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Motivated by gravitational wave observations of binary black hole mergers, we present a procedure to
compute the leading-order nonlinear gravitational wave interactions around a Kerr black hole. We describe
the formalism used to derive the equations for second-order perturbations. We develop a procedure that
allows us to reconstruct the first-order metric perturbation solely from knowledge of the solution to the first-
order Teukolsky equation, without the need of Hertz potentials. Finally, we illustrate this metric
reconstruction procedure in the asymptotic limit for the first-order quasinormal modes of Kerr. In a
companion paper [J. L. Ripley et al., Phys. Rev. D 103, 104018 (2021)] we present a numerical
implementation of these ideas.
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I. INTRODUCTION

The coalescence of binary black holes generally pro-
ceeds through three phases: the inspiral, merger, and
ringdown. In the inspiral phase, the orbital velocity is
typically small compared to the speed of light, and one can
solve the field equations of general relativity (GR) using
the perturbative post-Newtonian approximation [1]. In the
merger phase, where the gravitational waves from the
binary achieve their maximum amplitude, the nonlinearities
of GR cannot be neglected, and one usually has to solve the
field equations numerically [2]. Finally, the ringdown phase
constitutes the response of the final black hole and is
believed to be well described by the quasinormal modes
computed using black hole perturbation theory [3].
The ringdown phase of the coalescence not only pro-

vides us with useful information regarding the remnant of
binary mergers, it also gives us a means of testing the
conjectured uniqueness of black holes in GR. Several
properties of black holes are related to uniqueness: the
no-hair theorems, stating that the only stationary black hole
solutions in asymptotically flat four-dimensional spacetime
with knownmatter fields are the three-parameter (mass, spin
angular momentum, and electric charge) Kerr-Newman
family [4–8]; Penrose’s weak cosmic censorship conjecture
that when gravitational collapse occurs the spacetime
exterior to the black hole horizon is complete; and the final
state conjecture [9], a special case of which is the conjec-
tured nonlinear stability of the Kerr-Newman solutions,
whereby all dynamical perturbations (however large) are
absorbed by the black hole or radiated away, leaving behind
another member of the Kerr-Newman family.

The uniqueness properties of black holes offer many
avenues for testing the dynamical, strong-field regime of
GR. Regarding the ringdown, the black hole spectroscopy
proposal [10–13] exploits that the three parameters of the
remnant (or two in an astrophysical setting where charge is
expected to be insignificant) uniquely determine the
frequencies and decay constants of the infinitely many
quasinormal modes (QNMs) of the black hole; hence,
measurements of multiple modes do not provide novel
information about the black hole but instead are constraints
to test uniqueness. This just scratches the surface of what is
theoretically possible: for a ringdown produced by a binary
black hole merger, the small set of parameters of the
progenitor binary not only uniquely determines the remnant
parameters (and hence the QNM complex frequencies), but
also all the “initial” amplitudes and phases of all the QNM
modes (this forms the basis of the proposal to coherently
stack multiple detected events to enhance the ability to
search for subdominant modes [14]). Moreover, all non-
linear effects, such as mode coupling at second-order, are
also uniquely governed by the progenitor parameters. If the
nonlinear phase of ringdown can be understood quantita-
tively, this regime of a merger will also be accessible to
uniqueness tests.
We should note however that if our only goal were to

confirm GR using black hole mergers, the residual test [15]
is adequate and does not require us to understand or
interpret phases of a merger; all one needs are full wave-
forms computed with enough accuracy that subtraction of a
“best-fit” waveform from the data leaves a residual signal
consistent with noise in the detectors. Though if such a test
were to fail, it would be crucial to have a detailed
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knowledge of which part of the waveform led to the
residual, and what novel physics or astrophysics that might
point to (whether exotic alternatives to black holes, black
holes with “hair,” or the usual GR black holes embedded in
a circumbinary environment sufficiently massive to meas-
urably alter the uniqueness constraints an isolated binary is
subject to).
Each quasinormal mode of the ringdown is identified by

three integers, two ðl; mÞ describing the angular depend-
ence of the modes and one (n) describing the overtone [3].
Generally, the late time behavior of the ringdown phase is
dominated by the leading-order ðl; m; nÞ ¼ ð2; 2; 0Þ quad-
rupole mode, but higher-order modes become relevant
under particular circumstances. Higher angular modes have
comparable decay time to the ðl; m; nÞ ¼ ð2; 2; 0Þ dominant
mode but are more efficiently activated in systems with
inherent asymmetries, such as an unequal mass binary (i.e.,
mass ratio q ≠ 1) [16]. The first evidence for a nonquadru-
pole mode in the inspiral phase came from the recent
merger event GW190412 [17]; however, this was not loud
enough for a corresponding QNM to be detected.
Overtones generally decay faster than the n ¼ 0 funda-

mental modes and thus can only be detected at higher
signal-to-noise ratios (SNRs) or possibly, as with nonlinear
effects, if the analysis can be extended closer to the merger
phase. Intriguingly, [18,19] showed that for a merger of
comparable mass nonspinning black holes, as consistent
with GW150914, the waveform from peak amplitude
onward can be well fit with linear modes if a sufficient
number of overtones are included in the ringdown model.
There are caveats with this analysis, but if it turns out to be
sound, then there is already some evidence for observation
of the first overtone of the quadrupole mode with
GW150914 [20]. One of these caveats is, because of the
rapid decay of the overtones, with low SNR (or low
accuracy in the model) rapidly decaying nonlinear features
could be fit by overtones and be erroneously ascribed to
them. The study in [19] gave some evidence that this was
not occurring in their fits; however, back of the envelope
estimates suggest second-order mode coupling should be
visible at comparable levels to the higher overtones they
included. Without a detailed model of how the remnant
black hole is “excited” during a merger to offer predictions
for the various components of the ringdown, rather than
fitting, it would be difficult to disentangle nonlinearity from
overtones.
Most analyses of the ringdown of black holes stop at

first-order in perturbation theory. In generic perturbative
problems, second-order perturbations are sourced by the
square of first-order perturbations, constituting the leading-
order nonlinear effects. This holds true for black hole
perturbation theory. Historically, second-order black hole
perturbation theory was originally considered [21,22] to
extend the close-limit approximation to black hole mergers
[23]. These second-order calculations were later applied in

the context of quasinormal modes of Schwarzschild black
holes, where it was found that the second-order amplitudes
could be as much as 10% of the first-order amplitudes
[24–26]. A rigorous proof of the stability of fully nonlinear
perturbations of a Schwarzschild black hole is only known
restricted to a symmetry class [27]. More recently, second-
order perturbation theory has been employed in the self-
force formalism as a necessity for computing accurate
waveforms for extreme mass ratio inspirals (EMRIs) (see
e.g., [28–32]).
This being said,much about second-order perturbations of

spinning black holes in the contexts of black hole ringdown
and EMRI remain open problems. A promising approach to
study such perturbations was initiated by Campanelli and
Lousto [33], who employed the Newman-Penrose (NP)
formalism [34,35] to derive an equation for second-order
gravitational wave perturbations of Kerr black holes.
In the NP formalism, linear gravitational waves are

described by the linear part of the Weyl scalar Ψð1Þ
4 . (Here

and below we use the notation fðnÞ to denote the nth-order
perturbation of f about its background value fð0Þ.)
Campanelli and Lousto’s equation takes the form of a

Teukolsky equation for the second-order Ψð2Þ
4 with a source

term quadratic in first-order perturbations. The chief chal-
lenge to computing this source term in a practical manner is
that it depends on many more first-order geometric quan-

tities than simplyΨð1Þ
4 , and finding the set consistentwith the

given Ψð1Þ
4 is what we refer to as reconstruction. (All the

above can equivalently be performed in terms of the NP
scalar Ψ0 instead of Ψ4.)
An early method developed for reconstruction was given

by Chrzanowski [36] (see also [37,38] for a more recent
review), who showed that there exist “Hertz” potentials for
gravitational (and electromagnetic) perturbations in the
Kerr background. The gravitational Hertz potential solves
the spin-weight −2 Teukolsky equation (which we simply
call the “Teukolsky equation” for brevity). Effectively then
from a solution Ψ to the Teukolsky equation one can
generate a perturbed metric that solves the linearized
Einstein equations about a Kerr background. The compli-
cation with this approach is that while the Hertz potential Ψ
solves the Teukolsky equation, it does not relate in a simple

way to the linearly perturbed Weyl scalar Ψð1Þ
4 (or Ψð1Þ

0 ).
Therefore, it is not possible to directly apply Chrzanowski’s
method if one wants to find the perturbed metric associated

with a particular Ψð1Þ
4 .

A further drawback of Chrzanowski’s method is that one
is required to work in one of two radiation gauges, first
described by Chrzanowski [36] and later expanded on in
[39]. These gauge conditions can only be applied in type II
or more special spacetimes and force particular conditions
on the matter stress energy tensor. This limits the Hertz
potential method from directly dealing with matter sources
that do not satisfy those conditions, such as with EMRIs for
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example. Further, this technique cannot be applied at
second-order in perturbation theory to recover the sec-
ond-order metric perturbation, since the source terms
coming from the first-order perturbation act as effective
matter sources that are not consistent with the conditions
required for the radiation gauges.
Recently, a new approach was proposed in [40] to extend

the Hertz potential approach to allow for arbitrary matter
sources. The approach starts by giving an ansatz for the
metric perturbation of the form hab ∼ Re½S†Φ�ab þ xab,
where S† is a second-order differential operator, Φ is the
Hertz potential, and xab is a “correction” tensor. The first
term on the right-hand side is essentially Chrzanowski’s
method that will give a linearized solution to the Einstein
equations if the radiation gauge conditions can be met; if
not, xab provides a correction proportional to the matter
terms so that the net hab does solve the linearized Einstein
equations. Thus an additional benefit of this procedure is
that it allows for a path to calculating metric perturbations
of the Kerr spacetime beyond linear order.
There are other workarounds to the above mentioned

problems (see e.g., [41–43]), though there are also proce-
dures [35,44] to directly reconstruct the metric from Ψð1Þ

4 ,
which avoid the use of intermediate Hertz potentials. In this
work we describe a formalism building on the latter
methods, to compute the second-order gravitational wave
perturbation of an arbitrary type D spacetime that satisfies
the vacuum Einstein equations. The initial step is to write
all first-order NP quantities (spin coefficients and Weyl
scalars) in terms of the background metric and null tetrad
projections of the first-order metric perturbation and its
gradients. We use outgoing radiation gauge, though note
that in principle our method does not require such a gauge;
rather, it reduces the number of equations we need to solve
in the end.
We then show how in this gauge, all first-order NP

quantities can be derived from the solution of the Teukolsky
equation for Ψð1Þ

4 , several additional null transport equa-
tions, and some algebraic relations between spin coeffi-
cients and the first-order metric perturbation. This then
allows us to compute the source term necessary to solve the
Teukolsky equation for the second-order gravitational wave

perturbation represented by Ψð2Þ
4 .

At future null infinity in outgoing radiation gauge Ψð2Þ
4

relates to the two polarizations of the second-order metric

perturbation (hð2Þ× and hð2Þþ ) in exactly the same way Ψð1Þ
4

relates to the linear metric [33]:

Ψð1;2Þ
4 ¼ −

1

2
ð∂2

t h
ð1;2Þ
þ − i∂2

t h
ð1;2Þ
× Þ: ð1Þ

Thus by reading off Ψð1Þ
4 and Ψð2Þ

4 at future null infinity in
outgoing radiation gauge we have a direct measure of the
relative magnitude of second-order effects for a given
choice of initial data.

