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The renormalization group flow of unimodular quantum gravity is investigated within two different
classes of truncations of the flowing effective action. In particular, we search for nontrivial fixed-point
solutions for polynomial expansions of the fðRÞ-type as well as of the FðRμνRμνÞ þ RZðRμνRμνÞ family on
a maximally symmetric background. We close the system of beta functions of the gravitational couplings
with anomalous dimensions of the graviton and Faddeev-Popov ghosts treated according to two
independent prescriptions: one based on the so-called background approximation and the other based
on a hybrid approach which combines the background approximation with simultaneous vertex and
derivative expansions. For consistency, in the background approximation, we employ a background-
dependent correction to the flow equation which arises from the proper treatment of the functional measure
of the unimodular path integral. We also investigate how different canonical choices of the endomorphism
parameter in the regulator function affect the fixed-point structure. Although we find evidence for the
existence of a nontrivial fixed point for the two classes of polynomial projections, the fðRÞ truncation
exhibits better (apparent) convergence properties. Furthermore, we consider the inclusion of matter fields
without self-interactions minimally coupled to the unimodular gravitational action and we find evidence for
compatibility of asymptotically safe unimodular quantum gravity with the field content of the Standard
Model and some of its common extensions.
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I. INTRODUCTION

A fundamental quantum description of the gravitational
field which is valid across arbitrarily short length scales
remains unknown. Frequently, a theory of quantum gravity
is claimed to necessitate tools which go beyond quantum-
field theoretic tools due to the perturbative nonrenormaliz-
ability of general relativity (GR) [1–3]. However, pertur-
bative renormalizability is neither necessary nor sufficient
to define a fundamental quantum-field theory. As a con-
crete example, a theory can be perturbatively renormaliz-
able but not valid up to arbitrary scales due to a Landau
pole [4,5] suffering from a triviality problem [6,7]. What
suffices for a fundamental description is the finiteness of
the running couplings of the underlying theory due to

quantum fluctuations. One possible way of ensuring such a
property is by the existence of a fixed point in the
renormalization group flow. At such a point, the theory
reaches a scale-invariant regime and a continuum limit, i.e.,
the removal of a ultraviolet (UV) cutoff, can be achieved
[8]. From this point of view, a theory of quantum gravity
based on continuum quantum-field theory techniques
which features a fixed point can very well define a
fundamental theory. If such a fixed point sits at the
vanishing value of the couplings, the theory is dubbed
asymptotically free, while for nonvanishing (interacting)
fixed points, the theory is said to be asymptotically safe. In
[9], Weinberg conjectured that quantum gravity could be an
asymptotically safe theory despite its perturbative non-
renormalizability. A major obstacle in order to test the
validity of such a conjecture lies in the fact that being an
interacting fixed point, perturbation theory might not be
applicable and nonperturbative tools are mandatory.
Two main perspectives were taken over the past decades.

On the one hand, as in lattice QCD, nonperturbative
information can be extracted from a lattice formulation
of quantum gravity. Such a field has developed into the
(causal) dynamical triangulations program and evidence for
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a well-defined continuum limit was collected in the recent
years1 [11]. Alternatively, on the continuum quantum-field
theory side, functional renormalization group (FRG) tech-
niques were applied to gravity in the seminal paper [12],
leading to the asymptotic safety program for quantum
gravity; see, e.g., [13–19] for recent reviews on the topic.
See also [20,21] for critical discussions on this program for
quantum gravity. The application of FRG techniques has
enabled a systematic search for a nontrivial fixed point in
the renormalization group (RG) flow of quantum gravity, as
proposed in [9]. Recently, Dyson-Schwinger equations
were also adapted to the context of quantum gravity in
[22], opening up an alternative semianalytical continuum
field-theoretic path to probe the existence of a nontrivial
fixed point. All those perspectives are anchored on the firm
pillars of standard quantum-field theory and have collected
compelling evidence for the existence of a well-defined
continuum limit in quantum gravity. This seems to contra-
dict the standard lore that there exists a riddle between
quantum-field theory and GR. Nevertheless, even if such
proposals for a fundamental theory of quantum spacetime
fail to describe our world, one can take an effective field
theory perspective and still use quantum-field theory
techniques to compute quantum-gravitational corrections
[23–25], showing that GR and quantum-field theory have
no a priori incompatibility. In this work, we explore the
asymptotic safety scenario for quantum gravity within the
framework of the FRG.
Yet, being able to define a fundamental theory of

quantum gravity cannot be fully satisfactory. First, it must
be compatible with our current observations and, second, it
must be able to make predictions that will be eventually
tested. However, at this point, another difficulty about
quantum gravity becomes evident. Quantum-gravity effects
are usually suppressed by the Planck scale making the
measurement of direct quantum-gravity effects extremely
challenging. However, one promising path toward testing
the consistency of quantum gravity that has been taken in
asymptotically safe quantum gravity is the coupling with
matter fields; see, e.g., [26–69]. Quantum fluctuations of
matter degrees of freedom affect the running of gravita-
tional couplings and might eventually change the fixed-
point structure. Eventually, such fluctuations can be strong
enough to destroy the existence of a scale-invariant regime,
invalidating the proposal of asymptotic safety. Conversely,
quantum-gravitational fluctuations contribute to the run-
ning of matter couplings and can therefore affect their
behavior at high energies. So far, there are several hints that
the asymptotic safety scenario for quantum gravity based
on metric theories of gravity which are invariant under the
full diffeomorphism group is compatible with the matter

content of the Standard Model of particle physics plus
minor extensions such as right-handed neutrinos and some
dark matter candidates. See [15] for more details.
From the FRG perspective, we do not declare a classical

(or microscopic) action from which we derive the quantum
dynamics. Rather, one starts with a set of symmetries which
should be respected by the underlying quantum theory.
Such symmetries can be deformed by the introduction of
regulator terms which play the role of effectively sup-
pressing the functional integration of “slow modes” in the
Wilsonian sense [17,70–74]. They act as momentum-
dependent masslike terms for the elementary fields of
the theory. Thus, a flowing action Γk, with k a momentum
scale, which obeys an exact flow equation [75–77] is
constructed upon such deformed symmetries and interpo-
lates between the full quantum action2 Γ and the micro-
scopic action S which enters the Boltzmann factor3 of the
path integral. The infinitely many terms that define Γk are
parametrized by an infinite set of couplings which, in their
dimensionless versions, are coordinates of the so-called
theory space. It is thus expected that different symmetries
define different (and inequivalent) theory spaces. From a
quantum-gravity perspective, alternative theories of the
gravitational field based on different symmetry principles
will, very likely, define different quantum theories.
However, there is a situation where this issue becomes
subtle: There are theories which are based on different
symmetries but feature the same classical dynamics. A
famous example is GR and unimodular gravity (UG)
[78–85]. Hence, it is an immediate question whether
dynamical equivalence remains true in the quantum realm.
In UG, the determinant of the metric gμν is fixed

(nondynamical) to a specific scalar density ω2ðxÞ, i.e.,

det gμν ¼ ω2ðxÞ: ð1Þ

The symmetry group is reduced from the group of diffeo-
morphisms (Diff) to transverse diffeomorphisms (TDiff).
Such a group is generated by transverse vectors ϵTα, which
satisfy∇αϵ

Tα ¼ 0, where the covariant derivative is defined
with respect to the unimodular metric gμν. The equivalence
between GR and UG at the classical level is established by
the use of the Bianchi identities; see, e.g., [86]. Quantum
mechanically, however, the situation is much more subtle.
In particular, there is a long-standing debate in the literature
(see, e.g., [86–99] for some recent references) if equiv-
alence remains when quantum fluctuations are taken into
account. Naively, however, one would expect that they are
not equivalent at the quantum level since the nature of their
quantum fluctuations is very different; i.e., the sum over
histories is performed in very different configuration

1Evidence for a suitable continuum limit in four dimensions
was also obtained within quantum Regge calculus, a slightly
different approach from dynamical triangulations; see, e.g., [10].

2The generating functional of one-particle-irreducible dia-
grams.

3We restrict the discussion to a Euclidean setting from now on.
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spaces. In particular, with a view toward asymptotic safety,
the theory space defined by Diff-invariant operators is
different from the one associated with TDiff.
An important and very subtle difference between GR and

UG lies in the treatment of the cosmological constant. In
GR, it corresponds to a parameter which is fixed from the
beginning and added by hand as a coupling constant. It is,
generically, subject to quantum corrections. In UG, the
cosmological constant arises as an integration constant and,
therefore, must be fixed by initial conditions. However, as
such, it does not enter the classical action of the theory
invariant under TDiff since the measure term is just a fixed
scalar density. Thus, in the former case, the cosmological
constant defines a direction in the theory space, while in the
latter, it does not. This can indicate that, if asymptotically
safe, Diff- and TDiff-invariant theories will not be equiv-
alent. However, as pointed out in [86,87,99], this discussion
is more subtle than it sounds, and this is still not completely
understood.
In this paper, we leave aside this discussion and take

TDiff as the fundamental symmetry of the would-be theory
of quantum gravity and look for further hints for the
existence of a nontrivial UV fixed point. For simplicity,
we call the hypothetical asymptotically safe theory unim-
odular quantum gravity (UQG), although it does not mean
that our starting point for the quantization is the unimodular
version of the Einstein-Hilbert action. Earlier results on
asymptotic safety and unimodular gravity can be found in
[89,96–98], where a nontrivial fixed point was obtained
within truncations of the flowing action Γk. We provide a
systematic analysis of fixed points within certain classes of
truncations of Γk by taking into account the following
refinements: We take Γk to be a function of the Ricci scalar
and the quadratic contraction of Ricci tensors, i.e.,

Γk ¼
Z

ddxωfkðR;RμνRμνÞ: ð2Þ

For concreteness, we subdivide the analysis in two classes,
the first being the so-called fðRÞ truncations, i.e.,
fkðR;RμνRμνÞ ¼ fkðRÞ, and the second is defined by
fkðR;RμνRμνÞ ¼ FkðR2

μνÞ þ RZkðR2
μνÞ, where FkðR2

μνÞ and
ZkðR2

μνÞ are arbitrary functions. The second class of trunca-
tionswas introduced in [100]. For both classes,we restrict the
analysis to polynomial expansions of the curvatures on a
spherical background for technical simplicity. The other
improvement that we implement in this work is that we
employ the modified flow equation for UQG introduced in
[99] due to the properties of the functional measure of UQG
discussed in [86,87]. Moreover, we treat the anomalous
dimensions of the elementary fields in different approxima-
tions as discussed in the context of UG in [99]. Finally, we
minimally couple matter fields and analyze the impact they
play on the gravitational couplings.

