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The influence of the medium on the gravitational deflection of light rays is widely discussed in literature
for the simplest nontrivial case: cold nonmagnetized plasma. In this article, we generalize these studies to
the case of an arbitrary transparent dispersive medium with a given refractive index. We calculate the
deflection angle of light ray moving in a general spherically symmetric metric in the presence of medium
with the spherically symmetric refractive index. The equation for the radius of circular light orbits is also
derived. We discuss in detail the properties of these results and various special cases. In particular, we show
that multiplying the refractive index by a constant does not affect the deflection angle and radius of circular
orbits. At the same time, the presence of dispersion makes the trajectories different from the case of a
vacuum even in a spatially homogeneous medium. As one of the applications of our results, we calculate
the correction to the angle of vacuum gravitational deflection for the case when a massive object is
surrounded by homogeneous but dispersive medium. As another application, we present the calculation of
the shadow of a black hole surrounded by medium with arbitrary refractive index. Our results can serve as a

basis for studies of various plasma models beyond the cold plasma case.
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I. INTRODUCTION

Light rays moving in an inhomogeneous medium propa-
gate along curved paths. Similarly, if a gravitating body is
surrounded by some kind of medium, the trajectories of the
rays will differ from the case of motion near the gravitating
body in a vacuum. In the presence of a medium around the
gravitating body, the deflection of light rays will be
determined by a complex combination of various effects:
gravity, refraction, dispersion.

The theory of the propagation of light rays in curved
spacetime in the presence of a medium was developed in
the classic monograph by Synge [1], see also papers [2—4].
The light deflection in the linearized regime, when the total
deflection can be calculated as the sum of the vacuum
gravitational deflection and refraction in an inhomo-
geneous medium, was discussed for the case of plasma,
e.g., in [5,6]. In his monograph on ray optics in general
relativity, Perlick [7] derived an integral formula for the
exact deflection angle of a light ray moving in the
equatorial plane of a Kerr black hole surrounded by a
spherically symmetric plasma distribution.

Recent studies of the influence of medium on the
propagation of rays in a gravitational field are mainly
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devoted to the various effects of gravitational lensing in the
presence of plasma, which fills cosmic space, and is also
concentrated around compact objects. In the works of
Bisnovatyi-Kogan and Tsupko [8,9], we investigated the
case of the weak deflection of photons in the Schwarzschild
metric in the presence of plasma. These results were further
generalized to the case of weak deflection in the Kerr metric
[10]. In the work of Tsupko and Bisnovatyi-Kogan [11],
gravitational lensing in plasma in case of a strong deflection
was investigated. In particular, the deflection angles were
calculated in the strong deflection limit, and the properties
of high-order images [12,13] were calculated for the case of
a homogeneous plasma. Er and Mao [14] numerically
examined strong lens systems in the presence of plasma.
Various astrophysical situations associated with strong
deflection of light rays near compact objects in the presence
of plasma were studied in a series of works by Rogers
[15-17]. Perlick, Tsupko and Bisnovatyi-Kogan [18] have
fully analytically investigated the shadow of spherically
symmetric black holes in the presence of plasma. In another
article, we analytically investigated the effect of plasma on
light ray propagation and on formation of the shadow for
Kerr black hole [19]. Later these issues were further
discussed in articles of Yan [20], Huang, Dong and Liu
[21] and Kimpson, Wu and Zane [22,23]. Different
problems of light deflection in presence of plasma have
been recently studied in series of papers of Crisnejo and

© 2021 American Physical Society


https://orcid.org/0000-0002-2159-8350
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.104019&domain=pdf&date_stamp=2021-05-13
https://doi.org/10.1103/PhysRevD.103.104019
https://doi.org/10.1103/PhysRevD.103.104019
https://doi.org/10.1103/PhysRevD.103.104019
https://doi.org/10.1103/PhysRevD.103.104019

OLEG YU. TSUPKO

PHYS. REV. D 103, 104019 (2021)

Gallo with coauthors [24-27]. In particular, Crisnejo, Gallo
and Jusufi [27] have calculated the higher order terms of the
deflection angles. Wave effects in presence of solar gravity
and solar corona were studied in works of Turyshev and
Toth [28,29]. In a recent paper [30], we have investigated
gravitational microlensing in the presence of plasma (“hill-
hole” effect). For some other recent studies see [31-39].
Recent review of plasma effects in gravitational lensing can
be found in [40].

