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We use data from Supernovae Pantheon sample, from baryonic acoustic oscillations, and from cosmic
chronometers measurements of the Hubble parameter, alongside arguments from big bang nucleosynthesis,
in order to extract constraints on Myrzakulov FðR; TÞ gravity. This is a connection-based theory belonging
to the Riemann-Cartan subclass, that uses a specific but nonspecial connection, which then leads to extra
degrees of freedom. Our analysis shows that both considered models lead to approximately 1σ
compatibility in all cases. For the involved dimensionless parameter, we find that it is constrained to
an interval around zero; however, the corresponding contours are slightly shifted toward positive values.
Furthermore, we use the obtained parameter chains to reconstruct the corresponding Hubble function, as
well as the dark energy equation-of-state parameter, as a function of redshift. As we show, model 1 is very
close to Λ-Cold Dark Matter (ΛCDM) scenario, while model 2 resembles it at low redshifts; however, at
earlier times, deviations are allowed. Finally, applying the Akaike Information Criterion, Bayesian
Information Criterion, and combined Deviance Information Criterion criteria, we deduce that both models
present a very efficient fitting behavior and are statistically equivalent with ΛCDM cosmology, despite the
fact that model 2 does not contain the latter as a limit.
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I. INTRODUCTION

According to the concordance cosmological model, the
Universe experienced two epochs of accelerated expansion,
one at early and one at late times. Although the latter can be
explained by the presence of a cosmological constant, the
related theoretical problem, the possibility of a dynamical
behavior, and especially the inability of the cosmological
constant to describe the early accelerated phase led to the
incorporation of some form of modification. As a first
possibility, one can maintain general relativity as the
underlying theory and modify the matter content of the
Universe by introducing extra fields, such as the inflaton at
early times [1,2] and/or the dark energy sector at late times
[3,4]. As a second possibility, one modifies the gravita-
tional sector itself, constructing a theory that possesses
general relativity as a particular limit but which in general
exhibits extra degrees of freedom [5,6].

There are many ways to construct gravitational mod-
ifications, each one modifying a particular feature of
general relativity. Modifying the dimensionality gives rise
to the braneworld theories [7]; modifying the Einstein-
Hilbert Lagrangian gives rise to FðRÞ gravity [8,9], FðGÞ
gravity [10,11], Lovelock theories [12,13], etc.; and adding
a scalar field coupled with curvature in various ways gives
rise to Horndeski/Galileon theories [14–16]. Additionally,
starting from the equivalent, teleparallel, formulation of
gravity [17,18], one can construct modifications using
torsional invariants, such as in FðTÞ gravity [19,20], in
FðT; TGÞ gravity [21], or in scalar-torsion theories [22,23].
Moreover, one can construct the general class of metric-
affine theories [24–26], which incorporates a general linear
connection structure, or proceed to the introduction of
nonlinear connections such as in Finsler and Finsler-like
theories [27–32].
Inspired by these, one could start from such affinely

connected metric theories, and in particular from their
Riemann-Cartan subclass [33], and construct a theory using
a specific but nonspecial connection, which would lead to
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nonzero torsion and nonzero curvature at the same time,
thus offering the extra degrees of freedom typically needed
in any gravitational modification [34]. Myrzakulov gravity
can thus lead to a good phenomenology, being able to
describe the Universe evolution at early and late times
[35–39].
One basic question in modified gravities is the determi-

nation of the arbitrary function that enters in the theory.
Although some general features can be deduced through
theoretical considerations, such as the absence of ghosts
and instabilities or the existence of Noether symmetries, the
most powerful tool is the use of observational data [40–60].
Hence, in this work, we are interested in using expansion
data such as supernovae type Ia data (SNIa), baryonic
acoustic oscillations (BAOs), and Hubble cosmic chro-
nometers (CC) observations, in order to impose constraints
on Myrzakulov gravity. The plan of the work is the
following. In Sec. II, we present Myrzakulov gravity and
its cosmological applications. In Sec. III, we describe the
various datasets and the involved statistical methods. Then,
in Sec. IV, we preform our analysis, and we present the
results, namely, the constraints on the various parameters.
Finally, in Sec. V, we summarize and conclude.

II. MYRZAKULOV GRAVITY
AND COSMOLOGY

In this section, we present a brief review of Myrzakulov
gravity, or FðR; TÞ gravity [34,35], extracting additionally
the relevant cosmological equations.

A. Myrzakulov gravity

The central idea of this modified gravity is the modi-
fication of the underlying connection. In particular, it is
known that, imposing a general connection ωa

bc, one
defines the curvature and the torsion tensor, respectively,
as [21]

Ra
bμν ¼ ωa

bν;μ − ωa
bμ;ν þ ωa

cμω
c
bν − ωa

cνω
c
bμ; ð2:1Þ

Ta
μν ¼ eaν;μ − eaμ;ν þ ωa

bμebν − ωa
bνebμ; ð2:2Þ

where eaμ∂μ is the tetrad field related to the metric
through gμν ¼ ηabeaμebν, where ηab¼diagð1;−1;−1;−1Þ,
with greek and latin indices denoting coordinate and
tangent space, respectively, and where a comma denotes
differentiation.
There are infinite connection choices. The Levi-Civita