The paper is presented as follows: In Sec. II, we provide a
brief discussion of the background-field method, Faddeev-
Popov quantization, and FRG techniques for UQG and
describe the model that we investigate in this work. The
flow equation is set up in Sec. III. In Sec. IV, we discuss the
two classes of polynomial projections of fðR;RμνRμνÞ and
the extraction of beta functions. Results for the interacting
gravitational fixed-point structure both for pure gravity and
gravity-matter systems are collected in Sec. V. Finally, we
draw our conclusions in Sec. VI. Technical details and
expressions for the anomalous dimensions used in this work
are presented in the Appendixes.

II. METHOD AND MODEL

A. UG and the background-field method

One of the challenges in the application of coarse-
graining techniques to quantum gravity lies in the lack
of a notion of external scale which tells what is coarser or
finer. In order to define such a structure, the background-
field method [101] is employed, but see [102]. The metric
gμν is split as a fixed background metric ḡμν and a
fluctuating part hμν, i.e., gμν ¼ fðḡ; hÞμν, where f is an
arbitrary function. For the purposes of this work, it is highly
convenient to choose the so-called exponential parametri-
zation or split of the metric. It is defined by

gμν ¼ ḡμα½expðκh::Þ�αν ¼ ḡμν þ κhμν þ
X∞
n¼2

κn

n!
hμα1 � � � hαn−1ν ;

ð3Þ

with κ ¼ ð32πGNÞ1=2, with GN being the Newton
constant. Systematic studies employing more general para-
metrizations in Diff-invariant theories can be found in,
e.g., [103–108] for perturbative quantum gravity and in
[109–112] in the context of asymptotic safety.
The unimodularity condition det gμν ¼ ω2ðxÞ can be

easily implemented in Eq. (3) by choosing a unimodular
background det ḡμν ¼ ω2ðxÞ and traceless fluctuations
ḡμνhμν ≡ htr ¼ 0. In a path-integral formulation, the restric-
tion to traceless fluctuations around a unimodular back-
ground in the exponential parametrization automatically
restricts the configuration space to unimodular metrics. It
must be emphasized that the tracelessness of the fluctuation
field is not taken as a gauge condition but rather as a
constraint from the very definition of such a field. Such a
formulation of the unimodularity condition is called the
“minimal version” and was put forward in [86,87,96–98].
This is one particular way to implement the unimodularity
condition in the path integral, and it is the one we adopt in
this work. Different strategies to implement such a con-
dition may bring different conclusions with respect to
those reported here. See, e.g., [89,93,113] for different
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perspectives on how to implement the unimodularity
condition in the path integral.

B. Digression on the Faddeev-Popov quantization in UG

The Euclidean path integral of UQG is performed over
trace-free fluctuations in the exponential parametrization as
discussed in Sec. II A and can be written formally as

ZUQG ¼
Z

Dhtr−freeμν

VTDiff
e−SUG½h;ḡ�; ð4Þ

where VTDiff stands for the volume of the TDiff group, and
the classical unimodular action SUG½h; ḡ� is invariant under
TDiff but does not need to coincide with the unimodular
version of the Einstein-Hilbert action. Applying the stan-
dard Faddeev-Popov procedure,4 one inserts in the func-
tional integral a formal identity as

ZUQG ¼
Z

Dhtr−freeμν

VTDiff

�Z
DϵTΔFPδðFTÞ

�
e−SUG½h;ḡ�; ð5Þ

where ΔFP corresponds to the Faddeev-Popov determinant,
and FT

μ ½h; ḡ� ¼ 0 corresponds to a transverse gauge-fixing
condition. The Faddeev-Popov unity is obtained by the
integration over transverse contravariant vectors ϵTμ, which
are the generators of TDiff. In addition, we assume that the
integration measures are invariant under TDiff.
Different from the standard situation in the Faddeev-

Popov prescription, one cannot factor out the integral over
the transverse vectors ϵTμ and associate it with the VTDiff .
The main reason is that the transverse vector is metric
dependent. Following [86,87], the volume of TDiff is
defined as

VTDiff ¼
Z

Dϵδð∇̄μϵ
μÞ; ð6Þ

where it is used that for unimodular metrics, ∇μϵ
μ ¼ ∇̄μϵ

μ.
Decomposing ϵμ in terms of transverse and longitudinal
parts, i.e., ϵμ ¼ ϵTμ þ ∇̄μφ, it is straightforward to find that

VTDiff ¼ Det−1=2ð−∇̄2Þ
Z

DϵT ð7Þ

as a proper representation of the volume of the TDiff group.
Therefore, the final expression of the path integral of
unimodular quantum gravity is represented as

ZUQG ¼
Z

Dhtr−freeμν DC̄αDCβDet1=2ð−∇̄2Þ

× e−SUG½h;ḡ�−Sg:f:þgh:½h;C̄;C;ḡ�; ð8Þ

where Sg:f:þgh:½h; C̄; C; ḡ� corresponds to a gauge-fixing
action along with Faddeev-Popov ghosts C̄α and Cβ terms.
In summary, Eq. (8) is the proper formal definition of the
Euclidean functional integral of UG (in its minimal version)
and the starting point for applying functional renormaliza-
tion group techniques.

C. Functional renormalization group for UG

In order to search for a fixed point in the renormalization
group flow, we employ functional renormalization tech-
niques. They are based on the Wilsonian perspective of
momentum shellwise integration of modes in the path
integral. It can be performed in a smooth fashion by the
introduction of a regulator term ΔSk½ϕ� in the action
appearing in the Boltzmann factor of the Euclidean path
integral. It implements a suppression of all field modes
associated with momentum lower than an infrared scale k.
Hence, the scale-dependent path integral is written as

Zk½J� ¼
Z

DϕΛUV
e−S½ϕ�−ΔSk½ϕ�þ

R
ddxJðxÞϕðxÞ; ð9Þ

where ϕðxÞ represents a generic field content of the theory
and J denotes its corresponding external source. The UV
cutoff ΛUV is placed in order to make the measure well
defined. The regulator term is quadratic in the fields with a
kernel function RkðΔÞ as

ΔSk ¼
1

2

Z
ddxϕðxÞRkðΔÞϕðxÞ: ð10Þ

The suppression of field modes is achieved according to the
spectrum of the Laplacian operator in RkðΔÞ, i.e., field
configurations associated with eigenvalues p2 such that
p2 < k2 will be suppressed in the functional integration. In
this sense, the regulator is such that the path integral is
evaluated over a shell from ΛUV to k, where k, therefore,
acts as an infrared cutoff scale. Its introduction allows us to
define the effective average action, or the flowing action Γk,
which is a scale-dependent functional and contains the
effect of large quantum fluctuations. The flowing action
interpolates between the full quantum effective action
(Γk→0 ¼ Γ) and the classical/microscopic UV action
ðΓk→ΛUV

¼ SΛÞ. The flow of Γk with k is described by
the Wetterich equation [75–77],

∂tΓk ¼
1

2
STr½ðΓð2Þ

k þRkÞ−1∂tRk�; ð11Þ

where ∂t ≡ k∂k, Γ
ð2Þ
k ¼ δ2Γk=δΦδΦ is the Hessian, and

STr denotes the supertrace which contains a negative sign
for Grassmann-valued fields and a factor of 2 for complex
fields. The Wetterich equation receives an extra contribu-
tion coming from the extra determinant in (8). Regularizing
the extra determinant as Detð−∇̄2Þ ↦ DetðPkð−∇̄2ÞÞ,

4See [86,87,99] for further details about the Faddeev-Popov
procedure in UG in its minimal version.
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where PkðzÞ ¼ zþ RkðzÞ, the flow equation for Γk
becomes

∂tΓk ¼
1

2
STr½ðΓð2Þ

k þRkÞ−1∂tRk� −
1

2
Tr

�∂tRkð−∇̄2Þ
Pkð−∇̄2Þ

�
:

ð12Þ

Note that, according to the procedure adopted earlier, the
extra determinant does not generate additional fluctuation
vertices, and it arises from a proper application of the
Faddeev-Popov procedure in UG. As a consequence, it
contributes only to the “background flow” ∂tΓk½0; ḡ�.

D. Setting the truncation for unimodular
gravity-matter systems

In this work, the key strategy to obtain information about
the fixed-point structure is based on a mixed approach
which combines the background-field approximation, ver-
tex, and derivative expansion, similar to what has been done
in [35,36,40,99,114–117]. On the one hand, in the back-
ground approximation the extraction of the beta functions
of the dimensionless gravitational background couplings is
obtained from the flow equation by turning off all the
fluctuating fields after the computation of the Hessian.
Moreover, the anomalous dimension of the graviton is
identified with the running of the background Newton
coupling. The ghost and matter anomalous dimensions are
set to zero. On the other hand, a simultaneous vertex and
derivative expansion generate one-loop-structure diagrams
as corrections to the flow of the two-point function of the
fields and allow us to unambiguously derive independent
anomalous dimensions of all fluctuating fields. In this sense,
the extra functional trace associated with the path integral
measures only contributes to the background flow, since it
only depends on the background metric. Furthermore, as an
approximation, the different avatars of the Newton coupling
(see, e.g., [56,57]) in the vertices and graviton propagator are
identified with its background value.
We consider a truncation for the flowing action Γk in the

unimodular setting containing an arbitrary number of
massless Gaussian matter fields,5 namely, scalar, Abelian
vector, and Dirac fields, minimally coupled to gravity in
four-dimensional Euclidean spacetime. Throughout the
work, we investigate a truncation of the form

Γk ¼ Γgravity
k þ Γmatter

k þ Γg:f:
k þ Γgh:

k ; ð13Þ

where we follow [100,108] and write the gravitational
sector as6

Γgravity
k ½gμν� ¼

1

16πGN;k

Z
x
ωfkðR; R2

μνÞ; ð14Þ

where GN;k is the dimensionful Newton coupling, fk is an
arbitrary function of the Ricci scalar, and the square of the
Ricci tensor, R2

μν ¼ RμνRμν. The k dependence comes from
the scale-dependent renormalization factors and couplings
of curvature invariants. The matter sector of the effective
average action is composed of Nϕ scalar fields, NA Abelian
vector fields, and Nψ Dirac spinors. Its complete action is
given by

Γmatter
k ½g;ϕ; ψ̄ ;ψ ; A�

¼ 1

2

XNϕ

i¼1

Z
x
ωgμν∂μϕi∂νϕi þ

XNψ

i¼1

Z
x
ωiψ̄ i=∇ψ i

þ 1

4

XNA

i¼1

Z
x
ωgμαgνβFi;μνFi;αβ; ð15Þ

where the summation index i runs over the particle species,
and Fi;μν is the field strength of the Abelian gauge field Ai;μ.
We do not consider the running of wave-function renorm-
alization factors of the matter fields as they do not lead to
self-consistent results within the hybrid approximation
adopted in this work (see Sec. VA for details). The
covariant Dirac operator =∇ ¼ eμaγa∇μ satisfies the
Lichnerowicz relation

ΔL1
2

ψ i ¼ −=∇2ψ i ¼
�
−∇2 þ R

4

�
ψ i: ð16Þ

The fermion-gravity interaction is achieved through the
vierbein and spin connection. In a spacetime manifold with
vanishing torsion, these are not independent fields and can
both be expressed in terms of hμν adapted to the exponential
decomposition once the local Oð4Þ gauge invariance is
gauge fixed by a Lorentz symmetric condition (see
Appendix B in Ref. [118]).7 Moreover, due to the relation
gμν ¼ eaμebνηab, the vierbein also obeys the unimodularity
condition, i.e., det eaμ ¼ ω. Besides featuring a Z2 sym-
metry for the scalar sector under which ϕi ↦ −ϕi, this toy
model also features a shift symmetry ϕi ↦ ϕi þ const,
which prevents a scalar mass term. Additionally, an axial
U(1) symmetry, i.e., ψ i → eiαγ5ψ i, ψ̄ i → ψ̄ ieiαγ5 , prohibits
a Dirac mass term. In this model, the scalars and “chiral”
fermions are uncharged, not leading to gauge interactions.
The gauge-fixing action for the TDiff and the Abelian

gauge symmetry is given by [86,87,96,97,118]

5Meaning that we do not consider matter self-interactions.
6Herein, we use the shorthand notation

R
x ≡

R
d4x.