To preview the detailed derivation later in the paper, in
Fig. 1 we show a schematic of our metric reconstruction
procedure. In the outgoing radiation gauge, the only non-
zero metric perturbations hμν are the tetrad projections
hmm ¼ hμνmμmν, hlm ¼ hμνlμmν and hll ¼ hμνlμlν, with
the tetrad consisting of a complex angular null vector mμ

and the real radially outgoing (ingoing) null vectors lμ (nμ).
The starting point is to solve the Teukolsky equation for the

first-order Weyl scalar Ψð1Þ
4 . One can then solve for the spin

coefficient λð1Þ through Eq. (23), which can then be use to
obtain hmm through Eq. (24). Separately to this, one can

obtain Ψð1Þ
3 from Ψð1Þ

4 using Eq. (25). The spin coefficient
πð1Þ can then be obtained from Eq. (28), which then allows

us to solve for hlm through Eq. (29). Finally, from Ψð1Þ
3 we

can obtain Ψð1Þ
2 from Eq. (30), which in turn allows us to

solve for hll using Eq. (33). The remaining first-order spin
coefficients can then be obtained from Eqs. (C1a)–(C1l)
and the first-order Weyl scalars from Eqs. (D4) and (D5).
This kind of approach to metric reconstruction has a few

advantages over the typical Hertz potential approach. First,
using Hertz potentials requires one to work within one of
the two radiation gauges, which place additional constraints
on the matter sources or need to be corrected via the method
in [40]. Here, though we have also chosen to work within
the outgoing radiation gauge, this is simply because it is
one of the easiest gauges to identify the necessary transport
equations to fully reconstruct the metric. The basic strategy
can be applied in essentially an arbitrary gauge, the only
difference being the eventual number and complication of
the transport equations to solve to obtain the first-order
metric. Second, the Hertz potentials are spin-weight �2
quantities and thus only have support for modes with l ≥ 2.
However, there are nonradiative modes with l < 2 asso-
ciated with shifts in the mass and spin of the black hole and
thus cannot be obtained from the Hertz potential. Our
approach is able to reconstruct these effects from homo-
geneous solutions to some of the transport equations, which

FIG. 1. Schematic of our procedure for metric reconstruction.
From the Teukolsky equation, one can solve for the Weyl scalar

Ψð1Þ
4 . In the outgoing radiation gauge detailed in Sec. III B, one

can then directly reconstruct the three nonzero metric perturba-
tions hmm, hlm, and hll using the Bianchi and Ricci identities of
the Newman-Penrose formalism.
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we will detail in an upcoming paper. A third issue with the
use of a Hertz potential is additional steps must be taken
beyond simply applying Chrzanowski’s operator if one
needs the resultant metric to be consistent with a desired

Ψð1Þ
4 . In particular, a fourth-order null transport equation

needs to be solved; see e.g., Eq. (11) of [42] and the
discussion of its solution therein.
The remainder of the paper is organized as follows. In

Sec. II we list the equations that govern perturbations of
type D spacetimes to first- and second-order in perturbation
theory, a derivation of which is given in the Appendix B. In
Sec. III we derive relations between first-order NP quantities
and the linearized metric (with the full list of expressions for
the spin coefficients given in Appendix C) and then describe
the outgoing radiation gauge conditionwe use to fix the form
of the first-order metric perturbation. In Sec. IV we describe
our reconstruction procedure. The path to go from Ψ4 to
ðhmm; hlm; hllÞ described there and illustrated in Fig. 1 is not
unique, and in Appendix D we mention some alternative
steps. As an illustration, in Sec. V we apply this method to
the case of quasinormal modes of the Kerr spacetime in the
limit of spatial infinity; i.e., we expand about r → ∞. As
explained in that section, there is a complication to finding
the nonradiative metric perturbation associated with
changes in the mass and spin of the black hole due to the
gravitational wave perturbation; we leave it to future work
to address that issue. In a companion paper [45] we detail
the numerical code that implements the full method. We
conclude with a discussion of future work in Sec. VI.
Throughout this work, we use units with G ¼ c ¼ 1. For
the NP formalism, a brief review of which is given in
Appendix A, we use the conventions of [35], except that we
use Greek letters to denote spacetime indices (e.g., our
metric sign convention is þ − −−, and we use f̄ to denote
the complex conjugate of f).

II. PERTURBATIONS OF TYPE D SPACETIMES

In the nonspinning limit, perturbation theory can be
performed at the level of the metric; i.e., the metric can be
written as gμν ¼ gSchwμν þ ζhμν þOðζ2Þ, where gSchwμν is the
background Schwarzschild metric, hμν is the first-order
metric perturbation, and ζ is an order-keeping parameter.
One can then write out the field equations for hμν, which
can be separated using spin-weighted spherical harmonics
[46]. The gravitational waves are then described by the
Regge-Wheeler (even-parity) [47] and Zerilli (odd-parity)
[48,49] equations. For Kerr black holes, and any generic
type D spacetime, the equations for the metric perturbation
are not known to be separable.
The problem of finding separable equations for perturba-

tions of Kerr spacetimes was solved by Teukolsky using the
NP formalism [50], and Campanelli and Lousto [33]
extended this beyond linear order. Herewe list the equations,
leaving a review of the derivations to Appendix B. In the NP

formalism, a gravitational wave perturbation is character-
ized by the NP scalarΨ4 (or equivalentlyΨ0). The equation

for the linear vacuum perturbation Ψð1Þ
4 is

T ½Ψð1Þ
4 � ¼ 0; ð2Þ

where T is the Teukolsky operator for a spin ¼ −2 field
(B13). The equation for the second-order vacuum perturba-

tion Ψð2Þ
4 is

T ½Ψð2Þ
4 � ¼ Sð2Þ

4 ; ð3Þ

where T is the same operator as in (2) and Sð2Þ
4 is a second-

order “source” term:

Sð2Þ
4 ≡−½dð0Þ4 ðDþ 4ϵ− ρÞð1Þ − dð0Þ3 ðδþ 4β − τÞð1Þ�Ψð1Þ

4

þ ½dð0Þ4 ðδ̄þ 2αþ 4πÞð1Þ − dð0Þ3 ðΔþ 2γ þ 4μÞð1Þ�Ψð1Þ
3

− 3½dð0Þ4 λð1Þ − dð0Þ3 νð1Þ�Ψð1Þ
2

þ 3Ψð0Þ
2 ½ðdð1Þ4 − 3μð1ÞÞλð1Þ − ðdð1Þ3 − 3πð1ÞÞνð1Þ�: ð4Þ

The source term is a function of first-order perturbedNP spin
coefficients ϵð1Þ, ρð1Þ, βð1Þ, τð1Þ, αð1Þ, πð1Þ, γð1Þ, μð1Þ, λð1Þ, and
νð1Þ, Weyl scalars Ψð1Þ

2 , Ψð1Þ
3 , and Ψð1Þ

4 , and their derivatives

through the background dð0Þ3 and dð0Þ4 and first-order Dð1Þ,
Δð1Þ, and δð1Þ gradient operators (see Appendixes A and B
for the relevant definitions). This equation does not require
imposing any particular coordinate system on the back-
ground, although it does require using a background tetrad
that aligns with the two principal null directions of Kerr
(such as the Kinnersley tetrad).
We see that in this approach, computing the leading

nonlinear gravitational effects around a Kerr black hole is
reduced to computing the source term and then solving the
Teukolsky equation with that source term. If one has the
first-order metric perturbation, it is trivial to compute all
the NP quantities needed for the source term simply from
their definitions. However, what is more typical is to only
have Ψð1Þ

4 from a solution to the first-order Teukolsky
equation. As mentioned above then, the main technical
challenge for the second-order problem is reconstructing
the remaining NP quantities required for the source from

only one’s knowledge of Ψð1Þ
4 . In the remainder of this

paper we describe a method for doing so for vacuum
perturbations (see [40] for a different reconstruction pro-
cedure claimed to also work with gravity coupled to matter
that is smooth and of compact support).
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III. LINEARIZED METRIC
AND GAUGE CONDITIONS

Before describing our reconstruction procedure in the
following section, here we show the relation between
linearized metric and tetrad components and linearized
NP scalars (Sec. III A) and then discuss the radiation gauge
conditions we employ to fix the form of the first-order
metric perturbation (Sec. III B).

A. Linearized NP scalars in terms
of the linearized metric

We write out the metric to first-order in perturbation
theory as gμν ¼ gBμν þ ζhμν þOðζ2Þ, where gBμν is a Petrov
type D background spacetime and hμν is the first-order
metric perturbation. For notational convenience, we write
the components of hμν in the tetrad frame as hab ¼ hμνe

μ
aeνb,

reserving Latin (Greek) indices for tetrad (coordinate)
components; for example hnn ¼ hμνnμnν. We assume that
the background tetrad ðlμð0Þ; nμð0Þ; mμ

ð0Þ; m̄
μ
ð0ÞÞ is chosen such

that Ψð0Þ
0 ¼Ψð0Þ

1 ¼Ψð0Þ
3 ¼Ψð0Þ

4 ¼κð0Þ ¼σð0Þ ¼νð0Þ ¼λð0Þ ¼0.
Note that the results in this subsection do not rely on
the choice of gauge for the metric but do depend on the
choice of the linearized tetrad.
Our starting point is to calculate the first-order tetrad

in terms of the metric perturbation. The background
tetrad forms a complete basis, so it is natural to decompose
the first-order tetrad in terms of these vectors,
specifically

0
BBBBB@

lð1Þμ

nð1Þμ

mð1Þ
μ

m̄ð1Þ
μ

1
CCCCCA

¼

0
BBB@

b11 b12 c13 c̄13
b21 b22 c23 c̄23
c31 c32 c33 c34
c̄31 c̄32 c̄34 c̄33

1
CCCA

0
BBBBB@

lð0Þμ

nð0Þμ

mð0Þ
μ

m̄ð0Þ
μ

1
CCCCCA
; ð5Þ

where the bij are real coefficients and the cij are complex
coefficients. Following [33,51], we can use our six degrees
of freedom for the linearized tetrad vectors to choose
b11 ¼ c13 ¼ c23 ¼ Imc33 ¼ 0. We now solve for the coef-
ficients of the matrix in Eq. (5) using the completeness

relation gμν ¼ 2lðμnνÞ − 2mðμm̄νÞ. Expanding to first-order,
we have

hμν ¼ 2lð1Þðμ n
ð0Þ
νÞ þ 2lð0Þðμ n

ð1Þ
νÞ − 2mð1Þ

ðμ m̄
ð0Þ
νÞ − 2mð0Þ

ðμ m̄
ð1Þ
νÞ : ð6Þ

Inserting the representation of the first-order tetrad in
Eq. (5) and projecting into the tetrad frame gives us a
set of linear equations that can be solved to obtain the b and
c coefficients in terms of hab, specifically

lð1Þμ ¼ 1

2
hlln

ð0Þ
μ ; ð7aÞ

nð1Þμ ¼ 1

2
hnnl

ð0Þ
μ þ hlnn

ð0Þ
μ ; ð7bÞ

mð1Þ
μ ¼ hnml

ð0Þ
μ þ hlmn

ð0Þ
μ −

1

2
hmm̄m

ð0Þ
μ −

1

2
hmmm̄

ð0Þ
μ : ð7cÞ

Raising the coordinate indices on these expressions
involves flipping the signs of the hij terms (since the relative
signs of the covariant versus contravariant components of
the first-order metric tensor perturbation are opposite). For
convenience, we also write out the first-order directional
derivatives ðD;Δ; δ; δ̄Þ using these relations:

Dð1Þ ¼ −
1

2
hllΔð0Þ; ð8aÞ

Δð1Þ ¼ −
1

2
hnnDð0Þ − hlnΔð0Þ; ð8bÞ

δð1Þ ¼ −hnmDð0Þ − hlmΔð0Þ

þ 1

2
hmm̄δ

ð0Þ þ 1

2
hmmδ̄

ð0Þ: ð8cÞ

The next step is to write out the spin coefficients in terms
of the metric perturbations hab. To achieve this, we make
use of the commutation relations in Eqs. (A5a)–(A5d) and
the first-order tetrad in Eqs. (7a)–(7c). We expand out both
sides of the commutation relations and match the coef-
ficients of the directional derivatives to obtain linear
equations for the first-order spin coefficients. As an
example of this, consider Eq. (A5a). Expanding out the
left-hand side, we have

½δ; D�ð1Þ ¼ 1

2
½2Dð0Þhnm þ ðᾱð0Þ þ βð0Þ − π̄ð0ÞÞhmm̄ þ ðαð0Þ þ β̄ð0Þ − πð0ÞÞhmm

− 2ðγð0Þ þ γ̄ð0ÞÞhlm þ ν̄ð0Þhll�Dð0Þ þ 1

2
½2Dð0Þhlm − δð0Þhll þ ðᾱð0Þ þ βð0Þ − τð0ÞÞhll

− 2ðϵð0Þ þ ϵ̄ð0ÞÞhlm þ κð0Þhmm̄ þ κ̄ð0Þhmm�Δð0Þ þ 1

2
½−Dð0Þhmm̄ þ ð−ϵð0Þ þ ϵ̄ð0Þ − ρ̄ð0ÞÞhmm̄

− ð−γð0Þ þ γ̄ð0Þ þ μð0ÞÞhll − σ̄ð0Þhmm þ 2ðπð0Þ þ τ̄ð0ÞÞhlm�δð0Þ

þ 1

2
½−Dð0Þhmm þ ðϵð0Þ − ϵ̄ð0Þ − ρð0ÞÞhmm − λ̄ð0Þhll − σð0Þhmm̄ þ 2ðπ̄ð0Þ þ τð0ÞÞhlm�δ̄ð0Þ: ð9Þ
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Next, expanding out the right-hand side, we obtain

�
ᾱð1Þ þ βð1Þ − π̄ð1Þ þ ðϵð0Þ − ϵ̄ð0ÞÞhnm −

1

2
κð0Þhnn þ ρ̄ð0Þhnm þ σð0Þhnm̄

�
Dð0Þ

þ
�
κð1Þ −

1

2
ðᾱð0Þ þ βð0Þ − π̄ð0ÞÞhll þ ðϵð0Þ − ϵ̄ð0Þ þ ρ̄ð0ÞÞhlm − κð0Þhln þ σð0Þhlm̄

�
Δð0Þ

þ
�
−ϵð1Þ þ ϵ̄ð1Þ − ρ̄ð1Þ −

1

2
hmm̄ðϵð0Þ − ϵ̄ð0Þ þ ρ̄ð0ÞÞ − 1

2
σð0Þhm̄ m̄

�
δð0Þ

þ
�
−σð1Þ −

1

2
ðϵð0Þ − ϵ̄ð0Þ þ ρ̄ð0ÞÞhmm −

1

2
σð0Þhmm̄

�
δ̄ð0Þ: ð10Þ

Matching the coefficients of Δð0Þ allows us to solve for
κð1Þ, i.e.,

κð1Þ ¼ ðD − 2ϵ − ρ̄Þð0Þhlm −
1

2
ðδ − 2ᾱ − 2β þ π̄ þ τÞð0Þhll:

ð11Þ
Repeating this method for the remaining commutation

relations, we obtain the rest of the linearized Newman-
Penrose scalars written in terms of the linearized metric
components. We provide the complete listing of these
quantities in Appendix C. The first-order spin coefficients
are now completely determined in terms of the metric
perturbation.
The final step to complete the description in terms of the

metric perturbation is to obtain the Weyl scalars. This can
be done readily from the transport equations in Eqs. (A9a)–
(A9r). As an example, we may obtain Ψð1Þ

0 directly from
Eq. (A9b), due to the fact that σð0Þ ¼ 0 ¼ κð0Þ, specifically

Ψð1Þ
0 ¼ ðD − ρ − ρ̄ − 3ϵþ ϵ̄Þð0Þσð1Þ

− ðδþ τ − π̄ þ ᾱþ 3βÞð0Þκð1Þ: ð12Þ
Likewise, from Eq. (A9j), we have

Ψð1Þ
4 ¼ ðδ̄þ 3αþ β̄ þ π − τ̄Þð0Þνð1Þ

− ðΔþ μþ μ̄þ 3γ − γ̄Þð0Þλð1Þ: ð13Þ
The remaining Weyl scalars must be found by taking linear
combinations of Eqs. (A9a)–(A9r). We here provide the
exact representation of these without linearizing:

Ψ1 ¼ ðD− ρ̄þ ϵ̄Þβ − ðδþ ᾱ− π̄Þϵ− ðαþ πÞσ þ ðμþ γÞκ;
ð14aÞ

Ψ2 ¼
1

3
½ðδ̄ − 2αþ β̄ − π − τ̄Þβ − ðδ − ᾱþ π̄ þ τÞα

þ ðDþ ϵþ ϵ̄þ ρ − ρ̄Þγ − ðΔ − γ̄ − γ þ μ̄ − μÞϵ
þ ðδ̄ − αþ β̄ − τ̄ − πÞτ − ðΔ − γ̄ − γ þ μ̄ − μÞρ
þ 2ðνκ − λσÞ�; ð14bÞ

Ψ3 ¼ ðδ̄þ β̄ − τ̄Þγ − ðΔ − γ̄ þ μ̄Þαþ ðρþ ϵÞν
− ðτ þ βÞλ: ð14cÞ

This completes the description of NP quantities in terms
of the metric perturbation.

B. Radiation gauges

As mentioned, the form of the Teukolsky equation given
in the previous section is independent of the coordinate
system and only requires the radial null tetrad vectors to be
aligned with the principle null directions of Kerr. Solving
these equations in practice requires choosing coordinates
for the background metric and first-order perturbations.
Here, we describe our gauge to fix the form of the first-
order metric and tetrad perturbations.
Under an infinitesimal gauge transformation xμ→xμþξμ

of the background metric, hμν transforms as

hμν → hμν − ξðμ;νÞ: ð15Þ
We make use of the radiation gauges developed by
Chrzanowski [36], in which the metric perturbation is
required to be transverse to one of the principal null
directions. This condition can only be imposed in type II
spacetimes or more symmetric spacetimes, like type D [39].
For the outgoing radiation gauge, we begin by imposing

nμðhμν − ξðμ;νÞÞ ¼ 0: ð16Þ
This set of four equations for the vector ξμ implies we have
freedom to choose ξμ such that four of the components of hμν
are zero, specifically hln ¼ hnn ¼ hnm ¼ hnm̄ ¼ 0 in this
gauge. However, in Petrov type D (or more generally Petrov
type II) spacetimes it turns out thatwe still have some residual
gauge freedom [related to the homogeneous solutions of
Eq. (16)] that we can use to enforce a traceless condition [39]

hμμ ¼ gμνhμν ¼ 0: ð17Þ
Taken together with the previous conditions, this sets
hmm̄ ¼ 0, leaving the only nonzero components of themetric
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to be the real-valuedhll and the complex-valuedhlm andhmm.
It then follows from Eqs. (C1b), (C1d), and (C1f) that

νð1Þ ¼ μð1Þ ¼ γð1Þ ¼ 0: ð18Þ

If coupling to matter, the traceless condition also imposes a
constraint on the stress energy tensor fromEq. (A9n), namely

Φ22 ¼ 0 ⇒ Tμνnμnν ¼ 0: ð19Þ

Equations (16)–(19) specify the necessary and sufficient
conditions for the outgoing radiation gauge. This gauge has
the properties of being transverse and traceless on future null
infinity and the past horizon for the Kerr spacetime.
Complementary to the outgoing radiation gauge, one

can also specify the ingoing radiation gauge through the
condition

lμðhμν − ξðμ;νÞÞ ¼ 0: ð20Þ

Combining with the traceless condition in Eq. (17), we
have the necessary conditions of the ingoing radiation
gauge:

ϵð1Þ ¼ κð1Þ ¼ ρð1Þ ¼ 0; ð21Þ

Φ00 ¼ 0 ⇒ Tμνlμlν ¼ 0: ð22Þ

This gauge has the property of being transverse and
traceless on past null infinity and the future null horizon
of the Kerr spacetime. Either one of these gauges allow for
metric reconstruction as outlined in this paper, so long as
the matter stress energy tensor satisfies either Eq. (19) or
(22). Since we are most interested in the problem of
quasinormal modes of Kerr black holes as the end state
of a binary coalescence, we can restrict to the case of
vacuum and both of these conditions are satisfied. For the
remainder of this paper, we work within the outgoing
radiation gauge.

IV. RECONSTRUCTING THE METRIC FROM Ψð1Þ
4

In this section, we describe a procedure to reconstruct the
metric coefficients hll, hlm̄, and hm̄m̄ in the outgoing

radiation gauge from the Weyl curvature scalar Ψð1Þ
4 .

In the NP formalism, there are eight complex equations
from the Bianchi identities Eqs. (A10a)–(A10h), 36 com-
plex equations (20 independent) from the Riemann iden-
tities Eqs. (A9a)–(A9r), and 12 complex equations for the
spin coefficients Eqs. (C1a)–(C1l). However, in our chosen
gauge, we only need to solve for five real-valued (one real
and two complex) quantities. Thus, the problem of solving
for the metric perturbation is overdetermined. The pro-
cedure that we detail below is, as a result, not unique, but it

is sufficient to reconstruct the metric. Some alternative
choices are outlined in Appendix D.
To begin, we focus on solving for hmm. Consider the

Riemann identity in Eq. (A9j). This is one of the equations
used to derive the Teukolsky equation and, as explained
there, is already of first-order smallness. Further, due to the
choice of gauge, νð1Þ ¼ 0, and so we obtain the following
transport equation for λð1Þ:

ðΔþ μþ μ̄þ 3γ − γ̄Þð0Þλð1Þ ¼ −Ψð1Þ
4 : ð23Þ

Thus, once one has solved the Teukolsky equation for Ψð1Þ
4 ,

one can naturally obtain λð1Þ. Now, consider the relationship
between λð1Þ and the metric perturbation in Eq. (C1a). Once
again, our choice of gauge eliminates all of the metric
coefficients in this expression, except for hm̄m̄. Thus, we
obtain a transport equation for hm̄m̄, namely

½Δþ 2ðγ̄ − γÞ þ μ̄ − μ�ð0Þhm̄m̄ ¼ −2λð1Þ: ð24Þ

Of course, this also yields hmm since hmm ¼ ½hm̄m̄�†. The real
and imaginary parts ofhmm encode the gravitationalwaves at
null infinity, and the above two equations are effectively
equivalent to the statementΨ4 ¼ ð1=2Þ∂2

t ðhþ − ih×Þ in a far
field expansion, where hþ;× are the polarization states of
gravitational waves. This will become more explicit when
we present our case study in Sec. V.
Having solved for hmm, we now turn our attention to hlm.

Consider the Bianchi identity in Eq. (A10h). Just like our
starting point for λð1Þ, this equation was used to derive the
Teukolsky equation and is already of first-order smallness.
Also, by virtue of νð1Þ ¼ 0, this gives us a transport

equation that we may solve to obtain Ψð1Þ
3 , namely

ðΔþ 2γ þ 4μÞð0ÞΨð1Þ
3 ¼ ðδ − τ þ 4βÞð0ÞΨð1Þ

4 þRð1Þ
h : ð25Þ

For generality, we have kept the terms dependent on
the Ricci scalars in the above equation. We will do so
throughout the metric reconstruction procedure. However,
these terms must satisfy the gauge condition in (19).

Having solved for Ψð1Þ
3 , we now consider the Riemann

identity in Eq. (A9i). After linearizing, we have

ðΔþ γ − γ̄Þð0Þπð1Þ ¼ −μð0Þðπ þ τ̄Þð1Þ − λð1Þðπ̄ þ τÞð0Þ

−Ψð1Þ
3 −Φð1Þ

21 : ð26Þ
By combining Eqs. (C1l) and the complex conjugate of
Eq. (C1k), we find

πð1Þ þ τ̄ð1Þ ¼ −
1

2
hm̄m̄ðπ̄ þ τÞð0Þ: ð27Þ

Combining this with Eq. (26), we obtain a transport
equation for πð1Þ:
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ðΔþ γ − γ̄Þð0Þπð1Þ ¼
�
1

2
μð0Þhm̄ m̄ − λð1Þ

�
ðπ̄ þ τÞð0Þ

−Ψð1Þ
3 −Φð1Þ

21 : ð28Þ

Finally, by our choice of gauge, Eq. (C1l) gives us the
transport equation for hlm̄, namely

ðΔþ μ̄ − 2γ̄Þð0Þhlm̄ ¼ −2πð1Þ − hm̄m̄τ
ð0Þ: ð29Þ

Once again, we can obtain hlm by taking the complex
conjugate of hlm̄. Also, since we now have hlm and hmm, we
can directly calculate αð1Þ, βð1Þ, and τð1Þ from Eqs. (C1i),
(C1j), and (C1k), respectively.
We now proceed with the final step and turn our attention

to hll. Consider the Bianchi identity in Eq. (A10g).
Linearizing, and applying our gauge conditions, we obtain

a transport equation for the Weyl scalar Ψð1Þ
2 :

ðΔþ 3μÞð0ÞΨð1Þ
2 ¼ ðδþ 2β − 2τÞð0ÞΨð1Þ

3 þRð1Þ
g : ð30Þ

Now consider the Riemann identity in Eq. (A9f), which
after linearizing and applying gauge conditions becomes

Dð1Þγð0Þ þ ð−Δþ γ þ γ̄Þð0Þϵð1Þ − γð0Þðϵþ ϵ̄Þð1Þ

¼
�
αð1Þ −

1

2
hm̄ m̄β

ð0Þ
�
ðτ þ π̄Þð0Þ

þ
�
βð0Þ −

1

2
hmmα

ð0Þ
�
ðπ þ τ̄Þð0Þ

þ τð1Þπð0Þ þ τð0Þπð1Þ þΨð1Þ
2 ; ð31Þ

where we have used Eq. (27). The left-hand side of this
equation depends on hll and its derivatives, while the right-
hand side is known from quantities already computed in the
previous steps of metric reconstruction. Using Eq. (C1g)
and its complex conjugate, we have

ϵð1Þ þ ϵ̄ð1Þ ¼ 1

2
ð−Δþ γ þ γ̄Þð0Þhll − ðπ̄ þ τÞð0Þhlm̄

− ðπ þ τ̄Þð0Þhlm: ð32Þ

Meanwhile, Dð1Þ is given algebraically in terms of hll
through Eq. (8a). Combining these expressions with
Eq. (31), we obtain the following second-order transport
equation for hll:

�
1

4
ð−Δþ γ þ γ̄Þð0Þð−Δþ 2γ̄ þ μ − μ̄Þð0Þ þ 1

2
γð0Þð−Δþ γ þ γ̄Þð0Þ − 1

2
Δð0Þγð0Þ

�
hll

¼
�
−
1

4
ð−Δþ γ þ γ̄Þð0Þð−δþ 2ᾱ − π̄ − 2τÞð0Þ þ γð0Þðπ̄ þ τÞð0Þ

�
hlm̄

þ
�
−
1

4
ð−Δþ γ þ γ̄Þð0Þðδ̄ − 2α − 3π − 2τ̄Þð0Þ þ γð0Þðπ þ τ̄Þð0Þ

�
hlm

þ
�
αð1Þ −

1

2
βð0Þhm̄ m̄

�
ðπ̄ þ τÞð0Þ þ

�
βð1Þ −

1

2
αð0Þhmm

�
ðπ þ τ̄Þð0Þ

þ πð0Þτð1Þ þ πð1Þτð0Þ þ Ψð1Þ
2 : ð33Þ

Thus, we now have all of the necessary equations to
solve for the components of the first-order metric pertur-
bation. The remaining spin coefficients and Weyl scalars
not computed from the transport equations in this
reconstruction procedure may be derived from these metric
components through Eqs. (11)–(C1l) and Eqs. (12)–(14c),
respectively. In the next section, we give a practical
example of this procedure.