Γabc is the only connection that gives vanishing torsion,
and from now on, we use the label “LC” to denote the
curvature (Riemann) tensor corresponding to Γabc, namely,
RðLCÞa

bμν ¼ Γa
bν;μ − Γa

bμ;ν þ Γa
cμΓc

bν − Γa
cνΓc

bμ. On the
other hand, one can use the Weitzenböck connection
Wλ

μν ¼ eaλeaμ;ν, which is curvatureless, leading only to
torsion as TðWÞλ

μν ¼ Wλ
νμ −Wλ

μν (we use the label “W” to

denote quantities corresponding toWλ
μν. From the above, it

is implied that the Ricci scalar corresponding to the Levi-
Civita connection is

RðLCÞ ¼ ηabeaμebν½Γλ
μν;λ − Γλ

μλ;ν þ Γρ
μνΓλ

λρ − Γρ
μλΓλ

νρ�;
ð2:3Þ

while the torsion scalar corresponding to the Weitzenböck
connection is

TðWÞ ¼ 1

4
ðWμλν −WμνλÞðWμλν −WμνλÞ

þ 1

2
ðWμλν −WμνλÞðWλμν −WλνμÞ

− ðWν
μν −Wν

νμÞðWλ
μλ −Wλ

λμÞ: ð2:4Þ

As it is known, the former is used in the Lagrangian of
general relativity and in all curvature-based modified
gravities, e.g., in FðRÞ gravity [8], while the latter is used
in the Lagrangian of teleparallel equivalent of general
relativity and in all torsion-modified gravities, e.g., in
FðTÞ gravity [6].
In Myrzakulov gravity, one uses a nonspecial connection

which has nonzero curvature and torsion simultaneously
[35]. Hence, the resulting theory will in general possess
extra degrees of freedom, even if the imposed Lagrangian is
simple, which is not the case of general relativity or of the
teleparallel equivalent of general relativity that both have
2 degrees of freedom corresponding to the massless
graviton. The action of the theory is

S ¼
Z

d4xe

�
FðR; TÞ
2κ2

þ Lm

�
; ð2:5Þ

where e ¼ detðeaμÞ ¼ ffiffiffiffiffiffi−gp
, κ2 ¼ 8πG is the gravitational

constant and where we have introduced the matter
Lagrangian Lm, too, for completeness. Note that in the
arbitrary function FðR; TÞ the R and T are the curvature and
torsion scalars corresponding to the nonspecial connection
used, which read as [21]

T ¼ 1

4
TμνλTμνλ þ

1

2
TμνλTλνμ − Tν

νμTλ
λμ; ð2:6Þ

R ¼ RðLCÞ þ T − 2Tν
νμ

;μ; ð2:7Þ

where ; marks the covariant differentiation with respect to
the Levi-Civita connection. Therefore, T depends on the
tetrad field, its first derivative, and the connection, while R
depends on the tetrad and its first derivative and on the
connection and its first derivative, with an additional
dependence on the second tetrad derivative due to the last
term of (2.7). Thus, using (2.4), (2.6), and (2.7), we can
finally write
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T ¼ TðWÞ þ v; ð2:8Þ

R ¼ RðLCÞ þ u; ð2:9Þ

where v is a scalar depending on the tetrad, its first
derivative, and the connection, while u is a scalar depend-
ing on the tetrad, its first and second derivatives, and the
connection and its first derivative.
The quantities u and v quantify the effect of the specific

but nonspecial imposed connection. In the case where this
connection becomes the Levi-Civita one, then u ¼ 0 and
v ¼ −TðWÞ, and the above theory becomes the usual FðRÞ
gravity, which in turn coincides with general relativity
under FðRÞ ¼ R. On the other hand, in the case where the
connection is the Weitzenböck one, then we have that v ¼
0 and u ¼ −RðLCÞ, and hence the theory coincides with
FðTÞ gravity, which in turn becomes the teleparallel
equivalent of general relativity for FðTÞ ¼ T.

B. Cosmology

Let us now apply the above into a cosmological
framework and extract the corresponding equations that
determine the Universe evolution. As it was shown in
Ref. [35], in order to avoid complications related to the
additional variation in terms of the connection, it proves
convenient to apply a minisuperspace procedure. Hence,
we apply the homogeneous and isotropic flat Friedmann-
Robertson-Walker (FRW) geometry

ds2 ¼ dt2 − a2ðtÞδijdxidxj; ð2:10Þ

which corresponds to the tetrad eaμ ¼ diag½1; aðtÞ; aðtÞ;
aðtÞ�, where aðtÞ is the scale factor. In this case, one can
easily find that RðLCÞ ¼ 6ðäa þ _a2

a2Þ and TðWÞ ¼ −6ð _a2a2Þ.
Furthermore, we use the standard replacement Lm ¼
−ρmðaÞ [61–63]. Lastly, following the discussion on the
dependence of u and v above, we consistently impose that
u ¼ uða; _a; äÞ and v ¼ vða; _aÞ.
In this work, we are interested in exploring the cosmo-

logical behavior that arises purely from the nonspecial
connection of Myrzakulov gravity. Hence, we focus on the
simplest case where the involved arbitrary function is
trivial, namely, FðR; TÞ ¼ Rþ λT with λ a dimensionless
parameter (we omit the coupling coefficient of R since it
can be absorbed into κ2). Note that we do not consider an
explicit cosmological constant term in the Lagrangian.
Inserting the above minisuperspace expressions into the
action (2.5), for this Lagrangian choice, we acquire
S ¼ R