7Alternatively, for the Dirac covariant operator =∇, one could
use the spin-base formalism [119–121] expressed in accordance
with the exponential parametrization. Both prescriptions are
equivalent at the level of our computations.
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Γg:f:
k ½h; A; ḡ� ¼ 1

2a

Z
x
ωḡμνFT

μ ½h; ḡ�FT
ν ½h; ḡ�

þ 1

2ζ

XNA

i¼1

Z
x
ωðḡμν∇̄μAi;νÞ2; ð17Þ

where a and ζ represent gauge parameters for the gravi-
tational and Abelian sectors, respectively. Using the trans-
verse projector with respect to the background metric
ðPTÞμν ¼ ḡμν − ∇̄μð∇̄2Þ−1∇̄ν, we define the transverse

gauge-fixing function as FT
μ ½h; ḡ� ¼

ffiffiffi
2

p ðPTÞμν∇̄αhνα.
This particular prescription of the gauge-fixing function
is necessary since only the transverse diffeomorphism
sector should be fixed. In this work, we adopt the
Landau gauge for both gravitational and Abelian sectors,
i.e., a → 0 and ζ → 0. The introduction of the transverse
projector makes the gauge fixing for TDiff a nonlocal
functional. This could be avoided by allowing a higher-
derivative operator in the gauge fixing; see, e.g., [98].
Accompanying the gauge-fixing term there is the action

for the Faddeev-Popov ghosts8 which reads

Γgh:
k ½h; C̄; C; c̄; c; ḡ� ¼

Z
x
ωC̄μḡμν

δFT
ν ½h; ḡ�
δhαβ

δQChαβ

þ
XNA

i¼1

Z
x
ωc̄ið−∇̄2Þci; ð18Þ

where CμðC̄μÞ and ciðc̄iÞ are the ghost and antighost for the
gravitational and Abelian sectors, respectively. In the unim-
odular setting, the Faddeev-Popov ghost for the gravitational
sector is constrained by the transversality condition∇μCμ ¼
∇̄μðgμνCνÞ ¼ 0 as a consequence of the transverse nature of

the TDiff generator. Furthermore, δQChαβ corresponds to the
“quantum” transformation of the fluctuation field with the
generator being the ghost field Cμ. The explicit implemen-
tation of the gravitational ghost sector suitable for the
exponential split of the metric is discussed in [49,99].
A minimal and diagonal Hessian together with an exact

inversion of the kinetic operators can be achieved in a
spherical background and by decomposing the fluctuation
field hμν into the York basis [124], namely,

hμν ¼ hTTμν þ 2∇̄ðμξνÞ þ
�
∇̄μ∇̄ν −

1

4
ḡμν∇̄2

�
σ: ð19Þ

We emphasize the absence of the trace mode in the
decomposition due to the unimodularity condition. No
nonlocal field redefinitions are performed and, as a

consequence, the Jacobians arising from the change of
variables are taken into account in the flow equation by a
suitable regularization of the resulting determinants.
Furthermore, appropriate wave-function renormalization
factors are introduced for the gravitational ghost fields
and for each spin sector of the gravitational fluctuation
according to

hTTμν ↦ Z1=2
k;TTh

TT
μν ; ξμ ↦ Z1=2

k;ξ ξμ; σ ↦ Z1=2
k;σ σ;

ð20aÞ

Cμ ↦ Z1=2
k;CC

μ; C̄μ ↦ Z1=2
k;CC̄μ: ð20bÞ

The wave-function renormalization factors Zk;Φ with
Φ ¼ ðTT; ξ; σ; C; C̄Þ generate anomalous dimensions
ηΦ ¼ −∂t lnZk;Φ and contribute to the system of beta
functions of Newton and higher curvature couplings.
The Abelian gauge potentials are also decomposed into

its transverse and longitudinal parts,

Ai;μ ¼ AT
i;μ þ ∇̄μ½ð−∇̄2Þ−1=2AL

i �; ∇̄μA
Tμ
i ¼ 0: ð21Þ

Contrary to the fluctuation field decomposition, herein we
chose to insert an inverse square root of the Bochner
Laplacian −∇̄2, so that the Jacobian associated with this
field redefinition is a simple identity.

III. SETTING THE FLOW EQUATION

At the practical level, the right-hand side of the flow
equation is expanded on the same basis as the one chosen
for the truncation such that a suitable projection rule selects
the beta functions associated with each coupling. The beta
functions of the background gravitational couplings can be
read off at zeroth order in the fluctuating fields, and the
elements of the Hessian employed in such a computa-
tion are listed in the Appendix A. The entries of the
regulator function Rk are built from the following pre-
scription [125]:

Rk;φiφj
ðΔÞ ¼ Γð2Þ

k;φiφj
ðΔÞjΔ↦ΔþRkðΔÞ − Γð2Þ

k;φiφj
ðΔÞ; ð22Þ

where Δ is an appropriate coarse-graining operator, and

Γð2Þ
k;φiφj

denotes the second functional derivative of Γk with

respect to the fields φi and φj. For the regulator kernel (i.e.,
for the shape function that enters the regulator), we choose
the Litim-type cutoff [126]

RkðΔÞ ¼ ðk2 − ΔÞθðk2 − ΔÞ: ð23Þ

In particular, we adopt two types of regularization schemes
distinguished by two common choices of coarse-graining
operators [125], namely, the Bochner Laplacian −∇̄2

(type I), and the Lichnerowicz Laplacians ΔLs (type II),

8Alternatively, the gauge-fixing and ghost terms for different
formulations of unimodular gravity can be derived through BRST
transformations; see [93,95]. See also [122,123] for a discussion
of the BRST implementation of the unimodular gauge.
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which are connected by the Lichnerowicz relations
on a four-dimensional maximally symmetric Euclidean
background

ΔL2
¼ −∇̄2 þ 2

3
R̄; ΔL1

¼ −∇̄2 þ 1

4
R̄; ΔL0

¼ −∇̄2:

ð24Þ

Inspired by [35,55,127,128], in order to accommodate
both regularization prescriptions, we define the “interpolat-
ing” coarse-graining operator for each spin-s sector as
Δs ¼ ΔLs − γsR̄, where the endomorphism parameters
were introduced such that the choice γ0 ¼ γ1

2
¼ γ1 ¼ γ2 ¼

0 implements the Lichnerowicz Laplacians and γ0 ¼ 0,
γ1
2
¼ 1=4, γ1 ¼ 1=4, and γ2 ¼ 2=3 result in the Bochner

Laplacian. According to [34], in order to account for a

correct sign for the fermionic contributions to the Newton
coupling constant, a type II regularization must be adopted.
The fermionic regulator function then is written as

Rk;ψψðzÞ ¼ i½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk2=z − 1Þθðk2=z − 1Þ

q
− 1�=∇; ð25Þ

where z ¼ ΔL1
2

. Furthermore, since for massless scalar

fields both types of regularizations are equal, we adopt
for simplicity the type II regularization prescription for the
gauge fields as well [35]. Henceforth, we explore in this
work both types of coarse-graining operators only in the
gravitational sector.
For the truncation (13), the running of the dimensionless

gravitational couplings can be read off, at zeroth order in
the fields, from the following flow equation written in the
Landau gauge, i.e., a ¼ 0,

∂tΓk ¼
1

2
Trð2Þ½GTT∂tRk;TT� þ

1

2
Tr0ð1Þ½Gξξ∂tRk;ξξ� þ

1

2
Tr00ð0Þ½Gσσ∂tRk;σσ� − Trð1Þ½GCC̄∂tRk;CC̄�

−
1

2
Tr0ð0Þ½ðΔ0 þ RkðΔ0ÞÞ−1∂tRkðΔ0Þ� þ

Nϕ

2
Trð0Þ½Gϕϕ∂tRk;ϕϕ� − NψTrð1=2Þ½Gψψ∂tRk;ψψ �

þ NA

2
Trð1Þ½GATAT∂tRk;ATAT � þ NA

2
Tr0ð0Þ½GALAL∂tRk;ALAL � − NATrð0Þ½Gcc̄∂tRk;cc̄�

þ T Jacob:
ð1Þ þ T Jacob:

ð0Þ ; ð26Þ

with Gij ¼ ½ðΓð2Þ
k þRkÞ−1�ij for every pair ði; jÞ. The first term in the second line corresponds to the extra determinant

accounting for an appropriate treatment of the volume of the TDiff group. The last two terms in the fourth line denote
additional contributions coming from the Jacobian associated with the change of variables hμν ↦ fhTTμν ; ξμ; σg. Upon
regularization Δs ↦ Δs þ RkðΔsÞ, these contributions manifest themselves as the following additional traces:

T Jacob:
ð1Þ ¼ −

1

2
Tr0

��
Δ1 þ RkðΔ1Þ þ

2γ1 − 1

2
R̄

�
−1∂tRkðΔ1Þ

�
; ð27aÞ

T Jacob:
ð0Þ ¼ −

1

2
Tr00

��
Δ0 þ RkðΔ0Þ −

1

3
R̄

�
−1∂tRkðΔ0Þ

�
−
1

2
Tr00½ðΔ0 þ RkðΔ0ÞÞ−1∂tRkðΔ0Þ�: ð27bÞ

The computation of the traces in the FRG equation is
performed with standard heat kernel techniques. All the
necessary technical tools and notation are collected in
Appendix B. In general, the result of the trace computation
leads to very long expressions and, therefore, we shall not
report explicit results here. The anomalous dimensions
can be computed by acting with two functional derivatives
with respect to the fields on the flow equation (26) and
expanding the full scale-dependent effective action in
powers of the fields on a flat background. Their extraction
is then obtained by means of suitable projection rules. We
follow the same strategy as in [99,118]. The explicit
expressions for the anomalous dimensions used in this
work are reported in Appendix D.

