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It was found recently that the anisotropies in the homogeneous Bianchi I cosmology considered within
the context of a specific Horndeski theory are damped near the initial singularity instead of being amplified.
In this work we extend the analysis of this phenomenon to cover the whole Horndeski family. We find that
the phenomenon is absent in the K-essence and/or kinetic gravity braiding theories, where the anisotropies
grow as one approaches the singularity. The anisotropies are damped at early times only in more general
Horndeski models whose Lagrangian includes terms quadratic and cubic in second derivatives of the scalar
field. Such theories are often considered as being inconsistent with the observations because they predict a
nonconstant speed of gravitational waves. However, the predicted value of the speed at present can be close
to the speed of light with any required precision; hence the theories actually agree with the present time
observations. We consider two different examples of such theories, both characterized by a late self-
acceleration and an early inflation driven by the nonminimal coupling. Their anisotropies are maximal at
intermediate times and approach zero at early and late times. The early inflationary stage exhibits an
instability with respect to inhomogeneous perturbations, suggesting that the initial state of the Universe
should be inhomogeneous. However, more general Horndeski models may probably be stable.
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I. INTRODUCTION

It is usually assumed that the state of the Universe close to
the initial singularity should be strongly anisotropic [1–3].
This belief is based on the fact that spatial anisotropies
produce in the Einstein equations terms which become
dominant when one goes backward in time. In other words,
anisotropic perturbations grow to the past. When the
Universe expands, the anisotropy terms decrease faster than
the contribution of other forms of energy subject to the
dominant energy condition, and the Universe rapidly
approaches a locally isotropic state during inflation [4,5]
(without the inflationary stage this process may require a
long time or may not happen at all due to the possibility of
recollapse). Therefore, thinking about the early history
of the Universe, one could expect the isotropic phase of
inflation to be generically preceded by an anisotropic phase.
Although this argument seems quite robust, an explicit

example in which the anisotropies in the Bianchi I homo-
geneous model are damped at early times instead of being

amplified was recently found [6] within the context of a
specific Horndeski theory for a gravitating scalar field [7].
Therefore, the initial stage of the Universe in this theory is
not anisotropic.
It remained unclearwhether the finding of [6] is generic or

specific only for one particular Horndeskimodel. To find the
answer, we extend in what follows the analysis of [6] to
cover the whole Horndeski family. We find that the effect of
the anisotropy damping is not necessarily present in
all Horndeski theories. In particular, it is absent in the
K-essence and/or kinetic gravity braiding theories. The
spatial anisotropies in such theories always grow as one
approaches the singularity. However, the anisotropies are
damped at early (and late) times in more general Horndeski
models whose Lagrangian includes terms quadratic and
cubic in second derivatives of the scalar field. Such theories
are often considered as being inconsistent with the obser-
vations because they predict a nonconstant speed of gravi-
tational waves (GWs) [8–10], whereas theGW170817 event
shows that the GW speed is equal to the speed of light with
very high precision [11]. However, the theories actually
predict the value of the GW speed at present to be close to
unity within the required precision. In addition, the theories
admit stable in the future self-accelerating cosmologies.
Therefore, they can perfectly agree with the current obser-
vations, and we can extrapolate them to the early times as
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well since no observational data about the GW speed at
redshifts z > 0.3 are currently available.
We consider two different examples of such theories,

both characterized by a late time self-acceleration and also
by an early time inflation driven by the nonminimal
couplings arising in the Horndeski theory. Sometimes this
phase is called “kinetic inflation” [12]. The anisotropies in
these theories show a maximum at intermediate times and
approach zero at early and late times. Therefore, the early
Universe cannot be anisotropic, but it cannot be isotropic
either since it is unstable with respect to the inhomo-
geneous perturbations. This suggests that the initial phase
should be inhomogeneous. At the same time, it remains
unclear if the gradient instabilities at early times are
omnipresent in all Horndeski models. One of the two
models that we consider has fewer instabilities than the
other; therefore, it is conceivable that some other more
general Horndeski theories may be completely stable.

II. HORNDESKI THEORY

This is the most general theory for a gravity-coupled
scalar field ϕ whose equations are at most of second order.
The theory was first obtained in [7], but we shall use its
action in the form given in [13]:

S ¼
Z

ðL2 þ L3 þ L4 þ L5Þ
ffiffiffiffiffiffi
−g

p
d4x; ð2:1Þ

where

L2 ¼ G2ðϕ; XÞ;
L3 ¼ −G3ðϕ; XÞ□ϕ;

L4 ¼ G4ðϕ; XÞRþ G4Xðϕ; XÞ½ð□ϕÞ2 − ð∇μ∇νϕÞ2�;

L5 ¼ G5ðϕ; XÞGμν∇μ∇νϕ −
1

6
G5X

× ½ð□ϕÞ3 − 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�: ð2:2Þ

Depending on the choice of the four arbitrary functions
GAðϕ; XÞ (with A ¼ 2, 3, 4, 5) of the scalar field ϕ and of
its canonical kinetic term X ¼ − 1