V. CASE STUDY: QUASINORMAL MODES
OF KERR BLACK HOLES

Having developed a procedure to reconstruct the metric
in the outgoing radiation gauge, we illustrate the method
with a concrete example, namely the first-order metric
perturbation in the limit r → ∞ corresponding to a single
quasinormal mode of a Kerr black hole. To address

issues of mode coupling at second-order will require
reconstruction near the black hole; however, this is suffi-
ciently complicated that we will do so numerically, as
described in the companion paper [45].
We work in Boyer-Lindquist coordinates

ds2 ¼
�
1 −

2Mr
Σ

�
dt2 þ 4Mrasin2θ

Σ
dtdϕ

−
Σ
Δ
dr2 − Σdθ2

−
�
r2 þ a2 −

2Mra2

Σ
sin2θ

�
dϕ2; ð34Þ

where Δ ¼ r2 − 2Mrþ a2, and Σ ¼ r2 þ a2 cos2 θ, and
choose the Kinnersley tetrad [52] (which sets lμ and nμ to
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be parallel to the principal null directions of the Kerr
spacetime):

lμ ¼ 1

Δ
ðr2 þ a2;Δ; 0; aÞ; ð35aÞ

nμ ¼ 1

2Σ
ðr2 þ a2;−Δ; 0; aÞ; ð35bÞ

mμ ¼ 1ffiffiffi
2

p
Γ
ðia sin θ; 0; 1; i csc θÞ; ð35cÞ

where Γ ¼ rþ ia cos θ. The spin coefficients and Weyl
scalars are

κ ¼ σ ¼ λ ¼ ν ¼ ϵ ¼ Ψ0 ¼ Ψ1 ¼ Ψ3 ¼ Ψ4 ¼ 0;

ρ ¼ −
1

Γ̄
; β ¼ cot θ

23=2Γ
; π ¼ ia sin θ

21=2Γ̄2
;

τ ¼ −
ia sin θ

21=2ΓΓ̄
; μ ¼ −

Δ
2ΓΓ̄2

; γ ¼ μþ r −M
2ΓΓ̄

;

α ¼ π − β̄; Ψ2 ¼ −
M
Γ̄3

: ð36Þ

A. Solving the Teukolsky equation

Before we can reconstruct the metric, we need a solution for Ψð1Þ
4 . Teukolsky showed that by defining ψ ¼ ρ−4ð0ÞΨ

ð1Þ
4 ,

Eq. (B12) can be solved by separation of variables [50]; we review that here. In Boyer-Lindquist coordinates, and in vacuum
(i.e., all of the Ricci scalars are zero), the Teukolsky equation is

��ðr2 þ a2Þ
Δ

− a2sin2θ

� ∂2

∂t2 þ
4Mar
Δ

∂2

∂t∂ϕ − 4

�
rþ ia cos θ −

Mðr2 þ a2Þ
Δ

� ∂
∂t

− Δ2
∂
∂r

�
Δ−1 ∂

∂r
�
−

1

sin θ
∂
∂θ

�
sin θ

∂
∂θ

�
−
�

1

sin2θ
−
a2

Δ

� ∂2

∂ϕ2

þ 4

�
aðr −MÞ

Δ
þ i cos θ

sin2θ

� ∂
∂ϕþ ð4 cot2θ þ 2Þ

�
ψ ¼ 0: ð37Þ

By writing

ψ ¼ e−iωteimϕRðrÞSðθÞ; ð38Þ

we can separate the above equation into

Δ2
d
dr

�
Δ−1dR

dr

�
þ
�
K2þ4iðr−MÞK

Δ
−8iωr−B

�
R¼ 0;

ð39aÞ

1

sθ

d
dθ

�
sθ
dS
dθ

�
þ
�
a2ω2c2θ −

m2

s2θ
þ 4aωcθ

þ 4mcθ
s2θ

−
4c2θ
s2θ

− 2þ A

�
S ¼ 0; ð39bÞ

where K ¼ ðr2 þ a2Þω − am, B ¼ Aþ a2ω2 − 2amω,
A ¼ AlmðaωÞ is a separation constant with eigenvalue l,
and ðcθ; sθÞ ¼ ðcos θ; sin θÞ. Equation (39) provides the
definition of spin-weighted spheroidal harmonics [53],
which reduce to the well-known spin-weighted spherical
harmonics in the limit a → 0. We will write the solution to
Eq. (39) as SðθÞ ¼ −2SlmðθÞ.
To solve Eq. (39a), it is natural to make the

transformation

Y ¼ ðr2 þ a2Þ1=2
Δ

R;
dr⋆
dr

¼ r2 þ a2

Δ
: ð40Þ

Equation (39a) then reduces to

Y 00 þ
�
K2 þ 4iðr −MÞK − Δð8irωþ BÞ

ðr2 þ a2Þ2

−G2 −G0
�
Y ¼ 0; ð41Þ

where the prime corresponds to differentiation with respect
to r⋆ and

G ¼ rΔ
ðr2 þ a2Þ2 −

2ðr −MÞ
r2 þ a2

: ð42Þ

We are interested in a solution near spatial infinity
(r → ∞; r⋆ → ∞); expanding in this limit, Eq. (41)
becomes

Y 00 þ
�
ω2 −

4iω
r

�
Y ¼ 0 ð43Þ

with solution Y ¼ ða0=r2Þe−iωr⋆ þ b0r2eiωr⋆ . Since
ðr2 þ a2Þ1=2=Δ ∼ 1=r, this implies R ¼ ða0=rÞe−iωr⋆ þ
b0r3eiωr⋆ . Transforming back to the original variable

Ψð1Þ
4 , we have
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Ψð1Þ
4 ¼

�
a0
r5

e−iωr⋆ þ b0
r
eiωr⋆

�
e−iωtþimϕ

−2SlmðθÞ: ð44Þ

This solution corresponds to a superposition of ingoing
(e−iωr⋆) and outgoing (eiωr⋆) radiation. To model the
situation describing the ringdown of a black hole following
a binary merger, we enforce the boundary condition that
there is no ingoing radiation from infinity, i.e., a0 ¼ 0.
Writing b0 ¼ −2Alm, we arrive at the desired asymptotic
solution

Ψð1Þ
4 ¼ −2Alm

r
ei½mϕ−ωðt−r⋆Þ�

−2SlmðθÞ: ð45Þ

The complex constant −2Alm is determined by initial
conditions, which in the case of a binary coalescence is
determined by the inspiral and merger phases.

B. First-order metric

Having a solution for Ψð1Þ
4 , we may now proceed to

reconstruct the first-order metric perturbation. Before we
begin, there are a couple of important points to mention,
one related to modes for l < 2, the other about initial data.
In general, perturbations of black holes can have l ¼ 0 and
l ¼ 1 angular modes, which physically correspond to shifts
in the mass M and spin a of the black hole. Such modes
cannot be captured by the spin s ¼ −2 field Ψ4 (or the
s ¼ þ2 field Ψ0), since spin-weighted fields of spin s can
only have support over l ≥ maxðjsj; jmjÞ. As demonstrated
in the companion paper [45], lack of knowledge of the
l ¼ 0, 1 modes does not affect the source term or second-
order mode coupling from first-order modes with jmj ≥ 2.
For radiative modes with jmj < 2 the influence of the
nonradiative pieces needs to be incorporated through a
combination of nontrivial initial conditions for the transport

equations and their homogeneous (Ψð1Þ
4 ¼ 0) solutions,

which we leave to future work to investigate (for more
discussion of these issues see e.g., Appendix B of [44,54]
in the context of the self-force problem). The example of
metric reconstruction we provide here therefore does not
include these nonradiative terms.
In regards to the specification of initial data, this is a

nontrivial problem if posed on a spacelike (Cauchy) slice Σ,
and, as with the issues related to l < 2 solutions of the
transport equations, we leave to future work to investigate.
Though in brief, the difficulty stems from the fact that
initial data for the Einstein equations (linearized or not)
when posed on a spacelike hypersurface are subject to the
Hamiltonian and momentum constraints, most easily
expressed in terms of geometric objects and their gradients
intrinsic to Σ. In the NP formalism, only the two angular
null tetrad vectorsm and m̄ can straightforwardly be rotated
to be tangent to Σ (see e.g., [27]); the other two null vectors,
and more importantly the corresponding gradient operators
D andΔ they define, contain pieces orthogonal to Σ. Hence

it is not easy to disentangle what data are freely specifiable

(beyond Ψð1Þ
4 ) versus constrained if reconstruction is to

begin on Σ. Here, the imposition of the QNM ansatz for

Ψð1Þ
4 for all time t, together with only solving the equations

in the large r limit, skirts the initial data issue.1

Our starting pointwill be to solve forhmm. An intermediate

step is to determine λð1Þ fromΨð1Þ
4 , with the relevant transport

equation given in Eq. (23). We assume that λð1Þ can be

separated in a similar fashion to Ψð1Þ
4 ; specifically we write

λð1Þ ¼ e−iωteimϕRλðrÞSλðθÞ, and our goal will be to deter-
mine RλðrÞ and SλðθÞ. Inserting this ansatz into Eq. (23),
applying the NP operators in Boyer-Lindquist coordinates,
and expanding in r → ∞ðr⋆ → ∞Þ, we obtain

−
1

2
e−iωtþimϕSλðθÞ

�
dRλ

dr
þ iωRλðrÞ

�

¼ −−2Alm

r
e−iωðt−r⋆Þþimϕ

−2SlmðθÞ: ð46Þ

A necessary condition to separate this equation is
SλðθÞ ¼ −2SlmðθÞ. Applying this, we obtain the following
equation for RλðrÞ:

dRλ

dr
þ iωRλ ¼ −

2

r −2Alme
iωr⋆ : ð47Þ

The homogeneous solution to this equation scales as e−iωr⋆ ,
and thus the ðt; r⋆Þ dependence of the full homogeneous
solution goes as λð1Þ ∼ e−iωðtþr⋆Þ. This corresponds to an
ingoing mode, which we set to zero, and so we only need to
worry about the particular solution to the above equation.
Due to the behavior of the right-hand side of Eq. (47),
the particular solution will scale as eiωr⋆ . Writing
Rλ ¼ a0eiωr⋆=rn, we can insert this into Eq. (47) and solve
fora0 andn in an asymptotic expansion about spatial infinity.
Doing so, we obtain n ¼ 1 and a0 ¼ −i−2Alm=ω, and thus

λð1Þ ¼ −
i
ωr −2Alme

−iωðt−r⋆Þþimϕ
−2SlmðθÞ: ð48Þ

Now that we have λð1Þ, we turn our attention to the transport
equation for hm̄m̄ given by Eq. (24). The procedure for
determining hm̄m̄ follows the same steps as finding λð1Þ.

1For the numerical solution discussed in the companion paper
we cannot make a QNM ansatz and do not limit the domain to
large r. We still do not solve the initial data problem on Σ there
but instead circumvent the problem by a particular restriction of
the class of initial data and only performing self-consistent
reconstruction within a related null wedge interior to the domain
of the Cauchy evolution. Also, not all the NP equations are used
to reconstruct the metric, and a subset are redundant (essentially
stemming from the Bianchi identities). These are used in the code
to check that the reconstruction is in fact self-consistent within
the null wedge. For details see [45].
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Writing hm̄m̄ ¼ e−iωtþimϕRm̄m̄ðrÞSm̄m̄ðθÞ, the necessary con-
dition for separability is Sm̄m̄ðθÞ ¼ −2SlmðθÞ. We then obtain
the equation

dRm̄m̄

dr
þ iωRm̄m̄ ¼ −

4i
ωr −2Alme

iωr⋆ : ð49Þ

Using our boundary condition to set the homogeneous
solution to zero, we solve for the particular solution to obtain

hm̄ m̄ ¼ −
2

ω2r −2Alme
−iωðt−r⋆Þþimϕ

−2SlmðθÞ: ð50Þ

Finally, taking the complex conjugate, we have

hmm ¼ −
2

ω̄2r −2Ālme
iω̄ðt−r⋆Þ−imϕ−2S̄lmðθÞ: ð51Þ

Wehavemade it explicit here that one has to take the complex
conjugate of ω and −2Slm, as well as −2Alm. In general, the
frequency of the quasinormal modes is complex, and since

−2Slm depends on ω, then it is also complex.
We now turn our attention to solving for hlm. The starting

point is to solve for the Weyl scalar Ψð1Þ
3 from Eq. (25).