Ldt, where

L ¼ 3

κ2
½λþ 1�a _a2 − a3

2κ2
½uða; _a; äÞ þ λvða; _aÞ� þ a3ρmðaÞ:

ð2:11Þ

Extracting the equations of motion for a, alongside the
Hamiltonian constraintH ¼ _a½∂L∂ _a −

∂
∂t

∂L
∂ä� þ äð∂L∂äÞ − L ¼ 0,

we finally acquire the Friedmann equations

3H2 ¼ κ2ðρm þ ρdeÞ ð2:12Þ

2 _H þ 3H2 ¼ −κ2ðpm þ pdeÞ; ð2:13Þ

where

ρde ¼
1

κ2

�
Ha
2

ðu _a þ v _aλÞ −
1

2
ðuþ λvÞ

þ auä
2

ð _H − 2H2Þ − 3λH2

�
ð2:14Þ

pde ¼ −
1

κ2

�
Ha
2

ðu _a þ v _aλÞ −
1

2
ðuþ λvÞ

−
a
6
ðua þ λva − _u _a − λ _v _aÞ

−
a
2
ð _H þ 3H2Þuä −Ha _uä −

a
6
üä − λð2 _H þ 3H2Þ

�
;

ð2:15Þ
with H ¼ _a

a the Hubble parameter, pm the matter pressure,
and the subscripts a; _a; ä denoting partial derivatives with
respect to this argument. Hence, in the theory at hand, we
obtain an effective dark energy sector which arises from
the nonspecial connection. Additionally, given the matter
conservation equation _ρm þ 3Hðρm þ pmÞ ¼ 0, we find

_ρde þ 3Hðρde þ pdeÞ ¼ 0; ð2:16Þ

which implies that the effective dark energy sector is
conserved.
The above Friedmann equations can efficiently describe

the late-time acceleration. A first observation is that in the
case where λ ¼ 0, namely, in the case where the Lagrangian
is just the curvature (nevertheless, the nonspecial connec-
tion leads to nonzero torsion, too), and for the choice
u ¼ c1 _a − c2, with c1,c2 constants, we have ρde ¼
−pde ¼ c2

2κ2
≡ Λ. Hence, the scenario at hand includes

ΛCDM cosmology as a subcase, although we have not
considered an explicit cosmological constant, since the
cosmological constant arises effectively from the connec-
tion structure of the theory. Thus, we expect that a realistic
model would be a deviation from the above scenario.
Finally, it proves convenient to introduce the deceler-

ation parameter as

q ¼ −1 −
_H

H2
; ð2:17Þ

which quantifies the cosmic acceleration. Defining addi-
tionally the density parameters Ωm ¼ κ2ρm=ð3H2Þ and
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Ωde ¼ κ2ρde=ð3H2Þ, as well as the equation-of-state
parameters wm ≡ pm=ρm and wde ≡ pde=ρde, we can
extract the useful expression

2q − 1

3
¼ Ωmwm þ Ωdewde: ð2:18Þ

Hence, in the standard case of dust matter, namely, for
wm ≈ 0, we obtain

wde ¼
2q − 1

3ð1 −ΩmÞ
: ð2:19Þ

This expression allows one to find the evolution of the dark
energy equation-of-state parameter, knowing the solution
of the Friedmann equations, or knowing the observable
values of HðzÞ (where z is the redshift defined through
1þ z ¼ a0=a setting the current value of the scale factor
to a0 ¼ 1).
In the following, we will focus to two models which can

satisfy these features.

1. Model 1

Choosing u ¼ c1 _a − c2 and v ¼ c3 _a − c4, with c3,c4
constants, we obtain

3H2 ¼ κ2ðρm þ ρdeÞ ð2:20Þ

2 _H þ 3H2 ¼ −κ2ðpm þ pdeÞ; ð2:21Þ

with

ρde ¼
1

κ2
½c − 3λH2� ð2:22Þ

pde ¼ −
1

κ2
½c − λð2 _H þ 3H2Þ�; ð2:23Þ

where c≡ c2 þ c4. Hence, in this scenario, the geometrical
sector constitutes an effective dark energy sector with the
above energy density and pressure and an equation-of-state
parameter of the form

wde ¼ −1þ 2λ _H
c − 3λH2

: ð2:24Þ

Interestingly enough, we can see that wde can be both larger
or smaller than -1, and thus the effective dark energy can be
quintessence-like or phantomlike.
This model has two parameters, namely, c and λ, but one

of them can be eliminated using the present value of the
matter density parameterΩm0 (from now on, the subscript 0
denotes the current value of a quantity), since (2.20) at
present gives