2
∇μϕ∇μϕ, this determines

not just one theory but a large family of theories. One
has GAX ≡ ∂GA=∂X, ð∇μ∇νϕÞ2 ¼ ∇μ∇νϕ∇ν∇μϕ, and
ð∇μ∇νϕÞ3 ¼ ∇μ∇νϕ∇ν∇ρϕ∇ρϕ∇μϕ. Finally, R and Gμν

are the Ricci scalar and the Einstein tensor.
For example, setting G3 ¼ G5 ¼ 0, G4 ¼ const, and

G2 ¼ X − VðϕÞ yields the standard theory of the inflaton
type; a more general choice of G2ðϕ; XÞ yields the
K-essence theory [14], while including also G3ðϕ;XÞ≠0
yields the kinetic gravity braiding (KGB) theory [15]. The
KGB theory, possible withG4 ¼ G4ðϕÞ, is the most general
Horndeski model in which the sound speed of the tensor
perturbations is equal to the speed of light [8–10]. The
Lagrangian of this theory contains the second derivatives of

the scalar field only linearly. If the Lagrangian contains also
quadratic ð∇μ∇νϕÞ2 and/or cubic ð∇μ∇νϕÞ3 terms, which
is the case ifG4 and/orG5 depend on X, then the GW speed
is no longer constant.

III. BIANCHI I MODEL

The simplest cosmological model is homogeneous and
isotropic, with the metric

ds2 ¼ −N2dt2 þ a2ðdx21 þ dx22 þ dx23Þ; ð3:1Þ

where the scale factor a, the lapse N, as well as the scalar
field ϕ depend only on t. The corresponding field equations
for the theory (2.1) are explicitly shown in [13]. We make
the next step and consider the homogeneous and aniso-
tropic Bianchi I metric,

ds2 ¼ −N2dt2 þ a21dx
2
1 þ a22dx

2
2 þ a23dx

2
3; ð3:2Þ

with the three scale factors am (m ¼ 1, 2, 3), the lapse N,
and the scalar field ϕ depending only on t. Substituting
this into (2.1) yields the reduced one-dimensional action
that can be varied with respect to am, N, and ϕ. Although
the action contains the second derivatives, all higher
derivatives arising during the variation cancel. As a result,
first varying the action with respect to N and am and then
imposing the gauge condition N ¼ 1, yields the following
equations:

G0
0ðG − 2G4X

_ϕ2 − 2G4XX
_ϕ4 þ 2G5ϕ

_ϕ2 þG5Xϕ
_ϕ4Þ

¼ G2 −G2X
_ϕ2 − 3G3XH _ϕ3 þ G3ϕ

_ϕ2

þ 6G4ϕH _ϕþ 6G4Xϕ
_ϕ3H − 5G5XH1H2H3

_ϕ3

− G5XXH1H2H3
_ϕ5; ð3:3Þ

GGi
i − ðHj þHkÞ

dG
dt

¼ G2 − _ϕ
dG3

dt
þ 2

d
dt

ðG4ϕ
_ϕÞ − d

dt
ðG5X

_ϕ3HjHkÞ
− G5X

_ϕ3HjHkðHj þHkÞ: ð3:4Þ

Here the dot denotes the t-derivative, one has Hi ¼ _ai=ai,
and the average Hubble parameter is H ¼ 1

3

P
3
i¼1Hi ≡ _a=a

with a ¼ ða1a2a3Þ1=3. The Einstein tensor components are

G0
0 ¼ −ðH1H2 þH2H3 þH3H1Þ;

Gi
i ¼ −ð _Hj þ _Hk þH2

j þH2
k þHjHkÞ; ð3:5Þ

where the triples of indices fi; j; kg take values f1; 2; 3g,
f2; 3; 1g, or f3; 1; 2g. In addition, we have defined

G ¼ 2G4 − 2G4X
_ϕ2 þ G5ϕ

_ϕ2: ð3:6Þ
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Varying the action (2.1) with respect to ϕ yields the
equation which, after some rearrangements, can be cast into
the following form:

1

a3
d
dt

ða3J Þ ¼ P; ð3:7Þ

with

J ¼ _ϕ½G2X − 2G3ϕ þ 3H _ϕðG3X − 2G4XϕÞ
þ G0

0ð−2G4X − 2 _ϕ2G4XX þ 2G5ϕ þG5Xϕ
_ϕ2Þ

þH1H2H3ð3G5X
_ϕþ G5XX

_ϕ3Þ�; ð3:8Þ

P ¼ G2ϕ − _ϕ2ðG3ϕϕ þ G3Xϕϕ̈Þ þ RG4ϕ

þ 2G4Xϕ
_ϕð3ϕ̈H − _ϕG0

0Þ þG0
0G5ϕϕ

_ϕ2

þ G5Xϕ
_ϕ3H1H2H3; ð3:9Þ

where R is the scalar curvature, R ¼ −Gμ
μ.