Expanding the right-hand side of this equation, we obtain

ðδ − τ þ 4βÞð0ÞΨð1Þ
4 ¼ −2Almffiffiffi

2
p

r2
eimϕ−iωðt−r⋆Þ

× L−2½−2SlmðθÞ�; ð52Þ

where Ls ¼ ∂θ −m csc θ − s cot θ þ aω sin θ. These are
the same operators that appear in the well-known
Teukolsky-Starobinsky identities [35]. It is worth pointing
out, however, that the operation L−2½−2SlmðθÞ� does not
generate the spin-weight −1 spheroidal harmonic −1SlmðθÞ,
which can be verified by direct application of the angular
Teukolsky equation (39) for spin weight −1. In fact, this is
the reason why one cannot decouple the equations gov-
erning electromagnetic and gravitational perturbations of
the Kerr-Newman spacetime [35,55]. Note that, in the
nonspinning limit (i.e., a ¼ 0), the operator Ls does reduce
to the raising operator for spin-weighted spherical harmon-
ics sYlmðθ;ϕÞ and in the Geroch-Held-Penrose formalism
[56] is the asymptotically expanded ð operator which raises
the spin weight of quantities. Thus, we may expect that the
operation L−2½−2SlmðθÞ� does produce an angular function
of spin weight −1 but that it does not satisfy the corre-
sponding angular Teukolsky equation.
To solve for Ψð1Þ

3 , we propose the ansatz Ψð1Þ
3 ¼

eimϕ−iωtR3ðrÞS3ðθÞ. In order to perform separation of
variables, we must have S3ðθÞ ¼ L−2½−2SlmðθÞ�. This gives
us the equation for the radial function R3ðrÞ in the limit
r → ∞:

dR3

dr
þ iωR3ðrÞ ¼ −2Almffiffiffi

2
p

r2
eiωr⋆ : ð53Þ

Solving this equation, we obtain

Ψð1Þ
3 ¼ iffiffiffi

2
p −2Alm

ωr2
eimϕ−iωðt−r⋆ÞL−2½−2SlmðθÞ�: ð54Þ

The remainder of the procedure to obtain πð1Þ and hlm
follows these exact same steps. The angular dependence of
these functions is L−2½−2SlmðθÞ� in order to perform sepa-
ration of variables. The end result of this computation is

πð1Þ ¼ 1ffiffiffi
2

p −2Alm

ω2r2
eimϕ−iωðt−r⋆ÞL−2½−2SlmðθÞ�; ð55aÞ

hlm̄ ¼ −i
ffiffiffi
2

p −2Alm

ω3r2
eimϕ−iωðt−r⋆ÞL−2½−2SlmðθÞ�: ð55bÞ

By virtue of having solved for πð1Þ and hlm, we may also
compute αð1Þ, βð1Þ, and τð1Þ, with the end result being

αð1Þ ¼ 1

23=2
−2Alm

ω2r2
eimϕ−iωðt−r⋆Þ

× f2L−2½−2SlmðθÞ� − cot θ−2SlmðθÞg; ð56aÞ

βð1Þ ¼ 1

23=2
−2Ālm

ω̄2r2
e−imϕþiω̄ðt−r⋆Þ cot θ−2S̄lmðθÞ; ð56bÞ

τð1Þ ¼ −
1ffiffiffi
2

p −2Ālm

ω̄2r2
fL−2½−2SlmðθÞ�g†; ð56cÞ

where † corresponds to complex conjugation of the angular
function.
Finally, we consider the solution for hll. The first step is

to solve for Ψð1Þ
2 using Eq. (30). Expanding the right-hand

side, we have

ðδþ 2β − 2τÞð0ÞΨð1Þ
3 ¼ i

2
−2Alm

ωr3
L−1L−2½−2SlmðθÞ�: ð57Þ

Writing the ansatz Ψð1Þ
2 ¼ eimϕ−iωtR2ðrÞS2ðθÞ and expand-

ing the left-hand side of Eq. (30), we have that S2ðθÞ ¼
L−1L−2½−2SlmðθÞ� in order to achieve separation of vari-
ables. We are then left with

dR2

dr
þ iωR2ðrÞ ¼

i
2
−2Alm

ωr3
eiωr⋆ ; ð58Þ

which can be solved in a 1=r expansion to obtain

Ψð1Þ
2 ¼ −

1

2
−2Alm

ω2r3
eimϕ−iωðt−r⋆ÞL−1L−2½−2SlmðθÞ�: ð59Þ

With Ψð1Þ
2 in hand, we now turn to Eq. (33). Consider the

source terms on the right-hand side of this equation. In an
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r → ∞ expansion, the terms containing hlm̄, hlm, and Ψð1Þ
2

dominate and scale as 1=r3. This expanded source term is
real valued, since hll must be real valued. Writing hll ¼
eimϕ−iωtRþðrÞSþðθÞ þ e−imϕþiωtR−ðrÞS−ðθÞ, the necessary
conditions to perform separation of variables are SþðθÞ ¼
L−1L−2½−2SlmðθÞ� and S−ðθÞ ¼ fL−1L−2½−2SlmðθÞ�g†.
Expanding about r → ∞, we obtain

d2Rþ
dr2

þ 2iω
dRþ
dr

− ω2RþðrÞ ¼ −4 −2Alm

ω2r3
eiωr⋆ ; ð60aÞ

d2R−

dr2
− 2iω̄

dR−

dr
− ω̄2R−ðrÞ ¼ −4 −2Ālm

ω̄2r3
e−iω̄r⋆ : ð60bÞ

These equations can be solved with the methods we have
previously employed to obtain

hll ¼ 4 −2Alm

ω4r3
eimϕ−iωðt−r⋆ÞL−1L−2½−2SlmðθÞ� þ c:c; ð61Þ

where c.c. is shorthand for the complex conjugate of the
preceding term.
Now that we have all of the components of the metric in

our chosen gauge, we may complete the first-order
description of the NP quantities. Applying Eqs. (11)–(C1l),
the remaining spin coefficients are

κð1Þ ¼−
ffiffiffi
2

p
i−2Ālm

ω̄3r3
e−imϕþiω̄ðt−r⋆ÞfL−2½−2SlmðθÞ�g†; ð62aÞ

σð1Þ ¼ −2Ālm

ω̄2r2
e−imϕþiω̄ðt−r⋆Þ

−2S̄lmðθÞ; ð62bÞ

ϵð1Þ ¼ 5i
4

−2Alm

ω3r3
eimϕ−iωðt−r⋆ÞL−1L−2½−2SlmðθÞ�

−
3i
4

−2Ālm

ω̄3r3
e−imϕþiω̄ðt−r⋆ÞfL−1L−2½−2SlmðθÞ�g†;

ð62cÞ

ρð1Þ ¼ i
2
−2Alm

ω3r3
eimϕ−iωðt−r⋆ÞL−1L−2½−2SlmðθÞ�þ c:c: ð62dÞ

To obtain the remaining Weyl scalar Ψð1Þ
1 and Ψð1Þ

0 , we
use the linearize Bianchi identities in Eqs. (63a) and (63b).
The methods for solving these are the exact same methods
we detailed for the metric coefficients. The end result is

Ψð1Þ
1 ¼ iffiffiffi

2
p −2Alm

ω3r4
eimϕ−iωðt−r⋆ÞL0L−1L−2½−2SlmðθÞ�; ð63aÞ

Ψð1Þ
0 ¼ −2Alm

ω4r5
eimϕ−iωðt−r⋆ÞL1L0L−1L−2½−2SlmðθÞ�

− 6iM −2Ālm

ω̄3r5
e−imϕþiω̄ðt−r⋆Þ

−2S̄lmðθÞ: ð63bÞ

This completes the derivation of all NP quantities at
first-order.

VI. DISCUSSION

Here we have laid some of the ground work necessary for
the study of second-order perturbations of Kerr black holes.
Working in outgoing radiation gauge, we showed that the
first-order metric perturbations of a Kerr black hole can be
reconstructed starting from a single NP quantity, namely

Ψð1Þ
4 . As an example we have applied this to obtain the first-

order metric perturbations associated with the quasinormal
modes of Kerr black holes in the asymptotic limit.
There are several directions for future work. As men-

tioned, reconstructing the metric over the entire spacetime
is complicated and might not be analytically tractable. We
have developed a numerical code to implement the solution
of the Teukolsky equation, and reconstruction procedure,
over the full spacetime exterior to the horizon [45]. This is
particularly relevant regarding questions of mode coupling
after binary black hole mergers, as this phenomena will be
governed by sources strongest in the near-horizon region.
Another direction of future study would thus be to inves-
tigate whether, in addition to our numerical analysis,
analytic solutions may be obtained there. Also as discussed
in Sec. V B, additional work is needed to solve for
corrections to the metric corresponding to changes in the
spin and mass of the black hole.
As mentioned in the introduction, crucial to understand-

ing the nonlinear regime of ringdown is the question of what
the “initial conditions” of the perturbed black hole following
a merger are. If this is not known, it would be difficult to
distinguish the higher overtones of linear modes from
second-order effects, which could have similar amplitudes,
frequencies and decay rates.2 The close limit approximation
to black hole mergers [23] seems like a natural avenue to
address the question of initial conditions. Insight could also
be gained from recent studies investigating this in the EMRI
limit [57,58]. Also, numerical simulations of mergers can be
used to at least constrain the initial conditions via measure-
ment of “final conditions,” i.e., the amplitudes and phases of
modes in the ringdown once all the nonlinear effects have
sorted themselves out, as well as measure-driven second-
order modes that will persist and look like QNMs with
amplitudes and complex frequencies that are squares of their
parent modes (see e.g., [59]).
A further interesting application is investigating the

energy cascade between modes due to nonlinear effects
in ringdown. In asymptotically anti–de Sitter (AdS) space-
time, several studies of black holes and black branes have
shown that horizon perturbations, modulo the natural

2If—as argued in [19]—linear theory can very accurately
describe postmerger ringdown dynamics from peak amplitude
onward, second-order analysis presumably then should be able to
extend this to some time before peak amplitude.
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decay, become turbulent [60–62]. This may be a peculiarity
of AdS spacetime, though a study in [63] suggested similar
phenomenology might be present for very rapidly rotating
Kerr black holes in asymptotically flat spacetime. Those
researchers used a scalar field on a Kerr background as a
model for gravitational wave perturbations; with the tools
presented here and in [45] it should be possible to repeat
this for tensor perturbations. Their work suggests that
turbulent dynamics might only be apparent for very rapidly
spinning black holes; whether these exist in nature is
unknown, nevertheless this is still an interesting open
theoretical problem.

ACKNOWLEDGMENTS

We would like to thank Andrew Spiers for aid in
checking the first-order spin coefficients in Eqs. (C1a)–
(C1l). N. L. and F. P. acknowledge support from National
Science Foundation (NSF) Grant No. PHY-1912171,
the Simons Foundation, and the Canadian Institute for
Advanced Research (CIFAR). E. G. acknowledges support
from NSF Grant No. DMS-2006741.

APPENDIX A: NEWMAN-PENROSE
FORMALISM

For completeness in this Appendix we review the NP
formalism. We use the conventions of [35] (e.g., our metric
sign convention is þ − −−, and we use f̄ to denote the
complex conjugate of f), except that we use Greek letters to
denote spacetime indices.
The NP formalism is a reformulation of the Einstein field

equations in a null tetrad frame, defined by four null vectors
eμa ¼ ðlμ; nμ; mμ; m̄μÞ satisfying

lμnμ ¼ 1; mμm̄μ ¼ −1; ðA1Þ

where the overbar corresponds to complex conjugation and
the remaining dot products are zero. The metric gμν is
related to the null vectors via gμν ¼ ηabeaμebν , where

ηab ¼

2
6664
0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

3
7775: ðA2Þ

This leads to the completeness relation

gμν ¼ 2lðμnνÞ − 2mðμm̄νÞ: ðA3Þ
We further define the derivatives along the null directions as

D ¼ lμ∂μ; Δ ¼ nμ∂μ;

δ ¼ mμ∂μ; δ̄ ¼ m̄μ∂μ: ðA4Þ

These differential operators satisfy the following commuta-
tion relations:

½Δ; D� ¼ ðγ þ γ̄ÞDþ ðϵþ ϵ̄ÞΔ − ðτ̄ þ πÞδ
− ðτ þ π̄Þδ̄; ðA5aÞ

½δ; D� ¼ ðᾱþ β − π̄ÞDþ κΔ − ðρ̄þ ϵ − ϵ̄Þδ − σδ̄; ðA5bÞ

½δ;Δ� ¼−ν̄Dþðτ− ᾱ−βÞΔþðμ− γþ γ̄Þδþ λ̄δ̄; ðA5cÞ

½δ̄; δ� ¼ ðμ̄ − μÞDþ ðρ̄ − ρÞΔþ ðα − β̄Þδ
þ ðβ − ᾱÞδ̄; ðA5dÞ

where fα; β; γ; ϵ; ρ; λ; π; μ; ν; τ; σ; κg are the complex spin
coefficients. The components of curvature in the NP formal-
ism are characterized by contractions of the null tetrad with
theWeyl tensor andRicci tensor; specifically, theWeyl tensor
contractions are

Ψ0 ¼ −Cμνρσlμmνlρmσ; ðA6aÞ

Ψ1 ¼ −Cμνρσlμnνlρmσ; ðA6bÞ

Ψ2 ¼ −Cμνρσlμmνm̄ρnσ; ðA6cÞ

Ψ3 ¼ −Cμνρσlμnνm̄ρnσ; ðA6dÞ

Ψ4 ¼ −Cμνρσnμm̄νnρm̄σ; ðA6eÞ

and the contractions with the Ricci tensor are

Φ00 ¼ −
1

2
Rμνlμlν; Φ22 ¼ −

1

2
Rμνnμnν; ðA7aÞ

Φ02 ¼ −
1

2
Rμνmμmν; Φ20 ¼ −

1

2
Rμνm̄μm̄ν ðA7bÞ

Φ11 ¼ −
1

4
Rμνðlμnν þmμm̄νÞ; ðA7cÞ

Φ01 ¼ −
1

2
Rμνlμmν; Φ10 ¼ −

1

2
Rμνlμm̄ν; ðA7dÞ

Λ ¼ 1

12
Rμνðlμnν −mμm̄νÞ; ðA7eÞ

Φ12 ¼ −
1

2
Rμνnμmν; Φ21 ¼ −

1

2
Rμνnμm̄ν: ðA7fÞ

When the Einstein equations are imposed, this latter
set of curvature scalars can be related to the stress
energy tensor Tμν of matter through the trace-reversed
field equations:
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Rμν ¼ 8π

�
Tμν −

1

2
gμνT

�
; ðA8Þ

where T ¼ Tμ
μ.