1 ¼ Ωm0 þ
c

3H2
0

− λ: ð2:25Þ

Additionally, the deceleration parameter (2.18), using
(2.22) and (2.23), becomes

qðzÞ ¼ −1þ 2Ωm0ð1þ zÞ3
Ωm0ð1þ zÞ3 þ 2ð1þ λ −Ωm0Þ

; ð2:26Þ

and thus its value at present is

q0 ¼ −1þ 3Ωm0

2ð1þ λÞ : ð2:27Þ

Comparing with the corresponding value of ΛCDM sce-
nario, namely, qΛ0 ¼ −1þ 3Ωm0=2, we verify that for the
special case of λ ¼ 0 the two scenarios coincide, as
mentioned above. Finally, note that from relation (2.26)
we can calculate the transition redshift, namely, the redshift
in which q transits from positive to negative and we have
the onset of acceleration, finding

ztr ¼ −1þ 21=3ð1þ λ −Ωm0Þ1=3Ω−1=3
m0 : ð2:28Þ

2. Model 2

As a second example, let us consider a more general
model with u ¼ c1

_a
a ln _a and v ¼ sðaÞ _a, with sðaÞ an

arbitrary function. In this case, Eqs. (2.14) and (2.15) give

3H2 ¼ κ2ðρm þ ρdeÞ ð2:29Þ

2 _H þ 3H2 ¼ −κ2ðpm þ pdeÞ; ð2:30Þ

with

ρde ¼
1

κ2

�
c1
2
H − 3λH2

�
ð2:31Þ

pde ¼ −
1

κ2

�
c1
2
H þ c1

6

_H
H

− λð2 _H þ 3H2Þ
�
; ð2:32Þ

while

wde ¼ −1þ 2λ _H − c1
6

_H
H

c1
2
H − 3λH2

: ð2:33Þ

Similarly to the previous example, for this case, too, wde
can be quintessencelike or phantomlike.
This model has two parameters, namely, c1 and λ, but

one of them can be eliminated using Ωm0, since (2.20) at
present time leads to

1 ¼ Ωm0 þ
c1
6H0

− λ: ð2:34Þ

The deceleration parameter (2.18) becomes
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qðzÞ ¼ −1þ
3
2
Ωm0ð1þ zÞ3

3ð1 −Ωm0 þ λÞ þ ð1þ λÞ−1½ð1 −Ωm0 þ λÞ2 þ ð1þ λÞð1þ zÞ3Ωm0�1=2
; ð2:35Þ

and its current value is

q0 ¼ −1þ
3
2
Ωm0

3ð1 −Ωm0 þ λÞ þ ð1þ λÞ−1½ð1 −Ωm0 þ λÞ2 þ ð1þ λÞΩm0�1=2
: ð2:36Þ

Finally, from relation (2.35), we can calculate the transition redshift as

ztr ¼ −1þ 61=3ð1þ λÞ−1=3Ω−1=3
m0

3

· f10þ 9λð2þ λ −Ωm0Þ − 9Ωm0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28 − 36Ωm0 þ 9½3λð2þ λÞ − 4λΩm0 þΩ2

m0�
q

g1=3: ð2:37Þ

III. DATA AND METHODOLOGY

In this section, we describe the various datasets that are
going to be used in our analysis and also the involved
statistical methods. In particular, we will use data from
direct measurements of the Hubble parameter, from SNIa,
and from BAOs. Finally, we present various information
criteria that offer information on the quality of the fit.

A. Cosmological probes

1. Direct measurements of the Hubble expansion

From the latest HðzÞ dataset compilation available in
Ref. [64], we use only data obtained from CCs. By using
the differential age of passive evolving galaxies, one can
measure the Hubble rate directly (see, e.g., Ref. [65] and
references therein). These galaxies are massive galaxies
that evolve “slowly” at certain intervals of the cosmic time,
i.e., with small fraction of “new” stars. A striking advantage
of the differential age of passive evolving galaxies is that
the resulting measurement of the Hubble rate comes
without any assumptions for the underlying cosmology,
with the exception of imposed spatial flatness. Our study
incorporates N ¼ 31 measurements of the Hubble expan-
sion in the redshift range 0.07≲ z≲ 2.0.
Here, the corresponding χ2H function reads

χ2HðϕνÞ ¼
XN
i¼1

½Hobs
i −Hthðzi;ϕνÞ�2

σ2i
; ð3:1Þ

where Hobs
i is the observed Hubble rate at redshift zi and σi

the corresponding uncertainty, while ϕν is the statistical
vector that contains the free parameters of the exam-
ined model.

2. Supernovae type Ia

The most common class of cosmological probes is
the so-called standard candles. The latter are luminous
extra-galactic astrophysical objects with observable fea-
tures that are independent of the cosmic time. The most
known standard candles and probably the most thoroughly
studied are SNIa. In our analysis, we use the most recent
SNIa dataset available, i.e., the binned Pantheon sample of
Scolnic et al. [66]. The full dataset is approximated very
efficiently with the binned N ¼ 40 data points belonging
to the redshift interval 0.01≲ z≲ 1.6. The corresponding
χ2 is

χ2SNIaðϕνþ1Þ ¼ μSNIaC−1
SNIa;covμ

T
SNIa; ð3:2Þ

where μSNIa ¼ fμ1 − μthðz1;ϕνÞ;…; μN − μthðzN;ϕνÞg.
The distance modulus reads as μi ¼ μB;i −M, with μB;i
the apparent maximum magnitude for redshift zi. Here, M
is a hyperparameter [66] that quantifies uncertainties of
various origins, such as astrophysical ones, a data-reduction
pipeline, etc., and it is employed instead of the usage of α, β
free parameters, in the context of “BEAMS with Bias
Corrections” method [67]. The observed distance modulus
is compared with the theoretical one, i.e.,

