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Motivated by gravitational wave observations of binary black hole mergers, we present a procedure to
compute the leading-order nonlinear gravitational wave interactions around a Kerr black hole. We describe
the formalism used to derive the equations for second-order perturbations. We develop a procedure that
allows us to reconstruct the first-order metric perturbation solely from knowledge of the solution to the first-
order Teukolsky equation, without the need of Hertz potentials. Finally, we illustrate this metric

reconstruction procedure in the asymptotic limit for the first-order quasinormal modes of Kerr. In a
companion paper [J.L. Ripley et al., Phys. Rev. D 103, 104018 (2021)] we present a numerical

implementation of these ideas.
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I. INTRODUCTION

The coalescence of binary black holes generally pro-
ceeds through three phases: the inspiral, merger, and
ringdown. In the inspiral phase, the orbital velocity is
typically small compared to the speed of light, and one can
solve the field equations of general relativity (GR) using
the perturbative post-Newtonian approximation [1]. In the
merger phase, where the gravitational waves from the
binary achieve their maximum amplitude, the nonlinearities
of GR cannot be neglected, and one usually has to solve the
field equations numerically [2]. Finally, the ringdown phase
constitutes the response of the final black hole and is
believed to be well described by the quasinormal modes
computed using black hole perturbation theory [3].

The ringdown phase of the coalescence not only pro-
vides us with useful information regarding the remnant of
binary mergers, it also gives us a means of testing the
conjectured uniqueness of black holes in GR. Several
properties of black holes are related to uniqueness: the
no-hair theorems, stating that the only stationary black hole
solutions in asymptotically flat four-dimensional spacetime
with known matter fields are the three-parameter (mass, spin
angular momentum, and electric charge) Kerr-Newman
family [4-8]; Penrose’s weak cosmic censorship conjecture
that when gravitational collapse occurs the spacetime
exterior to the black hole horizon is complete; and the final
state conjecture [9], a special case of which is the conjec-
tured nonlinear stability of the Kerr-Newman solutions,
whereby all dynamical perturbations (however large) are
absorbed by the black hole or radiated away, leaving behind
another member of the Kerr-Newman family.
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The uniqueness properties of black holes offer many
avenues for testing the dynamical, strong-field regime of
GR. Regarding the ringdown, the black hole spectroscopy
proposal [10-13] exploits that the three parameters of the
remnant (or two in an astrophysical setting where charge is
expected to be insignificant) uniquely determine the
frequencies and decay constants of the infinitely many
quasinormal modes (QNMs) of the black hole; hence,
measurements of multiple modes do not provide novel
information about the black hole but instead are constraints
to test uniqueness. This just scratches the surface of what is
theoretically possible: for a ringdown produced by a binary
black hole merger, the small set of parameters of the
progenitor binary not only uniquely determines the remnant
parameters (and hence the QNM complex frequencies), but
also all the “initial” amplitudes and phases of all the QNM
modes (this forms the basis of the proposal to coherently
stack multiple detected events to enhance the ability to
search for subdominant modes [14]). Moreover, all non-
linear effects, such as mode coupling at second-order, are
also uniquely governed by the progenitor parameters. If the
nonlinear phase of ringdown can be understood quantita-
tively, this regime of a merger will also be accessible to
uniqueness tests.

We should note however that if our only goal were to
confirm GR using black hole mergers, the residual test [15]
is adequate and does not require us to understand or
interpret phases of a merger; all one needs are full wave-
forms computed with enough accuracy that subtraction of a
“best-fit” waveform from the data leaves a residual signal
consistent with noise in the detectors. Though if such a test
were to fail, it would be crucial to have a detailed
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knowledge of which part of the waveform led to the
residual, and what novel physics or astrophysics that might
point to (whether exotic alternatives to black holes, black
holes with “hair,” or the usual GR black holes embedded in
a circumbinary environment sufficiently massive to meas-
urably alter the uniqueness constraints an isolated binary is
subject to).

Each quasinormal mode of the ringdown is identified by
three integers, two (I, m) describing the angular depend-
ence of the modes and one (n) describing the overtone [3].
Generally, the late time behavior of the ringdown phase is
dominated by the leading-order (I, m,n) = (2,2,0) quad-
rupole mode, but higher-order modes become relevant
under particular circumstances. Higher angular modes have
comparable decay time to the (1, m,n) = (2,2,0) dominant
mode but are more efficiently activated in systems with
inherent asymmetries, such as an unequal mass binary (i.e.,
mass ratio g # 1) [16]. The first evidence for a nonquadru-
pole mode in the inspiral phase came from the recent
merger event GW190412 [17]; however, this was not loud
enough for a corresponding QNM to be detected.

Overtones generally decay faster than the n = 0 funda-
mental modes and thus can only be detected at higher
signal-to-noise ratios (SNRs) or possibly, as with nonlinear
effects, if the analysis can be extended closer to the merger
phase. Intriguingly, [18,19] showed that for a merger of
comparable mass nonspinning black holes, as consistent
with GW150914, the waveform from peak amplitude
onward can be well fit with linear modes if a sufficient
number of overtones are included in the ringdown model.
There are caveats with this analysis, but if it turns out to be
sound, then there is already some evidence for observation
of the first overtone of the quadrupole mode with
GW150914 [20]. One of these caveats is, because of the
rapid decay of the overtones, with low SNR (or low
accuracy in the model) rapidly decaying nonlinear features
could be fit by overtones and be erroneously ascribed to
them. The study in [19] gave some evidence that this was
not occurring in their fits; however, back of the envelope
estimates suggest second-order mode coupling should be
visible at comparable levels to the higher overtones they
included. Without a detailed model of how the remnant
black hole is “excited” during a merger to offer predictions
for the various components of the ringdown, rather than
fitting, it would be difficult to disentangle nonlinearity from
overtones.

Most analyses of the ringdown of black holes stop at
first-order in perturbation theory. In generic perturbative
problems, second-order perturbations are sourced by the
square of first-order perturbations, constituting the leading-
order nonlinear effects. This holds true for black hole
perturbation theory. Historically, second-order black hole
perturbation theory was originally considered [21,22] to
extend the close-limit approximation to black hole mergers
[23]. These second-order calculations were later applied in

the context of quasinormal modes of Schwarzschild black
holes, where it was found that the second-order amplitudes
could be as much as 10% of the first-order amplitudes
[24-26]. A rigorous proof of the stability of fully nonlinear
perturbations of a Schwarzschild black hole is only known
restricted to a symmetry class [27]. More recently, second-
order perturbation theory has been employed in the self-
force formalism as a necessity for computing accurate
waveforms for extreme mass ratio inspirals (EMRIs) (see
e.g., [28-32)).

This being said, much about second-order perturbations of
spinning black holes in the contexts of black hole ringdown
and EMRI remain open problems. A promising approach to
study such perturbations was initiated by Campanelli and
Lousto [33], who employed the Newman-Penrose (NP)
formalism [34,35] to derive an equation for second-order
gravitational wave perturbations of Kerr black holes.

In the NP formalism, linear gravitational waves are
described by the linear part of the Weyl scalar ‘I’iw. (Here
and below we use the notation £ to denote the nth-order
perturbation of f about its background value f(©.)
Campanelli and Lousto’s equation takes the form of a
Teukolsky equation for the second-order ‘P‘(f) with a source
term quadratic in first-order perturbations. The chief chal-
lenge to computing this source term in a practical manner is
that it depends on many more first-order geometric quan-

tities than simply ‘I’gl), and finding the set consistent with the

given ‘Pf‘l) is what we refer to as reconstruction. (All the

above can equivalently be performed in terms of the NP
scalar ¥, instead of W,.)

An early method developed for reconstruction was given
by Chrzanowski [36] (see also [37,38] for a more recent
review), who showed that there exist “Hertz” potentials for
gravitational (and electromagnetic) perturbations in the
Kerr background. The gravitational Hertz potential solves
the spin-weight —2 Teukolsky equation (which we simply
call the “Teukolsky equation” for brevity). Effectively then
from a solution ¥ to the Teukolsky equation one can
generate a perturbed metric that solves the linearized
Einstein equations about a Kerr background. The compli-
cation with this approach is that while the Hertz potential ¥
solves the Teukolsky equation, it does not relate in a simple

way to the linearly perturbed Weyl scalar ‘I’fll) (or lI‘(()1>).
Therefore, it is not possible to directly apply Chrzanowski’s
method if one wants to find the perturbed metric associated
with a particular ‘P‘(‘I) .

A further drawback of Chrzanowski’s method is that one
is required to work in one of two radiation gauges, first
described by Chrzanowski [36] and later expanded on in
[39]. These gauge conditions can only be applied in type 11
or more special spacetimes and force particular conditions
on the matter stress energy tensor. This limits the Hertz
potential method from directly dealing with matter sources
that do not satisfy those conditions, such as with EMRIs for
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example. Further, this technique cannot be applied at
second-order in perturbation theory to recover the sec-
ond-order metric perturbation, since the source terms
coming from the first-order perturbation act as effective
matter sources that are not consistent with the conditions
required for the radiation gauges.