Let us parametrize the three scale factors as

a1¼ aeβþþ
ffiffi
3

p
β− ; a2¼ aeβþ−

ffiffi
3

p
β− ; a3 ¼ ae−2βþ ; ð3:10Þ

hence

H1 ¼ H þ _βþ þ
ffiffiffi
3

p
_β−; H2 ¼ H þ _βþ −

ffiffiffi
3

p
_β−;

H3 ¼ H − 2_βþ; ð3:11Þ

where H ¼ _a=a. The anisotropies are determined by _β�,
and if they vanish, then H1 ¼ H2 ¼ H3 ¼ H and the
Universe is isotropic. It will be convenient to introduce

σ2 ¼ _β2þ þ _β2−: ð3:12Þ

Using these definitions, the G0
0 Einstein equation (3.3)

assumes the form

3ðH2 − σ2ÞðG − 2G4X
_ϕ2 − 2G4XX

_ϕ4 þ 2G5ϕ
_ϕ2 þG5Xϕ

_ϕ4Þ
¼ −G2 þ _ϕ2G2X þ 3G3XH _ϕ3 −G3ϕ

_ϕ2

− 6G4ϕH _ϕ − 6G4XϕH _ϕ3

þ _ϕ3ð5G5X þG5XX
_ϕ2ÞðH − 2_βþÞ½ðH þ _βþÞ2 − 3_β2−�:

ð3:13Þ

This equation contains only first derivatives. The remaining
three Einstein equations (3.4) contain second derivatives
and read

ð2 _H þ 3H2 þ 3σ2ÞGþ 2H _G

¼ −G2 þG3ϕ
_ϕ2 þ G3X

_ϕ2ϕ̈ − 2
d
dt

ðG4ϕ
_ϕÞ

þ d
dt

½G5X
_ϕ3ðH2 − σ2Þ�

þ 2G5X
_ϕ3ðH3 þ _β3þ − 3_βþ _β

2
−Þ; ð3:14Þ

d
dt

½Ga3 _βþ þ G5X
_ϕ3a3ð _β2− − _β2þ −H _βþÞ� ¼ 0; ð3:15Þ

d
dt

½Ga3 _β− þG5X
_ϕ3a3ð2_βþ _β− −H _β−Þ� ¼ 0: ð3:16Þ

We notice that the two latter equations have the total
derivative structure and can be integrated once, which gives
first order conditions

G _βþ þG5X
_ϕ3ð _β2− − _β2þ −H _βþÞ ¼

Cþ
a3

; ð3:17Þ

G _β− þ G5X
_ϕ3ð2_βþ _β− −H _β−Þ ¼

C−

a3
; ð3:18Þ

with Cþ, C− being integration constants. These first
integrals for the shears β� in the Bianchi I model generalize
the well-known result in general relativity (GR). Similar
integrals in the fðRÞ gravity were originally obtained in
[16] and for more general modified gravity theories in [17].
Supplementing the two equations (3.17) and (3.18) by

the first order equation (3.13) and by the scalar field
equation (3.7) yields a closed system of four differential
equations for the four functions aðtÞ, β�ðtÞ, and ϕðtÞ. The
remaining equation (3.14) can be ignored, since it is
automatically fulfilled by virtue of the Bianchi identities.
An additional simplification is achieved if the scalar

source P defined by (3.9) vanishes, since in this case the
scalar field equation (3.7) also assumes the total derivative
structure and can be integrated once. The source P will
vanish if all four functions GA are independent of ϕ, in
which case the theory is invariant under shifts ϕ → ϕþ ϕ0.
However, P will vanish also if G2 and G4 are independent
of ϕ, while G3 and G5 depend on ϕ only linearly, such that
G3ϕ ¼ const and G5ϕ ¼ const. Then the scalar field equa-
tion (3.7) becomes

_ϕ½G2X þ 3HG3X
_ϕþG0

0ð−2G4X − 2 _ϕ2G4XX þ 2G5ϕÞ
þ ðH − 2_βþÞ½ðH þ _βþÞ2 − 3_β2−�ð3G5X

_ϕþG5XX
_ϕ3Þ�

þ Cϕ

a3
¼ 0; ð3:19Þ

with Cϕ being an integration constant. The problem there-
fore reduces in this case to four equations (3.13) and
(3.17)–(3.19) which determine algebraically the Hubble
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parameter HðaÞ, the anisotropies _β�ðaÞ, and the derivative
of the scalar field _ϕðaÞ.
To recapitulate, if there is an explicit dependence on ϕ,

then the problem reduces to four differential equa-
tions (3.13), (3.17), (3.18), and (3.7) to determine aðtÞ,
β�ðtÞ, ϕðtÞ. If the coefficient functions G2, G4 are ϕ
independent while G3, G5 depend on ϕ at most linearly,
then the problem reduces to four equations (3.13) and
(3.17)–(3.19) which determine the functions HðaÞ, _β�ðaÞ,
and _ϕðaÞ algebraically. The time dependence can then be
restored by integrating the equation _a=a ¼ HðaÞ.
In what follows we shall not at first assume anything

about the ϕ dependence, but later we shall consider specific
examples admitting the simplified description in terms of
the four algebraic equations. Our aim is to study the
anisotropies described by (3.17) and (3.18). The structure
of these equations suggests considering separately two
different cases, G5X ¼ 0 and G5X ≠ 0, which will be
described, respectively, in the following two sections.

