity; other coef-
ficients in the metric also fall off more slowly with 1=r in
Brans-Dicke theory than in general relativity to accom-
modate this additional GW polarization. Interestingly, this
different “peeling” property of the Ricci tensor does not
affect the asymptotic symmetry group in Brans-Dicke
theory, which remains the Bondi-Metzner-Sachs group
(though the way in which these symmetries are extended
into the interior of the spacetime in Brans-Dicke theory
differs from the related extension in general relativity). We
also computed the properties of nonradiative and stationary
regions of spacetime in Brans-Dicke theory, which is
important for computing and understanding GW memory
effects.
We found six types of memory effects generated after a

burst of the scalar field and tensorial gravitational waves
pass by an observer’s location. Four of these effects are also
present in GR: namely, they are the electric- and magnetic-
parity parts of displacement and subleading displacement
memories. These effects produce the familiar, lasting
shearing of a ring of freely falling test masses, with the
displacement part depending on the initial separation of the
test masses, and the subleading displacement part depend-
ing on the initial relative velocity of the masses (the
electric- and magnetic-parity parts refer to the parity
properties of the sky pattern of the memory effect over
the anticelestial sphere). The amplitude of the memory
effects in Brans-Dicke and in GR will differ, because in
Brans-Dicke theory, there are additional contributions from
the fluxes of energy and angular momentum per solid angle
from the scalar field. The two additional GW memory
effects in Brans-Dicke theory are related to the breathing-
mode polarization of the gravitational waves, and they
could also be classified into leading and subleading
displacement terms. These memory effects cause a ring
of freely falling test masses to have an enduring, uniform
expansion (or contraction) of a circular congruence of
geodesics transverse to GW propagation. The leading part
that depends upon the initial displacement of the masses
had been previously considered, but the subleading part,
which depends on the initial relative velocity of the masses
appears not to have been. The latter can be thought of as the
scalar analog of the center-of-mass memory effect.
Half of these memory effects are constrained by fluxes of

conserved quantities associated with the extended BMS
group (these are the electric-parity displacement memory,
the spin memory, and the center-of mass memory). The
other half (the magnetic-parity displacement memory and
both breathing-mode memory effects) are not, and would
be described as being persistent observables in the nomen-
clature of [33,92]. For all the memory effects, but

particularly for the persistent-observable types, understand-
ing the properties of the nonradiative regions before and
after the burst of the scalar field and gravitational waves is
important for understanding the set of possible memory
effects. For example, in general relativity, stationary-to-
stationary transitions in which the two stationary regions
differ by only a supertranslation allow for a wide range of
possible electric-parity displacement memory effects; how-
ever, in Brans-Dicke theory, such transitions would only
allow for scalar-type memory effects with a constant sky
pattern. More general types of nonradiative regions at early
and late times are necessary to have fewer trivial memory
effects.
Let us conclude with a few comments on future

applications and directions for our work. It would be
interesting to explore the post-Newtonian limit of our
results for compact binary systems, so as to make contact
with some existing results computed by Lang [57,58].
Another potential direction is to explore a broader set of
modified gravity theories. We note that our formalism can
easily be extended to more general massless scalar-tensor
theories, such as those proposed by Damour and Esposito-
Farèse [81,96]. It would be interesting to understand
whether there are similar relationships between symmetries
and memory effects in theories where additional polar-
izations are present, such as the scalar-vector-tensor the-
ories [97]. (A generic theory of gravity can have up to six
polarizations, and there would typically be additional GW
memory effects associated with all such polarizations.)
Other viable theories of gravity such as the higher curvature
theories [62] (e.g., dynamical Chern-Simon gravity [98]
and Einstein-dilaton-Gauss-Bonnet gravity [99,100]) and
massive scalar-tensor theories would also be useful to
explore.
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APPENDIX: FIELD EQUATIONS IN
JORDAN FRAME

In this appendix, we present scalar wave equation and
the hypersurface equations in the Jordan frame. The rr, rA,
and the trace of the AB components of the modified
Einstein equations in Eq. (2.13a) give
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�
4

r
þ 2∂rλ

λ

�
∂rβ −

1

λ
∂r∂rλ −

ω

λ2
ð∂rλÞ2 −

1

4
hABhCD∂rhAC∂rhBD ¼ 0; ðA1aÞ

1

2r2
∂rðr4e−2βhAB∂rUBÞ − r2∂r

�
1

r2
DAβ

�
þ 1

2
hBCDBð∂rhACÞ þ

DAλ

λr
−
ω

λ2
∂rλDAλ

þ 1

λ
DAβ∂rλþ

1

2λ
hBCDBλ∂rhAC þ 1

2λ
e−2βhABr2∂rλ∂rUB −

1

λ
∂rDAλ ¼ 0; ðA1bÞ

2hABðDADBβ þDAβDBβÞ −R −
1

r2
e−2βDA∂rðr4UAÞ þ 1

2
r4e−4βhAB∂rUA∂rUB

þ 2e−2β∂rV þ r2

λ
□λþ r2

λ
gAB∇A∇Bλþ

ωr2

λ2
gAB∇Aλ∇Bλ ¼ 0; ðA1cÞ

respectively. On the other hand, the scalar wave equation, □λ ¼ 0, is given by

2∂u∂rλþDAðUA∂rλÞ þ ∂rðUADAλÞ −
1

r
ð−2UADAλ − 2∂uλþ ∂rV∂rλþ V∂r∂rλÞ

−
1

r2
½e2βhABð2DAβDBλþDBDAλÞ þ Vð∂rλÞ� ¼ 0: ðA2Þ
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