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In the Einstein-Cartan framework the torsion-free conditions arise within the Hamiltonian treatment as
second-class constraints. The standard strategy is to solve these constraints, eliminating the torsion from the
classical theory, before quantization. Here we advocate leaving the torsion inside the other constraints
before quantization, leading at first to wave functions that can be called “kinematical” with regards to the
torsion, but not the other constraints. The torsion-free condition can then be imposed as a condition upon
the physical wave packets one constructs, satisfying the usual uncertainty relations, and so with room for
quantum fluctuations in the torsion. This alternative strategy has the surprising effect of clarifying the sense
in which the wave functions solving an explicitly real theory are “delta-function normalizable.” Such
solutions with zero (or any fixed) torsion, should be interpreted as plane waves in torsion space. Properly
constructed wave packets are therefore normalizable in the standard sense. Given that they are canonical
duals, this statement applies equally well to the Chern-Simons state (connection representation) and the
Hartle-Hawking wave function (metric representation). We show how, when torsion is taken into account,
the Hartle-Hawking wave function is replaced by a Gauss-Airy function, with finite norm, which we call
the Hartle-Hawking beam. The Chern-Simons state, instead, becomes a packet with a Gaussian probability
distribution in connection space. We conclude the paper with two sections explaining how to generalize
these results beyond minisuperspace.
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I. INTRODUCTION

Classical general relativity may be variously formulated
giving primacy to the metric (the second order formalism),
or allowing the metric and the connection to be initially
independent variables (the first order formalism). The latter
may be motivated in many different ways (e.g., [1,2]), but
historically has its roots in the Einstein-Cartan formalism.
In the minimal theories, in the absence of spinors, the first
and second order formulations are classically equivalent,
since one of the Einstein-Cartan equations of motion relates
the torsion to the spin current (which we will assume
vanishes throughout this paper). A question arises con-
cerning the quantum mechanics of the two formulations:
are they equivalent? In the Einstein-Cartan formalism zero-
torsion appears classically as an equation of motion (and
not a built-in fact, as is the case in the metric formalism,
with a Christoffel connection). Quantum mechanics probes
the phase space off-shell, i.e., away from the classical

solutions, so it could feel the non-zero torsion possibility of
Einstein-Cartan theory. Could quantum torsion fluctuations
lead to an inequivalent quantum theory?
A closer inspection reveals that the issue is technically

nontrivial. In the canonical framework (used in most
quantization schemes), the torsion-free condition appears
as part of the secondary constraints, which turn out to be
second class (e.g., [3,4], but see [5]). Quantization using the
usual Poisson bracket is therefore inconsistent. One
approach to second class constraints is to employ the
Dirac bracket in lieu of the Poisson bracket [6]. Another
approach is, if at all possible, to solve the constraints
classically, inserting the resulting equations of motion into
the action before quantizing. This is usually the route taken
regarding the torsion. But is this right? Is this the only path
to quantization? It certainly imposes a freeze on torsion
quantum fluctuations. This, we shall argue in this paper, is
the origin of some apparent infinite norms found in the
usual approach.
We have in mind the fact that somewell-known solutions

in quantum gravity are not normalizable in the conventional
sense. This can be seen both in the metric and connection
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representation, since the norm is independent of the
representation. In the connection representation, the matter
concerns the Chern-Simons wave function (also called the
Kodama state [7–11]). Here, we must distinguish two types
of normalization problems. If we take the state that solves
the Lorentzian complex Hamiltonian equation, then is
suffers from a number of acknowledged pathologies
(e.g., [8]): CPT violating properties (and consequent
impossibility of a positive energy property), lack of gauge
invariance under large gauge transformations, and, indeed,
non-normalizability with respect to the standard inner
product. However, if one employs an explicitly real theory
(phase space variables and action) these problems disap-
pear, as shown in [4,12]. Then, the “real” Chern-Simons
state is a pure phase in the Lorentzian signature (just like in
the Euclidean signature), and so it is “delta-function”
normalizable [13–15]. It is in this last format that we want
to examine the normalizability of the Chern-Simons state.
But foremost, we want to highlight the fact that this is

nothing but the dual of a seemingly unrelated problem. The
Hartle-Hawking (HH) wave function is the Fourier dual of
the Chern-Simons state reduced to minisuperspace, assum-
ing real variables throughout [16]. Its normalizability issues
are well known. We may take the view that one needs a
higher dimensional space to define a probability, from a
Klein-Gordon current, as suggested by Vilenkin [17,18].
But we may also take the problem at face value and wonder
what it means. Flipping the question to the Fourier dual, the
issue is the same as the one for the Chern-Simons state, and
the question becomes: what does it mean to say that the
Hartle-Hawking/Chern-Simons wave functions are “delta-
function” normalizable? With respect to what?
“Quantum torsion” provides an answer, as we show in