IV. f ðR;RμνRμνÞ PROJECTIONS AND EXTRACTION
OF BETA FUNCTIONS

In this section, we discuss the extraction of beta
functions from two different types of polynomial projec-
tions of the fkðR;RμνRμνÞ truncation minimally coupled
with Gaussian matter degrees of freedom in the unimodular
setting.
To extract the beta functions of the background gravi-

tational couplings from the FRG equation, we can adopt a
projection which consists of setting to zero all fluctuation
fields. Within the background approximation, the trunca-
tion (13) inserted in the left-hand side of (26) leads to a flow
equation of the form
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1

16πGN;k
½−ηNfkðR̄; R̄2

μνÞ þ ∂tfkðR̄; R̄2
μνÞ�

¼ F ðfk; fðm;nÞ
k ; ηi; ∂tfk; ∂tf

ðm;nÞ
k ; NΨÞ; ð28Þ

where the left-hand side of (28) features the “background
anomalous dimension” ηN ¼ −∂t lnZN with ZN ¼
ð16πGN;kÞ−1 and NΨ ¼ ðNϕ; NA; Nψ Þ. The dependence
on η⃗ ¼ ðηTT; ηξ; ησ; ηcÞ on the right-hand side of (28)
comes from the regulator insertion ∂tRk associated with
each field sector. Moreover, we adopt the compact notation

fðm;nÞ
k ¼ ∂mþnfkðR̄; X̄Þ

∂R̄m∂X̄n ; ð29Þ

with X̄ ¼ R̄2
μν. In order to obtain concrete results, we resort

to polynomial truncations. In principle, had we performed
all calculations in a generic background, the most general
polynomial expansion [within the class of the fkðR;R2

μνÞ
truncation] would be of the form

fkðR;R2
μνÞ ¼

X
n1;n2

ᾱðn1;n2Þk Rn1ðRμνRμνÞn2 ; ð30Þ

where ᾱðn1;n2Þk denotes the scale-dependent couplings. The

running of the couplings ᾱðn1;n2Þk can be extracted by
expanding both sides of the flow equation (28) in powers
of R̄ and R̄μν and comparing the coefficients of the same
curvature invariants on both sides order by order.
Unfortunately, this procedure carries an ambiguity for a
spherical background as the invariant R̄2

μν collapses to
1
4
R̄2.

As a consequence, the running of any two couplings ᾱðp1;p2Þ
k

and ᾱðq1;q2Þk can no longer be disentangled for all pairs
ðp1; p2Þ and ðq1; q2Þ satisfying the relation p1 þ 2p2 ¼
q1 þ 2q2. A way to bypass this ambiguity, without appeal-
ing to a generic background, is to impose some restriction
on the function fkðR;R2

μνÞ.

A. f ðRÞ polynomial projection

In this subsection, we consider the particular case
corresponding to the fðRÞ approximation, which can be
directly obtained by neglecting the R2

μν dependence in our
truncation. For practical computations, we focus on the
polynomial approximation

fkðRÞ ¼ −Rþ
XN
n¼2

k2−2nαk;nRn; ð31Þ

where αk;n corresponds to scale-dependent dimensionless
couplings, and the parameter N stands for a positive integer
number that fixes the maximal degree of the polynomial
truncation. This truncation was largely explored in the
context of “standard” asymptotic safety. See, e.g.,

[55,65,100,112,125,127–143]. The coefficient of the first
term is normalized to −1 in order to recover the unimodular
Einstein-Hilbert truncation once higher-order powers of
the curvature scalar are neglected. Furthermore, the zeroth-
order term, which would be proportional to the cosmo-
logical constant, is absent since we are dealing with a
unimodular theory space.9

We extract the system of beta functions associated with
the dimensionless Newton coupling Gk and the set of
dimensionless couplings fαk;ngn¼2;…;N by plugging
Eq. (31) into the flow equation (28) and expanding both
sides of it up to order R̄N. In this case, the flow equation
leads to the following structure:

ηN
16πGk

k2R̄þ 1

16πGk

XN
n¼2

ðð2− 2n− ηNÞαk;n þ βðnÞα Þk4−2nR̄n

≡XN
n¼1

Hnðαk;NΨ; η⃗;β
ðmÞ
α Þ; ð32Þ

where Gk ¼ k2GN;k is the dimensionless Newton coupling

and we have defined βðnÞα ¼ ∂tαk;n. The functionHn has the
general schematic form

Hnðαk; NΨ; η⃗; β
ðmÞ
α Þ≡AnðαkÞ þ ÃnðNΨÞ þ

X4
j¼1

Bn;jðαkÞηj

þ
XN
m¼2

Mn;mðαkÞβðmÞ
α : ð33Þ

The coefficients An, Ãn, Bn;j, and Mn;m are scheme-
dependent quantities and can be computed analytically for
Litim’s cutoff. By matching contributions according to the
power of scalar curvature, we arrive at the RG equations

βG ¼ 2Gk½1þ 8πGkH1ðαk; NΨ; η⃗; β
ðmÞ
α Þ�; ð34aÞ

βðnÞα ¼ ðηN þ 2n − 2Þαk;n þ 16πGkHnðαk; NΨ; η⃗; β
ðmÞ
α Þ;

ð34bÞ

with n ¼ 2;…; N. In Eq. (34) we have used
ηN ¼ G−1

k βG − 2. We highlight that the system of RG
equations defined by (34a) and (34b) provides only implicit

results for the beta functions βG and βðnÞα . Furthermore, the
system is not closed because of the presence of the
anomalous dimensions ðηTT; ηξ; ησ; ηcÞ. In principle, this

9It is important to emphasize that, since the introduction of the
regulator breaks BRST invariance, masslike terms for the
graviton can be generated and mimic the effect of the cosmo-
logical constant [99]. Nevertheless, such terms arise as a
symmetry-breaking effect due to the regulator and are not present
in the background approximation.
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system can be solved analytically in order to extract explicit

results for βG and βðnÞα once a prescription to obtain the
anomalous dimensions is adopted. In Sec. VA, we will
consider two types of prescriptions: the standard “RG-
improvement” approximation10 and a hybrid semipertur-
bative approximation based on an independent calculation
of the anomalous dimensions using the derivative expan-
sion around a flat background. We emphasize that the latter
prescription is somewhat not self-consistent since it glues
together results obtained under different schemes and
backgrounds. Nonetheless, we take this tentative choice
to obtain results beyond the background approximation. As
usual in functional methods, the use of hybrid schemes
might be justified a posteriori if the underlying results
find good convergence properties. Nevertheless, the final
expressions for the system of RG equations are very
lengthy and not worth being reported here.
The so-called nontrivial or non-Gaussian fixed-point

(NGFP) solutions (denoted as G� and α�n) may be obtained
in terms of the following equations:

2G�½1þ 8πG�H1ðα�; NΨ; η⃗j�; 0Þ� ¼ 0; ð35aÞ

ð2n − 4Þα�n þ 16πG�Hnðα�; NΨ; η⃗j�; 0Þ ¼ 0: ð35bÞ

The notation ð� � �Þj� indicates that the quantity in paren-
theses is evaluated at the fixed-point solution. In Sec. VA,
we report the numerical evidence for interacting fixed-point
solutions associated with various choices of N.

B. FðRμνRμνÞ+RZðRμνRμνÞ polynomial projection

Another way of bypassing the technical problem of
distinguishing the invariants R2 and R2

μν on a spherical
background is to consider an alternative class of truncation,
which is characterized by the following decomposition11:

fkðR;R2
μνÞ ¼ FkðR2

μνÞ þ RZkðR2
μνÞ; ð36Þ

where FkðR2
μνÞ and ZkðR2

μνÞ denote scale-dependent arbi-
trary functions of the invariant R2

μν. This class of truncation
was first investigated in [100] as an approach to include
effects beyond the tensor structure of the Ricci scalar. For
practical calculations, we restrict our analysis to polyno-
mial truncations defined by

FkðRμνRμνÞ ¼
XNF

n¼1

k2−4nρk;2nðRμνRμνÞn; ð37aÞ

ZkðRμνRμνÞ ¼ −1þ
XNZ

n¼1

k−4nρk;2nþ1ðRμνRμνÞn; ð37bÞ

where NF ¼ bN=2c and NZ ¼ bðN − 1Þ=2c, with b� � �c
representing the floor function. We denote as fρk;ngn¼2;…;N

the set of scale-dependent dimensionless couplings. This
particular decomposition allows us to unambiguously
extract the beta functions associated with the set of
higher-curvature couplings fρk;ngn¼2;…;N even in a spheri-
cal background. This follows from the fact that FkðRμνRμνÞ
and RZkðRμνRμνÞ contribute to the left-hand side of the
flow equation with even and odd powers of R̄, respectively,
when projected onto a spherical background. Following the
same procedure outlined in the fðRÞ approximation, we
extract the system of RG equations associated with the
dimensionless couplings Gk and fρk;ngn¼2;…;N by plugging
(37a) and (37b) into both the left-hand side and right-hand
side of Eq. (28) to obtain the following expressions:

1

16πGN;k
½−ηNfkðR̄; R̄2

μνÞ þ ∂tfkðR̄; R̄2
μνÞ�jS4

¼ ηN
16πGk

k2R̄þ 1

16πGk

×
XNF

n¼1

k4−4n

4n
ðβð2nÞρ þ ð2− 4n− ηNÞρk;2nÞR̄2n

þ 1

16πGk

XNZ

n¼1

k2−4n

4n
ðβð2nþ1Þ

ρ − ð4nþ ηNÞρk;2nþ1ÞR̄2nþ1

ð38aÞ

for the right-hand side of the flow equation and

F ðfk; fðm;nÞ
k ; ηi; ∂tfk; ∂tf

ðm;nÞ
k ; NΨÞjS4

¼
XN
n¼1

�
AnðρkÞ þ ÃnðNΨÞ þ

X4
j¼1

Bn;jðρkÞηj

þ
XN
m¼2

Mn;mðρkÞβðmÞ
ρ

�
ð38bÞ

for the left-hand side of the flow equation. The notation
ð� � �ÞjS4 denotes the projection on the spherical background.
Performing an order-by-order comparison in the curvature
scalar R̄, one easily obtains the system of RG equations for
the FZ truncation and the equations for the fixed-point
solutions G� and fρ�ngn¼2���N . The final expressions are
quite similar to the condensed expressions in (34a) and
(34b) for the flow equations and (35a) and (35b) for the
fixed-point equations, respectively. Nevertheless, the
explicit form of the coefficients An, Ãn, Bn;j, and Mn;m

obtained within the FZ truncation differs considerably from
the ones extracted via fðRÞ approximation.

10In Appendix C, the reader can find more details about the
identification of the background anomalous dimension with the
one derived from the second derivative of the flowing action with
respect to fluctuations.