Recently, a new approach was proposed in [40] to extend
the Hertz potential approach to allow for arbitrary matter
sources. The approach starts by giving an ansatz for the
metric perturbation of the form h,;, ~ Re[ST®],, + x,,
where ST is a second-order differential operator, @ is the
Hertz potential, and x,;, is a “correction” tensor. The first
term on the right-hand side is essentially Chrzanowski’s
method that will give a linearized solution to the Einstein
equations if the radiation gauge conditions can be met; if
not, x,, provides a correction proportional to the matter
terms so that the net %, does solve the linearized Einstein
equations. Thus an additional benefit of this procedure is
that it allows for a path to calculating metric perturbations
of the Kerr spacetime beyond linear order.

There are other workarounds to the above mentioned
problems (see e.g., [41-43]), though there are also proce-
dures [35,44] to directly reconstruct the metric from ‘1‘4l ,
which avoid the use of intermediate Hertz potentials. In this
work we describe a formalism building on the latter
methods, to compute the second-order gravitational wave
perturbation of an arbitrary type D spacetime that satisfies
the vacuum FEinstein equations. The initial step is to write
all first-order NP quantities (spin coefficients and Weyl
scalars) in terms of the background metric and null tetrad
projections of the first-order metric perturbation and its
gradients. We use outgoing radiation gauge, though note
that in principle our method does not require such a gauge;
rather, it reduces the number of equations we need to solve
in the end.

We then show how in this gauge, all first-order NP
quantities can be derived from the solution of the Teukolsky
equation for ‘Pgl), several additional null transport equa-
tions, and some algebraic relations between spin coeffi-
cients and the first-order metric perturbation. This then
allows us to compute the source term necessary to solve the
Teukolsky equation for the second-order gravitational wave

perturbation represented by ‘P‘(P.

At future null infinity in outgoing radiation gauge ‘I‘f)
relates to the two polarizations of the second-order metric
perturbation (h(x2> and h(f)) in exactly the same way ‘I’gl)
relates to the linear metric [33]:

1 .
W = 2 (@R - iR h ), (1)

Thus by reading off ‘Py) and ‘I‘f) at future null infinity in
outgoing radiation gauge we have a direct measure of the
relative magnitude of second-order effects for a given
choice of initial data.

To preview the detailed derivation later in the paper, in
Fig. 1 we show a schematic of our metric reconstruction
procedure. In the outgoing radiation gauge, the only non-
zero metric perturbations h,, are the tetrad projections
hym = hyymtm®, hy, = h, Pm” and hy = h, "1¥, with
the tetrad consisting of a complex angular null vector m*
and the real radially outgoing (ingoing) null vectors /# (n*).
The starting point is to solve the Teukolsky equation for the

first-order Weyl scalar ‘Pil). One can then solve for the spin

coefficient A(1) through Eq. (23), which can then be use to
obtain #,,, through Eq. (24). Separately to this, one can

obtain ‘I’gl) from ‘I‘ftn using Eq. (25). The spin coefficient
71 can then be obtained from Eq. (28), which then allows

us to solve for Ay, through Eq. (29). Finally, from ‘Pgl) we

can obtain ‘Pg) from Eq. (30), which in turn allows us to

solve for h; using Eq. (33). The remaining first-order spin
coefficients can then be obtained from Egs. (Cla)—(Cl1l)
and the first-order Weyl scalars from Eqgs. (D4) and (D5).

This kind of approach to metric reconstruction has a few
advantages over the typical Hertz potential approach. First,
using Hertz potentials requires one to work within one of
the two radiation gauges, which place additional constraints
on the matter sources or need to be corrected via the method
in [40]. Here, though we have also chosen to work within
the outgoing radiation gauge, this is simply because it is
one of the easiest gauges to identify the necessary transport
equations to fully reconstruct the metric. The basic strategy
can be applied in essentially an arbitrary gauge, the only
difference being the eventual number and complication of
the transport equations to solve to obtain the first-order
metric. Second, the Hertz potentials are spin-weight £2
quantities and thus only have support for modes with [ > 2.
However, there are nonradiative modes with / < 2 asso-
ciated with shifts in the mass and spin of the black hole and
thus cannot be obtained from the Hertz potential. Our
approach is able to reconstruct these effects from homo-
geneous solutions to some of the transport equations, which

Teukolsky equation

7:2 I:\Ij‘(lrl)i| =0 - \114(11) EgS) )‘(1) Egzl) hmm
Eq. (25)

\Il:()}) Ecggs) ) Egg) him

HEq. (30)

‘I/él) Fe§9) hu

FIG. 1. Schematic of our procedure for metric reconstruction.
From the Teukolsky equation, one can solve for the Weyl scalar

‘Pil) . In the outgoing radiation gauge detailed in Sec. III B, one
can then directly reconstruct the three nonzero metric perturba-
tions h,,,,, h;,, and h; using the Bianchi and Ricci identities of
the Newman-Penrose formalism.
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we will detail in an upcoming paper. A third issue with the
use of a Hertz potential is additional steps must be taken
beyond simply applying Chrzanowski’s operator if one
needs the resultant metric to be consistent with a desired

‘Pgl). In particular, a fourth-order null transport equation
needs to be solved; see e.g., Eq. (11) of [42] and the
discussion of its solution therein.

The remainder of the paper is organized as follows. In
Sec. II we list the equations that govern perturbations of
type D spacetimes to first- and second-order in perturbation
theory, a derivation of which is given in the Appendix B. In
Sec. Il we derive relations between first-order NP quantities
and the linearized metric (with the full list of expressions for
the spin coefficients given in Appendix C) and then describe
the outgoing radiation gauge condition we use to fix the form
of the first-order metric perturbation. In Sec. IV we describe
our reconstruction procedure. The path to go from ¥, to
(P> Py, hyp) described there and illustrated in Fig. 1 is not
unique, and in Appendix D we mention some alternative
steps. As an illustration, in Sec. V we apply this method to
the case of quasinormal modes of the Kerr spacetime in the
limit of spatial infinity; i.e., we expand about r — co0. As
explained in that section, there is a complication to finding
the nonradiative metric perturbation associated with
changes in the mass and spin of the black hole due to the
gravitational wave perturbation; we leave it to future work
to address that issue. In a companion paper [45] we detail
the numerical code that implements the full method. We
conclude with a discussion of future work in Sec. VI
Throughout this work, we use units with G = ¢ = 1. For
the NP formalism, a brief review of which is given in
Appendix A, we use the conventions of [35], except that we
use Greek letters to denote spacetime indices (e.g., our
metric sign convention is + — ——, and we use J_‘ to denote
the complex conjugate of f).

II. PERTURBATIONS OF TYPE D SPACETIMES

In the nonspinning limit, perturbation theory can be
performed at the level of the metric; i.e., the metric can be
written as g, = ghe™ + Chy,, + O(L?), where gic™ is the
background Schwarzschild metric, h,, is the first-order
metric perturbation, and ¢ is an order-keeping parameter.
One can then write out the field equations for /,,, which
can be separated using spin-weighted spherical harmonics
[46]. The gravitational waves are then described by the
Regge-Wheeler (even-parity) [47] and Zerilli (odd-parity)
[48,49] equations. For Kerr black holes, and any generic
type D spacetime, the equations for the metric perturbation
are not known to be separable.

The problem of finding separable equations for perturba-
tions of Kerr spacetimes was solved by Teukolsky using the
NP formalism [50], and Campanelli and Lousto [33]
extended this beyond linear order. Here we list the equations,
leaving a review of the derivations to Appendix B. In the NP

formalism, a gravitational wave perturbation is character-
ized by the NP scalar ¥, (or equivalently ¥,). The equation

for the linear vacuum perturbation ‘Pf‘]) is
T =0, )

where 7 is the Teukolsky operator for a spin = —2 field
(B13). The equation for the second-order vacuum perturba-

tion ‘Pf) is
2 2
T(¥) =57, (3)

. . 2) .
where 7 is the same operator as in (2) and Sft )is a second-
order “source” term:

8P =—[d) (D +4e - p)V = d 5+ 4p - 1)@V
+ [d 3+ 2a + 4m) D = dP (A + 2y + 4p) V@)
—3[dY A0 -
+ 395" [(d = 3uM)A0) = (5 =320)0). (4)

The source term is a function of first-order perturbed NP spin
coefficients V), pt), g 2(1 D) 71 » (D) (1 20 “and
ON Weyl scalars ‘Pgl), ‘Pgl), and ‘I‘gl), and their derivatives
through the background dg()) and dflo) and first-order D),
AWM and 61 gradient operators (see Appendixes A and B
for the relevant definitions). This equation does not require
imposing any particular coordinate system on the back-
ground, although it does require using a background tetrad
that aligns with the two principal null directions of Kerr
(such as the Kinnersley tetrad).