μth ¼ 5 log

�
dLðz;ϕνÞ
Mpc

�
þ 25; ð3:3Þ

with

dLðz;ϕνÞ ¼ cð1þ zÞ
Z

z

0

dx
Hðx;ϕνÞ ð3:4Þ

the luminosity distance for flat FRW geometry. It must be
noted that M and the normalized Hubble constant h are
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degenerate in light of Pantheon dataset in an intrinsic way,
as is usual in standard candles. Therefore, one should
jointly employ other datasets in order to obtain meaningful
information regarding the present value H0.

3. Baryonic acoustic oscillations

Baryonic acoustic oscillations refer to the imprint left by
relativistic sound waves in the early Universe, providing an
observable to the late-time large scale structure. The main
idea is to measure the aforementioned scale at different
times (i.e., redshifts) and thus obtain DAðzÞ and HðzÞ. The
acoustic length scale corresponds to the comoving distance
that the sound waves could travel until the recombination z�
[68], namely,

rd ¼
Z

∞

z�

csðzÞ
HðzÞ : ð3:5Þ

For the concordance model, the sound speed, cs, is given
from an analytical expression. However, for the models
considered here, there is not such an expression; therefore,
the scale rd will be addressed as a free parameter.
Furthermore, distances of different objects along the line
of sight correspond to different redshifts and thus depend
on the combination HðzÞrd, while distances transverse to
the line of sight are related with the combinationDAðzÞ=rd.
Employing large samples of tracers, (i.e., galaxies), one

can detect by statistical means the BAO peak (for details,
see Ref. [69] and references therein). To achieve this, it is
required to impose an underlying cosmology, and hence the
method is not model independent. However, the differences
that may infiltrate at the final data products are much less
than the statistical errors, and in most cases, the data points
are calibrated with the quantity rd;fid=rd. In this work, we
employ the BAOs dataset used by Ref. [70], that consists of
N ¼ 11 data points in the redshift range 0.106≲ z≲ 2.36.
The relevant χ2 function reads as

χ2BAOðϕνþ1Þ ¼ sC−1
covsT þ

XN
i¼8

½Tðzi;ϕνÞ − Tobs
i �2

σ2i
; ð3:6Þ

with C−1
cov the inverse of the covariance matrix of the first six

measurements available in Ref. [70]. The vector s has as
elements the si, given as si ¼ dm − dobsi rd=rd;fid for odd i and
si ¼ Hðzi;ϕνÞ −Hobs

i rd;fid=rd for even i. In all cases,
rd;fid ¼ 147.78. Furthermore, for i ∈ f8; 9g, Tðzi;ϕνÞ ¼
Dvðzi;ϕνÞ, Tobs

i ¼ Dobs
v;i rd=rd;fid, with rfid;8 ¼ 148.69 Mpc

and rfid;9 ¼ 147.66 Mpc, respectively. For i ¼ 10,
Tðzi;ϕνÞ ¼ cHðzi;ϕνÞ−0.7Dmðzi;ϕνÞ0.3=rd and for i ¼ 11,
Tðzi;ϕνÞ ¼ cHðzi;ϕνÞ−1rd. Finally, in the expressions
above, the following quantities have been used:

DMðzi;ϕνÞ ¼ DLðzi;ϕνÞ
1þ z

; ð3:7aÞ

DAðzi;ϕνÞ ¼ DLðzi;ϕνÞ
ð1þ zÞ2 ; ð3:7bÞ

DVðz;ϕνÞ ¼
�
cDAðz;ϕνÞ2zð1þ zÞ2

Hðz;ϕνÞ
�
1=3

: ð3:7cÞ

4. Big bang nucleosynthesis

Any cosmological scenario arising from modified grav-
ity should preserve the standard thermal history of the
Universe. Hence, a basic and rough condition is applicable
in the form of an extra prior. Specifically, we require that
the following inequality holds [71–73],

ðHiðzBBN;ϕνÞ −HΛðzBBN;Ωm0ÞÞ2
HΛðzBBN;Ωm0Þ2

< 0.1; ð3:8Þ

where zBBN ∼ 109. For the fiducial ΛCDM cosmology,
namely, HΛ, we employ the parameter values from
Planck [74].

5. Joint likelihood analysis

To obtain the joint constraints on the cosmological
parameters from the aforementioned cosmological probes,
we introduce the total likelihood function as

LtotðϕkÞ ¼ LSNIa × LH × LBAO: ð3:9Þ

It is easy to deduce that relevant χ2tot is given as

χ2totðϕkÞ ¼ χ2SNIa þ χ2H þ χ2BAO: ð3:10Þ

The involved statistical vector has k components, i.e., the ν
parameters of the scenario at hand plus νhyp hyperpara-
meters from the imposed datasets, namely, k ¼ νþ νhyp.
Hence, the vector containing the free parameters of the
scenarios at hand is ϕk ¼ fΩm0; h; λ;M; rdg. Note, how-
ever, that from a statistical point of view there is no
distinction between the intrinsic hyperparameters of a
given dataset and the free parameters of a cosmological
scenario.
Finally, for the likelihood maximization, we use an

affine-invariant Markov chain Monte Carlo (MCMC)
sampler [75], obtained in the PYTHON package EMCEE