In most of the mentioned works, the simplest plasma
model is considered—cold nonmagnetized plasma. In this
case, the plasma has a simple expression for refractive
index, and many formulas take on a relatively simple form.
In this paper, we go beyond this approximation and
consider a medium with an arbitrary refractive index.
The formulas we obtained make it possible to easily
calculate the deflection angles, circular orbits and the
shadow of a black hole for any known spherically sym-
metric refractive index. For example, these can be more
complex plasma models.

The paper is organized as follows. In Sec. II, we briefly
describe the relativistic geometrical optics in medium on
basis of Synge’s approach. In Sec. III, we calculate the
deflection angle for light ray moving in spherically
symmetric spacetime in presence of spherically symmetric
medium. In Sec. IV, we find the equation for the circular
light orbits. In Sec. V, we present the discussion of our
results and consider various particular cases. As an
application of our results, in Sec. VI we calculate the
correction to vacuum gravitational deflection due to
presence of homogeneous dispersive medium. As another
application, in Sec. VII the angular radius of shadow of
black hole surrounded by transparent spherically sym-
metric medium is analytically calculated. Concluding
remarks are presented in Sec. VIIL

We use units such that G = c¢ =1, and signature is
{-,+, +, +}. Latin indices take the values i, k = 0, 1,2, 3,
whereas Greek indices take the values a, f =1, 2, 3. We
denote the differentiation with respect to affine parameter
by dot and the differentiation with respect to radial
coordinate with a prime.

II. GENERAL RELATIVISTIC GEOMETRICAL
OPTICS IN DISPERSIVE MEDIUM

General relativistic geometrical optics in curved space-
time filled with isotropic transparent medium was devel-
oped by Synge [1]. Let us consider spacetime with metric
coefficients g;; which are known functions of coordi-
nates. In this spacetime, we consider medium specified by
its refractive index n (which is reciprocal of the phase
speed) and its four-velocity V'. Refractive index n is
considered as a given function of the coordinates x' and
photon frequency w; the four-velocity V' of medium is a
given function of coordinates. Phase-speed and frequency

are measured in the instantaneous rest frame of the
medium.

In Synge’s approach, relativistic geometric optics is
based on so-called medium equation [1]:

i
n?=1+-LL_ (1)
(PeV*)?

The photon frequency w(x') measured by observer at
position x' is related with p; and V' by the following
formula:

piVi = _Q’(xi)- (2)

Note that, in comparison with Eq. (6) and p. 373 of [1], we
also choose the Planck constant as unity. This action is also
equivalent to rescaling the affine parameter, which does not
affect the final results.

To apply the Hamiltonian method, the medium equation
is rewritten in the form

H(xi’l’i) =0, (3)

where the Hamiltonian is

H p) = 3 {5 pipe = (2 = DV P) (4)

Then, propagation of the light rays is described by the
following Hamiltonian equations:

OH . OH

“op M=o

).Ci

(5)

where a dot means differentiation with respect to an affine
parameter A changing along the light trajectory.
Let us now consider static spacetime,

gixdx'dx* = gopdx®dx’ + goo(dx®)?, (6)

where the coefficients g;, are independent of 7. Let us
also consider the static medium, so the medium refractive
index n is a function of the frequency @ and the
space coordinates x* but is independent of ¢. Therefore,
the whole Hamiltonian is independent of ¢. In such a
case, from the equation for p, from (5) we read that
po = const.
Additionally, for a static medium we have [1]

ve =0,

and therefore the relation (2) is simplified to
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o(x*) = —poy/—9%. (8)

Using (8), we write the Hamiltonian (4) as

. 1 . 2
H(x',p;) = 3 {g”‘p,-pk —(n*-1) (Po\/ —900) }
1
=3 {9®popo + 9% parp + (n* — 1) pig™}

1
=3 {9 paps + n*9™ p3}. )

III. DEFLECTION ANGLE IN SPHERICALLY
SYMMETRIC STATIC SPACETIME FILLED BY
SPHERICALLY SYMMETRIC MEDIUM

In this section we derive the exact integral expression
for the deflection angle of light ray moving in general
spherically symmetric static spacetime filled by transparent
static medium with spherically symmetric refractive
index n.