We see that in this approach, computing the leading
nonlinear gravitational effects around a Kerr black hole is
reduced to computing the source term and then solving the
Teukolsky equation with that source term. If one has the
first-order metric perturbation, it is trivial to compute all
the NP quantities needed for the source term simply from
their definitions. However, what is more typical is to only
have ‘Pil) from a solution to the first-order Teukolsky
equation. As mentioned above then, the main technical
challenge for the second-order problem is reconstructing
the remaining NP quantities required for the source from

only one’s knowledge of ‘I’gn. In the remainder of this
paper we describe a method for doing so for vacuum
perturbations (see [40] for a different reconstruction pro-
cedure claimed to also work with gravity coupled to matter
that is smooth and of compact support).
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III. LINEARIZED METRIC
AND GAUGE CONDITIONS

Before describing our reconstruction procedure in the
following section, here we show the relation between
linearized metric and tetrad components and linearized
NP scalars (Sec. III A) and then discuss the radiation gauge
conditions we employ to fix the form of the first-order
metric perturbation (Sec. I1I B).

A. Linearized NP scalars in terms
of the linearized metric

We write out the metric to first-order in perturbation
theory as g,, = g5, + Ch,, + O($?), where g5, is a Petrov
type D background spacetime and 4, is the first-order
metric perturbation. For notational convenience, we write
the components of 4, in the tetrad frame as h,;, = hﬂyeﬁ ey,
reserving Latin (Greek) indices for tetrad (coordinate)
components; for example h,, = h,, n*n”. We assume that

IRy
the background tetrad (£, . ). m( . /1)) is chosen such

that W =@ —pl0) _ g0 (0 _ 50— 0 — 40
Note that the results in this subsection do not rely on
the choice of gauge for the metric but do depend on the
choice of the linearized tetrad.

Our starting point is to calculate the first-order tetrad
in terms of the metric perturbation. The background
tetrad forms a complete basis, so it is natural to decompose

the first-order tetrad in terms of these vectors,
specifically
(1) _ (0)
Ly byy by ci3 <3 L
1 - 0

”p(t ) | b by o ”/(4 ) (5)

mf,” €31 €3 C33 C3q m,(,o)

n‘zf,l) C31 C3 C34 C33 ﬁi,go)

where the b;; are real coefficients and the ¢;; are complex
coefficients. Following [33,51], we can use our six degrees
of freedom for the linearized tetrad vectors to choose
by = c13 = ¢33 = Imcz3 = 0. We now solve for the coef-
ficients of the matrix in Eq. (5) using the completeness
J

relation g, = 21,n,) — 2m,m,. Expanding to first-order,
we have

h

=200 + 2000 = 2m{) ) —2m()ml). (6)

0

(u"v) (v "v) (u
Inserting the representation of the first-order tetrad in
Eq. (5) and projecting into the tetrad frame gives us a
set of linear equations that can be solved to obtain the b and
¢ coefficients in terms of 4, specifically

1
W = 3 (7)
1
il = Sl + by, (7b)

ml(ll) = hnmll(lO) + hlmnl(l()) - %hmﬁl ml(l()) - % hmmml(40)' (70)

Raising the coordinate indices on these expressions
involves flipping the signs of the A;; terms (since the relative
signs of the covariant versus contravariant components of
the first-order metric tensor perturbation are opposite). For
convenience, we also write out the first-order directional
derivatives (D, A, 8,5) using these relations:

1
D = —EhuA(O), (8a)
1
A(l) = _Ehnan) - hInA(O)’ (8b)
s = —n,,,DO — ph;, AO)
1 1 -
Zho 50 4 Zp  50)
+ 5 om0 &5 (8¢)

The next step is to write out the spin coefficients in terms
of the metric perturbations #,,. To achieve this, we make
use of the commutation relations in Egs. (A5a)—(A5d) and
the first-order tetrad in Egs. (7a)—(7c). We expand out both
sides of the commutation relations and match the coef-
ficients of the directional derivatives to obtain linear
equations for the first-order spin coefficients. As an
example of this, consider Eq. (A5a). Expanding out the
left-hand side, we have

[5’ D](l) = %[2D<O)hnm + (a(O) +ﬂ<0) - ﬁ-(o))hmrh + (a(O) +B(0> - ﬂ(o))hmm

1
=207 + 7y, + 0O ny DO + 3 2D,

—8On,; + (@ 4 pO — zOp,

1
—2(e® + &N hy, 4+ kOh,5 + &Oh,, JA® + ~[-DOh, . + (=@ 4 &0 — 5N p,

2

- (_},<0> + 77(0) + :u(O))hll - 6-(0)hmm + 2(”<0) + 7_'-(O))I/llm]5(0>

1

+5 [_D(())hmm + (6(0) -&@ - p(o))hmm

2

—AOhy = 6O hy s +2(29 4+ 7O hy, 15O )
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Next, expanding out the right-hand side, we obtain

aV 4 g0 — 70 4 (0 _ g0,

2

EK'

L0 150 4 40 hm] Do)

+ k0 = L (a0 1 g0 Z 20y p, 1 (60 Z 20 4 50Vn, — kO p, 4+ 6O hzm} A©)

b= 42— 500 %hmm(e _&0) 1 50 — %6<o>hm4 50
R % (0 20 + 5O, ~ 200 hmm} 50 (10)

Matching the coefficients of A(®) allows us to solve for
M
kW, ie.,

1
) = (D -2¢-p)On, — 3 (6—2a—-2p+7+7)0h,.
(11)

Repeating this method for the remaining commutation
relations, we obtain the rest of the linearized Newman-
Penrose scalars written in terms of the linearized metric
components. We provide the complete listing of these
quantities in Appendix C. The first-order spin coefficients
are now completely determined in terms of the metric
perturbation.

The final step to complete the description in terms of the
metric perturbation is to obtain the Weyl scalars. This can
be done readily from the transport equations in Eqs. (A9a)—
(A9r). As an example, we may obtain ‘POI directly from
Eq. (A9b), due to the fact that 6(*) = 0 = (), specifically

v) = (D-p-p—3e+e)0s0
—(6+7—z+a+38)000. (12)
Likewise, from Eq. (A9j), we have
¥ = G+3a+p+n—7) 0D
—(Atp+a+3y-p@al. (13

The remaining Weyl scalars must be found by taking linear
combinations of Egs. (A9a)-(A9r). We here provide the
exact representation of these without linearizing:

Y, =D-p+e)f—-(6+a—ne—(a+n)o+ (u+7y)k,
(14a)
\Pz:%[(3—2a+ﬁ—zz—f)ﬁ—(5—a+7z+r)a
+(D+etetp—ply—(A-7—y+p—pe
t(@-a+p-i-m)r—(A=7—y+E—-pup
+ 2(vk — A0)], (14b)

Y5=(0@0+p-1y—(A—7+pa+(p+ew

— (t+p)A. (14c)
This completes the description of NP quantities in terms
of the metric perturbation.

B. Radiation gauges

As mentioned, the form of the Teukolsky equation given
in the previous section is independent of the coordinate
system and only requires the radial null tetrad vectors to be
aligned with the principle null directions of Kerr. Solving
these equations in practice requires choosing coordinates
for the background metric and first-order perturbations.
Here, we describe our gauge to fix the form of the first-
order metric and tetrad perturbations.

Under an infinitesimal gauge transformation x* — x* 4 &*
of the background metric, £, transforms as

hm/ - hmx - 5(;4;1/)- (15)

We make use of the radiation gauges developed by
Chrzanowski [36], in which the metric perturbation is
required to be transverse to one of the principal null
directions. This condition can only be imposed in type II
spacetimes or more symmetric spacetimes, like type D [39].
For the outgoing radiation gauge, we begin by imposing

nﬂ(h/w - ‘f(/d;v)) =0. (16)

This set of four equations for the vector & implies we have
freedom to choose & such that four of the components of 4,
are zero, specifically h,;, = h,,, = h,,, = h, = 0 in this
gauge. However, in Petrov type D (or more generally Petrov
type II) spacetimes it turns out that we still have some residual
gauge freedom [related to the homogeneous solutions of
Eq. (16)] that we can use to enforce a traceless condition [39]

ht = ¢*h,, = 0. (17)

Taken together with the previous conditions, this sets
h,.» = 0,leaving the only nonzero components of the metric
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to be the real-valued /;; and the complex-valued 4, and h,,,,,,.
It then follows from Egs. (C1b), (C1d), and (C1f) that

U0 — () = () — (18)

If coupling to matter, the traceless condition also imposes a
constraint on the stress energy tensor from Eq. (A9n), namely

q)22 = O = Tﬂyn”n” = 0 (19)

Equations (16)—(19) specify the necessary and sufficient
conditions for the outgoing radiation gauge. This gauge has
the properties of being transverse and traceless on future null
infinity and the past horizon for the Kerr spacetime.

Complementary to the outgoing radiation gauge, one
can also specify the ingoing radiation gauge through the
condition

(R = Egy) = 0. (20)

Combining with the traceless condition in Eq. (17), we
have the necessary conditions of the ingoing radiation
gauge:

) — k() — p0) — 0, (21)
®yy = 0 = T, 'Y = 0. (22)

This gauge has the property of being transverse and
traceless on past null infinity and the future null horizon
of the Kerr spacetime. Either one of these gauges allow for
metric reconstruction as outlined in this paper, so long as
the matter stress energy tensor satisfies either Eq. (19) or
(22). Since we are most interested in the problem of
quasinormal modes of Kerr black holes as the end state
of a binary coalescence, we can restrict to the case of
vacuum and both of these conditions are satisfied. For the
remainder of this paper, we work within the outgoing
radiation gauge.