11Hereafter, we refer to such a decomposition as FZ truncation.
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V. RESULTS FOR THE INTERACTING
GRAVITATIONAL FIXED-POINT STRUCTURE

A. Pure gravity systems

In the following, we present our results regarding the
fixed-point structure extracted within the two previously
defined polynomial truncations, focusing on the casewithout
matter fields, i.e., by setting Nϕ ¼ NA ¼ Nψ ¼ 0. The
analysis including matter contributions is reported in
Sec. V B.
The fixed-point equations for both truncations are con-

siderably complicated so that we resort to a numerical
recursive solution of the fixed-point equations for the
higher-order couplings in terms of the two lowest ones
and adopt a bootstrap search strategy [136,137] to select
suitable fixed-point solutions and critical exponents. Within
the background approximation, a canonical choice of
closure for the system of RG equations is obtained with
the RG-improved anomalous dimensions (see, e.g., [117])
ηTT ¼ ησ ¼ G−1

k ∂tGk − 2 and ηξ ¼ ηc ¼ 0. Alternatively, a
hybrid closure is obtained by improving the background
approximation with anomalous dimensions computed in
an independent way via the vertex expansion (see, e.g.,
[99,116,117]).
For the fðRÞ approximation within the RG-improved

closure, we have performed the search for fixed-point
candidates at each order of the approximation from
N ¼ 1 to N ¼ 20. It is worth mentioning that, in the case
of standard asymptotically safe quantum gravity (ASQG),
i.e., where the theory space is defined by all Diff-invariant
operators, the fixed-point analysis has been performed
within polynomial expansions involving terms up to
R70 [143].
In Fig. 1, we show the results of the fixed-point values

for some of the dimensionless couplings (up to α�6) defined
in the polynomial fðRÞ decomposition [see Eq. (31)] as
functions of the order of approximationN. For higher-order
couplings (α�7;…; α�20), the fixed-point coordinates are of
order jα�nj < 10−4. In each plot, the results computed with
the Bochner Laplacian (type I) as a coarse-graining
operator are represented by a blue circle, whereas the ones
computed employing the Lichnerowicz Laplacians (type II)
are distinguished by a red square. We observe that the
fixed-point values stabilize against the inclusion of higher-
order operators. Albeit quantitatively different, the fixed-
point structure is similar for both coarse-graining operators
and, in particular, it displays an apparent stabilization for
sufficiently large truncation.
In order to provide a better visualization of the stabili-

zation pattern against higher-order extensions for both
regularization schemes, we consider in Fig. 2 a convenient
normalization for the fixed-point couplings. Following
[100,137,143], we define the set of normalized fixed points
fλngn¼1;…;N according to

FIG. 1. Fixed-point values of the couplings Gk, αk;2, αk;3, αk;4,
αk;5, and αk;6 in the fðRÞ truncation. The blue circle indicates the
type I regularization (Bochner Laplacian), whereas the red square
indicates the type II regularization (Lichnerowicz Laplacians).
All plots are computed within the RG-improved prescription.

FIG. 2. Normalized fixed points in the fðRÞ truncation. The

convergence pattern is exhibited with the normalization λ1ðNÞ ¼
G�ðNÞ

G�ðNmaxÞ þ 1 and λnðNÞ ¼ α�nðNÞ
α�nðNmaxÞ þ n (for n > 1). From bottom to

top, we display λnðNÞ for n ¼ 1;…; 15 in the Nmax ¼ 20
truncation (see main text). The left panel shows the normalized
fixed-point values associated with the type I regularization
scheme, while the right panel corresponds to results obtained
via the type II regularization scheme. Both schemes of calculation
are closed with the RG-improved prescription.
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λ1ðNÞ ¼ G�ðNÞ
G�ðNmaxÞ

þ 1 and λnðNÞ ¼ α�nðNÞ
α�nðNmaxÞ

þ n;

ð39Þ

where G�ðNÞ and α�nðNÞ represent the fixed-point values
of the dimensionless couplings computed at order N. The
couplings λn are normalized in units of the fixed-point
values computed at the largest approximation order, which
in the present case is Nmax ¼ 20, and are shifted by n.
Figure 2 gives evidence for the rapid apparent stabilization
of the fixed points.
Figure 3 displays the corresponding critical exponents

for both types of coarse-graining operators as functions
of N and gives evidence for a nonincreasing number of
relevant directions.12 This indicates that the dimensionality
of the UV critical hypersurface does not grow up to the
dimension of the truncated unimodular theory space, which
is a crucial feature for the asymptotic safety program. As
occurred for the fixed-point values, higher-order additional
invariant operators do not seem to spoil the stabilization of
the critical exponents. In particular, for the critical exponents
computed within the type I regularization, i.e., Bochner
Laplacian as a coarse-graining operator. Figure 3 (left)
indicates that the number of relevant directions saturates
at two (except obviously for N ¼ 1). For the type II
regularization characterized by the Lichnerowicz
Laplacians (right), the analysis is a bit more subtle. In this
case, we observe a small oscillation in the neighborhood of
positive values for lower-order truncations (N < 6). Despite
that, the inclusion of additional invariant operators drives the
number of relevant directions to stabilize at two as well.
An interesting feature also displayed in Fig. 3 is the near-

canonical character of the critical exponents, i.e., a small

deviation of the critical exponents in comparison with the
canonical scaling of the operators appearing in our trunca-
tion. Indeed, the critical exponents computedwithin the fðRÞ
expansion behave like θn ∼ Δn, where Δn ¼ 4 − 2n is the
canonical scaling dimension of an invariant of the form R̄n.
The two positive critical exponents appear as exceptions,
since they deviate from the corresponding canonical scaling
dimension by a greater gap. The near-canonical character of
the critical exponents was already observed in a unimodular
setting based on a polynomial expansion of fðRÞ up to R̄10

[97]. Additionally, it is worth mentioning that a near-
canonical spectrum of critical exponents has been inves-
tigated in detail within standard ASQG [56,57,100,136,
137,143,144]. In particular, such a property suggests that
power counting can be a good guiding principle in the
construction of truncations of the flowing effective action.
As stated earlier, as an attempt to go beyond the RG-

improvement prescription, the anomalous dimensions of
the fluctuating metric and ghost fields may be independ-
ently computed through a simultaneous vertex and deriva-
tive expansion of the effective average action in the same
fashion as discussed previously in the unimodular setting
[99] (see also [116,117]). This provides a second way of
closing the system of RG equations by combining the
background-field approximation for the couplings with
independent anomalous dimensions for fluctuating fields
in a hybrid approach, as in [35,36,115,117]. Our setup for
the generation of the interaction proper vertices employs
the same ansatz (13). In order to capture higher-curvature
effects, the Lagrangian fðR; R2

μνÞ is decomposed into an
Einstein-Hilbert term supplemented by quadratic-curvature
invariants such that the gravitational sector is in the form

Γgravity
k ½gμν�¼

k2

16πGk

Z
x
ωð−Rþk−2αk;2R2þk−2ρk;2RμνRμνÞ;

ð40Þ

with αk;2 and ρk;2 being the same dimensionless couplings
as in (31) and (37a), respectively. In particular, for
computational simplicity, curvature-squared contributions
to the vertices are neglected. We emphasize that this is an
additional approximation that should be refined in a future
investigation. After expanding the gravitational action in
powers of the fluctuation field hμν, we set ḡμν ¼ δμν. This
setup allows us to obtain the anomalous dimensions in the
form ηi ¼ ηiðGk; αk;2; ρk;2; βα; βρ; NΨÞ. The explicit expres-
sions are given in Appendix D within a semiperturbative
approximation13 and, when inserted in the RG equations for
the fðRÞ truncation, the coupling ρk;2 and its beta function

FIG. 3. Critical exponents associated with the fixed-
point structure in the fðRÞ approximation for the range
n ¼ 1;…; 15 in the Nmax ¼ 20 truncation within the RG-
improved closure. The left panel corresponds to results obtained
under the type I regularization, while the right panel displays the
results obtained under the type II regularization.

12We follow the convention that relevant directions are charac-
terized by positive (real part of the) critical exponents which, in
turn, are the eigenvalues of the stability matrix multiplied by −1.

13The semiperturbative approximation consists of setting to
zero all the η’s that would arise from the RG-scale derivative on
the regulator function. This amounts to neglecting the η’s on the
right-hand side of the expressions for the anomalous dimensions
[35,40,49,54,58,99,145].
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are set to zero, since the fðRÞ approximation does not
contain any R2

μν dependence. Similarly, when treating the
system of RG equations for the FZ truncation, the coupling
αk;2 and its beta function are not considered.
To avoid a proliferation of similar plots, we refrain from

showing the plots of convergence of individual fixed-point
values and only exhibit results for the normalized fixed
points and the critical exponents in Figs. 4 and 5.

As argued in [39], for a generic class of regulators
proportional to the two-point functions, the imposition that
the regulators must diverge in the UV leads to the constraint
η⃗j� < 2. Since our regulators fall in this class, we have
selected, within the hybrid semiperturbative prescription,
fixed-point values for G� and α�2 which respect the bound

14

η⃗j� < 2. The convergence pattern of the normalized fixed-
point values λnðNÞ for the fðRÞ approximation are dis-
played in Fig. 4 for both types of regularization schemes.
Considering the nonlinear character of the expressions for
the anomalous dimensions given by (D1a)–(D2), as
opposed to the RG-improved case, we managed to find
suitable fixed-point solutions for the polynomial truncation
up to Nmax ¼ 16 for the type I regularization and up to
Nmax ¼ 14 for type II. As in the case of the RG-improved
prescription, the type I regularization leads to stable fixed-
point solutions, apart from a late stabilization of the
normalized coupling associated with the invariant R̄5.
However, the type II regularization only leads to a clear
apparent stabilization for the first four lower-order oper-
ators and seems to be sensitive against the inclusion of
higher-order invariants. This behavior is again evident in
the plots of the critical exponents in Fig. 5. In order to tell if
this behavior is a truncation artifact due to the independ-
ently computed anomalous dimensions or simply reflects a
limitation in our search method, an investigation of higher-
order truncations would be needed. Interestingly though,
the near-canonical character of the critical exponents is still
manifest for both types of regularization schemes within
this hybrid semiperturbative approximation. This indicates
that quantum fluctuations encoded in the anomalous
dimensions provide a mild contribution to all invariant
operators.
We move on to discuss the fixed-point structure of the

polynomial FZ truncation. The more complicated nature of
this truncation naturally leads to larger expressions in
contrast with the fðRÞ truncation, thus demanding addi-
tional computational capacity. As a consequence, within
the RG-improved prescription, we limit ourselves to
explore the fixed-point equations within a truncation where
the highest-order invariant operator corresponds to
RðRμνRμνÞ7 (i.e., Nmax ¼ 15). As in the fðRÞ case, a
numerical recursive solution of the fixed-point equations
is implemented alongside a bootstrap search method.
In Fig. 6, we display our findings of the fixed-point

values of the dimensionless couplings up to ρk;6 as
functions of N extracted from the FZ truncation for both
types of coarse-graining operators. We adopt the same
convention for the plot markers as in the fðRÞ truncation.