We consider spherically symmetric and static spacetime:

gixdx'dx* = —A(r)dt* + B(r)dr?

+ D(r)(d9? + sin® 9dg?), (10)
where coefficients A(r), B(r) and D(r) are positive and
independent of ¢. In this spacetime we consider a spheri-
cally symmetric static medium where the refractive index is
a given function of the radial coordinate r and photon
frequency w: n(w, r).

Due to spherical symmetry, we can restrict ourselves by
motion in an equatorial plane: 9 = z/2, py = 0. Then the
Hamiltonian (9) is simplified to

nzp%}
A(r)J

For the frequency w(r) measured by static observer at
position r we obtain from Eq. (8):

. 1( p? 2
H(x’,p,»)Z{p L (11)

2 |B(r) D(r)

(12)

where p, is the constant of motion. If we further consider
only asymptotically flat spacetimes, then A(r) — 1 for
r — oo. Then we have:

(13)

Po = —@y,

where @y = w(o0). Therefore for the frequency w(r) we
have gravitational redshift formula

@y
= . 14
o(r) G (14)
Equations of motion:
. OH
Py = _% =0, (15)
S
Pr=""4,
1 p2B'(r) piD'(r) N (n*) w} B n*w3A’(r)
2| BX(r) D?(r) A(r) A%(r) |7
(16)
OH Py
_97T _ Py 17
?=op, ~ DO )
OH _ p,
" op, B0 e
with H =0, i.e.,
p? | p, nwj
B0) "D A "

From Eq. (15) we find that p,, is the constant of motion.
To derive the orbit equation, we write

dp ¢ pyB(r)

=T = . 20
dr i p.D(r) (20)
Expressing p, from (19), we find:

d B 2 -1)2

do _  VB() (“’_gm(r) - 1) .@1)
dr D(r) \Py
Here we have introduced the function
D(r)

2(ry = —2Lp? 22
() = s R0 (r).7) (22)

Function (22) is the generalization of function 4(r) used in
[7,11,18] for cold plasma. In the particular case of the
photon motion near Schwarzschild black hole in vacuum,
function (22) coincides with the “effective potential
of photon” introduced in book of Misner, Thorne and
Wheeler [41].

Let us consider the situation when the trajectory of a
photon passes through the point of closest approach. Then it
is convenient to express everything in terms of the distance of
the closest approach R (minimal value of the coordinate r
for this trajectory). As R corresponds to the turning point
of the trajectory, we should have dr/de =0 if r=R.
From (21) we find:
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n(w,r)

FIG. 1. Deflection angle @& of light ray moving near the black
hole surrounded by transparent dispersive medium with the
refractive index n(w,r). The distance of the closest approach
R is the minimum value of the radial coordinate r for this
trajectory.

W (R)="e. (23)

Then the orbit equation (21) takes the following form:

do . JBD (R0) N\
E‘im(m) ) e

Now we calculate the deflection angle & of light ray
moving from infinity towards the center, reaching the
distance of the closest approach R and again flying away
to infinity (Fig. 1). Without loss of generality, we will
assume that the ray moves in such a way that its angular
coordinate ¢ increases. Then, when moving towards the
center, the coordinate r is decreasing, and one need to use a
“minus” sign in the equation (24), and when moving from
the center to infinity, a “plus” sign should be used. Change
to the angular coordinate can be written as follows:

Agp — 2/R°° \/\/g (:225;)) - 1>_1/2dr. (25)

Since motion along a straight line corresponds to a change
A@ = =, then 7 must be subtracted to obtain the deflection
angle a:

=" (i

Formula (26) with (22) allows to calculate the deflection
angle in any spherically symmetric spacetime in presence
of spherically symmetric medium defined by known
refractive index. This formula is generalization of plasma
formula in [18]. We have managed to write the formula for
amore general case in the same form as in [18], reducing all
the differences to a more general definition of a function
h(r) only.