IV. RECONSTRUCTING THE METRIC FROM ¥

In this section, we describe a procedure to reconstruct the
metric coefficients hy, h;;, and hg; in the outgoing
radiation gauge from the Weyl curvature scalar ‘Pﬁ”.

In the NP formalism, there are eight complex equations
from the Bianchi identities Egs. (A10a)-(A10h), 36 com-
plex equations (20 independent) from the Riemann iden-
tities Eqgs. (A9a)—(A9r), and 12 complex equations for the
spin coefficients Eqs. (Cla)—(C11). However, in our chosen
gauge, we only need to solve for five real-valued (one real
and two complex) quantities. Thus, the problem of solving
for the metric perturbation is overdetermined. The pro-
cedure that we detail below is, as a result, not unique, but it

is sufficient to reconstruct the metric. Some alternative
choices are outlined in Appendix D.

To begin, we focus on solving for 4,,,. Consider the
Riemann identity in Eq. (A9j). This is one of the equations
used to derive the Teukolsky equation and, as explained
there, is already of first-order smallness. Further, due to the
choice of gauge, v =0, and so we obtain the following
transport equation for A(1):

(8+p+at3y-p)0a0 = vl (23
Thus, once one has solved the Teukolsky equation for ‘Pgl),
one can naturally obtain A("). Now, consider the relationship
between A1) and the metric perturbation in Eq. (Cla). Once
again, our choice of gauge eliminates all of the metric
coefficients in this expression, except for /. Thus, we
obtain a transport equation for #;,;, namely

[A+2(7—y)+i— ﬂ](o)hmm =240, (24)

Of course, this also yields A, since h,,,, = [h;»]7. The real
and imaginary parts of 4,,,, encode the gravitational waves at
null infinity, and the above two equations are effectively
equivalent to the statement ¥, = (1/2)0?(h,. — ih,)inafar
field expansion, where &, , are the polarization states of
gravitational waves. This will become more explicit when
we present our case study in Sec. V.

Having solved for 4,,,,, we now turn our attention to /,,,.
Consider the Bianchi identity in Eq. (A10h). Just like our
starting point for A("), this equation was used to derive the
Teukolsky equation and is already of first-order smallness.
Also, by virtue of v) =0, this gives us a transport

equation that we may solve to obtain ‘I‘gl), namely

(A+27 +40) 00 = (5-7 4480w + RV (25)

For generality, we have kept the terms dependent on
the Ricci scalars in the above equation. We will do so
throughout the metric reconstruction procedure. However,
these terms must satisfy the gauge condition in (19).
Having solved for ‘I‘gl), we now consider the Riemann
identity in Eq. (A9i). After linearizing, we have

—pl) — o). (26)

By combining Eqgs. (C1l) and the complex conjugate of
Eq. (Clk), we find

1
a1 4z = —Ehm,ﬁ(ﬁ +7)(0), (27)
Combining this with Eq. (26), we obtain a transport

equation for z(!:
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(A+y- }7)(0)71(]) = <
1 1
- ‘Pg ) _ d)gl). (28)

Finally, by our choice of gauge, Eq. (Cl1l) gives us the
transport equation for A;;, namely
(A + 7 —27)Ohy = =22V = hy5d@. (29)
Once again, we can obtain h;, by taking the complex
conjugate of h;;. Also, since we now have h;, and #,,,,,, we
can directly calculate a!), (1), and (") from Egs. (Cli),
(C1j), and (C1k), respectively.
We now proceed with the final step and turn our attention
to h;. Consider the Bianchi identity in Eq. (A10g).
Linearizing, and applying our gauge conditions, we obtain

a transport equation for the Weyl scalar ‘Pg]) :

(A +3u) 0w = (5+28—20)0w) + RV (30)
Now consider the Riemann identity in Eq. (A9f), which
after linearizing and applying gauge conditions becomes

(a L0 )( +2)0
<ﬂ R >>(n+%)<°>

+ 707 4 2070 gl (31)
where we have used Eq. (27). The left-hand side of this
equation depends on 4;; and its derivatives, while the right-
hand side is known from quantities already computed in the
previous steps of metric reconstruction. Using Eq. (Clg)
and its complex conjugate, we have

“A+y+7)Oh; — (7 + 1)V,

= E(
— (7 +7)On,,. (32)

Meanwhile, D() is given algebraically in terms of
through Eq. (8a). Combining these expressions with
Eq. (31), we obtain the following second-order transport
equation for hy;:

1 _ _ _ 1 i 1
L_l (A +7+N) A+ 27+ p =) + 570 (A +y +7)0 -3 A(O)y(o)] hy
1
= {_Z (A +y+7)O(=5+2a—7-27)0 +yO (7 + T)<O>] .

1 -
|- A4y + D06 = 2038200 4 10 a )0y

+ (a“) -~ %ﬂ(‘))h,nm) (7 +17)0 + (ﬁ“) - %a(())hmm) (n+7)©

—+ ”(O)T(]> —+ ﬂ.(l),c(()) —+ ‘Pgl)

Thus, we now have all of the necessary equations to
solve for the components of the first-order metric pertur-
bation. The remaining spin coefficients and Weyl scalars
not computed from the transport equations in this
reconstruction procedure may be derived from these metric
components through Eqgs. (11)—(C11) and Egs. (12)—(14c¢),
respectively. In the next section, we give a practical
example of this procedure.

V. CASE STUDY: QUASINORMAL MODES
OF KERR BLACK HOLES

Having developed a procedure to reconstruct the metric
in the outgoing radiation gauge, we illustrate the method
with a concrete example, namely the first-order metric
perturbation in the limit » — oo corresponding to a single
quasinormal mode of a Kerr black hole. To address

(33)

[
issues of mode coupling at second-order will require
reconstruction near the black hole; however, this is suffi-
ciently complicated that we will do so numerically, as
described in the companion paper [45].

We work in Boyer-Lindquist coordinates

ds2—<

z
—Zdr2 —Zdﬁz

2Mr>d2 4Mrasin29dtd¢

2Mra?
- <r2 ra2 - sin29> d¢?, (34)

where A = r2 —2Mr+ a2, and £ = r2 + a%cos? 0, and
choose the Kinnersley tetrad [52] (which sets /# and n* to
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be parallel to the principal null directions of the Kerr
spacetime):

1
"= N (r* +d*,A,0,a), (35a)
1
nt = ﬁ (72 + az, —A, 0, Cl), (35b)
1
mt = (iasin®,0,1,icsch), (35¢)
V20

where I' = r + iacos . The spin coefficients and Weyl
scalars are

k=c=A=v=¢=Y¥Y,=¥,=¥;=Y,=0,
1 cotf iasind
r="g  P=ypp "o
iasin® A r—m
I Ty A ATy o
a=nx-p, ‘Pz——l_g. (36)

A. Solving the Teukolsky equation

Before we can reconstruct the metric, we need a solution for ‘I‘il). Teukolsky showed that by defining v = p&ﬁ‘l’gl),
Eq. (B12) can be solved by separation of variables [50]; we review that here. In Boyer-Lindquist coordinates, and in vacuum
(i.e., all of the Ricci scalars are zero), the Teukolsky equation is

(r? +d?) , 0* 4Mar O? , M(r* +a*)] 0
{[A—azsmzé’ gyl T8t8¢_4 r+zacos6‘—T 5
0 0 0 0 1 a*\ &?
-A (AT ) - ——(sinl— | - [ —— | =5
ar ( ar) sin 0 06 (Sm 89> <sin29 A> Eye
a(r—M) icosf] 0
4 — + (4cot?0 +2 =0. 37
* [ A sin20}8¢+( coret )}"’ (37)
|
By writing (r2 4 a?)!/2 dr, r+a
Y=-——R — = . 4
— A ’ dr A (40)
= " WleMPR(F)S(0), 38
4 (r)5(6) (38) Equation (39a) then reduces to
we can separate the above equation into o { K2 + 4i(r — M)K — A(8irw + B)
2 2)2
d( _dR\ (K +4i(r—M)K (r +a%)
AL <A—1 > + (+l(r>—8ia)r—B>R =0,
dr dr A —GZ—G’]Y:(), (41)
(39a)
where the prime corresponds to differentiation with respect
1d ds )y, m? to r, and
——\so—, | + | a"w°cy—— + dawcy
S()d@ de Sg }"A 2(1"—M) (42)
4 402 ) N2 2 2
ﬁ—%—zﬂgs_o, (39b) (F+a’)” rta
So So

where K = (r? + a*)w —am, B = A+ d*w? - 2amw,
A = A, (aw) is a separation constant with eigenvalue [,
and (cy, s9) = (cos@,sin@). Equation (39) provides the
definition of spin-weighted spheroidal harmonics [53],
which reduce to the well-known spin-weighted spherical
harmonics in the limit a — 0. We will write the solution to
Eq. (39) as S(0) = _,S,,,(0).