IV. THE G5X = 0 CASE

In this case the anisotropy equations (3.17) and (3.18) are
linear in _β� and yield

_β� ¼ C�
Ga3

: ð4:1Þ

The behavior of the anisotropies is therefore determined by
the function G defined by (3.6). This definition can
equivalently be viewed as the equation for G4,

Gðϕ;XÞ¼2G4ðϕ;XÞ−4X
∂G4ðϕ;XÞ

∂X þ2XG5ϕðϕÞ; ð4:2Þ

whose solution is

G4ðϕ; XÞ ¼ fðϕÞ
ffiffiffiffi
X

p
þ g0ðϕÞX −

ffiffiffiffi
X

p

4

Z
Gðϕ; XÞ
X3=2 dX;

G5 ¼ gðϕÞ; ð4:3Þ

with arbitrary fðϕÞ and gðϕÞ. Let us first consider the
subcase where G ¼ μ ¼ const.

A. G= μ= const

In this case Eq. (4.1) yields

_β� ¼ C�
μa3

; ð4:4Þ

so that the anisotropies behave in the same way as in
general relativity: They grow as a → 0. Therefore, the
initial singularity is strongly anisotropic, while at late times
the anisotropies decay. Equation (4.2) then yields

G4ðXÞ ¼
μ

2
þ fðϕÞ

ffiffiffiffi
X

p
þ g0ðϕÞX; G5 ¼ gðϕÞ: ð4:5Þ

This describes all the conventional theories. Setting fðϕÞ ¼
gðϕÞ ¼ 0 one can, depending on whether G2 and G3 are
included or not, distinguish the following particular cases.

(i) G2 ¼ G3 ¼ G5 ¼ 0, G4 ¼ μ=2. This corresponds to
the vacuum general relativity, assuming that μ¼M2

Pl.
(ii) G2 ¼ X − VðϕÞ and G3 ¼ G5 ¼ 0, G4 ¼ μ=2,

which defines the general relativity with the conven-
tional scalar field.

(iii) G2ðϕ; XÞ and G3 ¼ G5 ¼ 0, G4 ¼ μ=2, which gives
the K-essence theory.

(iv) G2ðϕ; XÞ, G3ðϕ; XÞ, G5 ¼ 0, G4 ¼ μ=2, which
gives the KGB theory.

In all of these theories the anisotropies _β� grow as one
approaches the initial singularity.

B. G= μðϕÞ
Formulas (4.1) and (4.5) still apply, with the replacement

μ → μðϕÞ. Let us consider the simplest option:

G2 ¼ X; G3 ¼ G5 ¼ 0;

G4 ¼
1

2
μðϕÞ; _β� ¼ C�

μðϕÞa3 : ð4:6Þ

Since G4 depends on ϕ, the ϕ equation remains differential
and the system does not reduce to algebraic equations. At
the same time, the theory with the gravitational kinetic term
μðϕÞR can be converted to the theory with the standard
kinetic term μR by a conformal transformation of the
metric. This brings us back to the theories considered in the
previous subsection, where the anisotropies are always
unbounded near singularity. Performing the inverse con-
formal transformation to pass to the original frame changes
only the scale factor (and the proper time) without changing
the anisotropies. Hence the latter are unbounded in the
original frame too. Therefore, the choice G ¼ μðϕÞ does not
ensure the damping of anisotropies, and we shall now
consider a more complex choice.

C. G=GðXÞ and G4ðXÞ
We shall consider the theory sometimes called kinetic

inflation [12,18–25]. It corresponds to the choice

G2 ¼ X − Λ; G3 ¼ 0;

G4 ¼
1

2
ðμþ γXÞ; G5 ¼

1

2
ðαþ γÞϕ; ð4:7Þ

where Λ, μ, α are constant parameters. The constant γ is a
gauge parameter which drops out from the equations due to
the relation XRþ ð□ϕÞ2 − ð∇μ∇νϕÞ2 ¼ −ϕGμν∇μ∇νϕþ
total derivative [13], which allows one to trade the G5 ∼ ϕ
term in the Lagrangian (2.2) for the G4 ∼ X term. In the
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γ ¼ 0 gauge one has G4 ¼ const and G5 ∼ ϕ, while
choosing γ ¼ −α yields G5 ¼ 0.
The homogeneous and isotropic cosmologies in the

model (4.7) are characterized, apart from the late infla-
tionary phase driven by Λ, also by an early inflationary
phase with the Hubble rate determined not by Λ but rather
by α, so that Λ is “screened at early times” [26]. The GW
speed in the theory is not constant, but its value at present is
predicted to be close to the speed of light with a very high
precision [6].
Injecting (4.7) to (4.2) yields

G ¼ μþ αX ⇒ _β� ¼ C�
ðμþ αXÞa3 : ð4:8Þ

It turns out that X ¼ _ϕ2=2 grows fast enough for a → 0 to
suppress the anisotropies [6].
Let us write down explicitly what becomes of Eqs. (3.13)

and (3.17)–(3.19):

3ðH2 − _β2þ − _β2þÞ
�
μþ 3

2
α _ϕ2

�
¼ 1

2
_ϕ2 þ Λ;

ð3αðH2 − _β2þ − _β2þÞ − 1Þ _ϕ ¼ Cϕ

a3
;

�
μþ α

2
_ϕ2

�
_β� ¼ C�

a3
: ð4:9Þ

We shall need a dimensionless version of these equations.
Let us assume that α > 0. If H0 and a0 are the present
values of the Hubble parameter and of the scale factor, then
setting

a¼ a0a; H¼H0

ffiffiffi
y

p
; Λ¼ 3μH2

0Ω0; α¼ 1

3H2
0ζ
;