-1/2
1) dr—m. (26)

To apply the formula (26) for some medium with given
refractive index n(w, r), one should use @ in the form of
w(r) from (14). Then n(w(r), r) should be substituted to
Eq. (22) to obtain A(r). The function 4(r) will also contain
the frequency at infinity w,. To get h(R), one should take
the refractive index as n(w(R), R).

For example, cold nonmagnetized plasma has the index
of refraction:

(27)

where w, is electron plasma frequency and w is photon
frequency. In the presence of gravity we have:

@ (r @ (r
n=1- g():l—A(r)# (28)
@*(r) o
Therefore
r o> (r
(r) —i((r; <1—A(r) Z)(g )>, (29)
and
w2
h*(R) = % <1 —A(R) I;)(;>> (30)

We emphasize that in our approach we neglect the
gravitational field created by the particles of the medium,
compared to the gravitational field created by the black hole
itself. In another words, we assume that the medium does
not backreact to the geometry. In particular, in the formulas
for plasma, the plasma number density is included in the
refractive index through the plasma frequency, but we
neglect the mass of plasma particles in comparison with the
mass of the black hole when calculating the gravitational
field. To characterize this approximation, a dimensionless
parameter of the following form can be introduced:
n= meg /m, where p, is the density of medium,
m is the black hole mass and Ry =2Gm/c’ is the
Schwarzschild radius (in dimensional units). The method
works if 7 < 1. Otherwise, it is necessary to take into
account the mass of the particles of the medium when
calculating gravity. Taking into account the mass of
distributed matter around a black hole was also discussed
in Sec. 6 of Ref. [9].

IV. CIRCULAR LIGHT ORBITS

Along a circular light orbit, it should be # = 0 and # = 0.
Due to relation (18), 7 = 0 leads to p, = 0. From (19) we
obtain:
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Py__ 1o (31)
D(r)  A(r)
Additionally, from (18), we read:
od )
pr= E(B(r)r) = B'(r)i* + B(r)t. (32)

Therefore, two conditions, # =0 and 7 = 0, together
lead to p, = 0. Using Eq. (16), we find the second equation
for circular light orbits:

paD'(r)
D*(r)

(Yo
A(r)

n?wiA'(r)
—~ Ag(r) =0. (33)

Substituting pi from (31) into (33), we find that the
equation for the radius of a circular light orbit can be
compactified to the following simple form:

d
—h2(r) = 0. 34
=) (34)
Analogous equation for cold plasma case was derived in
our previous paper [18].

V. DISCUSSION AND PARTICULAR CASES

Two properties of the results obtained can be
distinguished:

(1) First, since the refractive index is represented in the
formulas (24), (25) and (26) as a ratio, it is clear that
multiplying the refractive index by a constant (i.e.,
replacing n with Cyn) does not change the deflection
angle. It means that, for a light ray with a given R
and @, the deflection angle (26) will remain the
same after such a change of the refractive index.
Note that the speed of ray propagation in this case, of
course, will change by a factor of C. In the same
way, it is seen that such a change will not affect the
solutions of Eq. (34), i.e., on the radii of circular
orbits. In the absence of gravity, this property is well
known: the equations of ray trajectories describing
the refraction in an optically inhomogeneous
medium include quantities of the type Vn/n.

(i) At the same time, in the presence of a gravitational
field, a new property appears. If the medium is
dispersive, but at the same time spatially homo-
geneous, then in the absence of a gravitational field
the ray will not bend. The situation changes with the
addition of a gravitational field. Since the photon
frequency in the gravitational field changes accord-
ing (14), then, even in the case of a spatially
homogeneous medium, a dependence on spatial
coordinates, i.e., effective nonhomogeneity, appears:
n(w(r)). As a result, the ray trajectories in the
dispersive medium will differ from the vacuum

ones, even if the medium is homogeneous. This
property was already mentioned in our previous
papers with particular attention to homogeneous
plasma case. Here we find the deflection angle
(26) for a general case of dispersive medium, and
below we will also calculate the correction to
vacuum case.