FIG. 4. Plots of the convergence pattern for the normalized
fixed-point values of the couplings λnðNÞ for the fðRÞ approxi-
mation evaluated within the hybrid semiperturbative closure.
The left plot exhibits the convergence pattern for the range n ¼
1;…; 13 in the Nmax ¼ 16 truncation under the type I regulari-
zation, while the right plot displays the convergence pattern for
the range n ¼ 1;…; 11 in the Nmax ¼ 14 truncation under the
type II regularization. All couplings follow the same normaliza-
tion convention as defined previously. The truncations are smaller
with respect to previous results and different for different coarse-
graining operators due to numerical instabilities.

FIG. 5. Critical exponents associated with the fixed-point
structure in the fðRÞ approximation within the hybrid semi-
perturbative closure. The left panel corresponds to results for the
range n ¼ 1;…; 13 in the Nmax ¼ 16 truncation under the type I
regularization. In particular, only the third and fourth set of
critical exponents under this regularization are complex conjugate
pairs and, consequently, the lines representing their real parts fall
on top of each other. The right plot exhibits the results for the
range n ¼ 1;…; 11 in the Nmax ¼ 14 truncation under the type II
regularization. Clearly, in the latter case, the truncation needs to
be further extended in order to verify if apparent convergence is
restored for the critical exponents.

14The constraint verified in this work is subjected to the
approximations made here. In particular, for ησ the range of fixed-
point values may be more restricted if one considers the effects of
symmetry-breaking graviton mass terms (and full closure), as
discussed in [99].
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Additionally, in Fig. 7, we display the convergence pattern
of the normalized fixed-point values of the couplings λnðNÞ
defined in terms of (Gk; ρk;n). As one can notice from
Figs. 6 and 7, for the regularization employed by the
Lichnerowicz Laplacians (red squares in Fig. 6 and right
panel in Fig. 7), we managed to find suitable NGFP
solutions for the polynomial truncation until Nmax ¼ 15,
exhibiting mild oscillations for higher-order operator invar-
iants (with the exception of wild oscillations at the
approximation orders N ¼ 3 and N ¼ 8). Contrarily, the
regularization based on the Bochner Laplacian (blue circles
in Fig. 6 and left panel in Fig. 7) leads to suitable,
apparently stabler, NGFP solutions only up to Nmax ¼ 9.
This feature is attributed to a limitation in our numerical
method implemented to generate fixed-point solutions.
According to the critical exponents illustrated in Fig. 8,

our findings for the FZ truncation still indicate that the UV
critical hypersurface is characterized by two relevant
directions for both types of coarse-graining operators.
Despite the stabilization of the number of relevant direc-
tions, the numerical values for the critical exponents
undergo the same unstable behavior as the fixed-point
values depicted in Fig. 6. Albeit the difficulties in extending
our analysis to truncations higher than N ¼ 9 for the type I
regularization scheme, the results shown in Fig. 8 (left)
indicate that the critical exponents share the same near-
canonical character as in the case of the fðRÞ approxima-
tion. However, such a behavior is less apparent in the case
of type II coarse-graining operators. Here, as one can see
from Fig. 8 (right), some critical exponents behave accord-
ing to the near-canonical scaling. Nevertheless, for assorted
choices of N there are points which exhibit appreciable
deviations from the canonical scaling of invariant operators
within the truncation.
To conclude this section, we display in Figs. 9 and 10 the

results for the normalized fixed-point values and critical

FIG. 8. Critical exponents associated with the fixed-point
structure in the FZ truncation within the RG-improved closure.
The left panel corresponds to results for the range n ¼ 1;…; 7 in
the Nmax ¼ 9 truncation obtained under the type I regularization,
while the right plot displays the results for the range n ¼ 1;…; 12
in the Nmax ¼ 15 truncation obtained under the type II
regularization.

FIG. 6. Fixed-point values of the couplings Gk, ρk;2, ρk;3, ρk;4,
ρk;5, and ρk;6 in the FZ truncation. The blue circle indicates the
type I regularization (Bochner Laplacian), whereas the red square
indicates the type II regularization (Lichnerowicz Laplacians).
All plots are computed within the RG-improved prescription.

FIG. 7. Plots of the convergence pattern of the normalized
fixed-point values of the couplings λnðNÞ [now given in terms of
ðGk; ρk;nÞ] for the FZ truncation evaluated within the RG-
improved prescription. The left plot exhibits the convergence
pattern for the range n ¼ 1;…; 7 in the Nmax ¼ 9 truncation
under the type I regularization, while the right plot displays the
convergence pattern for the range n ¼ 1;…; 12 in the Nmax ¼ 15
truncation under the type II regularization. All couplings follow
the same normalization convention as in the fðRÞ case.

EXPLORING NEW CORNERS OF ASYMPTOTICALLY SAFE … PHYS. REV. D 103, 104023 (2021)

104023-13



exponents in the FZ truncation when the semiperturbative
prescription is adopted. For the regularization employed by
the Lichnerowicz Laplacians (right panel in Fig. 9), suitable
NGFP solutions were found for polynomial truncation until
Nmax ¼ 10, with improved stabilization of the fixed-point
coordinates, apart from a severe oscillation at order N ¼ 5.
These are better results in comparison with the previous
case (given the simplicity of our truncation). Regarding the
Bochner Laplacian operator (left panel in Fig. 9), stable
results were achieved only up to Nmax ¼ 8. A similar
limitation was observed in the previous analysis. Moreover,
at order N ¼ 2, we have disregarded the only would-be
suitable NGFP solution for the pair ðG�; ρ�2Þ, since one of
the two corresponding critical exponents is ∼110 and may

be regarded as a truncation artifact. Conclusive statements
regarding the stability of the fixed point requires an
extensive analysis of more sophisticated truncations.
As in the RG-improved case, the dimensionality of the

UV critical hypersurface is still two for both regularization
schemes. However, for the type II case, the two positive
critical exponents exhibit mild oscillations and, as opposed
to the corresponding RG-improved result, the gap control-
ling their near-canonical scaling is severely reduced by the
anomalous dimensions contributions when higher-order
invariant operators are included. Nevertheless, in contrast
with the RG-improved analysis, the critical exponents do
not exhibit appreciable deviations from canonical scaling
for several choices of the approximation order N.
Notably, our findings suggest that in the unimodular

version of the FZ truncation, the search for fixed-point
candidates gets hampered by difficulties in extending the
approximation order beyond N ¼ 16 (which is the case
considering Lichnerowicz Laplacians within the RG-
improvement prescription) in comparison with the fixed-
point analysis in the unimodular version of the fðRÞ
approximation. The possibility of extension gets more
restricted when independent anomalous dimensions are
adopted. As a consequence, the FZ truncation in the
unimodular setting generates less stable solutions than
its fðRÞ relative overall. This characteristic is opposed to
considerations previously made in the standard ASQG
setting. In particular, the systematic investigation carried
out in [100] reveals that the FZ truncation presents a faster
stabilization, including higher-order extensions, than the
fðRÞ approximation. Considering the approximations we
have used, our findings reveals the opposite behavior in the
unimodular version.

B. Gravity-matter systems

Several works in standard ASQG provide strong hints for
the existence of a NGFP in the RG flow within different
truncations, ranging from the Einstein-Hilbert approxima-
tion to more sophisticated ones [65,100,110–112,
114–117,125,127–141,143,144,146–167]. On top of that,
a growing number of investigations provide compelling
evidence for the persistence of the NGFP against the
introduction of a large class of matter fields, such as the
field content corresponding to the SM of particle physics
and some beyond SM (BSM) extensions; see [26–69,142].
In this section, we explore the impact of matter degrees of
freedom on the interacting gravitational fixed-point struc-
ture in the unimodular setting for both fðRÞ and FðR2

μνÞ þ
RZðR2

μνÞ polynomial truncations. By varying the number of
matter fields, we can probe the compatibility of nontrivial
fixed-point solutions in the unimodular theory space
coupled to the field content corresponding to the SM of
particle physics as well as to some BSM extensions.
Following the same strategy employed in the pure

gravity case, a numerical recursive solution and a bootstrap

FIG. 10. Critical exponents associated with the fixed-point
structure in the FZ truncation within the semiperturbative closure.
The left panel corresponds to results for the range n ¼ 1;…; 7 in
the Nmax ¼ 8 truncation obtained under the type I regularization,
while the right plot displays the results for the range n ¼ 1;…; 9
in the Nmax ¼ 10 truncation obtained under the type II regulari-
zation.

FIG. 9. Plots of the convergence pattern for the normalized
fixed-point values of the couplings λnðNÞ [given in terms of
ðGk; ρk;nÞ] for the FZ truncation evaluated within the semi-
perturbative prescription. The left plot exhibits the convergence
pattern for the range n ¼ 1;…; 7 in the Nmax ¼ 8 truncation
under the type I regularization, while the right plot displays the
convergence pattern for the range n ¼ 1;…; 9 in the Nmax ¼ 10
truncation under the type II regularization. All couplings follow
the same normalization convention as in the fðRÞ case.
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search method were adopted for the selection of suitable
fixed-point candidates. For both fðRÞ and FZ truncations,
we have limited our search to fixed-point solutions within
polynomial approximations ranging from N ¼ 1 to
N ¼ 10. The results reported in the case of gravity-matter
systems are restricted to the RG-improved treatment for the
anomalous dimensions, i.e., using a prescription that relates
ηTT and ησ to the beta function of the Newton coupling,
while setting all other anomalous dimensions to zero. The
other prescription considered in the pure gravity, with
anomalous dimensions computed via derivative expansion,
will not be reported here. The reason is related to the
existence of certain bounds on the anomalous dimensions,
as it was pointed out in [39], appearing as a consistency
requirement for an appropriate behavior of the FRG
regulator at k → ∞. For gravity-matter systems, we have
found fixed-point values that violate such bounds, and we
can argue that these results are not self-consistent.
In Table I, we exhibit a summary of the results

concerning the stability of NGFPs for specific matter
contents for both fðRÞ and FðR2

μνÞ þ RZðR2
μνÞ approxima-

tions. In this case, we just report the main qualitative
features, i.e., in which cases we find evidence for fixed-
point solutions and the corresponding number of relevant
directions. In all cases, we have investigated polynomial
truncations including operators up to OðR10Þ.
The minimal requirement for a phenomenological viable

fixed-point solution is its compatibility with the matter
content of the SM, i.e., Nϕ ¼ 4, NA ¼ 12, and Nψ ¼ 45=2.
As we can observe in Table I, our result points toward the
existence of this fixed point for both truncations under
investigation and for both types of regulators employed in
the coarse-graining procedure. The fixed-point solution
corresponding to the SM matter content exhibits similar-
ities to the results observed for pure gravity. In both
truncations and regularization schemes, we have found
evidence for two-dimensional UV critical surfaces.