Cϕ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18μαΩ6

p
H2

0a
3
0; C� ¼μH0a30Q�; _ϕ¼

ffiffiffiffiffiffiffiffiffiffiffi
2μΩ6

α

r
ψ ;

_β� ¼H0s� ð4:10Þ

reduces (4.9) to equations containing only dimensionless
variables a, Y, ψ , s� and dimensionless parameters ζ,
Ω0, Ω6:

Ω6ð3Y − ζÞψ2 þ Y ¼ Ω0; ðY − ζÞψ ¼ 1

a3
;

ðΩ6ψ
2 þ 1Þs� ¼ Q�

a3
; ð4:11Þ

where Y ¼ y − s2þ − s2−. The solution can be expressed in
the parametric form, as functions of Y:

a6 ¼ Ω6ðζ − 3YÞ
ðY − ζÞ2ðY −Ω0Þ

; ψ ¼ 1

ðY − ζÞa3 ;

s� ¼ Q�S; y ¼ Y þ s2þ þ s2−; ð4:12Þ

where

S ¼ 1

ðΩ6ψ
2 þ 1Þa3 ¼

ðY − ζÞ2a3
Ω6 þ ðY − ζÞ2a6 : ð4:13Þ

When the parameter Y ranges from ζ=3 to Ω0, the scale
factor a changes, respectively, from zero to infinity. As
one can see, the function S determining the anisotropies
approaches zero in both of these limits; hence the Universe
becomes isotropic not only at late times but also at early
times. In both limits the amplitude Y reduces to y and the
Hubble rate is

�
Hearly

H0

�
2 ≡ ζ

3
← y ¼

�
H
H0

�
2

→ Ω0

≡
�
Hlate

H0

�
2

as 0 ← a → ∞: ð4:14Þ

Therefore, the Universe interpolates between the early and
late isotropic inflationary stages driven by ζ and Ω0,
respectively. The present stage of the Universe is highly
isotropic; hence Y ≈ y ¼ a ¼ 1 should fulfill (4.12), which
requires that

Ω6 ¼
ð1 − ζÞ2ð1 −Ω0Þ

ðζ − 3Þ : ð4:15Þ

As a result, the theory actually depends only on two
parameters ζ and Ω0 determining values of the two
Hubble rates, apart from the anisotropy charges Q�.
Setting Q� ¼ 0 yields homogeneous and isotropic

solutions, in which case one can apply the known formulas
for the small fluctuations. These formulas apply also for
anisotropic solutions with Q� ≠ 0 at late and early times,
when the solutions become isotropic. The quadratic action
for fluctuations around an isotropic background is

I ¼ μ

2

Z
K

�
_F2 − c2

p2

a2
F2

�
a3d4x; ð4:16Þ

where F denotes the fluctuation amplitude after separating
the variables and p is the spatial momentum. The expres-
sions for the kinetic term K and the sound speed squared c2

within the model (4.7) were derived in [6], and they agree
with the earlier result obtained within the generic
Horndeski theory [13]. It turns out that the kinetic term
is always positive, both in the tensor and scalar sectors;
hence there are no ghosts. As seen in Fig. 1, the sound
speeds in both sectors are not constant, but they approach
unity at late times. The deviation of the speed of tensor
modes from unity at present is negligibly small and
proportional to ðHlate=HearlyÞ2 [6].
It is also worth mentioning that, when written in the

gauge where G5 ¼ 0 and hence G4 ¼ ðμ − αXÞ=2, the
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theory (4.7) can be mapped to class I degenerate higher-
order scalar-tensor (DHOST) theory [27] via a disformal
transformation of the metric gμν → g̃μν ¼ AðXÞgμν þ
BðXÞ∇μϕ∇νϕ. This transformation changes the light cone;
hence the sound speeds change. If the functions A, B are
chosen such that BðA − 2XBÞG4 ¼ G4X then the resulting
DHOST theory will respect the condition which ensures
that the GW speed is equal to the speed of light [in the
language of [28] this condition is α1 ¼ α2 ¼ 0; see
Eq. (D.5) of that work]. Therefore, the GW speed can
be made constant via the disformal transformation.
The anisotropies are s� ¼ Q�S where, as seen in Fig. 2,

the function S is well localized; hence the anisotropies
vanish both at the early and late stages of the Universe and
are maximal in between. It is worth noting that, as seen in

Fig. 2, the anisotropies contribute to the Hubble rate and
increase it. Since

dt ¼ 1

H
d lnðaÞ; ð4:17Þ

the proper time interval dt decreases if H increases; hence
the proper time duration of the anisotropic period decreases
when the anisotropy amplitude A≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2þ þQ2
−

p
gets

larger, since H then increases. In other words, the function
SðtÞ shows a more and more narrow peak when A gets
larger, as seen in Fig. 2.
One should emphasize that, although the anisotropies

approach zero at early times, still the Universe cannot be
isotropic at this stage, since it is unstable in this limit with
respect to inhomogeneous perturbations. This can be seen
in Fig. 1, which shows that the sound speeds squared
become negative at early times. This means that the early
stage of the Universe should be inhomogeneous [6].
To recapitulate, the above example shows that anisotro-

pies in the theory with G ¼ μþ αX are damped at early
times. It is possible that choosing other functions GðXÞ
yields other models with a similar property. However,
we shall now rather return to the original anisotropy
equations (3.17) and (3.18) and consider situations when
the nonlinear terms in these equations become important.