[76]. We use 1000 chains (walkers) and 3500 steps (states).
As a prior, we employ first the conditions 0.0 < Ωm0 < 1,
0.60 < h < 0.90, −19.9 < M < −18.0, −0.9 < λ < 2.8,
and 135 < rd < 160 and second the big bang nucleosyn-
thesis (BBN) constraint described above. Lastly, the con-
vergence of the MCMC algorithm is verified with
autocorrelation time implementation, and moreover for
completeness, the Gelman-Rubin criterion is calculated.
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B. Information criteria and model selection

As a last step, we present the standard ways in order to
compare a set of cosmological scenarios, namely, we apply
the Akaike Information Criterion (AIC) [77], the Bayesian
Information Criterion (BIC) [78], and the Deviance
Information Criterion (DIC) [79]. Moreover, we present
the standard χ2min=dof, where “dof” stands for degrees of
freedom, usually defined as the number of the used data
points minus the number of fitted parameters. In our case,
this gives dof ¼ 77. Nevertheless, χ2min=dof should be used
for illustrative purposes, as the degrees of freedommight be
ambiguous for nonlinear (in terms of the free parameters)
models. [80].
The AIC criterion is based on information theory, and it

is an asymptotically unbiased estimator of the Kullback-
Leibler information. Under the standard assumption of
Gaussian errors, the corresponding estimator for the AIC
criterion reads [81,82]

AIC ¼ −2 lnðLmaxÞ þ 2kþ 2kðkþ 1Þ
Ntot − k − 1

; ð3:11Þ

with Lmax the maximum likelihood of the dataset(s) under
consideration and Ntot the total data points number. It is
apparent that for Ntot ≫ 1 this expression gives the original
AIC version, namely, AIC ≃ −2 lnðLmaxÞ þ 2k. As it is
discussed in Ref. [83], it is considered as best practise to
use the modified AIC criterion.
The BIC criterion is a Bayesian evidence estimator, and

it is written as [81–83]

BIC ¼ −2 lnðLmaxÞ þ klogðNtotÞ: ð3:12Þ

Finally, the DIC criterion employs both Bayesian statis-
tics and information theory concepts [79], and it is
expressed as [83]

DIC ¼ DðϕkÞ þ 2CB: ð3:13Þ

The quantity CB is the Bayesian complexity CB ¼
DðϕkÞ −DðϕkÞ, where overlines imply the standard mean
value. Moreover, DðϕkÞ is the Bayesian Deviation, which
can be expressed as DðϕkÞ ¼ −2 ln½LðϕkÞ� in the case of
exponential class of distributions. It is closely related to the

number of effective degrees of freedom [79], which is
actually the number of parameters that affect the fitting. In a
less strict manner, it could be considered as a measure of
the “spread” of the likelihood.
In contrast with AIC and BIC criteria, instead of using

just the best fit likelihood, DIC uses the whole sample.
Furthermore, AIC and BIC count and penalize all the
involved parameters, while DIC penalizes only the number
of parameters that contribute to the fit in an actual way.
Finally, an additional appealing feature of DIC criterion is
that its calculation is computationally light under the
MCMC samples.
Given a set of scenarios that describe the same class of

phenomena, our problem is to sort the models according to
their fitting efficiency in the context of the available data.
We employ the aforementioned three information criteria
(IC), and we calculate the relative difference of the IC value
for the given set of models, ΔICmodel ¼ ICmodel − ICmin,
where the ICmin is the minimum IC value inside the
competing models set. To qualify each model in terms
of its relevant adequacy, we apply the Jeffreys scale [84].
Specifically, the condition ΔIC ≤ 2 implies statistical
compatibility with the most favored model by the data,
while the condition 2 < ΔIC < 6 corresponds to middle
tension between the two models, and lastly the condition
ΔIC ≥ 10 implies strong tension.

IV. RESULTS

In this section, we proceed to the observational analysis
of Myrzakulov gravity using the datasets and the methods
described above. Note that the free parameters of the
aforementioned models are Ωm0; h, and λ, while for the
case of the concordance cosmology they areΩm0 and h. For
convenience, we summarize the obtained results in Table I.
Additionally, in Figs. 1 and 2, we present the corresponding
contour plots for model 1 and model 2, respectively. For
comparison and benchmark, we also analyzed the con-
cordance model, namely, ΛCDM.
As we can see, according to the combined analysis of CC

+SNIa+BAO data, we acquire approximately 1σ compat-
ibility in all cases. The dimensionless parameter λ is
constrained to an interval around 0, that includes ΛCDM
paradigm, which was expected since as we discussed above
a realistic modified gravity should be a small deviation

TABLE I. Observational constraints and the corresponding χ2min, as well as χ
2
min=dof (where “dof” stands for degrees of freedom, in our

case dof ¼ 77), for the two Myrzakulov gravity models, presented previously, using CC/Pantheon/BAO datasets. To allow direct
comparison, the concordance flat ΛCDM model is also analyzed, giving results very similar with the corresponding ones of Ref. [85].