Furthermore, the numerical values for the fixed-point
solutions, as well as for the critical exponents, seem to
stabilize for truncations characterized by N ≳ 6. The
exception is the FZ approximation with the type I regulator,
which presents a mild deviation from the “convergence”
pattern at N ¼ 9 and N ¼ 10.
To complement our analysis, we also have considered

the matter content associated with some BSM scenarios.
The first extension, which is motivated by the necessity to
accommodate neutrino masses, corresponds to the choice
ðNϕ ¼ 4; NA ¼ 12; Nψ ¼ 24Þ, i.e., including three or two
additional Dirac fermions (or three Weyl fermions)
accounting for three right-handed neutrinos. In this case,
our results also point toward the existence of UV fixed-
point solutions. The main difference in comparison with the
SM matter content is the appearance of an extra relevant
direction in the FZ truncation with type I regularization. For
the other approximations/schemes, our results indicate two
relevant directions.
It is also interesting to consider matter content corre-

sponding to BSM scenarios characterized by larger sym-
metry groups, e.g., supersymmetric models and grand
unified theories (GUTs). In Table I, we report our findings
for matter content associated with the minimally super-
symmetric Standard Model (MSSM), SU(5), and SO(10)
GUTs. Among these options, only the SO(10) GUT
(Nϕ ¼ 97, NA ¼ 45, and Nψ ¼ 24) exhibits suitable
fixed-point solutions. In this case, most of the schemes
under investigation lead to UV fixed points characterized
by two relevant directions. The exception, once again, is the
FZ truncation with type I regulator, where we have found
three relevant directions. It is also interesting to emphasize
that, in the case of matter content corresponding to SO(10)
GUT, the fixed-point solutions do not appear at the level of
the lowest truncation, i.e., N ¼ 1.
For the matter content corresponding to the MSSM and

SU(5) GUT, we do not find evidence for the existence of

TABLE I. Collection of the results on the stability of NGFPs arising from the matter content of the Standard Model and some of its
commonly studied extensions for both fðRÞ and FðR2

μνÞ þ RZðR2
μνÞ polynomial projections in the unimodular setting. The RG-

improved closure is adopted. The symbols go as follows: check marks✓ indicate the underlying setup possesses a suitable NGFP which
converges for increasing order of approximation N. The number between parentheses indicates the number of relevant directions
observed. An asterisk simply indicates that there is no NGFP at the level of the Einstein-Hilbert truncation (N ¼ 1) converging
afterward toward a suitable NGFP. Finally, an ✗means that there is no NGFP at all orders of approximation, except for one appearance at
only one power of curvature.

Stability of NGFP for some specific matter models

Model Matter content Type I Type II

Nϕ NA NΨ fðRÞ FðR2
μνÞ þ RZðR2

μνÞ fðRÞ FðR2
μνÞ þ RZðR2

μνÞ
SM 4 12 45/2 ✓(2) ✓(2) ✓(2) ✓(2)
SMþ 3νR 4 12 24 ✓(2) ✓(3) ✓(2) ✓(2)
MSSM 49 12 61/2 ✗ ✗ ✗ ✗
SU(5) GUT 124 24 24 ✗ ✗ ✗ ✗
SO(10) GUT 97 45 24 ✓*(2) ✓*(3) ✓*(2) ✓*(2)
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suitable fixed-point solutions within the aforementioned
truncations. Our findings show a qualitative agreement with
the results for nonunimodular settings reported in [35,55].
As it was pointed out in [35], the absence of suitable UV
fixed points for gravity-matters systems with field content
corresponding to the MSSM and SU(5) GUT can be
explained by the inclusion of too many scalars and
fermions, without being compensated by the inclusion of
extra vector fields. It is important to emphasize that this
explanation is restricted to the calculations based on the
background-field approximation. It is worth mentioning
that results from the fluctuation approach (see [168]) for
ASQG indicate that the inclusion of too many scalars
pushes the scalar anomalous dimension to a regime that
violates certain regulator bounds [39].

VI. CONCLUSIONS

In this work, the renormalization group flow of unim-
odular quantum gravity was analyzed. This was motivated
by the possibility of such a quantum theory to be asymp-
totically safe and, thus, well defined up to arbitrarily short
distances. We explored larger theory spaces with respect to
previous analyses by considering truncations which involve
the tensorial structure of Ricci-tensor invariants and anoma-
lous dimensions which are computed from the running of
the two-point function of gravitons and Faddeev-Popov
ghosts. Moreover, in the background approximation, we
used the background-dependent correction to the flow
equation discussed in [99]. Such improvements enabled
us to confront previous results [96,97] with truncations
enlargements and, apart from quantitative differences
which follows from truncation-induced effects, we found
evidence for the persistence of the fixed point.
Technically, we also tested how the underlying fixed-

point structure is affected by different choices of the
endomorphism parameter in the regulator function. In
particular, we discussed the results obtained for Bochner
and Lichnerowicz coarse-graining operators. As expected,
different choices of such operators in the background
approximation directly affect the projection onto curvature
invariants in the flow equation and can lead to substantial
different qualitative results such as the number of relevant
directions (see, e.g., [112,169]). For this discrete choice of
the endomorphism parameter, we observed stable qualita-
tive results both in the fðRÞ and FZ truncations, where the
fixed point features two relevant directions. Nevertheless,
different classes of truncations lead to different computa-
tional subtleties, and we verified that in this setup, the fðRÞ
truncation has better (apparent) convergence properties.
More efficient methods must be employed for the FZ
truncation in order to probe whether the fixed-point
structure stabilizes for larger truncations. In any case, it
is remarkable that by changing the endomorphism param-
eter and the anomalous dimension prescription in each class
leads to a fixed point which features the same qualitative

features, leading to the expectation that this is a conse-
quence of the near-perturbative nature of the fixed point
(which is reflected in the near-canonical scaling).
Finally, we considered the interaction of unimodular

quantum gravity with matter degrees of freedom.
Intuitively, matter fluctuations will affect the running of
the gravitational couplings and since we aimed to describe a
realistic theory of quantum gravity, the fixed point must
exist in the presence of matter fields. As a first approxi-
mation, we included scalars, spinors, and vectors without
self-interactions coupled to the unimodular gravitational
field. As discussed, the matter content of the SM and of
some of its extensions does not destroy the fixed point,
leading to evidence for the existence of a complete theory
of quantum gravity and matter. However, as pointed out, for
some extensions of the SM, the matter content is “too big"
and destroys the fixed point; i.e., they act against scale
invariance in the UV. Hence, it is a concrete realization that
even for truncated theory spaces, one might indeed find
systems which do not feature a fixed point.
The present work suggests several different ways of

improving the truncations of unimodular quantum gravity
and matter systems. In particular, a promising and neces-
sary direction is the consideration of approximations that
go beyond the background one. In this work, we performed
a purely background approximation and a hybrid one.
However, it is necessary to investigate momentum-depen-
dent correlation functions in unimodular quantum gravity
and compare the results with our present findings. This is
work in progress.
Lastly, there is the discussion about the equivalence of

unimodular quantum gravity and standard quantum gravity.
Conceptually, from the point of view of asymptotically safe
quantum gravity, this is an important puzzle to be solved.
Different symmetry groups define, in principle, different
theory spaces, and hence, a different set of essential
couplings that should reach a nontrivial fixed point. In
the unimodular setting, there is no room for a cosmological
constant as an essential coupling while in standard gravity,
it is usually treated as an essential coupling and it is
required to reach a fixed point in the asymptotic safety
program. However, it is far from clear if this necessarily
leads to incompatible pictures. In standard gravity, the
cosmological constant corresponds to a relevant direction
and, thus, a free parameter that should be fixed by
“experiments.” In unimodular gravity, the cosmological
constant appears as an integration constant which is also
fixed by initial conditions. In the end, it remains to be
understood if such theories share the same observables
or not.
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APPENDIX A: THE DECOMPOSED HESSIAN

In this Appendix, we report the Hessians employed in the
computation of the beta functions of the gravitational
couplings. Expanding the gravitational part of the flowing
action (13) up to second order in the fluctuation field h
leads to the expressions

Γð2Þ
TT ¼ Zk;TT½fð0;1Þk ðΔ2 þ ðγ2 − 1ÞR̄Þ − fð1;0Þk �

×

�
Δ2 þ

2γ2 − 1

2
R̄

�
; ðA1aÞ

Γð2Þ
ξξ ¼ 2Zk;ξ

α

�
Δ1 þ

2γ1 − 1

2
R̄

�
2

; ðA1bÞ

Γð2Þ
σσ ¼ 9Zk;σ

8

�
Pk

�
Δ0 þ

3γ0 − 1

3
R̄

�
þQk

�

×

�
Δ0 þ

3γ0 − 1

3
R̄

�
ðΔ0 þ γ0R̄Þ2; ðA1cÞ

Γð2Þ
CC̄ ¼

ffiffiffi
2

p
Zk;C

�
Δ1 þ

2γ1 − 1

2
R̄

�
; ðA1dÞ

where we have defined

Pk ¼ fð2;0Þk þ 1

4
R̄2fð0;2Þk þ 4R̄fð1;1Þk þ 2

3
fð0;1Þk ; ðA2aÞ

Qk ¼
1

3
fð1;0Þk þ 2

9
R̄fð0;1Þk : ðA2bÞ

Furthermore, as defined in the main text, we define the
coarse-graining operator for each spin-s sector as
Δs ¼ ΔLs − γsR̄, where the endomorphism parameters
are introduced such that the choice γ0 ¼ γ1

2
¼ γ1¼ γ2 ¼ 0

implements the Lichnerowicz Laplacians and γ0 ¼ 0,
γ1
2
¼ 1=4, γ1 ¼ 1=4, and γ2 ¼ 2=3 provide the Bochner

Laplacian. As the matter action is already second order in
the fields, its Hessian elements are given by

Γð2Þ
ϕϕ ¼ ΔL0; ðA3aÞ

Γð2Þ
ATAT ¼ ΔL1; ðA3bÞ

Γð2Þ
ALAL ¼ 1

ζ
ΔL0; ðA3cÞ

Γð2Þ
ψψ̄ ¼ i=∇; ðA3dÞ

Γð2Þ
cc̄ ¼ ΔL0: ðA3eÞ

APPENDIX B: HEAT KERNEL EVALUATION
AND TRACE TECHNOLOGY

We follow the standard heat kernel techniques to
compute the functional traces needed throughout this work.
We restrict the calculations below to d ¼ 4. On general
grounds, a functional trace can be expanded in terms of heat
kernel coefficients [13,170,171], namely,