To solve Eq. (39a), it is natural to make the
transformation

We are interested in a solution near spatial infinity
(r - oo, r, > ©); expanding in this limit, Eq. (41)

becomes
Aj
_ 2) Y =0
r

with  solution Y = (ag/r?)e™™" + byr?e'®™s.  Since
(r* +a*)'?/A ~1/r, this implies R = (ay/r)e™ ™" +
byrie!’~. Transforming back to the original variable

Y + <w2 (43)

‘Pgl), we have
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Tgl) _ (% e~ior. 4 b_roeiwr.> e—iwt+im¢_251m (9) (44)
This solution corresponds to a superposition of ingoing
(e7™r) and outgoing (e’+) radiation. To model the
situation describing the ringdown of a black hole following
a binary merger, we enforce the boundary condition that
there is no ingoing radiation from infinity, i.e., ay = 0.
Writing by = _,.A,;,,, we arrive at the desired asymptotic
solution

1 — Am iimp—aw(t—r
) = 22 ging-ol=r]_s, (). (45)

The complex constant _,.A,;, is determined by initial
conditions, which in the case of a binary coalescence is
determined by the inspiral and merger phases.

B. First-order metric

Having a solution for ‘1‘4(11), we may now proceed to

reconstruct the first-order metric perturbation. Before we
begin, there are a couple of important points to mention,
one related to modes for [ < 2, the other about initial data.
In general, perturbations of black holes can have [ = 0 and
[ = 1 angular modes, which physically correspond to shifts
in the mass M and spin a of the black hole. Such modes
cannot be captured by the spin s = =2 field ¥, (or the
s = 42 field ¥,), since spin-weighted fields of spin s can
only have support over / > max(|s|, |m|). As demonstrated
in the companion paper [45], lack of knowledge of the
[ = 0, 1 modes does not affect the source term or second-
order mode coupling from first-order modes with |m| > 2.
For radiative modes with |m| < 2 the influence of the
nonradiative pieces needs to be incorporated through a
combination of nontrivial initial conditions for the transport

equations and their homogeneous (‘I‘A(t1> = 0) solutions,
which we leave to future work to investigate (for more
discussion of these issues see e.g., Appendix B of [44,54]
in the context of the self-force problem). The example of
metric reconstruction we provide here therefore does not
include these nonradiative terms.

In regards to the specification of initial data, this is a
nontrivial problem if posed on a spacelike (Cauchy) slice X,
and, as with the issues related to [ < 2 solutions of the
transport equations, we leave to future work to investigate.
Though in brief, the difficulty stems from the fact that
initial data for the Einstein equations (linearized or not)
when posed on a spacelike hypersurface are subject to the
Hamiltonian and momentum constraints, most easily
expressed in terms of geometric objects and their gradients
intrinsic to X. In the NP formalism, only the two angular
null tetrad vectors m and 7 can straightforwardly be rotated
to be tangent to X (see e.g., [27]); the other two null vectors,
and more importantly the corresponding gradient operators
D and A they define, contain pieces orthogonal to . Hence

it is not easy to disentangle what data are freely specifiable

(beyond lI’gl)) versus constrained if reconstruction is to
begin on X. Here, the imposition of the QNM ansatz for

‘I’gl) for all time ¢, together with only solving the equations
in the large r limit, skirts the initial data issue."
Our starting point will be to solve for 4,,,,,,. An intermediate

step is to determine A(!) from ‘I’g”, with the relevant transport
equation given in Eq. (23). We assume that A(!) can be

separated in a similar fashion to ‘I’gl); specifically we write

M) = g=iteimb R (r)S,(6), and our goal will be to deter-
mine R;(r) and S;(0). Inserting this ansatz into Eq. (23),
applying the NP operators in Boyer-Lindquist coordinates,
and expanding in r — oo(r, — o), we obtain

Lo dR .
—eTiwrtimd g, (0) (d—rﬂ + za)Rﬂ(r)>
= 2l i ving s, (0). (46)

A necessary condition to separate this equation is
S,(0) = _,S,,,(6). Applying this, we obtain the following
equation for R, (r):

dR, 2 .
o T ioR; = — ;72Alme"”’*. (47)

The homogeneous solution to this equation scales as e~/"+,
and thus the (7, r,) dependence of the full homogeneous
solution goes as A1) ~ ¢=@(+7.) This corresponds to an
ingoing mode, which we set to zero, and so we only need to
worry about the particular solution to the above equation.
Due to the behavior of the right-hand side of Eq. (47),
the particular solution will scale as e™’. Writing
R, = aye'’+ /", we can insert this into Eq. (47) and solve
for ag and n in an asymptotic expansion about spatial infinity.
Doing so, we obtain n = 1 and ay = —i_,.A,,,/®, and thus

i . ,
20— _ E_ZAlme—zw(z—r*)+zm¢_25‘lm(6), (48)

Now that we have A(!), we turn our attention to the transport
equation for h;; given by Eq. (24). The procedure for
determining £,,; follows the same steps as finding A().

'For the numerical solution discussed in the companion paper
we cannot make a QNM ansatz and do not limit the domain to
large r. We still do not solve the initial data problem on X there
but instead circumvent the problem by a particular restriction of
the class of initial data and only performing self-consistent
reconstruction within a related null wedge interior to the domain
of the Cauchy evolution. Also, not all the NP equations are used
to reconstruct the metric, and a subset are redundant (essentially
stemming from the Bianchi identities). These are used in the code
to check that the reconstruction is in fact self-consistent within
the null wedge. For details see [45].
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Writing hy,; = e @ MPR . - (r)S7m(0), the necessary con-
dition for separability is S, (0) = _,S,,,(0). We then obtain
the equation

AR . 4i ior
d’:m + iwR ;5 = _Eszlme . (49)

Using our boundary condition to set the homogeneous
solution to zero, we solve for the particular solution to obtain

2 . )
— AT LS, (6).(50)

ham=
Finally, taking the complex conjugate, we have

2 . -
B d)zr*Z‘Alm la)t )= 1m¢—2S1m(9)' (51)

hmm

‘We have made it explicit here that one has to take the complex
conjugate of w and _,S,,,, as well as _,.A,, . In general, the
frequency of the quasinormal modes is complex, and since
_»S;,, depends on w, then it is also complex.

We now turn our attention to solving for 4;,,. The starting

point is to solve for the Weyl scalar ‘Pgl) from Eq. (25).
Expanding the right-hand side of this equation, we obtain

Im imp—iw(t—r,)

(5 —1+4p)Owl) = =200m ,
272

X [:—2 [—ZSlm(e)] ’ (52)

where L, = Jyp— mcscOd — scotf + awsind. These are
the same operators that appear in the well-known
Teukolsky-Starobinsky identities [35]. It is worth pointing
out, however, that the operation £_,[_,S,,(0)] does not
generate the spin-weight —1 spheroidal harmonic _,S,,,(0),
which can be verified by direct application of the angular
Teukolsky equation (39) for spin weight —1. In fact, this is
the reason why one cannot decouple the equations gov-
erning electromagnetic and gravitational perturbations of
the Kerr-Newman spacetime [35,55]. Note that, in the
nonspinning limit (i.e., a = 0), the operator £, does reduce
to the raising operator for spin-weighted spherical harmon-
ics (Y,,(0,¢) and in the Geroch-Held-Penrose formalism
[56] is the asymptotically expanded d operator which raises
the spin weight of quantities. Thus, we may expect that the
operation £_,[_,S,,,(0)] does produce an angular function
of spin weight —1 but that it does not satisfy the corre-
sponding angular Teukolsky equation.
To solve for LI’31 , we propose the ansatz ‘P( ) =

eMmP=ivR (r)S5(0). In order to perform separation of
variables, we must have S3(0) = £_,[_,S,,,(0)]. This gives
us the equation for the radial function R3(r) in the limit
r — oo:

dR3 A

+ iwR =2 Im gior, 53
d 'i( ) \/ir ( )
Solving this equation, we obtain

(1>_ I —2Alm zm} iw(t—r,
W) =2 L[, 0)) (54

The remainder of the procedure to obtain z(!) and #,,
follows these exact same steps. The angular dependence of
these functions is £_,[_,S,,,(6)] in order to perform sepa-
ration of variables. The end result of this computation is

1 —Z‘Alm eim—io(t—r

) = L b L s, @), (550)
H = 'Am imgp—iw(t—r

him = _l\/i 5)3’,12 gimd-iolt '>‘C—2[—2Slm<€)]' (SSb)

By virtue of having solved for z(!) and #,,,, we may also
compute al), (V) and z(1), with the end result being

1) _ 1 —2Alm ezm(/} io(t—r,)
23/2

x {2£_z (281 (6)] = cot6_,S,,(6)}.  (56a)
1 — “Zlm —im¢p+ia(t—r, Q
A = ;2;2 emimptial=r) cotg ,S, (6), (56b)
1 A,
d) = 2Tmpp 15 @), (56c)

\/z 6)2’.2

where 1 corresponds to complex conjugation of the angular
function.