V. THE G5ðXÞ CASE
Theories with a nontrivial G5ðXÞ are also characterized

by a nonconstant GW speed. We shall consider a theory
which also shows two inflationary stages, similar to the
G4ðXÞ model considered above. It is defined by the choice

G2 ¼ X − Λ; G3 ¼ 0;

G4 ¼
1

2
μ; G5 ¼ constþ ξ

ffiffiffiffiffiffi
2X

p
: ð5:1Þ

H/H

S

0

ln(a)
2 1 1

2

4

6

A=1 A=10

S

(t–t )H00

0.4 0.2 0.2 0.4

2

4

6

FIG. 2. Left: The anisotropy amplitude S and the Hubble rate H=H0 defined by (4.12) and (4.13) with Ω0 ¼ 0.73, ζ ¼ 60, and
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ þQ2

−
p

¼ 1 against lnðaÞ. Right: SðtÞ for A ¼ 1 and A ¼ 10.

ln(a)

H/H 0

c
T
2

c
S
2

2 1 1

1

1

2

3

4

5

FIG. 1. The dimensionless Hubble rate
ffiffiffi
y

p ¼ H=H0 and the
sound speeds squared in the scalar and tensor sectors against
lnðaÞ for the isotropic solution obtained by setting in (4.12)
Q� ¼ 0, Ω0 ¼ 0.73, ζ ¼ 60, and with Ω6 given by (4.15).
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Equations (3.13) and (3.17)–(3.19) then reduce to

3μðH2 − _β2þ − _β2−Þ þ 4ξ _ϕ2ð2_βþ −HÞ½ðH þ _βþÞ2 − 3_β2−�

¼ 1

2
_ϕ2 þ Λ;

_ϕð−1þ 2ξð2_βþ −HÞ½ðH þ _βþÞ2 − 3_β2−�Þ ¼
Cϕ

a3
;

ðμ _βþ − ξ _ϕ2ð _β2þ þH _βþ − _β2−ÞÞ ¼
Cþ
a3

;

ðμþ ξ _ϕ2ð2_βþ −HÞÞÞ _β− ¼ C−

a3
; ð5:2Þ

all containing terms nonlinear in _β�. Their dimensionless
version is obtained by setting

a¼ a0a; H¼H0y; Λ¼ 3μH2
0Ω0; ξ¼−

1

8H3
0ζ

3
;

Cϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω6μξH0

p
H2

0a
3
0; C� ¼ μH0a30Q�;

_ϕ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−

μ

H0ξ

r
ψ ; _β� ¼H0s�; ð5:3Þ

where we assume that the coupling ξ is negative, hence
ζ > 0. This yields the equations

3ðy2 − s2þ − s2−Þ þ 4ψ2½ðy − 2sþÞ½ðyþ sþÞ2 − 3s2−� − ζ3�
¼ 3Ω0;

ð4ζ3 − ðy − 2sþÞ½ðyþ sþÞ2 − 3s2−�Þψ ¼
ffiffiffiffiffiffi
Ω6

p
2a3

;

ðsþ þ ψ2½s2þ þ ysþ − s2−�Þ ¼
Qþ
a3

;

ð1þ ψ2ðy − 2sþÞ�Þs− ¼ Q−

a3
: ð5:4Þ

Consider first the isotropic case,

s� ¼ 0; Q� ¼ 0: ð5:5Þ

Then Eqs. (5.4) reduce to

3y2þ4ψ2ðy3−ζ3Þ¼ 3Ω0; ð4ζ3−y3Þψ ¼
ffiffiffiffiffiffi
Ω6

p
2a3

; ð5:6Þ

with the solution

a6¼ Ω6ðζ3−y3Þ
3ð4ζ3−y3Þ2ðy2−Ω0Þ

; ψ ¼
ffiffiffiffiffiffi
Ω6

p
2a3ð4ζ3−y3Þ : ð5:7Þ

This solution again shows the early and late inflationary
stages, since the Hubble parameter

ζ ← y ¼ H
H0

→
ffiffiffiffiffiffi
Ω0

p
as 0 ← a → ∞: ð5:8Þ

Requiring the solution to pass through the a ¼ y ¼ 1 point
yields

Ω6 ¼
3ð4ζ3 − 1Þ2ð1 −Ω0Þ

ðζ3 − 1Þ : ð5:9Þ

Choosing Ω0 ¼ 0.7 and ζ ¼ 5 then yields the result shown
in Fig. 3. Remarkably, we see that the sound speed squared
in the scalar sector is now always positive. The kinetic
terms are also positive, and there remains only the gradient
instability in the tensor sector at early times. Therefore, the
theory is more stable than the G4ðXÞ model considered
above. This suggests that other choices of functions GAðXÞ
may perhaps give completely stable theories, but this issue
requires a separate analysis.
Equation (5.7) actually defines not one but two different

solutions related to each other via a → −a and ψ → −ψ ,
since a3 ¼ �

ffiffiffiffiffi
a6

p
can be either positive or negative

whereas the metric contains only a2 and is insensitive to
the sign of a. As we shall see below, the anisotropic
generalizations of these two solutions will no longer be
related to each other in a simple way.
Let us consider anisotropic solutions of (5.4), starting

from the simplest case where Q� ¼ 0. The simplest
solution is then the isotropic one,

s� ¼ 0; ð5:10Þ

with a and ψ given by (5.7). In addition, since the equations
are nonlinear in the anisotropies, there are also solutions