Model Ωm0 h λ rd M χ2min χ2min=dof

1 0.425þ0.107
−0.146 0.691þ0.016

−0.017 0.491þ0.387
−0.533 146.20þ2.55

−3.41 −19.382þ0.051
−0.052 61.93 0.8043

2 0.339þ0.093
−0.122 0.679þ0.016

−0.016 0.537þ0.403
−0.550 146.60þ3.57

−3.44 −19.396þ0.051
−0.052 63.53 0.8251

ΛCDM 0.292þ0.015
−0.014 0.692þ0.017

−0.017 � � � 145.87þ3.53
−3.38 −19.377þ0.051

−0.052 61.73 0.7914
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from general relativity. Nevertheless, note that in both
model 1 and model 2 the λ contours are slightly shifted
toward positive values. We mention that having the
likelihood contours for the parameter λ allows us to extract
the constraints on the parameter c through expression
(2.25) for model 1 and on the parameter c1 through
(2.34) for model 2. In particular, for the 1σ region for
model 1, we obtain c ¼ 1.550þ0.828

−0.876 , while for model 2, we
find c1 ¼ 4.94þ2.28

−2.75 .
Concerning the values of Ωm0, we observe that model 1

gives a rather large value, due to the degeneracy with λ,
while for model 2, this is not the case. Concerning the
Hubble constant h, for model 1, we find that 0.690þ0.016

−0.017 ,

while for model 2, we obtain 0.679þ0.016
−0.016 . This implies that

the obtained values for the present Hubble parameter H0

are in between the Planck estimation H0 ¼ 67.36�
0.54 km=s=Mpc [74] and the local estimation H0 ¼
73.24� 1.74 km=s=Mpc [86], although closer to the for-
mer. In addition, the extracted H0 value for both models is
consistent with other astrophysical inferences of Hubble
constant, i.e., H0 ¼ 67.4þ4.1

−3.2 km s−1Mpc−1 [87], and H0 ¼
69.6� 2.5 km s−1 Mpc−1 [88]. It is interesting to note that
results in this range have been supported for about a decade
now, among others references in Refs. [89–95].
To provide a more complete and transparent picture, we

use the obtained allowed parameter values in order to

FIG. 1. The 1σ, 2σ, and 3σ likelihood contours for model 1 of (2.22) and (2.23), for all possible two-dimensional subsets of the
parameter space ðΩm0; h; λ;M; rdÞ. Moreover, we present the mean parameter values within the 1σ area of the MCMC chain. We have
performed a joint analysis of CCþ SNIaþ BAO data.
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extract the resulting HðzÞ. In Figs. 3 and 4, we present the
reconstructed mean HðzÞ=ðzþ 1Þ as a function of the
redshift, alongside the allowed curves for the 1σ allowed
model parameters presented above, for model 1 and model
2, respectively. These graphs are quite similar to the
corresponding ones for quintessence models (ϕCDM)
of Ref. [96].
As a next step, we investigate of the evolution of the dark

energy equation-of-state parameter. In particular, having
obtained the allowed parameter values at 1σ confidence
level, we can use them in order to extract the resulting
wdeðzÞ behavior given by (2.19), with the deceleration
parameter given by (2.26) for model 1 and by (2.35) for
model 2.

In Fig. 5, we depict the reconstructed mean wdeðzÞ (red
curve) for model 1, alongside the allowed curves for the 1σ
allowed model parameters presented above. As we observe,
the corresponding behavior is very close to ΛCDM scenario
for every parameter values. Similarly, in Fig. 6, we present
the corresponding graph for model 2. In this case, the
scenario resembles ΛCDM at low redshifts; however, at
earlier times, the mean curve, as well as many of the
“individual” curves, present a deviation, since this is allowed
by the used datasets. In particular, for some parameter
choices, the dark energy pressure at a particular redshift
diverges and changes sign, and thus thewdeðzÞ transits on the
other side of the phantom divide. Such energy conditions
violations are common in modified gravity theories, and

FIG. 2. The 1σ, 2σ, and 3σ likelihood contours for model 2 of (2.31) and (2.32), for all possible two-dimensional subsets of the
parameter space ðΩm0; h; λ;M; rdÞ. Moreover, we present the mean parameter values within the 1σ area of the MCMC chain. We have
performed a joint analysis of CCþ SNIaþ BAO data.
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actually they can lead to interesting cosmological phenom-
enology. Note that the observable quantities (the Hubble
function and its derivatives, the density parameters, etc.)
remain finite. However, we mention that a significant subset
of the curves, i.e., a large region of the parameter space of the
model, does not exhibit such a behavior, and the individual
obtained curves resemble the ΛCDM evolution.
Furthermore, we proceed to the reconstruction of the

deceleration parameter using random sampling of the
obtained chains. Concerning the current value q0, for
model 1 using (2.27), we obtain q0 ¼ −0.561þ0.022

−0.021 , while

for model 2 using (2.36), we acquire q0 ¼ −0.880þ0.010
−0.009 .