Finally, we consider the solution for /;;. The first step is
to solve for ‘Pgl)
side, we have

using Eq. (30). Expanding the right-hand

i - A m
(6+2p 20O = 2L L[ 58,(0). (5T)

Writing the ansatz ‘Pgl) = M- R, (r)S,(6) and expand-
ing the left-hand side of Eq. (30), we have that S,(0) =

L_L 5[ ,S,,(0)] in order to achieve separation of vari-
ables We are then left with

dR2 i—ZAlm 1wr

d—+ l(I)Rz( ) 5 a)r% *, (58)

which can be solved in a 1/r expansion to obtain

lpgl) _ 1—2"4lm eimp=io(t=r,) p L] S

2 a)2 3 Im (9)] (59)

With ‘I‘g Vin hand, we now turn to Eq. (33). Consider the
source terms on the right-hand side of this equation. In an

104017-11



LOUTREL, RIPLEY, GIORGI, and PRETORIUS

PHYS. REV. D 103, 104017 (2021)

r — oo expansion, the terms containing 4;;, h;,, and ‘I‘g”

dominate and scale as 1/7°. This expanded source term is
real valued, since h; must be real valued. Writing h;; =
eMmP=ivlR  (r)S . (0) + e~ MPFiR_(r)S_(0), the necessary
conditions to perform separation of variables are S (0) =
LoLo]S,(0)] and  S_(8) = {£1La[,S,(0)])'.

Expanding about r — oo, we obtain

d’R dR A

dr; + 2m)d—r+ — @R, (r) = -4 5) rlm iwr. (60a)
d*R_  _._dR_ _ AL .
dr2 — 21(1)7 — (UZR_( ) = 4= 6)2]’3 (60b)

These equations can be solved with the methods we have
previously employed to obtain

— Am im¢p—iw(t—r
hy, :4#@ piol=r) £ L 5[ ,S,,(0)] +cc, (61)

where c.c. is shorthand for the complex conjugate of the
preceding term.

Now that we have all of the components of the metric in
our chosen gauge, we may complete the first-order
description of the NP quantities. Applying Eqs. (11)—(C11),
the remaining spin coefficients are

‘Am —lm iw(t—r
) = B2 i) (£ 1S, O]}, (620)
o) = *3;4151 —im¢+ia(t—r,) 2Slm(9)’ (62b)

6(1) g—ZAlm nn(,b—lml r,) L E [ lm(e)]

4 @*r
3l—2~Alm —zm io(t—r
4 a)3r3 privler, {‘C I‘C [ZSlm(e)]}T’
(62¢)
A
p(]) I, =27 0m jimp—io(t-r, L L [2Slm(9)]+c'c' (62d)

2 w33

To obtain the remaining Weyl scalar 1113” and ‘Pél), we

use the linearize Bianchi identities in Egs. (63a) and (63b).
The methods for solving these are the exact same methods
we detailed for the metric coefficients. The end result is

1 2Alm eime= io(t-r,) EOL 1[' [ 2Slm(9)}’ (633_)

gl _
1 \/2 w

- Am Im l(U r
\P(()l) 5)4; foioli-r) g Lol i Lo [ 2Slm(9)]

—6iM % e_im¢+i(b(t_r*)—25‘lm (9)

(63b)

This completes the derivation of all NP quantities at
first-order.

VI. DISCUSSION

Here we have laid some of the ground work necessary for
the study of second-order perturbations of Kerr black holes.
Working in outgoing radiation gauge, we showed that the
first-order metric perturbations of a Kerr black hole can be
reconstructed starting from a single NP quantity, namely

‘Pgl). As an example we have applied this to obtain the first-
order metric perturbations associated with the quasinormal
modes of Kerr black holes in the asymptotic limit.

There are several directions for future work. As men-
tioned, reconstructing the metric over the entire spacetime
is complicated and might not be analytically tractable. We
have developed a numerical code to implement the solution
of the Teukolsky equation, and reconstruction procedure,
over the full spacetime exterior to the horizon [45]. This is
particularly relevant regarding questions of mode coupling
after binary black hole mergers, as this phenomena will be
governed by sources strongest in the near-horizon region.
Another direction of future study would thus be to inves-
tigate whether, in addition to our numerical analysis,
analytic solutions may be obtained there. Also as discussed
in Sec. VB, additional work is needed to solve for
corrections to the metric corresponding to changes in the
spin and mass of the black hole.

As mentioned in the introduction, crucial to understand-
ing the nonlinear regime of ringdown is the question of what
the “initial conditions” of the perturbed black hole following
a merger are. If this is not known, it would be difficult to
distinguish the higher overtones of linear modes from
second-order effects, which could have similar amplitudes,
frequencies and decay rates.” The close limit approximation
to black hole mergers [23] seems like a natural avenue to
address the question of initial conditions. Insight could also
be gained from recent studies investigating this in the EMRI
limit [57,58]. Also, numerical simulations of mergers can be
used to at least constrain the initial conditions via measure-
ment of “final conditions,” i.e., the amplitudes and phases of
modes in the ringdown once all the nonlinear effects have
sorted themselves out, as well as measure-driven second-
order modes that will persist and look like QNMs with
amplitudes and complex frequencies that are squares of their
parent modes (see e.g., [59]).

A further interesting application is investigating the
energy cascade between modes due to nonlinear effects
in ringdown. In asymptotically anti—de Sitter (AdS) space-
time, several studies of black holes and black branes have
shown that horizon perturbations, modulo the natural

If—as argued in [19]—linear theory can very accurately
describe postmerger ringdown dynamics from peak amplitude
onward, second-order analysis presumably then should be able to
extend this to some time before peak amplitude.
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decay, become turbulent [60—62]. This may be a peculiarity
of AdS spacetime, though a study in [63] suggested similar
phenomenology might be present for very rapidly rotating
Kerr black holes in asymptotically flat spacetime. Those
researchers used a scalar field on a Kerr background as a
model for gravitational wave perturbations; with the tools
presented here and in [45] it should be possible to repeat
this for tensor perturbations. Their work suggests that
turbulent dynamics might only be apparent for very rapidly
spinning black holes; whether these exist in nature is
unknown, nevertheless this is still an interesting open
theoretical problem.
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APPENDIX A: NEWMAN-PENROSE
FORMALISM

For completeness in this Appendix we review the NP
formalism. We use the conventions of [35] (e.g., our metric
sign convention is + — ——, and we use f to denote the
complex conjugate of f), except that we use Greek letters to
denote spacetime indices.

The NP formalism is a reformulation of the Einstein field
equations in a null tetrad frame, defined by four null vectors
eq = (I", n*, mt, m*) satisfying

Fn, =1, mhin, = —1, (A1)
where the overbar corresponds to complex conjugation and
the remaining dot products are zero. The metric g, is

related to the null vectors via g, = nabel‘jefj , Where

01 O 0
B 1 0 O 0 (A2)

T =10 0 0 -1

00 -1 O

This leads to the completeness relation
g/w = 2l(ﬂn,,) - 2m(”ﬁ1,,). (A3)

We further define the derivatives along the null directions as

D = I'0,,
0 =m'd,,

A =ntd,,

5= m,. (A4)

These differential operators satisfy the following commuta-
tion relations:

[A,D]=(y+7) D+ (e+€)A—-(z+r)s

— (r+ 7)3. (ASa)

[6,D] = (@+p—7)D+KkA—(p+e—&)35—00, (ASH)

[6.A] =—0D+ (t—a—p)A+ (u—y+7)5+15, (ASc)
[6.6] = (B =)D + (p = p)A + (a = p)5

+ (p—a)o, (A5d)

where {a, B,v,€,p, A, 7, u,v,7,0,k} are the complex spin
coefficients. The components of curvature in the NP formal-
ism are characterized by contractions of the null tetrad with
the Weyl tensor and Ricci tensor; specifically, the Weyl tensor
contractions are

Yy = =Cppel'm’IPm?, (A6a)
¥, = =Cppol"n*1IPm°, (A6b)
¥, = —C, o' m*im’n’, (A6c)
Y3 = —C,, . l'n*m’n’, (A64)
¥, = —C,, ,.n'm*n’m°, (A6e)
and the contractions with the Ricci tensor are
1 y 1 Y
(I)OO = —ER#DIMI s @22 = —ERWn”n s (A7a)
1 ) 1 iy
(1)02 = —ERﬂym"m R CDZO = —ERWm”m (A7b)
1 v b 2
@ = —ZRWU”VL + miim"), (A7¢c)
1 . 1 _
@01 — —ERﬂylﬂm R (DIO = —ER”ylﬂm N (A7d)
A= Ry (I = miit), (ATe)
1 ) 1 _,
q>12 = —ERm,n"m s q)21 = —ERﬂyn"m . (A7f)

When the Einstein equations are imposed, this latter
set of curvature scalars can be related to the stress
energy tensor 7, of matter through the trace-reversed
field equations:
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1
Rﬂy =8r (le - EgﬂyT> s (Ag)
where T =T,/
The decomposition of the Riemann tensor in terms of the
Weyl and Ricci tensors provides the necessary transport

equations describing the evolution of the spin coefficients
in terms of the above quantities; specifically