We emphasize the difference between the items (i) and (ii).
In the first case, we are talking about multiplying by a
constant that does not depend on either frequency or position
in space, so it is just a number. In the second case, we
consider a homogeneous medium with dispersion, which
means that the refractive index is not a constant but a function
of frequency n(w). This, in turn, leads to the fact that, in the
presence of gravity, the refractive index of a homogeneous
medium acquires a dependence on the radial coordinate
n(w(r)) due to gravitational redshift relation (14).

In particular, the noticeable difference between homo-
geneous medium with and without dispersion follows from
this for deflection angle in presence of gravitational field. If
we consider a homogeneous medium without dispersion
and compare the deflection angle with the case of a
vacuum, we will get that the deflection angle will not
change, because such a medium will have the refractive
index as a constant, and this constant will be simply
canceled in equations. But if we consider a homogeneous
medium with dispersion, then we will have the refractive
index as n(w(r)), and the angle of deflection will change in
comparison with vacuum.

Let us further consider the following particular cases:

A. Vacuum or homogeneous medium
in absence of gravity

This is trivial case: the deflection is absent in vacuum
[Fig. 2(a)] and in homogeneous medium, both in non-
dispersive [Fig. 2(b)] or dispersive [Fig. 2(g)]. Taking
A(r) = B(r) = 1, D(r) = r* and n = const in (26), we find

o /2 -1/2 4
a:z/ (r—2—1> & eg=n-z=0. (39
R R r

The use n(w) does not change the result.

B. Nonhomogeneous nondispersive medium,
in absence of gravity
To begin with, see Fig. 2(c). Taking A(r) = B(r) =1,
D(r) = r* and n = n(r) in (26), we find

&:2[:“’ (;Ziji;))— 1>_1/2%—n. (36)

For propagation in the absence of gravity, this formula is
known, compare, for example, with Born and Wolf [42],
Zheleznyakov [43].
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(@) (b)

n =1 (vacuum) n = const

(c) (d)
n(r) n(w,r) (

(e) (f)
o O >

n = const

n=1

(9 (h)

= O
n(w(r)

n(w)

FIG. 2. Comparison of light deflection in different media, see
discussion in Sec. V. (a) Light rays of three different frequencies in
vacuum, without gravity. Rays are not deflected. (b) Homogeneous
nondispersive medium in absence of gravity. There is no deflection.
(c) Nonhomogeneous nondispersive medium in absence of gravity.
There is achromatic deflection (refraction), because the refractive
index depends on space coordinate. (d) Nonhomogeneous disper-
sive medium in absence of gravity. There is chromatic refraction,
because the refractive index depends on both @ and r. (e) Achro-
matic gravitational deflection in vacuum. (f) Achromatic deflection
near a gravitating body surrounded by homogeneous nondispersive
medium. Trajectories are the same as in previous case, although
light speed is smaller. (g) Homogeneous dispersive medium in
absence of gravity. Rays of any frequency are not deflected due to
the uniformity of the medium (no refraction). (h) Homogeneous
dispersive medium in presence of gravity. In contrast to the case of
homogeneous nondispersive medium in presence of gravity, the
deflection differs from the vacuum gravitational deflection. This is
because the photon frequency in gravitational field changes
according (14), and the medium becomes effectively nonhomo-
geneous. This deflection is chromatic.

C. Nonhomogeneous dispersive medium,
in absence of gravity

To begin with, see Fig. 2(d). It means that refractive
index depends on the space coordinates and the photon
frequency: n = n(w, r). In this case we have refractive
deflection, which is calculated with (36) with the only
difference being that the refractive index now depends on @
also, and the trajectory and deflection angle will be
different for different w.

D. Gravitational deflection in vacuum

To begin with, see Fig. 2(e). Taking n = 1 in (26), we
obtain the deflection angle of light ray moving in a
spherically symmetric metric (10), compare, e.g., with
(8.5.6) of Weinberg [44]:

&:2/‘” V/B(r) (D(r)A(R) B
® +/D(r) \A(r)D(R)

E. Homogeneous nondispersive medium,
in presence of gravity

-1/2
1) dr—m=. (37)

To begin with, see Fig. 2(f). It means that the refractive
index does not depend on the photon frequency and space
coordinates: n = const > 1. In this case n is eliminated and
we get the same trajectory and deflection angle (37) as in
vacuum. The radius of photon circular orbits also will not
change in comparison with vacuum.