this paper. We start by reviewing the minisuperspace
structures behind the equivalence of the Chern-Simons
and Hartle-Hawking states: complementary variables,
Fourier transform and integration measure (Sec. II). We
also explain how the torsion is usually forced to be zero by
means of second class constraints. We then show how
solutions to the quantum constraints may be obtained by
first ignoring the torsion conditions (Sec. III). This leads to
torsionful versions of the Hartle-Hawking and Chern-
Simons states. Computing the norms of these states, at
once we see why the result is infinite if the torsion is fixed
(at zero or otherwise), and proportional to a delta-function
in terms of the torsion (Sec. IV).
With this important piece of information in hand we may

now build wave packets in torsion space, which are
normalizable in the conventional sense (Sec. V). We
may also build coherent states centred at zero. These are
the physical states with regards to the torsion conditions.
We build these states explicitly in both representations
(Sec. VI). The uniform probability extended over an infinite
domain, implied by the unbridled Chern-Simons state, is
replaced by a Gaussian distribution. The Hartle-Hawking

wave function is replaced by a regularized Gauss-Airy
function: the Hartle-Hawking beam. Suddenly it all
makes sense.
We close with two sections explaining how to extend our

construction beyond minisuperspace. They do not impact
on our main results, but may be an important first step
toward the phenomenology of quantum torsion (see [19]).

II. REVIEW OF MINISUPERSPACE STRUCTURES

The Einstein-Cartan action reduced to homogeneity and
isotropy is [16,20]:

S ¼ 6κVc

Z
dt

�
a2 _bþ Na

�
b2 þ k − c2 −

Λ
3
a2
��

: ð1Þ

where κ ¼ 1=ð16πGNÞ, k ¼ 0;�1 is the normalized spatial
curvature, and Λ is the cosmological constant. Here a is the
expansion factor (the only metric variable), and b and c are
components of the connection, respectively the off-shell
version of the Hubble parameter (since b ≈ _a if there is not
torsion; see below), and the parity-violating Cartan spiral
staircase [20,21]. The Lagrange multiplier N is the lapse
function.
Hence, the Poisson bracket is

fb; a2g ¼ 1

6κVc
; ð2Þ

inducing the minisuperspace commutator:

½b̂; â2� ¼ il2P
3Vc

; ð3Þ

where lP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGNℏ

p
is the reduced Planck length. Given

that it will appear recurrently, to simplify the notation we
define:

h ¼ l2P
3Vc

: ð4Þ

We may also see h as an “effective” Planck constant [22],
but we do not need to accept this interpretation.
The canonical structure and commutator imply the

Fourier transform and its inverse:

ψa2ða2Þ ¼
Z

dbffiffiffiffiffiffiffiffi
2πh

p e−
i
ha

2bψbðbÞ;

ψbðbÞ ¼
Z

da2ffiffiffiffiffiffiffiffi
2πh

p e
i
ha

2bψaða2Þ: ð5Þ

for changing between duals (where we have used a
symmetric definition for FT and its inverse). The associated
inner product between states and integration measure are
the trivial:
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hψ jϕi ¼
Z

dbψ⋆
bðbÞϕbðbÞ ð6Þ

¼
Z

da2ψ⋆
a2ða2Þϕa2ða2Þ: ð7Þ

All integrations will be understood to be over the whole real
line here and from now on; we will mention alternatives at
the end of the paper. The Fourier transform can then be seen
as an insertion of a partition of identity with:

ψa2ða2Þ ¼ ha2jψi ð8Þ
ψbðbÞ ¼hbjψi ð9Þ

and

hbja2i ¼ e
i
ha

2bffiffiffiffiffiffiffiffi
2πh

p ð10Þ

As explained in [16] (ignoring torsion), the solution to
the Hamiltonian constraint in the a2 representation is the
Hartle-Hawking wave function, whereas in the b repre-
sentation it is the Chern-Simons state. The two are the
Fourier transform of each other (with the definitions of
measure and Fourier transform induced by the canonical
structure, which we have just presented). The theory’s
Hamiltonian has the form H ¼ 6κVcNaH with:

H ¼ −b2 − kþ c2 þ Λ
3
a2: ð11Þ

But what about the conditions forcing the torsion to vanish
classically?
In the canonical framework we should distinguish

between two different types of torsion. One type of torsion
is that contained in b, the minisuperspace reduction of the
extrinsic curvature (the space-time components of the spin-
connection [20,23], also denoted Ki in the Ashtekar
formalism [4]). Specifically:

b ¼ _a=N − T ð12Þ

the first term containing the torsion-free component, the
second the torsion. The Hamilton equation for a reads:

_a ¼ Nb ð13Þ

so that it fixes the torsion T to zero on-shell, as part of the
time evolution.
A quite different type of torsion is that contained in c, the

minisuperspace version of the torsion contained in the
purely spatial components of the spin-connection (denoted
Γi in the Ashtekar formalism [4]). In minisuperspace (and
more generally in the time gauge) c (the torsion in Γi) does
not have a momentum. This can be phrased by adding to the

action a term corresponding to the Legendre transform
between c and its conjugate momentum pc, plus a con-
straint forcing pc to be zero:

S → Sþ
Z

dtð_cpc − λpcÞ: ð14Þ

Then,

fc; pcg ¼ 1 ð15Þ

but since:

fpc;Hg ¼ 2c ð16Þ

we get the secondary constraint:

c ≈ 0: ð17Þ

However because of (15), the two new constraints (c ≈ 0
and pc ≈ 0) are second class constraints.
The usual argument is that second class constraints should

be solved classically, before quantization, because they
cannot be imposed consistently at the quantum mechanical
level.1 Thus one sets c ¼ 0 in the Hamiltonian equation,
quantizes, and gets on with it. But is this the only way to
quantize? Certainly not (we recall Gupta Bleuler quantiza-
tion). Here we propose an alternative, which happens to
explain what is meant by delta-function normalization of the
Chern-Simons and Hartle-Hawking wave functions.

III. KINEMATICAL TORSIONFUL WAVE
FUNCTIONS

Let us solve the quantumHamiltonian constraint, leaving
the c there, to be seen as a parameter, just like the (torsion-
free) spatial curvature k ¼ 0;�1. As in [16] we find that
with suitable ordering, the solution to the Hamiltonian
constraint in the b representation is the torsionful version of
the Chern-Simons state in minisuperspace:

ψCSðb; cÞ ¼ N exp

�
i
3

Λh

�
b3

3
þ ðk − c2Þb

��
: ð18Þ

In the a2 representation, we find a straightforward modi-
fication of the Wheeler-DeWit equation, leading (with
simple adaptations from [16]) to the torsionful version
of the Hartle-Hawking wave function2:

1Certainly we cannot impose ĉψ ¼ p̂cψ ¼ 0, in whatever rep.
Note that if we imposed only pc ≈ 0 that would be fine, and only
state that the wave function could not depend on c, forcing a
uniform distribution in c. Would this be inconsistent with
“observation”?

2Note that there is a typo in the definition of z in [16].
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ψHHða; cÞ ¼ N 0Aið−zÞ; ð19Þ

with

z ¼ −
�

3

Λh

�
2=3

�
k − c2 −

Λa2

3

�
: ð20Þ

Using standard results in the theory of Airy functions we
have:

N 0 ¼ N

ffiffiffiffiffiffi
2π

h

s �
Λh
3

�
1=3

: ð21Þ

As in [16] we may argue that there is only one state (once
the matter of the domains of variation is fixed), taking the
form of the Chern-Simons or Hartle-Hawking wave func-
tions depending on the chosen representation. The only
novelty here is that the state is indexed by the torsion c. We
denote this state jΨHCðcÞi and in a representation-free
notation we may write:

Ĥða2; b; cÞjΨHCðcÞi ¼ 0: ð22Þ

The explicit representations result from:

hbjΨHCðcÞi ¼ ψCSðb; cÞ ð23Þ

ha2jΨHCðcÞi ¼ ψHHða2; cÞ ð24Þ

and proving that ψCSðb; cÞ and ψHHða2; cÞ are the Fourier
transform of the other is then a particular case of the
insertion of a partition of identity as defined above.
These wave functions may be called “kinematical” with

regards to the torsion, because we have not yet imposed the
conditions which we know they must satisfy, in some sense,
regarding the torsion. Before proposing a prescription for
these conditions (Sec. V), we show how the kinematical
wave functions clarify the important issue of the normal-
izability of the Chern-Simons state and the Hartle-Hawking
wave function.

IV. NORMALIZABILITY OF THE CHERN-SIMONS
AND HARTLE-HAWKING STATES

We start by examining the sense in which the “real”
Chern-Simons state [4], which is a pure phase in Lorentzian
signature (just like its Euclidean cousin), is “delta-function”
normalizable. The state certainly resembles a wave extend-
ing over an infinite domain (in b, in minisuperspace; or in
a2 for its dual). Such waves, spread over an infinite domain,
are regularizable by confining them into a finite box, but
this would be equivalent to truncating the domain of b
(or a2) and discretizing a2 (or b), clearly a very crude
expedient.