H/H
S

c

0

T
2

ln(a)
2 1 1

2

2

4

c
S
2

FIG. 3. The Hubble rate and the sound speeds squared against
lnðaÞ for the isotropic solution (5.7) with Ω0 ¼ 0.7 and ζ ¼ 5.
The sound speed squared in the scalar sector is always positive.
Also shown is the weak anisotropy amplitude S in (5.15)
obtained by solving the anisotropy equations on the isotropic
background. The Hubble rate and sound speeds are insensitive to
weak anisotropies, but for stronger anisotropies they should
become direction dependent.
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with s� ≠ 0. They can be represented in the parametric
form, choosing ψ as the parameter:

a3 ¼
ffiffiffiffiffiffi
Ω6

p
ψ5

4ζ3ψ6 − 3Ω0ψ
4 þ 1

;

y ¼ 2

3
ζ3ψ4 þ 1

2
Ω0ψ

2 −
5

6ψ2
; ð5:11Þ

with the anisotropies being either

sþ ¼ 1

2

�
yþ 1

ψ2

�
; s− ¼ �

ffiffiffi
3

p
sþ; ð5:12Þ

or

sþ ¼ −
�
yþ 1

ψ2

�
; s− ¼ 0: ð5:13Þ

The parameter ψ in (5.11) takes values in the interval
½0;ψm� where ψm is the root of 4ζ3ψ6 − 3Ω0ψ

4 þ 1 ¼ 0.
For example, if ζ ¼ 0.6 and Ω0 ¼ 0.7 then ψm ¼ 0.92.
When ψ increases from zero to ψm, the scale factor a grows
from zero to infinity, while the Hubble parameter y and the
anisotropy behave as follows:

∞ ← y →
1 −Ω0ψ

4
m

ψ2
m

;

−∞ ← yþ 1

ψ2
→ −Ω0ψ

2
m as 0 ← a → ∞: ð5:14Þ

We see that the anisotropies s� ∼ ðyþ 1=ψ2Þ do not vanish
at late times but approach constant values, unless forΩ0 ¼ 0.
This again provides a counterexample to the standard
wisdom. Indeed, in general relativity the Bianchi universes
with a positive cosmological constant always evolve toward
an isotropic state at late times [4,5]. The solution (5.11)–
(5.14), although also containing a positive cosmological
constant, shows just the opposite “self-anisotropizing”
behavior. It should be said that such a self-anisotropization
in theHorndeski theorywith a nontrivialG5ðXÞwas actually
observed before in Ref. [29], also within the Bianchi I
models. We therefore shall not discuss this phenomenon
anymore and simply refer to [29], since we are interested in
the early time “isotropization” rather than in the late time
“anisotropization.”For all other solutions thatwe consider in
this text, apart from (5.11)–(5.14), the anisotropies always
approach zero at late times. Therefore,we now return back to
the isotropic solution (5.10) and consider its deformations
induced by adding nonzero anisotropy charges Q�.
IfQ� are very small, then one can expect the anisotropies

s� to be small as well, in which case one can neglect all
nonlinear in s� terms in the equations. The first two
equations in (5.4) contain only such terms, and neglecting
themyields the equations of the isotropic casewhose solution

was described above by (5.7). The last two equations in (5.4)
do contain terms linear in s�, and keeping only these yields
the solution for weak anisotropies,

s� ¼ Q�
a3ð1þ ψ2yÞ≡Q�S; ð5:15Þ

with a, ψ given by (5.7). The function S here is well
localized, as seen in Fig. 3, and it has the following limits:

36ζ5

Ω6

a3 ← S →
1

a3
as 0 ← a → ∞: ð5:16Þ

Therefore, the anisotropies are suppressed both at early and
late times.
If the charges Q� are not small, then one can no longer

neglect in the equations the terms nonlinear in the anisot-
ropies s�. It is not then obvious that the anisotropies will
still be suppressed at early and late times. Let us therefore
take the nonlinear terms into account. To simplify the
analysis, we set one of the anisotropy amplitudes and the
corresponding charge to zero,

s− ¼ Q− ¼ 0; ð5:17Þ

while keeping sþ ≠ 0 and denoting

Qþ ¼
ffiffiffiffiffiffi
Ω6

p
S: ð5:18Þ

It turns out that all nonlinear in sþ terms in the equations
can be absorbed by introducing the new variable

Y ¼ yþ sþ: ð5:19Þ

Then Eqs. (5.4) reduce, without any approximation, to

4ψ2ðY3 − 3Y2sþ − ζ3Þ þ 3Y2 − 6Ysþ ¼ 3Ω0;