F. Homogeneous dispersive medium in presence
of gravity

This case is already discussed in the beginning of this
section. While there is no deflection in a homogeneous
dispersive medium in the absence of gravity [Fig. 2(g)], it
occurs if gravity is added, and this deflection is chromatic
[Fig. 2(h)].

G. Nonhomogeneous cold plasma

The propagation of light rays in the presence of gravity
and cold plasma is well studied in the literature mentioned,
so here we will focus only on certain properties that
distinguish plasma from other media.

We consider cold, nonmagnetized plasma with electron
plasma frequency

4re?

me

N(r), (38)

where e and m, are the electron charge and mass corre-
spondingly, and N(r) is the electron number density.

The refractive index of such a plasma has the form (28).
The Hamiltonian of such medium is reduced to the
following form [7-9,11,18]:

H( p) = S {d ppc b (). (39)

We find that for plasma the photon frequency w(r) is
eliminated from the Hamiltonian. In particular, this leads to
the fact that the deflection angles do not depend on the
velocity of the medium [7], because it can be included into
the Hamiltonian by means of the formula (2) only. This
conclusion agrees, for example, with the consideration of
light deflection by cold plasma stream in absence of
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gravity, see Ko and Chuang [45]. They found that the
normally incident ray passes through the moving cold
plasma without any bending of the ray direction.

For other media, the motion of the medium will affect the
propagation of light (we remind the reader that in this
article we restrict ourselves to the case of static media).
Note also that the absence of the photon frequency w(r)
inside the Hamiltonian (39) does not mean that the
deflection angle become achromatic: the Hamiltonian
contains the constant py = —j.

H. Homogeneous cold plasma

An important special case is a homogeneous plasma. The
number density, and hence the plasma frequency of such a
plasma, are constants, w,, = const, and the refraction index is

2
n=1- wf(”r) (40)
The Hamiltonian takes the following form:
H(x', p;) = %{g""pipk +apt, (41)
where @, is constant. This Hamiltonian can be compared

with Hamiltonian describing the motion of massive particle in
vacuum:

. 1
H(¥' pi) =3 {g*pipi + 1*}. (42)

where p is the mass of test particle. As shown by Kulsrud and
Loeb [4], in a homogeneous plasma, photons move along
exactly the same trajectories as massive particles in a vacuum,
with an effective mass equal to the plasma frequency, with an
energy equal to the photon energy, and with speed equal to
the group velocity of light ray. This conclusion is valid only
in homogeneous plasma, i.e., in the absence of refraction.

As already discussed, the deflection of light in homo-
geneous plasma differs from vacuum case, because plasma
is an example of dispersive medium. As shown in [8,9], the
deflection angle by Schwarzschild black hole surrounded
by homogeneous plasma can be written in approximation
of weak deflection (& < 1) as

2m 1
0=—1+—>—|. 43
“ R < +1—w%/wg> (43)

It is worthwhile to emphasize that the formula (43) contains
the ratio a)f, / a)%, whereas the refractive index of plasma
(28) used in derivation of this formula contains w?/w?(r).

If we additionally assume that w?/w} < 1, then we find
a correction to the vacuum gravitational deflection due to a
homogeneous plasma:

4m < w%)
a=—|14+—%]). (44)
R 20)%

In the next section, we will calculate a similar correction for
an arbitrary dispersive medium.

VI. APPLICATION I: CORRECTION TO
EINSTEIN VACUUM GRAVITATIONAL
DEFLECTION DUE TO PRESENCE OF

HOMOGENEOUS DISPERSIVE MEDIUM

As we already discussed in the beginning of previous
section, in the presence of gravitational field, the ray
trajectories in the dispersive medium will differ from the
vacuum ones, even if the medium is homogeneous. Let us
now calculate the correction related to homogeneous
dispersive medium for the vacuum Einstein deflection.

We start with our general expression for deflection angle
(26) and apply it to the Schwarzschild spacetime,

a0 =12 5= (1-22)" Dy =r,

r r

(45)

and refractive index n(w). We deal with spatially homo-
geneous medium n(w), so the refractive index does not
depend explicitly on space coordinate r. In presence of
gravity, we have the gravitational redshift (8) for the photon
frequency, so the refractive index reads as n(w(r)).