Dp — 6k = (p* + 66) + p(e + &) —kr
- K'<3a + B - ﬂ') + (I)OO’ (A9a)

Do—b6k=0c(p+p+3c—¢€)—k(t—a+a+3p)+ ¥,

(A9b)
Dt — Ak =p(t+7)+06(T+7)+7(e —€)
—k@By+7) + ¥ + Dy, (A9c)
Da — 6e = a(p + € —2€) + & — Pe — kA — Ky
+ n(e +p) + Py, (A9d)
Df—de =o(a+n)+p(p—¢) —x(u+r)
—ela-r)+ Y, (A9e)
Dy—Ae=a(t+7)+p(T+x)—y(e+E)
—e(y+7)tm—vk+¥, + @ —A, (A9f)
DA —on = (pA+6u) +n(x + a—p) — vk
— (3¢ — &) + Dy, (A9¢)
Du—drn= pu+0old) +n(zx—a+p)—pule+ée)
—vk+ ¥, + 2A, (A9h)
Dv—Ax=pu(n+7)+ A7 +7)+ 7y —7)
- l/(3€ + é) + lP3 + (1)21, (Agl)
AL=dov=—Au+pi+3y—7)
+vBa+p+a-7) =¥, (A9
8p — 60 = p(a+f) —o(3a—p) +1(p - p)
+x(p—p) =¥ + Dy, (A9K)
Sa—6f = up — Ao + aa + pp —2ap +y(p — p)
+€(//t —ﬁ) —“Pz -+ (I)ll +A, (Agl)
82— op=v(p—p) +nlp—p) + ula+p)
+ﬁ/(6_l - 3ﬁ) - lP3 + (DZI’ (A9m)

Sv—Apu= >+ ) +uly +y) —vx

+ U(T - 3,6 - C_() + @22, (A91’1)
Sy—Ap=y(r—a—-p)+ur—ov—ecv

=By =7—n) +al+ @y, (A9)

5t — Ao = (uo + Ap) +1(z + f—a)
=03y —7) — kU + Dy, (A9p)

Ap—8t=—pii+or+t(B—a—-7)+p(y+7)

+ vk — ¥, — 2A, (A9q)

Aa—dy =vip+e) =AMz +p) +ay — i)
+y(f-7) - Y¥s (A9r)

Meanwhile, the Bianchi identities provide the following
transport equations for the Weyl scalar:

— 0¥, + DY, + (da—7)¥) —2(2p + €)Y,

+ 3k, + R, =0, (A10a)
(_3‘111 —_ Dlpz - ﬂlPO + 2(71' - 0{)‘1‘1 + 3plP2
- 2K"IJ3 -+ Rb = 0, (AlOb)
- (_Sq"z —+ D‘P}, + 21‘1‘] - 3ﬂ'le + 2(€ —p)T3
+x¥,+R. =0, (A10c)
S‘Pg, - Dq"4 — 3)}1’2 + 2(277: + a)‘Pg - (46 —p)‘P4
+ Ry =0, (A10d)
— AW + 8%, + (47 — u) ¥y — 2(27 + B)¥,
+30%, + R, =0, (A10e)
—AY, + 6%, + ¥y + 2(y — u)¥, — 37¥,
- Alpz + 511,3 + 21/‘{’1 - 3/1‘1’2 + Z(ﬂ - T)T:;
+o¥, +R,=0, (Al0g)
— AW, + 5, + 3, — 2(y + 2u)s
—(r-4p)¥s+ R, =0, (A10h)

where the R terms only depend on the Ricci scalars

Ry = —D®; + 5Py + 2(e + p)Py; + 20Dy

— 2Kq)11 - k(I)OZ + (7_1' - 25{ - Zﬂ)q)oo, (Alla)
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Ry = 6@ — ADy — 2(a +7) Dy + 29Dy + 5Py,

Re = =D®y; + 6Dy +2(p — €) Dy — 2P + 27D,

- R¢)22 - (2& - 2ﬂ - 7_1')(1)20 - 25/\, (Al 1C)
Rd = —A(I)20 + (_3(1)21 + (2(1 - %>q)21 + 21/(1)10
+ 6Dy — 24Dy — (i + 2y — 27) Dy, (Alld)
Re = —D(D()z + 5(1301 + 2(7_1' —ﬁ)q’o] - 2K(D12
— A®y + 26®; + (p + 2€ — 26) Dy, (Alle)
Ry = ADy; — 6D +2(j1 —7) Dy — 2pD15 — 0Dy
+ 27D, + (7= 28+ 2a) Py, + 26, (A11f)

Rg = —D(Dzz + 5(1)21 + Z(ﬂ_: + ﬁ)‘bz] - 2/1@11 - /_1(1)20
+27®) + (p — 26 — 28) @y, — 2AA., (Allg)

Ry = ADy; = 6@y + 2(f + 7) Doy — 20Dy — 0Py
+2A®, + (7 = 2a — 2p) D). (Al1h)
Finally, the evolution equations for the Ricci scalars are
obtained through the divergence-free property of the
Einstein tensor V,G" = 0:
6®; + 5@g — D(Dy; + 3A) — Ady,
= 1'<<I)12 —|— Kq)Zl + (2(1 + 2’? - 7[)(1)01
+ (2a+ 2t = 7)o — 2(p + )Py — 5Py — 0Dy
+ (1 + 5 =2(r +7)| oo, (Al2a)

Sq)lz + 5(1)21 - A(q)ll + 3A) - D(I)zz
= —1®g; — 0Py + (7= 2 — 27) @y,
(= 26— 2) 2+ RO,

—(p+p —2e = 28)Dy, + APy, + ADy;,  (A12D)

5(®y; —3A) — DD, — AD; + 5D,
= k®,, — Dy + (7 — 7+ 2a — 2B) Dy, — 6D,
+A®o +2(r —7)®y; — (2p +p —28)D),
+ (25 4 p = 2y)Dy,. (A12c¢)

APPENDIX B: MASTER EQUATIONS
FOR PERTURBATIONS OF A PETROV
TYPE D SPACETIME

Here we review the derivation of the equations governing
the first- and second-order perturbations of a Petrov type D
spacetime satisfying the vacuum Einstein equations.

The equation for first-order perturbations was originally
derived by Teukolsky [50] and was later generalized to nth-
order perturbations by Campanelli and Lousto [33]. We
recall that a spacetime is a Petrov type D spacetime if it
admits two double principal null directions, with respect to
which

lPOILPl:lP:;:‘PA;:O. (Bl)

By the Goldberg-Sachs theorem [64], we also have

k=oc=v=21=0. (B2)
Finally, if the outgoing null vector [V is chosen to be
affinely parameterized, then we have, additionally, ¢ = 0.
We distinguish between the background quantities and
perturbations with superscripts. For example, for the Weyl
curvature component ¥, we consider perturbations of the
form

vy =¥+ vl 2w L oB),  (B3)
where { is an order-keeping parameter, ‘P(()()) denotes the

background value, ‘PE)I) denotes the first-order perturbations

and lI‘(()2> denotes the second-order perturbation. We sim-
ilarly have second-order perturbations of all the Weyl
curvature, Ricci coefficients and differential derivatives
in the NP formalism. Since the background spacetime is of
Petrov type D we have

\P(()O) _ ‘PSO) _ \PgO) _ ‘I‘ff))
— 0 — 5(0) — () — 400 — . (B4)

By virtue of the fact that the spacetime satisfies the vacuum
field equations, the Ricci scalars in Egs. (A7a)-(A7f) all
vanish on the background. For generality, we do allow
these scalars to be nonzero at first and second-order in
perturbation theory.

1. First-order perturbations

Consider the Bianchi identities Eqs. (A10d) and (A10h)
and the Riemann identity Eq. (A9j) which can be written as

(D+4e—p)¥s — (54 2a+47)W; +31W, = —R,, (B5a)
(A+u+pa+3y-7)A—(6+3a+p+a-7)v=-",. (B5c)

The quantities {¥,,¥s, 4, v} and the Ricci terms
{R4,R;} all vanish on the background, and thus these
equations are “of first-order smallness,” meaning that they
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describe the evolution of first-order quantities. Following
[33], we define the derivatives

dy=6+3a+f+4n -1, (B6)
dy=A+4pu+p+3y-7. (B7)
We act on (B5a) with dfto) and on (B5b) with dgo) and sum
the two equations to obtain
[y (D + 4e — p) — dy (6 + 4 — 7)),
+ [~dP G+ 20+ 4n) + d (A + 2y + 4p)|W,
3[dV 3 - dVuW, = —-dV'R, - dVR,. (BS)

So far, we have not performed any perturbative expansions,
and the above equation applies at all orders in perturbation
theory.