TrðsÞ½WðΔsÞ� ¼
1

16π2
X∞
n¼0

Z
x

ffiffiffī
g

p
Q2−n½W�tr½b2nðΔsÞ�; ðB1Þ

with the Qn functional defined (for arbitrary real n)
according to

Qn½W� ¼ ð−1Þk
Γðnþ kÞ

Z
∞

0

dzznþk−1 d
kWðzÞ
dzk

; ðB2Þ

where k denotes some (arbitrary) positive integer satisfying
the following restriction nþ k > 0. Moreover, tr½b2nðΔsÞ�
denotes the trace of the (nonintegrated) heat kernel
coefficient b2nðΔsÞ associated with the coarse-graining
operator Δs. When the background is evaluated over a
sphere S4, we can express

tr½b2nðΔsÞ� ¼ csR̄n; ðB3Þ

where cs denotes a numerical coefficient depending on the
choice of the coarse-graining operator. In Tables II and III,

TABLE II. cs coefficients associated with the Bochner Laplacian as the coarse-graining operator. All the
coefficients were computed within the four-sphere background.

s n ¼ 0 n ¼ 2 n ¼ 4 n ¼ 6 n ¼ 8 n ¼ 10 n ¼ 12

0 1 5
6

749
2160

26141
272160

130117
6531840

203161
61585920

925711
2037934080

1 3 3
2

259
720

4931
90720

1373
241920

8527
20528640

261865
13450364928

2 5 − 5
6

− 1
432

311
54432

109
1306368

− 317
12317184

− 6631
4483454976
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we report the relevant cs coefficients for the analysis
presented in this work.
For Litim’s cutoff (23), the Qn functionals can be

computed analytically even for a general function of the
form fkðR̄; R̄2

μνÞ. Because of specific properties of this
choice of profile function, only a finite number of Qn
functionals (with negative n) lead to nonvanishing results.
As a consequence, the heat kernel expansion in (B1)
involves only a finite number of terms.
Since the FRG equation written in the York basis features

traces over differential constrained fields, spurious eigen-
values of the coarse-graining operator must be properly
removed. In the main text, this was indicated with the
inclusion of an appropriate number of primes in some
functional traces. These “primed” traces can be computed
according to [125,130,172]

Tr0���0ðsÞ ½WðΔsÞ� ¼ TrðsÞ½WðΔsÞ� −
X
l∈Ms

DlðsÞWðλlðsÞÞ; ðB4Þ

whereMs ¼ fs; sþ 1;…; m − 1þ sg with m denoting the
number of spurious modes (primes). Moreover, λlðsÞ
denotes the lth eigenvalue of the “interpolating” back-
ground Laplacian Δs defined on the four-sphere, and DlðsÞ
represents the degree of degeneracy associated with λlðsÞ.
For the calculation performed in this work, the relevant
expressions when s ¼ 0 or 1 are given by

λlðsÞ ¼
ðlþ 3Þl − s

12
R̄ − γ0δ0;sR̄þ

�
1

4
− γ1

�
δ1;sR̄; ðB5aÞ

DlðsÞ¼
ð2lþ3Þðlþ2Þ!

6l!
δ0;sþ

lðlþ3Þð2lþ3Þ
2

δ1;s: ðB5bÞ

APPENDIX C: UG AND BACKGROUND-FIELD
APPROXIMATION

In the background-field approximation, the unimodular
background effective action splits in a transverse diffeo-
morphism-invariant part and a gauge-fixing part in the form

Γk½ḡ;φ;Ψ� ¼ Γ̄k½g;Ψ� þ Γ̂k½ḡ;φ�; ðC1Þ

with Γ̂k½ḡ;φ� ≈ Sk;gf ½ḡ; h� þ Sk;gh½ḡ; ghosts�, where φ ¼
ðh; C̄; C; c̄; cÞ is the fluctuating multiplet comprising the

metric fluctuation and the ghosts associated with TDiff
and U(1) gauge symmetries. The multiplet Ψ ¼ ðϕ; A;ψÞ
collects the matter part. The covariant approach provides a
local invariance associated with the use of the background-
field method, namely, a split transformation of the back-
ground metric and the fluctuation field which renders the
full metric invariant, i.e.,

gμνðḡ; hÞ ↦ gμνðḡþ δsplitḡ; hþ δsplithÞ ¼ gμνðḡ; hÞ: ðC2Þ

This split transformation is tantamount to guaranteeing
background independence (see [15,21,168] for a discussion
in the context of the FRG approach). For the linear split of
the metric gμν ¼ ḡμν þ hμν, the split transformation is given
by δsplitḡμν ¼ −χμν and δsplithμν ¼ χμν, with χμν ¼ χμνðxÞ
being a local transformation parameter. For the nonlinear
exponential parametrization more convenient for unimod-
ular gravity, the explicit form of δsplithμν is not straightfor-

ward. In this case, we denote δsplithμν ¼ N αβ
μν ½ḡ; h�χαβ, and

its explicit form can be determined by an iterative pro-
cedure (see [49,99]). In the following, we discuss the
corresponding functional identity associated with the split
symmetry.
The invariance of Γ̄k under local split transformations,15

i.e., δsplitΓ̄k½g;Ψ� ¼ 0, leads to the following functional
identity written in schematic form:

δΓ̄k

δḡ
−N ½ḡ; h�∘ δΓ̄k

δh
¼ 0; ðC3Þ

where the ∘ notation indicates a spacetime integration and a
contraction of all indices and it is understood that hðḡ; gÞ.
By acting with ðδ=δḡþ δ=δhÞ on (C3) and noting that, at

TABLE III. cs coefficients associated with the Lichnerowicz Laplacian as the coarse-graining operator. All the
coefficients were computed within the four-sphere background.

s n ¼ 0 n ¼ 2 n ¼ 4 n ¼ 6 n ¼ 8 n ¼ 10 n ¼ 12

0 1 1
6

29
2160

37
54432

149
6531840

179
431101440

− 1387
201755473920

1=2 4 − 1
3

− 11
2160

31
544320

41
26127360

31
492687360

10331
3228087582720

1 3 − 1
2

19
720

− 5
18144

− 11
2177280

− 19
143700480

− 347
67251824640

2 5 − 25
6

719
432 − 23125

54432
101981
1306368 − 952135

86220288
50728409

40351094784

15Actually, the full effective action explicitly breaks the split
symmetry since the gauge-fixing and regulator terms are not shift
symmetric. Hence, the Ward identity associated with shift
symmetry is actually deformed by those explicit-breaking
sources. Nevertheless, ultimately, one is interested in integrating
down to k ¼ 0 which eliminates the spurious breaking coming
from the regulator. As for the gauge fixing, it arises as a BRST-
exact term and, therefore, can be handled in conjunction with the
Slavnov-Taylor identity. Since we are working in the background
approximation where fluctuations are turned off at the level of the
flow equation after the computation of the Hessian, we simply
ignore those symmetry-breaking contributions.
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h ¼ 0, we have N ½ḡ; 0� ¼ 1 and δḡN ½ḡ; h�jh¼0 ¼ 0, the
functional identity (C3) turns into

δ2Γ̄k

δḡ2

����
h¼0

−
δ2Γ̄k

δh2

����
h¼0

¼
�
δN
δh

∘ δΓ̄k

δḡ

�
h¼0

: ðC4Þ

By requiring that the background is on shell, i.e., ḡ ¼ ḡEoM,
the right-hand side of (C4) vanishes, and the background
and the fluctuation two-point correlation functions agree in
the exponential parametrization:

δ2Γ̄k

δḡ2

����
h¼0

¼ δ2Γ̄k

δh2

����
h¼0

: ðC5Þ

The projection adopted for the anomalous dimensions
consists of taking two derivatives with respect to quantum
fields of the flow equation. Therefore, applying a scale
derivative on both sides of (C5) provides an identification
of the anomalous dimensions of the graviton modes to be
proportional to the background anomalous dimensions.
Although the background-field approximation is still use-
ful, Eq. (C3) is not preserved along the flow as it does not
correspond to the modified Nielsen identity, mNI ¼ 0,
namely [15,21,56,168,173],

mNI ¼ δΓk

δḡ
−N ½ḡ; h�∘ δΓk

δh

−
��

δ

δḡ
−N ½ḡ; h�∘ δ

δh

�
Γ̂k

	
þ Ξk½ḡ;φ�; ðC6Þ

where Ξk½ḡ;φ� is a regulator-dependent contribution.
Therefore, for our purposes and for technical reasons,
we have chosen to go one step further and also consider
a hybrid closure of the system of beta functions by
improving the background-field approximation with
anomalous dimensions computed in an independent way
via the vertex expansion employing a flat background
metric.

APPENDIX D: ANOMALOUS DIMENSIONS

Here we report the (nonvanishing) contributions to the
anomalous dimensions of the graviton modes and ghost
fields. The expressions are presented within the semi-
perturbative approximation where all anomalous dimen-
sions contributions on the rhs of the equations are set to
zero. We omit the k dependence for simplicity. For the
graviton modes, the gravitational contribution to the
anomalous dimension of ηTT and ησ yield the following
results:

ηTTjgrav ¼
G

432π

�
54þ 90

ð1þ ρÞ4 −
4ð53βρ − 69Þ
ð1þ ρÞ3 −

1656 − 155βρ þ αð290βρ − 3252Þ
ð1 − 2αÞð1þ ρÞ2

þ 20ð50þ 2αð87α − 95Þ − βαÞ
ð1 − 2αÞ2ð1þ ρÞ þ 18

ð1 − 6α − 2ρÞ4 þ
8ð12βα þ 4βρ − 3Þ
ð1 − 6α − 2ρÞ3

þ 76ð3βα þ βρÞ − 8αð15þ 87βα þ 29βρÞ
ð1 − 2αÞð1 − 6α − 2ρÞ2 −

8ð11þ 2αð87α − 47Þ þ 5βαÞ
ð1 − 2αÞ2ð1 − 6α − 2ρÞ

�
; ðD1aÞ

ησjgrav ¼
G

432π

�
−504 −

720

ð1þ ρÞ4 þ
8ð291þ 23βρÞ

ð1þ ρÞ3 −
22αð5βρ − 138Þ − 47βρ þ 1494

ð1 − 2αÞð1þ ρÞ2

þ 2ð660α2 − 532αþ 8βα þ 113Þ
ð1 − 2αÞ2ð1þ ρÞ −

144

ð1 − 6α − 2ρÞ4 −
8ð42βα þ 14βρ − 51Þ

ð1 − 6α − 2ρÞ3

−
4ðαð66βα þ 22βρ − 42Þ − 57βα − 19βρ þ 9Þ

ð1 − 2αÞð1 − 6α − 2ρÞ2 −
4ð4αð33α − 65Þ − 8βα þ 85Þ

ð1 − 2αÞ2ð1 − 6α − 2ρÞ
�
: ðD1bÞ

The ghost anomalous dimension is given by

ηc ¼
G

270π

�
5ð3βρ − 4Þ
ð1þ ρÞ2 þ 20

1þ ρ
−
4ð7þ 9βα þ 3βρÞ
ð1 − 6α − 2ρÞ2 þ 148

1 − 6α − 2ρ

�
: ðD2Þ
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