Let us expand the refractive index as

n(w(r)) =ny + ny(w(r) — w), (46)
where we denote the values

on

- 9
Ow 0=

ny = n(wy), ny (47)

which do not depend on r. In absence of gravity, the second
term in (46) is absent, because @ = wy.
We further use the approximation that

nl(w(r) - a)O) <1 (48)
no
in Eq. (46), and expand the deflection angle (26). After that,
the expressions are still big, and we consider the approxi-
mation of weak deflection of the light ray: R > m.
Expanding with small variables m/r < 1 and m/R < 1,
we can then perform integration analytically.
Finally, we obtain in approximation & < 1 that

4m nywg
a=—114+——]). 49
“ R ( + 2110 > ( )
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We remind the reader that the correction is present despite
the fact that we deal with a homogeneous medium, that is,
in the absence of refraction. Depending on the sign of the
derivative n;, the presence of a homogeneous medium can
both increase and decrease the deflection angle. For
example, in a homogeneous plasma (40), the deflection
angle increases [8,9].

In the particular case of homogeneous plasma (40) we
can approximately change the condition (48) by the
condition w, < @,. With this approximation in n, and
ny, we recover (44).

VII. APPLICATION II: ANGULAR RADIUS
OF BLACK HOLE SHADOW

As another important example, we will calculate the
angular size of the shadow of a black hole immersed in a
medium with a given refractive index. Black hole
shadow [46—60] has now become the active research topic
due to the recent observational discovery [61], see, e.g.,
Refs. [62—82]. Using the same approach as in our previous
paper [18], we write down the angle a between the direction
of the emission of the light ray and the radial direction
(Fig. 3):

cota =

V990 49\—r, /D(r) 0],y

Here rg is the radial coordinate of observer. Using (24) in
(50), we obtain:

cot? a =

~1. (51)

This leads to

FIG. 3. Observer emits light ray into the past at angle a with
respect to the radial direction, and this ray passes by the black
hole at the distance of the closest approach R. If we substitute R
by the photon sphere radius rpy, then the angle a becomes the
angular radius ag, of the black hole shadow.

h*(R)
h2<ro)'

sin2a =

(52)

The size of the shadow is determined by the rays that
asymptotically spiral towards the photon sphere. Therefore
angular radius of the shadow ag, is obtained if we put

R — rp,

sin? g, = (53)

Here the radius r;, should be found from Eq. (34).

The final formula (53) agrees with the formula derived
for plasma case in [18], with only the difference being in
the definition of function Ai(r), see (22). As with the
deflection angle, we can see that the size of the shadow
does not change when the refractive index is multiplied by a
constant.

VIII. CONCLUDING REMARKS

(i) We calculate the deflection angle of a light ray
moving in an general spherically symmetric metric
in the presence of a transparent static dispersive
medium with a spherically symmetric refractive
index, see Eq. (26) with (22). The equation for
the radius of the circular light orbits is also derived,
see Eq. (34). The properties of these results and
various special cases are discussed, see Sec. V.

(ii)) We find that multiplying the refractive index by a
constant does not affect the trajectories: the deflection
angle and the radius of circular orbits do not change.
In particular, this means that the trajectories of light
rays in a spatially homogeneous and nondispersive
medium are the same as in vacuum [see Figs. 2(e) and
2(f)], although light velocity is smaller.

(iii) At the same time, the presence of dispersion leads to
a difference of trajectories from the vacuum case,
even in a spatially homogeneous medium. This is
due to the fact that in the presence of a gravitational
field, the frequency of the photon changes depend-
ing on the position in space according to the
gravitational redshift (14), and, accordingly, an
effective inhomogeneity appears. As an application
of our results, we calculate the correction to the
vacuum gravitational deflection angle for the case
when a massive object is surrounded by a homo-
geneous but dispersive medium, see Sec. VI.

(iv) As another application, we present the calculation of
the shadow of black hole surrounded by a medium
with an arbitrary refractive index, see Sec. VII. This
can be used for analytical calculation of shadow size
beyond the widely used cold plasma case, e.g., for
different warm, hot or collisional plasma models.
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