ψð4ζ3 þ 3Y2sþ − Y3Þ ¼
ffiffiffiffiffiffi
Ω6

p
2a3

;

ðYψ2 þ 1Þsþ ¼ S
ffiffiffiffiffiffi
Ω6

p
a3

: ð5:20Þ

Their solution is

a3 ¼
ffiffiffiffiffiffi
Ω6

p ð6SY2ψ − Yψ2 − 1Þ
2ψðY3 − 4ζ3ÞðYψ2 þ 1Þ ;

sþ ¼ S
ffiffiffiffiffiffi
Ω6

p
a3ðYψ2 þ 1Þ ; ð5:21Þ

where Y and ψ are related via
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ψ2 ¼ 3

4

Y2 −Ω0

ζ3 − Y3
þ 3

2
SYψ

12ζ3Yψ2 þ Y3 þ 8ζ3 − 3Ω0Y
ðYψ2 þ 1ÞðY3 − ζ3Þ :

ð5:22Þ

If S ¼ 0 then sþ ¼ 0, Y ¼ y, and these formulas reduce to
(5.7) describing the isotropic solution with y¼Y∈½ ffiffiffiffiffiffi

Ω0

p
;ζ�.

If S ≠ 0 then (5.22) yields the fourth order algebraic
equation for ψ ¼ ψðYÞ. Fortunately, all of its four solutions
can be found analytically. Each of them is real valued
only within a finite interval of Y, but combining these
piecewise solutions together yields two global solutions
which are smooth and real valued everywhere in the

interval Y ∈ ½ ffiffiffiffiffiffi
Ω0

p
; ζ�. These two solutions have opposite

signs of ψ and of a.
In the isotropic limit these two solutions are related by

simply ψ → −ψ and a → −a, as described above, while
their Hubble rates yðjajÞ are the same. If S ≠ 0 then the two
solutions are no longer related to each other in a simple way
and their Hubble rates are different, as seen in Fig. 4. As
seen in Fig. 5, the anisotropies again vanish at late and early
times. These nonlinear solutions were obtained for the
value of the anisotropy parameter which is still small
enough, S ¼ 0.02, but increasing S does not qualitatively
change the situation. Already for S ¼ 1 the anisotropy sþ
attains very large values in the intermediate region, but it
always approaches zero as a → 0;∞. Therefore, the
anisotropies are damped at early times at the nonlinear
level too.

VI. CONCLUSIONS

Summarizing the above discussion, we have studied
homogeneous and anisotropic Bianchi I cosmologies
within the most general Horndeski class. Our aim has
been to see whether the phenomenon of anisotropy damp-
ing previously observed within the specific Horndeski
model [6] is present in other Horndeski theories as well.
We have found the phenomenon to be absent for a large
class of Horndeski models in which the GW speed is
constant. However, the phenomenon seems to be generi-
cally present in the more general models with nontrivial
G4ðXÞ and/or G5ðXÞ. The GW speed in such theories is not
constant, but no contradiction with the observation arises
since the predicted value of the GW speed at present is
extremely close to unity, whereas no observation data of the
GW speed in the past are available.
Such theories show gradient instabilities at early times;

therefore their initial phase, although not anisotropic,
cannot be isotropic either. It should therefore be inho-
mogeneous. As a result, we have considered gravity
theories where, contrary to what happens in GR, it is
the inhomogeneity and not the local anisotropy which
becomes critical near the generic initial spacetime singu-
larity. It should also be noticed that, as seen in our figures,
the Hubble parameter H does not grow backward in time
for a → 0; that means that the particle horizon is absent
(or very large). This may further amplify inhomogeneity
effects near singularity, while in GR the local behavior
near singularity is (almost) quasihomogeneous due to the
existence of the particle horizon restricting the domain of
causal connection.
At the same time, it is possible that a systematic analysis

of theories with more general G4ðX;ϕÞ and/or G5ðX;ϕÞ
may reveal models free of instabilities. In the case of
nonsingular bounce-type [30] or Genesis-type [31] cos-
mologies, no stable solution can exist within the Horndeski
class [32,33], although they exist within the more general
DHOST models (see [34] for a review). However, we are

H/H0

ln a(| |)
8 6 4 2 0 2 4

2

4

6

8

FIG. 4. The Hubble rate H=H0 ¼ y ¼ Y − sþ against lnðjajÞ
for the two solutions of (5.22) withΩ0 ¼ 0.7, ζ ¼ 5 for S ¼ 0.02.
The Hubble rate is affected by the anisotropies when the non-
linear terms are taken into account.

s+

ln a(| |)
8 6 4 2 2 4

6

4

2

2

4

FIG. 5. The anisotropy sþ defined by (5.21) against lnðjajÞ
for the two solutions shown in Fig. 4, assuming the
normalization (5.9).
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unaware of similar no-go results for cosmologies
with an initial singularity. In fact, an explicit example of
a completely stable Horndeski theory is known, although
not containing an early inflationary phase [35]. Therefore,
it is not excluded that stable cosmologies with the early and
late inflationary phases may exist within the Horndeski
theory; hence their anisotropies should be damped near
singularity.
It should also be mentioned that, as was first observed in

[6], the effect of anisotropy damping may be sensitive to the
inclusion of spatial curvature.
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