These are in agreement with the values obtained using other
datasets, such as supernovae, quasars, and gamma-ray
bursts by means of model-independent techniques [97].
Additionally, we calculate the transition redshift, for the

two models, using relations (2.28) and (2.37), respectively.
For model 1, we find ztr;1 ¼ 0.36þ0.10

−0.18 , while for model 2,
we acquire ztr;2 ¼ 0.74þ0.07

−0.14 . It is of interest to compare

FIG. 3. The reconstruction of the HðzÞ=ðzþ 1Þ as a function of
the redshift for model 1, arisen from (2.20) and (2.22). We
resampled the chains produced by emcee taking 6000 samples,
and we plot all the obtained curves, alongside the curve
corresponding to the best fit of the parameters (red curve).

FIG. 4. The reconstruction of the HðzÞ=ðzþ 1Þ as a function of
the redshift for model 2, arisen from (2.29) and (2.31). We
resampled the chains produced by emcee taking 6000 samples,
and we plot all the obtained curves, alongside the curve
corresponding to the best fit of the parameters (red curve).

FIG. 5. The reconstruction of the effective dark energy equa-
tion-of-state parameter wdeðzÞ as a function of the redshift for
model 1 given by (2.24). We resampled the chains produced by
EMCEE taking 6000 samples, and we plot all the obtained wdeðzÞ
curves, alongside the curve corresponding to the best fit of the
parameters (red curve).

FIG. 6. The reconstruction of the effective dark energy equa-
tion-of-state parameter wdeðzÞ as a function of the redshift for
model 2 given by (2.33). We resampled the chains produced by
EMCEE taking 6000 samples, and we plot all the obtained wdeðzÞ
curves, alongside the curve corresponding to the best fit of the
parameters (red curve). The overpopulated area at the bottom
corresponds to a peak within 1σ area; nevertheless, since we
extract the median value of each parameter within 1σ as the best
fit, the “best” wdeðzÞ curve differs.
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the aforementioned values with ztr;A ¼ 0.72� 0.05 [96]
and ztr;B ¼ 0.64þ0.12

−0.09 [98]. For model 1, we observe mild
compatibility within approximately 3.5σ and within
approximately 3σ with “A” and “B” results, respectively.
On the other hand, for the case of model 2, we report 1σ
compatibility with both results. These results act as an
additional verification check of the examined models.
We close this analysis with the examination of the

statistical significance of our fitting results, applying the
AIC, BIC, and DIC information criteria described in
Sec. III B. We summarize our results in Table II. As we
observe, model 1 is statistically equivalent with ΛCDM
paradigm, and especially the combined and more complete
DIC criterion gives an almost equal value. Additionally,
model 2 also presents a very good fitting behavior, and
according to DIC, it is also statistically equivalent with
ΛCDM paradigm, which is an interesting result since
model 2 does not contain ΛCDM scenario as a limit for
any parameter value.

V. CONCLUSIONS

In this work, we have used observational data from SNIa
Pantheon sample, from BAOs, and from cosmic chronom-
eters measurements of the Hubble parameter, alongside
arguments from BBN, in order to extract constraints on
Myrzakulov FðR; TÞ gravity. This is a connection-based
theory belonging to the Riemann-Cartan subclass, that uses
a specific but nonspecial connection, which then leads to
extra degrees of freedom. One introduces a parametrization
that quantifies the deviation of torsion and curvature scalars
form their values corresponding to the special Levi-Civita

and Weitzenböck connections and then constructs various
models by assuming specific forms for the involved
functions. In all models, one obtains an effective dark
energy sector of geometrical origin.
We considered two specific models, which are known to

lead to interesting phenomenology. Our analysis shows that
both models are capable of describing adequately the
imposed datasets, namely, CC+SNIa+BAO ones, obtaining
approximately 1σ compatibility in all cases. Concerning
model 1, which includes ΛCDM paradigm as a particular
limit, we found a relatively large value for Ωm0 and a value
for h in between the Planck and local estimation, although
closer to the former. For the dimensionless parameter λ, we
found that it is constrained to an interval around 0, which
corresponds to ΛCDM scenario; however, the correspond-
ing contours are slightly shifted toward positive values. In
the case of model 2, we found smallerΩm0 and h, while λ is
again constrained around 0 with favored positive values.
Additionally, we used the obtained posterior distribution

of the parameters at 1σ confidence level, and we recon-
structed the Hubble function as a function of the redshift.
As we showed, the obtained graphs forHðzÞ=ðzþ 1Þ are in
very good agreement with observations. Furthermore, we
reconstructed the induced dark energy equation-of-state
parameter as a function of the redshift. As we saw, for
model 1, wdeðzÞ is very close to ΛCDM scenario, while for
model 2, it resembles ΛCDM at low redshifts; however, at
earlier times, deviations are allowed.
Finally, applying the AIC, BIC, and the combined DIC

criteria, we deduced that both model 1 and model 2 present
a very efficient fitting behavior and are statistically equiv-
alent with ΛCDM cosmology. This is an interesting result
since model 2 does not contain ΛCDM scenario as a limit
for any parameter value.
In summary, Myrzakulov FðR; TÞ gravity is in agreement

with cosmological data, and it could serve as a candidate for
the description of nature. Nevertheless, one should also
investigate the theory at the perturbation level and confront it
with perturbation-related data, i.e., fσ8. Such an analysis,
although both interesting and necessary, lies beyond the
scope of the present work, and it is left for a future project.
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