The decomposition of the Riemann tensor in terms of the
Weyl and Ricci tensors provides the necessary transport
equations describing the evolution of the spin coefficients
in terms of the above quantities; specifically

Dρ − δ̄κ ¼ ðρ2 þ σσ̄Þ þ ρðϵþ ϵ̄Þ − κ̄τ

− κð3αþ β̄ − πÞ þΦ00; ðA9aÞ

Dσ − δκ ¼ σðρþ ρ̄þ 3ϵ − ϵ̄Þ − κðτ − π̄ þ ᾱþ 3βÞ þ Ψ0;

ðA9bÞ

Dτ − Δκ ¼ ρðτ þ π̄Þ þ σðτ̄ þ πÞ þ τðϵ − ϵ̄Þ
− κð3γ þ γ̄Þ þ Ψ1 þΦ01; ðA9cÞ

Dα − δ̄ϵ ¼ αðρþ ϵ̄ − 2ϵÞ þ βσ̄ − β̄ϵ − κλ − κ̄γ

þ πðϵþ ρÞ þΦ10; ðA9dÞ

Dβ − δϵ ¼ σðαþ πÞ þ βðρ̄ − ϵ̄Þ − κðμþ γÞ
− ϵðᾱ − π̄Þ þΨ1; ðA9eÞ

Dγ−Δϵ¼ αðτþ π̄Þþβðτ̄þπÞ− γðϵþ ϵ̄Þ
− ϵðγþ γ̄Þþ τπ−νκþΨ2þΦ11−Λ; ðA9fÞ

Dλ − δ̄π ¼ ðρλþ σ̄μÞ þ πðπ þ α − β̄Þ − νκ̄

− λð3ϵ − ϵ̄Þ þΦ20; ðA9gÞ

Dμ − δπ ¼ ðρ̄μþ σλÞ þ πðπ̄ − ᾱþ βÞ − μðϵþ ϵ̄Þ
− νκ þΨ2 þ 2Λ; ðA9hÞ

Dν − Δπ ¼ μðπ þ τ̄Þ þ λðπ̄ þ τÞ þ πðγ − γ̄Þ
− νð3ϵþ ϵ̄Þ þΨ3 þΦ21; ðA9iÞ

Δλ − δ̄ν ¼ −λðμþ μ̄þ 3γ − γ̄Þ
þ νð3αþ β̄ þ π − τ̄Þ −Ψ4; ðA9jÞ

δρ − δ̄σ ¼ ρðᾱþ βÞ − σð3α − β̄Þ þ τðρ − ρ̄Þ
þ κðμ − μ̄Þ −Ψ1 þΦ01; ðA9kÞ

δα − δ̄β ¼ μρ − λσ þ αᾱþ ββ̄ − 2αβ þ γðρ − ρ̄Þ
þ ϵðμ − μ̄Þ − Ψ2 þΦ11 þ Λ; ðA9lÞ

δλ − δ̄μ ¼ νðρ − ρ̄Þ þ πðμ − μ̄Þ þ μðαþ β̄Þ
þ λðᾱ − 3βÞ −Ψ3 þΦ21; ðA9mÞ

δν − Δμ ¼ ðμ2 þ λλ̄Þ þ μðγ þ γ̄Þ − ν̄π

þ νðτ − 3β − ᾱÞ þΦ22; ðA9nÞ

δγ − Δβ ¼ γðτ − ᾱ − βÞ þ μτ − σν − ϵν̄

− βðγ − γ̄ − μÞ þ αλ̄þΦ12; ðA9oÞ

δτ − Δσ ¼ ðμσ þ λ̄ρÞ þ τðτ þ β − ᾱÞ
− σð3γ − γ̄Þ − κν̄þΦ02; ðA9pÞ

Δρ − δ̄τ ¼ −ρμ̄þ σλþ τðβ̄ − α − τ̄Þ þ ρðγ þ γ̄Þ
þ νκ − Ψ2 − 2Λ; ðA9qÞ

Δα − δ̄γ ¼ νðρþ ϵÞ − λðτ þ βÞ þ αðγ̄ − μ̄Þ
þ γðβ̄ − τ̄Þ −Ψ3: ðA9rÞ

Meanwhile, the Bianchi identities provide the following
transport equations for the Weyl scalar:

− δ̄Ψ0 þDΨ1 þ ð4α − πÞΨ0 − 2ð2ρþ ϵÞΨ1

þ 3κΨ2 þRa ¼ 0; ðA10aÞ

δ̄Ψ1 −DΨ2 − λΨ0 þ 2ðπ − αÞΨ1 þ 3ρΨ2

− 2κΨ3 þRb ¼ 0; ðA10bÞ

− δ̄Ψ2 þDΨ3 þ 2λΨ1 − 3πΨ2 þ 2ðϵ − ρÞΨ3

þ κΨ4 þRc ¼ 0; ðA10cÞ

δ̄Ψ3 −DΨ4 − 3λΨ2 þ 2ð2π þ αÞΨ3 − ð4ϵ − ρÞΨ4

þRd ¼ 0; ðA10dÞ

− ΔΨ0 þ δΨ1 þ ð4γ − μÞΨ0 − 2ð2τ þ βÞΨ1

þ 3σΨ2 þRe ¼ 0; ðA10eÞ

− ΔΨ1 þ δΨ2 þ νΨ0 þ 2ðγ − μÞΨ1 − 3τΨ2

þ 2σΨ3 þRf ¼ 0; ðA10fÞ

− ΔΨ2 þ δΨ3 þ 2νΨ1 − 3μΨ2 þ 2ðβ − τÞΨ3

þ σΨ4 þRg ¼ 0; ðA10gÞ

− ΔΨ3 þ δΨ4 þ 3νΨ2 − 2ðγ þ 2μÞΨ3

− ðτ − 4βÞΨ4 þRh ¼ 0; ðA10hÞ

where the R terms only depend on the Ricci scalars

Ra ¼ −DΦ01 þ δΦ00 þ 2ðϵþ ρ̄ÞΦ01 þ 2σΦ10

− 2κΦ11 − κ̄Φ02 þ ðπ̄ − 2ᾱ − 2βÞΦ00; ðA11aÞ
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Rb ¼ δ̄Φ01 − ΔΦ00 − 2ðαþ τ̄ÞΦ01 þ 2ρΦ11 þ σ̄Φ02

− ðμ − 2γ − 2γ̄ÞΦ00 − 2τΦ10 − 2DΛ; ðA11bÞ

Rc ¼ −DΦ21 þ δΦ20 þ 2ðρ̄ − ϵÞΦ21 − 2μΦ10 þ 2πΦ11

− κ̄Φ22 − ð2ᾱ − 2β − π̄ÞΦ20 − 2δ̄Λ; ðA11cÞ

Rd ¼ −ΔΦ20 þ δ̄Φ21 þ ð2α − τ̄ÞΦ21 þ 2νΦ10

þ σ̄Φ22 − 2λΦ11 − ðμ̄þ 2γ − 2γ̄ÞΦ20; ðA11dÞ

Re ¼ −DΦ02 þ δΦ01 þ 2ðπ̄ − βÞΦ01 − 2κΦ12

− λ̄Φ00 þ 2σΦ11 þ ðρ̄þ 2ϵ − 2ϵ̄ÞΦ02; ðA11eÞ

Rf ¼ΔΦ01− δ̄Φ02þ 2ðμ̄− γÞΦ01− 2ρΦ12− ν̄Φ00

þ 2τΦ11þðτ̄− 2β̄þ 2αÞΦ02þ 2δΛ; ðA11fÞ

Rg ¼ −DΦ22 þ δΦ21 þ 2ðπ̄ þ βÞΦ21 − 2μΦ11 − λ̄Φ20

þ 2πΦ12 þ ðρ̄ − 2ϵ − 2ϵ̄ÞΦ22 − 2ΔΛ; ðA11gÞ

Rh ¼ ΔΦ21 − δ̄Φ22 þ 2ðμ̄þ γÞΦ21 − 2νΦ11 − ν̄Φ20

þ 2λΦ12 þ ðτ̄ − 2α − 2β̄ÞΦ22: ðA11hÞ

Finally, the evolution equations for the Ricci scalars are
obtained through the divergence-free property of the
Einstein tensor ∇μGμν ¼ 0:

δ̄Φ01 þ δΦ10 −DðΦ11 þ 3ΛÞ − ΔΦ00

¼ κ̄Φ12 þ κΦ21 þ ð2αþ 2τ̄ − πÞΦ01

þ ð2ᾱþ 2τ − π̄ÞΦ10 − 2ðρþ ρ̄ÞΦ11 − σ̄Φ02 − σΦ20

þ ½μþ μ̄ − 2ðγ þ γ̄Þ�Φ00; ðA12aÞ

δ̄Φ12 þ δΦ21 − ΔðΦ11 þ 3ΛÞ −DΦ22

¼ −νΦ01 − ν̄Φ10 þ ðτ̄ − 2β̄ − 2πÞΦ12

þ ðτ − 2β − 2π̄ÞΦ21 þ 2ðμþ μ̄ÞΦ11

− ðρþ ρ̄ − 2ϵ − 2ϵ̄ÞΦ22 þ λΦ02 þ λ̄Φ20; ðA12bÞ

δðΦ11 − 3ΛÞ −DΦ12 − ΔΦ01 þ δ̄Φ02

¼ κΦ22 − ν̄Φ00 þ ðτ̄ − π þ 2α − 2β̄ÞΦ02 − σΦ21

þ λ̄Φ10 þ 2ðτ − π̄ÞΦ11 − ð2ρþ ρ̄ − 2ϵ̄ÞΦ12

þ ð2μ̄þ μ − 2γÞΦ01: ðA12cÞ

APPENDIX B: MASTER EQUATIONS
FOR PERTURBATIONS OF A PETROV

TYPE D SPACETIME

Here we review the derivation of the equations governing
the first- and second-order perturbations of a Petrov type D
spacetime satisfying the vacuum Einstein equations.

The equation for first-order perturbations was originally
derived by Teukolsky [50] and was later generalized to nth-
order perturbations by Campanelli and Lousto [33]. We
recall that a spacetime is a Petrov type D spacetime if it
admits two double principal null directions, with respect to
which

Ψ0 ¼ Ψ1 ¼ Ψ3 ¼ Ψ4 ¼ 0: ðB1Þ

By the Goldberg-Sachs theorem [64], we also have

κ ¼ σ ¼ ν ¼ λ ¼ 0: ðB2Þ

Finally, if the outgoing null vector lμ is chosen to be
affinely parameterized, then we have, additionally, ϵ ¼ 0.
We distinguish between the background quantities and
perturbations with superscripts. For example, for the Weyl
curvature component Ψ0, we consider perturbations of the
form

Ψ0 ¼ Ψð0Þ
0 þ ζΨð1Þ

0 þ ζ2Ψð2Þ
0 þOðζ3Þ; ðB3Þ

where ζ is an order-keeping parameter, Ψð0Þ
0 denotes the

background value,Ψð1Þ
0 denotes the first-order perturbations

and Ψð2Þ
0 denotes the second-order perturbation. We sim-

ilarly have second-order perturbations of all the Weyl
curvature, Ricci coefficients and differential derivatives
in the NP formalism. Since the background spacetime is of
Petrov type D we have

Ψð0Þ
0 ¼ Ψð0Þ

1 ¼ Ψð0Þ
3 ¼ Ψð0Þ

4

¼ κð0Þ ¼ σð0Þ ¼ νð0Þ ¼ λð0Þ ¼ 0: ðB4Þ

By virtue of the fact that the spacetime satisfies the vacuum
field equations, the Ricci scalars in Eqs. (A7a)–(A7f) all
vanish on the background. For generality, we do allow
these scalars to be nonzero at first and second-order in
perturbation theory.