We now show how the first-order term’® of the above
equation corresponds to the Teukolsky equation for Petrov
type D spacetimes. By expanding Eq. (B8) to first-order we
obtain

[ (D+4e—p)<0>—dg°>(5+4ﬂ— 7)Og !
+1- d()(5+2a+4ﬂ) d¥ (A +2y +4u) 0wl
+3[d20 a0 = PR PRV, (BY)

where we used that ‘Pf‘O) = ‘Pg()) =20 =0 = Rg)) =
R\ = 0. Now observe that using (A5d), (A9i), (A9m)

and (A9r), one can prove that in a vacuum Petrov type D
spacetime

[—d4(0 +4m +2a) + d3s(A +4u+2y)]f =0 (B10)
for any scalar f. As a result of this, the second line of
Eq. (B9) now vanishes. Also, observe that using (A9j),
(A10g) and (AlOc) for a type D background, we can
derive that

[d?20 — a0 = Pl (B11)
Putting the above together, we obtain the Teukolsky
equation

79 =R, (B12)

where 7 is the Teukolsky operator [see [50], Eq. (2.14)]

*Observe that the zeroth-order term of Eq. (B8) is trivially

satisfied since ‘I‘io) :‘I‘g()) =10 =1 =0 in a type D spacetime.

T =[dV(D + 4e — p)© —d¥ (5 + 48— 7))

— 3y (B13)
and Ril) = —dfl())RE,]) - d(30) Ril). Equation (B12) governs
the gravitational wave perturbations in any type D space-
time satisfying the vacuum field equations. A solution ‘I’i”
to (B12) can represent both ingoing and outgoing radiation,
though is better adapted to describing outgoing waves far
from a source. A similar procedure can be used to obtain a
decoupled equation for ‘I‘(()l), which likewise can represent
both ingoing and outgoing waves, though is better adapted
to describing the former [50].

2. Second-order perturbations

We now turn our attention to second-order perturbations
of type D spacetimes. Returning to Eq. (B8), we expand to
second-order to obtain

[d5"(D +4e =) = dy" (5 + 4p ) O ¥,
A (D +4e = p)V) — (544 — 7)),
+ [=dY (6 + 20+ 4m) D + dV (A + 2y + 4u) O]
+3[d Y20 — a0 4 3[d22) - a0y
=—dVRY - dV'RY, (B14)

where we used Eq. (B10). We once again make use of
Eqgs. (A9)), (A10g), and (A10c) to derive

4940 — 40
_ _q,gO)\sz)

F PO (@) =300 4 (@) =320) D], (B15)

We can thus write the second-order vacuum Teukolsky
equation as

T = 5P+ RY, (BI6)

where R 2 _ —diO)REIZ) — ng)Rf) and the source term
S&z) is

SP =—1d(D+4c—p) D —dV (5+4p-7) D)@
[V (5+2a+47) D — a0 (A+ 2y +dp) D@
SRt
+3W0 (@) =30 = (@M = 320)1], (B17)

as was derived in [33] [Eq. (9)]. In particular, the source

term Sf) only involves derivatives of the Ricci and
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curvature components of the background or of the first-
order perturbation. Further, recall that we have not yet
imposed any gauge conditions on the background or the
first-order terms.

APPENDIX C: LINEARIZED NP SPIN
COEFFICIENTS IN TERMS OF THE
LINEARIZED METRIC

Using a choice of tetrad first described by Chrzanowski
[51] and the commutation relations for the NP derivative
operators, one can rewrite the linearized NP scalars in terms
of the linearized metric components (see Sec. III A). Here
we provide a complete listing of these relations [compare
also to Eq. (A4) of [33]]:

a2 b

Oy
2[ nm»

~A+2(7 =) +u = EOhs — (7 +7)

(Cla)

1 _
W =2 (0420 =742 =7)hy = (A+27 + 1) Oy,

(C1b)

1
6(1) = E [D —+ 2(5 - 6) =+ pP— /_)](O)hmm - (T + 7_[)(0>hlmv

1 - -
) =2(6+28-22-2)"h,,

1 1
—Z(5+2ﬂ+2ﬁ+31)(o)hm—I——(D—I—Ze':—l-p—,b)(())h,m

4
L a0, L o0
+—(u—p—4y) hm+1(u—ﬂ) P

; (C1d)

1
= (D —2€ —p)(o)hlm - 5 (5 —2a— 2ﬂ + 77+ T)(())h”,

(Cle)
1 - - (0 1 0
/’t z( 2ﬂ_2ﬂ_1)( )hnm_§(6+2ﬁ+’[)( )hnlﬂ
1
E(A ﬂ+ﬂ>( )hmrh
1
+§p(0) nn T A (/,t—l—/,t) )hlnv (le)
m_1 ; O 5)(0)
€ :Z(—A+27+ﬂ—ﬂ) h11+1(2D+P—P> hiy
+ (=6 +2a—7-21)0n,

-lk\»—-lkl»—ﬂ

1
(5 2a - 3m - 27)( )hlm + Z (,0 - ﬁ)«))hmn’v
(Clg)

1 1
PV =D+ p =p) O hysy =5 (6 + 7 + 20 = 26) Oy
1
+§(5—ﬂ—2a)(0)hlm
1 4O 1 _
5 h11+2( p = D)hiy, (C1h)
m_1 2(0) Vs oat7tnO
a :4_1( +2a—rm—7) hm,h—1(5—2a+7r+r) R
1 1 -
— (At dy =27+ =20) Oy + 26— =7) Oy,
1
+Z(D_2€_p_2ﬁ)(0)hnﬁ1» (Cl])
m_1 . 21(0) Lis_ 7
ﬂ :Z(D—4€+2€+ZP_P) hnm+1(5_ﬂ_1) hln
1 1
—2(5—2ﬂ+7z+r)<0>hmm—Z(A+2y+ﬂ+2ﬁ)<">hlm
1 - -
+Z<5+2ﬂ_ﬂ_%)<0)hmmv (CIJ)
1
_ 1 1_
_§(5+”+7)<0)hln_E”(O)hmm_Eﬂ(o)hmrh’ (Clk)
1 1 0 1 = =\(0
7[< ):_§(D+2€_p)( )hnrh_E(A_Zy"i_ﬂ)( )hlrh
1 - _ 1_ 1
"‘5(5_”_7)(0)}% _ET@ - _ET(O)thﬁl' (C11)

APPENDIX D: ALTERNATIVE METRIC
RECONSTRUCTION EQUATIONS

The metric reconstruction procedure detailed in Sec. [V
is not unique in the sense that one could derive alternative
equations for the metric components h;;, h;,,, and h,,,,. The
reason for this is that we have more equations than are
necessary to solve for these components. We here provide
an alternative equation for one of these components,
namely /. Consider the Riemann identity in Eq. (ASh).
Linearizing this equation, we have

+z—a+p)0z0
+@+z—a+p)Vz0
+ 9 4 2A,

(D-p+e+&)u0) =

(D1)

The left-hand side of this equation contains all of the
dependence on h;;. Expanding out the left-hand side, we
have
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(D-p+e+e)u0

(0) 1
= Ay =7+ A O~ EhuA(O)M(O)

2
p© L
—7(5—2(14—7{4-27)}11,;,
ﬂ(O) —
+7(5—2a—ﬂ')hlm. (DZ)

This can be simplified by making use of the Riemann
identity in Eq. (A9n) evaluated on the background, spe-
cifically —A©u® = (u©)2 +- 4O (y +7)©).  Applying
this, we obtain a first-order transport equation for #h;,
specifically

[A=2(y+7) —pu+ i Ony
=—(6=2a+ 7+ 2t)hy; + (6 — 2a— n)hy,

2
o [(6+7—a+p) Oz)

+G+a—a+p) Va0 + @) 4 2A0)], (D3)

Why did we not make use of this equation in our
case study in Sec. V. The issue with this equation is the
behavior of the source term in a 1/r expansion. To leading
order, the terms on the right-hand side of Eq. (D3) are those

containing 71) and W{") and which scale as 1/r2. However,
these terms exactly cancel one another, and we are left with
an undetermined remainder of O(1/73). This happens to be

the same order as the h;,, and h;; terms. Thus, in order to
get the correct behavior of the source term in Eq. (D3) one

would have to obtain z{") and ‘Pél) to higher order in 1/r,
which in turn means that we would have to start by

calculating the higher order in 1/r corrections to ‘I’gl).
The second-order transport equation in Eq. (33) does not
have this issue. We make use of Eq. (D3) in our numerical
computations in [45], where this problem does not occur as
we do not make any 1/r approximations.

This same issue arises if one tries to compute the Weyl
scalar ‘P(()l) from the expanded Riemann identity in Eq. (12).
The terms containing (! are the leading-order terms, which
scaleas 1/ 3, and all cancel one another with a remainder of
O(1/r*), which is the same order as those terms containing

k(). By the peeling theorem, ‘PE)I) = O(1/7%), and thus all
O(1/r*) terms in this equation must also cancel one another.
Alternatively, one can solve for the remaining Weyl scalars

‘I’él) and ‘Pgl) using the Bianchi identities in Eqs. (A10e) and
(A10f), respectively. Expanding these equations to first-
order, we have

A+ 20y — ] O + (5 - 30) O

0
+ (5300w = RV, (D4)
(A + 4y — ) OW) 4[5 — 2020 + )|
+ 36090 = _RM. (D5)
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