1. First-order perturbations

Consider the Bianchi identities Eqs. (A10d) and (A10h)
and the Riemann identity Eq. (A9j) which can be written as

ðDþ4ϵ−ρÞΨ4− ðδ̄þ2αþ4πÞΨ3þ3λΨ2¼−Rd; ðB5aÞ

−ðδþ4β−τÞΨ4þðΔþ2γþ4μÞΨ3−3νΨ2¼−Rh; ðB5bÞ

ðΔþμþ μ̄þ3γ− γ̄Þλ−ðδ̄þ3αþ β̄þπ− τ̄Þν¼−Ψ4: ðB5cÞ

The quantities fΨ4;Ψ3; λ; νg and the Ricci terms
fRd;Rhg all vanish on the background, and thus these
equations are “of first-order smallness,” meaning that they
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describe the evolution of first-order quantities. Following
[33], we define the derivatives

d3 ≡ δ̄þ 3αþ β̄ þ 4π − τ̄; ðB6Þ

d4 ≡ Δþ 4μþ μ̄þ 3γ − γ̄: ðB7Þ

We act on (B5a) with dð0Þ4 and on (B5b) with dð0Þ3 and sum
the two equations to obtain

½dð0Þ4 ðDþ 4ϵ − ρÞ − dð0Þ3 ðδþ 4β − τÞ�Ψ4

þ ½−dð0Þ4 ðδ̄þ 2αþ 4πÞ þ dð0Þ3 ðΔþ 2γ þ 4μÞ�Ψ3

þ 3½dð0Þ4 λ − dð0Þ3 ν�Ψ2 ¼ −dð0Þ4 Rd − dð0Þ3 Rh: ðB8Þ

So far, we have not performed any perturbative expansions,
and the above equation applies at all orders in perturbation
theory.
We now show how the first-order term3 of the above

equation corresponds to the Teukolsky equation for Petrov
type D spacetimes. By expanding Eq. (B8) to first-order we
obtain

½dð0Þ4 ðDþ4ϵ−ρÞð0Þ−dð0Þ3 ðδþ4β−τÞð0Þ�Ψð1Þ
4

þ½−dð0Þ4 ðδ̄þ2αþ4πÞð0Þ þdð0Þ3 ðΔþ2γþ4μÞð0Þ�Ψð1Þ
3

þ3½dð0Þ4 λð1Þ−dð0Þ3 νð1Þ�Ψð0Þ
2 ¼−dð0Þ4 Rð1Þ

d −dð0Þ3 Rð1Þ
h ; ðB9Þ

where we used that Ψð0Þ
4 ¼ Ψð0Þ

3 ¼ λð0Þ ¼ νð0Þ ¼ Rð0Þ
d ¼

Rð0Þ
h ¼ 0. Now observe that using (A5d), (A9i), (A9m)

and (A9r), one can prove that in a vacuum Petrov type D
spacetime

½−d4ðδ̄þ 4π þ 2αÞ þ d3ðΔþ 4μþ 2γÞ�f ¼ 0 ðB10Þ

for any scalar f. As a result of this, the second line of
Eq. (B9) now vanishes. Also, observe that using (A9j),
(A10g) and (A10c) for a type D background, we can
derive that

½dð0Þ4 λð1Þ − dð0Þ3 νð1Þ�Ψð0Þ
2 ¼ −Ψð0Þ

2 Ψð1Þ
4 : ðB11Þ

Putting the above together, we obtain the Teukolsky
equation

T Ψð1Þ
4 ¼ Rð1Þ

4 ; ðB12Þ

where T is the Teukolsky operator [see [50], Eq. (2.14)]

T ≡ ½dð0Þ4 ðDþ 4ϵ − ρÞð0Þ − dð0Þ3 ðδþ 4β − τÞð0Þ�
− 3Ψð0Þ

2 ðB13Þ

and Rð1Þ
4 ¼ −dð0Þ4 Rð1Þ

d − dð0Þ3 Rð1Þ
h . Equation (B12) governs

the gravitational wave perturbations in any type D space-

time satisfying the vacuum field equations. A solution Ψð1Þ
4

to (B12) can represent both ingoing and outgoing radiation,
though is better adapted to describing outgoing waves far
from a source. A similar procedure can be used to obtain a

decoupled equation for Ψð1Þ
0 , which likewise can represent

both ingoing and outgoing waves, though is better adapted
to describing the former [50].

2. Second-order perturbations

We now turn our attention to second-order perturbations
of type D spacetimes. Returning to Eq. (B8), we expand to
second-order to obtain

½dð0Þ4 ðDþ 4ϵ− ρÞð0Þ − dð0Þ3 ðδþ 4β − τÞð0Þ�Ψð2Þ
4

þ ½dð0Þ4 ðDþ 4ϵ− ρÞð1Þ − dð0Þ3 ðδþ 4β − τÞð1Þ�Ψð1Þ
4

þ ½−dð0Þ4 ðδ̄þ 2αþ 4πÞð1Þ þ dð0Þ3 ðΔþ 2γ þ 4μÞð1Þ�Ψð1Þ
3

þ 3½dð0Þ4 λð1Þ − dð0Þ3 νð1Þ�Ψð1Þ
2 þ 3½dð0Þ4 λð2Þ − dð0Þ3 νð2Þ�Ψð0Þ

2

¼ −dð0Þ4 Rð2Þ
d − dð0Þ3 Rð2Þ

h ; ðB14Þ

where we used Eq. (B10). We once again make use of
Eqs. (A9j), (A10g), and (A10c) to derive

½dð0Þ4 λð2Þ−dð0Þ3 νð2Þ�Ψð0Þ
2

¼−Ψð0Þ
2 Ψð2Þ

4

þΨð0Þ
2 ½−ðdð1Þ4 −3μð1ÞÞλð1Þ þðdð1Þ3 −3πð1ÞÞνð1Þ�: ðB15Þ

We can thus write the second-order vacuum Teukolsky
equation as

T Ψð2Þ
4 ¼ Sð2Þ

4 þRð2Þ
4 ; ðB16Þ

where Rð2Þ
4 ¼ −dð0Þ4 Rð2Þ

d − dð0Þ3 Rð2Þ
h and the source term

Sð2Þ
4 is

Sð2Þ
4 ≡−½dð0Þ4 ðDþ4ϵ−ρÞð1Þ−dð0Þ3 ðδþ4β−τÞð1Þ�Ψð1Þ

4

þ½dð0Þ4 ðδ̄þ2αþ4πÞð1Þ−dð0Þ3 ðΔþ2γþ4μÞð1Þ�Ψð1Þ
3

−3½dð0Þ4 λð1Þ−dð0Þ3 νð1Þ�Ψð1Þ
2

þ3Ψð0Þ
2 ½ðdð1Þ4 −3μð1ÞÞλð1Þ−ðdð1Þ3 −3πð1ÞÞνð1Þ�; ðB17Þ

as was derived in [33] [Eq. (9)]. In particular, the source

term Sð2Þ
4 only involves derivatives of the Ricci and

3Observe that the zeroth-order term of Eq. (B8) is trivially
satisfied since Ψð0Þ

4 ¼Ψð0Þ
3 ¼λð0Þ ¼νð0Þ ¼0 in a type D spacetime.
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curvature components of the background or of the first-
order perturbation. Further, recall that we have not yet
imposed any gauge conditions on the background or the
first-order terms.

APPENDIX C: LINEARIZED NP SPIN
COEFFICIENTS IN TERMS OF THE

LINEARIZED METRIC

Using a choice of tetrad first described by Chrzanowski
[51] and the commutation relations for the NP derivative
operators, one can rewrite the linearized NP scalars in terms
of the linearized metric components (see Sec. III A). Here
we provide a complete listing of these relations [compare
also to Eq. (A4) of [33]]:

λð1Þ ¼ 1

2
½−Δþ 2ðγ̄ − γÞ þ μ − μ̄�ð0Þhm̄m̄ − ðπ þ τ̄Þð0Þhnm̄;

ðC1aÞ

νð1Þ ¼ 1

2
ðδ̄þ2α−πþ2β̄− τ̄Þð0Þhnn− ðΔþ2γþ μ̄Þð0Þhnm̄;

ðC1bÞ

σð1Þ ¼ 1

2
½Dþ 2ðϵ̄ − ϵÞ þ ρ − ρ̄�ð0Þhmm − ðτ þ π̄Þð0Þhlm;

ðC1cÞ

γð1Þ ¼1

4
ðδ̄þ2β̄−2π− τ̄Þð0Þhnm

−
1

4
ðδþ2βþ2π̄þ3τÞð0Þhnm̄þ

1

4
ðDþ2ϵ̄þρ− ρ̄Þð0Þhnn

þ1

4
ðμ− μ̄−4γÞð0Þhlnþ

1

4
ðμ− μ̄Þð0Þhmm̄; ðC1dÞ

κð1Þ ¼ ðD − 2ϵ − ρ̄Þð0Þhlm −
1

2
ðδ − 2ᾱ − 2β þ π̄ þ τÞð0Þhll;

ðC1eÞ

μð1Þ ¼ 1

2
ðδ̄þ 2β̄ − 2π − τ̄Þð0Þhnm −

1

2
ðδþ 2β þ τÞð0Þhnm̄

−
1

2
ðΔ − μþ μ̄Þð0Þhmm̄

þ 1

2
ρð0Þhnn −

1

2
ðμþ μ̄Þð0Þhln; ðC1fÞ

ϵð1Þ ¼ 1

4
ð−Δþ 2γ̄ þ μ − μ̄Þð0Þhll þ

1

4
ð2Dþ ρ − ρ̄Þð0Þhln

þ 1

4
ð−δþ 2ᾱ − π̄ − 2τÞð0Þhlm̄

þ 1

4
ðδ̄ − 2α − 3π − 2τ̄Þð0Þhlm þ 1

4
ðρ − ρ̄Þð0Þhmm̄;

ðC1gÞ

ρð1Þ ¼ 1

2
ðDþ ρ − ρ̄Þð0Þhmm̄ −

1

2
ðδþ π̄ þ 2τ − 2ᾱÞð0Þhlm̄

þ 1

2
ðδ̄ − π − 2αÞð0Þhlm

þ 1

2
μð0Þhll þ

1

2
ðρ − ρ̄Þhln; ðC1hÞ

αð1Þ ¼ 1

4
ðδ̄þ 2α− π− τ̄Þð0Þhmm̄−

1

4
ðδ− 2ᾱþ π̄þ τÞð0Þhm̄m̄

−
1

4
ðΔþ 4γ− 2γ̄þ μ̄− 2μÞð0Þhlm̄þ 1

4
ðδ̄− π− τ̄Þð0Þhln

þ 1

4
ðD− 2ϵ− ρ− 2ρ̄Þð0Þhnm̄; ðC1iÞ

βð1Þ ¼ 1

4
ðD−4ϵþ2ϵ̄þ2ρ− ρ̄Þð0Þhnmþ1

4
ðδ− π̄− τÞð0Þhln

−
1

4
ðδ−2βþ π̄þ τÞð0Þhmm̄−

1

4
ðΔþ2γþμþ2μ̄Þð0Þhlm

þ1

4
ðδ̄þ2β̄−π− τ̄Þð0Þhmm; ðC1jÞ

τð1Þ ¼ 1

2
ðDþ2ϵ̄− ρ̄Þð0Þhnmþ1

2
ðΔ−2γþμÞð0Þhlm

−
1

2
ðδþ π̄þ τÞð0Þhln−

1

2
πð0Þhmm−

1

2
π̄ð0Þhmm̄; ðC1kÞ

πð1Þ ¼−
1

2
ðDþ2ϵ−ρÞð0Þhnm̄−

1

2
ðΔ−2γ̄þ μ̄Þð0Þhlm̄

þ1

2
ðδ̄−π− τ̄Þð0Þhln−

1

2
τ̄ð0Þhmm̄−

1

2
τð0Þhm̄m̄: ðC1lÞ

APPENDIX D: ALTERNATIVE METRIC
RECONSTRUCTION EQUATIONS

The metric reconstruction procedure detailed in Sec. IV
is not unique in the sense that one could derive alternative
equations for the metric components hll, hlm, and hmm. The
reason for this is that we have more equations than are
necessary to solve for these components. We here provide
an alternative equation for one of these components,
namely hll. Consider the Riemann identity in Eq. (A9h).
Linearizing this equation, we have

ðD − ρ̄þ ϵþ ϵ̄Þð1Þμð0Þ ¼ ðδþ π̄ − ᾱþ βÞð0Þπð1Þ
þ ðδþ π̄ − ᾱþ βÞð1Þπð0Þ

þΨð1Þ
2 þ 2Λð1Þ: ðD1Þ

The left-hand side of this equation contains all of the
dependence on hll. Expanding out the left-hand side, we
have

SECOND-ORDER PERTURBATIONS OF KERR BLACK HOLES: … PHYS. REV. D 103, 104017 (2021)

104017-17



ðD − ρ̄þ ϵþ ϵ̄Þð1Þμð0Þ

¼ −
μð0Þ

2
½Δ − γ − γ̄ þ μ̄�ð0Þhll −

1

2
hllΔð0Þμð0Þ

−
μð0Þ

2
ðδ − 2ᾱþ π̄ þ 2τÞhlm̄

þ μð0Þ

2
ðδ̄ − 2α − πÞhlm: ðD2Þ

This can be simplified by making use of the Riemann
identity in Eq. (A9n) evaluated on the background, spe-
cifically −Δð0Þμð0Þ ¼ ðμð0ÞÞ2 þ μð0Þðγ þ γ̄Þð0Þ. Applying
this, we obtain a first-order transport equation for hll,
specifically

½Δ − 2ðγ þ γ̄Þ − μþ μ̄�ð0Þhll
¼ −ðδ − 2ᾱþ π̄ þ 2τÞhlm̄ þ ðδ̄ − 2α − πÞhlm
−

2

μð0Þ
½ðδþ π̄ − ᾱþ βÞð0Þπð1Þ

þ ðδþ π̄ − ᾱþ βÞð1Þπð0Þ þ Ψð1Þ
2 þ 2Λð1Þ�: ðD3Þ

Why did we not make use of this equation in our
case study in Sec. V. The issue with this equation is the
behavior of the source term in a 1=r expansion. To leading
order, the terms on the right-hand side of Eq. (D3) are those

containing πð1Þ and Ψð1Þ
2 and which scale as 1=r2. However,

these terms exactly cancel one another, and we are left with
an undetermined remainder ofOð1=r3Þ. This happens to be

the same order as the hlm and hlm̄ terms. Thus, in order to
get the correct behavior of the source term in Eq. (D3) one

would have to obtain πð1Þ and Ψð1Þ
2 to higher order in 1=r,

which in turn means that we would have to start by

calculating the higher order in 1=r corrections to Ψð1Þ
4 .

The second-order transport equation in Eq. (33) does not
have this issue. We make use of Eq. (D3) in our numerical
computations in [45], where this problem does not occur as
we do not make any 1=r approximations.
This same issue arises if one tries to compute the Weyl

scalarΨð1Þ
0 from the expanded Riemann identity in Eq. (12).

The terms containing σð1Þ are the leading-order terms, which
scale as 1=r3, and all cancel one another with a remainder of
Oð1=r4Þ, which is the same order as those terms containing

κð1Þ. By the peeling theorem, Ψð1Þ
0 ¼ Oð1=r5Þ, and thus all

Oð1=r4Þ terms in this equationmust also cancel one another.
Alternatively, one can solve for the remaining Weyl scalars

Ψð1Þ
0 andΨð1Þ

1 using the Bianchi identities in Eqs. (A10e) and
(A10f), respectively. Expanding these equations to first-
order, we have

½−Δþ 2ðγ − μÞ�ð0ÞΨð1Þ
1 þ ðδ − 3τÞð0ÞΨð1Þ

2

þ ðδ − 3τÞð1ÞΨð0Þ
2 ¼ −Rð1Þ

f ; ðD4Þ

ð−Δþ 4γ − μÞð0ÞΨð1Þ
0 þ ½δ − 2ð2τ þ βÞ�Ψð1Þ

1

þ 3σð1ÞΨð0Þ
2 ¼ −Rð1Þ

e : ðD5Þ

[1] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[2] N. T. Bishop and L. Rezzolla, Living Rev. Relativity 19, 2

(2016).
[3] E. Berti, V. Cardoso, and A. O. Starinets, Classical Quantum

Gravity 26, 163001 (2009).
[4] W. Israel, Commun. Math. Phys. 8, 245 (1968).
[5] W. Israel, Phys. Rev. 164, 1776 (1967).
[6] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[7] S. W. Hawking, Commun. Math. Phys. 25, 152 (1972).
[8] D. C. Robinson, Phys. Rev. Lett. 34, 905 (1975).
[9] R. Penrose, Some unsolved problems in classical general

relativity, in Seminar on Differential Geometry, edited by
S. Yau (Princeton University Press, Princeton, NJ, 1982),
pp. 631–688.

[10] O. Dreyer, B. J. Kelly, B. Krishnan, L. S. Finn, D. Garrison,
and R. Lopez-Aleman, Classical Quantum Gravity 21, 787
(2004).

[11] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,
064030 (2006).

[12] E. Berti, K. Yagi, H. Yang, and N. Yunes, Gen. Relativ.
Gravit. 50, 49 (2018).

[13] E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K.
Belczynski, Phys. Rev. Lett. 117, 101102 (2016).

[14] H. Yang, K. Yagi, J. Blackman, L. Lehner, V. Paschalidis, F.
Pretorius, and N. Yunes, Phys. Rev. Lett. 118, 161101
(2017).

[15] B. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Phys. Rev. D 100, 104036 (2019).

[16] X. J. Forteza, S. Bhagwat, P. Pani, and V. Ferrari, Phys.
Rev. D 102, 044053 (2020).

[17] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Phys. Rev. D 102, 043015 (2020).

[18] A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D
75, 124018 (2007).

[19] M. Giesler, M. Isi, M. A. Scheel, and S. Teukolsky, Phys.
Rev. X 9, 041060 (2019).

[20] M. Isi, M. Giesler, W.M. Farr, M. A. Scheel, and S. A.
Teukolsky, Phys. Rev. Lett. 123, 111102 (2019).

[21] R. J. Gleiser, C. O. Nicasio, R. H. Price, and J. Pullin,
Classical Quantum Gravity 13, L117 (1996).

[22] R. J. Gleiser, C. O. Nicasio, R. H. Price, and J. Pullin, Phys.
Rev. Lett. 77, 4483 (1996).

LOUTREL, RIPLEY, GIORGI, and PRETORIUS PHYS. REV. D 103, 104017 (2021)

104017-18

https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.1007/s41114-016-0001-9
https://doi.org/10.1007/s41114-016-0001-9
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1007/BF01645859
https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1007/BF01877517
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1103/PhysRevLett.117.101102
https://doi.org/10.1103/PhysRevLett.118.161101
https://doi.org/10.1103/PhysRevLett.118.161101
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.102.044053
https://doi.org/10.1103/PhysRevD.102.044053
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.1103/PhysRevD.75.124018
https://doi.org/10.1103/PhysRevD.75.124018
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.1103/PhysRevLett.123.111102
https://doi.org/10.1088/0264-9381/13/10/001
https://doi.org/10.1103/PhysRevLett.77.4483
https://doi.org/10.1103/PhysRevLett.77.4483


[23] R. H. Price and J. Pullin, Phys. Rev. Lett. 72, 3297 (1994).
[24] H. Nakano and K. Ioka, Phys. Rev. D 76, 084007 (2007).
[25] K. Ioka and H. Nakano, Phys. Rev. D 76, 061503 (2007).
[26] E. Pazos, D. Brizuela, J. M. Martin-Garcia, and M. Tiglio,

Phys. Rev. D 82, 104028 (2010).
[27] S. Klainerman and J. Szeftel, arXiv:1711.07597.
[28] C. O. Lousto and H. Nakano, Classical Quantum Gravity

26, 015007 (2009).
[29] T. S. Keidl, A. G. Shah, J. L. Friedman, D.-H. Kim, and

L. R. Price, Phys. Rev. D 82, 124012 (2010); 90, 109902(E)
(2014).

[30] A. G. Shah, T. S. Keidl, J. L. Friedman, D.-H. Kim, and
L. R. Price, Phys. Rev. D 83, 064018 (2011).

[31] S. E. Gralla, Phys. Rev. D 85, 124011 (2012).
[32] M. van de Meent, J. Phys. Conf. Ser. 840, 012022 (2017).
[33] M. Campanelli and C. O. Lousto, Phys. Rev. D 59, 124022

(1999).
[34] E. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566

(1962).
[35] S. Chandrasekhar, The Mathematical Theory of Black

Holes, Oxford Classic Texts in the Physical Sciences
(Oxford University Press, Oxford, 2002).

[36] P. L. Chrzanowski, Phys. Rev. D 11, 2042 (1975).
[37] J. M. Stewart and S. W. Hawking, Proc. R. Soc. A 367, 527

(1979).
[38] B. Whiting and L. Price, Classical Quantum Gravity 22,

S589 (2005).
[39] L. R. Price, K. Shankar, and B. F. Whiting, Classical

Quantum Gravity 24, 2367 (2007).
[40] S. R. Green, S. Hollands, and P. Zimmerman, Classical

Quantum Gravity 37, 075001 (2020).
[41] C. O. Lousto and B. F. Whiting, Phys. Rev. D 66, 024026

(2002).
[42] A. Ori, Phys. Rev. D 67, 124010 (2003).
[43] C.Merlin, A. Ori, L. Barack, A. Pound, andM. van deMeent,

Phys. Rev. D 94, 104066 (2016).

[44] L. Andersson, T. Bäckdahl, P. Blue, and S. Ma, arXiv:
1903.03859.

[45] J. L. Ripley, N. Loutrel, E. Giorgi, and F. Pretorius,
following paper, Phys. Rev. D 103, 104018 (2021).

[46] J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F.
Rohrlich, and E. C. G. Sudarshan, J. Math. Phys. (N.Y.)
8, 2155 (1967).

[47] T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
[48] F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).
[49] F. J. Zerilli, Phys. Rev. D 2, 2141 (1970).
[50] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[51] P. L. Chrzanowski, Phys. Rev. D 13, 806 (1976).
[52] W. Kinnersley, J. Math. Phys. (N.Y.) 10, 1195 (1969).
[53] R. A. Breuer, M. P. Ryan, and S. Waller, Proc. R. Soc. A

358, 71 (1977).
[54] S. R. Dolan and L. Barack, Phys. Rev. D 87, 084066

(2013).
[55] E. Giorgi, arXiv:2002.07228.
[56] R. Geroch, A. Held, and R. Penrose, J. Math. Phys. (N.Y.)

14, 874 (1973).
[57] A. Apte and S. A. Hughes, Phys. Rev. D 100, 084031

(2019).
[58] H. Lim, G. Khanna, A. Apte, and S. A. Hughes, Phys. Rev.

D 100, 084032 (2019).
[59] L. London, D. Shoemaker, and J. Healy, Phys. Rev. D 90,

124032 (2014); 94, 069902(E) (2016).
[60] F. Carrasco, L. Lehner, R. C. Myers, O. Reula, and A.

Singh, Phys. Rev. D 86, 126006 (2012).
[61] S. R. Green, F. Carrasco, and L. Lehner, Phys. Rev. X 4,

011001 (2014).
[62] A. Adams, P. M. Chesler, and H. Liu, Phys. Rev. Lett. 112,

151602 (2014).
[63] H. Yang, A. Zimmerman, and L. Lehner, Phys. Rev. Lett.

114, 081101 (2015).
[64] J. N. Goldberg and R. K. Sachs, Gen. Relativ. Gravit. 41,

433 (2009).

SECOND-ORDER PERTURBATIONS OF KERR BLACK HOLES: … PHYS. REV. D 103, 104017 (2021)

104017-19

https://doi.org/10.1103/PhysRevLett.72.3297
https://doi.org/10.1103/PhysRevD.76.084007
https://doi.org/10.1103/PhysRevD.76.061503
https://doi.org/10.1103/PhysRevD.82.104028
https://arXiv.org/abs/1711.07597
https://doi.org/10.1088/0264-9381/26/1/015007
https://doi.org/10.1088/0264-9381/26/1/015007
https://doi.org/10.1103/PhysRevD.82.124012
https://doi.org/10.1103/PhysRevD.90.109902
https://doi.org/10.1103/PhysRevD.90.109902
https://doi.org/10.1103/PhysRevD.83.064018
https://doi.org/10.1103/PhysRevD.85.124011
https://doi.org/10.1088/1742-6596/840/1/012022
https://doi.org/10.1103/PhysRevD.59.124022
https://doi.org/10.1103/PhysRevD.59.124022
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1103/PhysRevD.11.2042
https://doi.org/10.1098/rspa.1979.0101
https://doi.org/10.1098/rspa.1979.0101
https://doi.org/10.1088/0264-9381/22/15/003
https://doi.org/10.1088/0264-9381/22/15/003
https://doi.org/10.1088/0264-9381/24/9/014
https://doi.org/10.1088/0264-9381/24/9/014
https://doi.org/10.1088/1361-6382/ab7075
https://doi.org/10.1088/1361-6382/ab7075
https://doi.org/10.1103/PhysRevD.66.024026
https://doi.org/10.1103/PhysRevD.66.024026
https://doi.org/10.1103/PhysRevD.67.124010
https://doi.org/10.1103/PhysRevD.94.104066
https://arXiv.org/abs/1903.03859
https://arXiv.org/abs/1903.03859
https://doi.org/10.1103/PhysRevD.103.104018
https://doi.org/10.1063/1.1705135
https://doi.org/10.1063/1.1705135
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1103/PhysRevD.2.2141
https://doi.org/10.1086/152444
https://doi.org/10.1103/PhysRevD.13.806
https://doi.org/10.1063/1.1664958
https://doi.org/10.1098/rspa.1977.0187
https://doi.org/10.1098/rspa.1977.0187
https://doi.org/10.1103/PhysRevD.87.084066
https://doi.org/10.1103/PhysRevD.87.084066
https://arXiv.org/abs/2002.07228
https://doi.org/10.1063/1.1666410
https://doi.org/10.1063/1.1666410
https://doi.org/10.1103/PhysRevD.100.084031
https://doi.org/10.1103/PhysRevD.100.084031
https://doi.org/10.1103/PhysRevD.100.084032
https://doi.org/10.1103/PhysRevD.100.084032
https://doi.org/10.1103/PhysRevD.90.124032
https://doi.org/10.1103/PhysRevD.90.124032
https://doi.org/10.1103/PhysRevD.94.069902
https://doi.org/10.1103/PhysRevD.86.126006
https://doi.org/10.1103/PhysRevX.4.011001
https://doi.org/10.1103/PhysRevX.4.011001
https://doi.org/10.1103/PhysRevLett.112.151602
https://doi.org/10.1103/PhysRevLett.112.151602
https://doi.org/10.1103/PhysRevLett.114.081101
https://doi.org/10.1103/PhysRevLett.114.081101
https://doi.org/10.1007/s10714-008-0722-5
https://doi.org/10.1007/s10714-008-0722-5