A more palatable alternative consists of taking the
kinematical torsionful wave functions and evaluate their
inner product for generic torsion values. Using (6) and (18)
we find, in the b representation:

hΨHCðcÞjΨHCðc0Þi ¼
Z

dbψ⋆
CSðb; cÞψCSðb; c0Þ

¼ N 2

Z
db exp

�
i
3

Λh
ððc2 − c02ÞbÞ

�

¼ 2π
Λh
3

N 2δðc2 − c02Þ ð25Þ

(note how the cubic term in b in the phase cancels, leaving
the right factors for a delta function). By choosing:

N ¼
ffiffiffiffiffiffiffiffiffiffiffi
3

2πΛh

s
ð26Þ

we therefore have:

hΨHCðcÞjΨHCðc0Þi ¼ δðc2 − c02Þ ð27Þ

giving a clear implementation of the statement that the real
Chern-Simons wave functions are “delta-normalizable.”
We now understand why even the nonpathological real

Chern-Simons state, which is a pure phase, has infinite
norm:

Z
dbjψCSðb; cÞj2 ¼ N

Z
db ¼ ∞ ð28Þ

for any torsion c, and in particular for c ¼ 0. It is because

Z
dbjψCSðb; cÞj2 ¼ hΨHCðcÞjΨHCðcÞi ¼ δð0Þ ¼ ∞:

In particular if we force the torsion to be zero by
construction (as in the usual approach to the second class
constraints associated with it), we have:

hΨHCðc≡ 0ÞjΨHCðc≡ 0Þi ¼ ∞: ð29Þ

By building wave packets in c (possibly centered at c ¼ 0,
but with a width), as we shall do in the next section, the
norm becomes finite, in perfect analogy with delta-normal-
izable plane waves and their wave packets.
Having gone this far, we note that norms do not depend

on the representation, so we can translate everything we
said so far into the metric representation, and see what it
implies for the Hartle-Hawking wave function. It is
known that the (torsion-free) Hartle-Hawking state is not
normalizable:
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Z
da2jψHHj2 ¼ N 02

Z
da2Ai2ðzÞ ¼ ∞; ð30Þ

a matter which has led to several probability interpretations
(see [17,18] and also[24] and references therein). Without
discussing their merits, we note that this non-normalizability
is just an expression of (29) in the metric representation,
and results from fixing the torsion to zero too abruptly and
rigidly, just as was found in the connection representation.
And likewise, the problem can be removed by introducing
the torsionful Hartle-Hawking wave functions and note that
these are already delta-function normalized in the sense of
(27) (since the norm does not depend on the representa-
tion). Finite norm versions of the Hartle-Hawking wave
function can then be found constructing wave packets in the
torsion out of these delta-normalized torsionful waves.
Just to make sure, we double check our statement with a

direct calculation. Bearing in mind the identity:

Z
dzAiðzþ xÞAiðzþ yÞ ¼ δðx − yÞ; ð31Þ

we can evaluate (27) in the a2 representation as:

hΨHCðcÞjΨHCðc0Þi ¼
Z

da2ψ⋆
HHða2; cÞψHHða2; c0Þ

¼ 3

Λ

�
Λh
3

�
4=3

N 02δðc2 − c02Þ: ð32Þ

Hence we recover (27) if:

N 0 ¼
ffiffiffiffi
Λ
3

r �
3

Λh

�
2=3

ð33Þ

which could have been found to have this value directly
from (21) and (26).

V. WAVE PACKETS AND THE TORSION
CONDITION

We can now consider general normalizable solutions to
the Hamiltonian constraint. The jΨHCðcÞi can be seen as
monochromatic waves (and so have infinite norm), but by
linearly superposing them into wave packets one arrives at
normalizable solutions, since they are delta-function nor-
malized. Such packets solve the Hamiltonian constraint
because the Hamiltonian is linear and does not contain pc
(so, multiplying each jΨHCðcÞi by an amplitude, AðcÞ,
dependent on c, still produces a solution).
Given the form of the delta-function normalization

[cf. Eq. (27)], the most convenient measure with which
to label the superposition is dc2. Thus, we arrive at:

jϕi ¼
Z

dc2Aðc2ÞjΨHCðcÞi: ð34Þ

The normalization condition hϕjϕi ¼ 1 becomes the
statement:

Z
dc2jAðc2Þj2 ¼ 1; ð35Þ

so, any suitably chosen Aðc2Þ leads to well-defined
probabilities. These packets may be written in the a2 or
b representation, applying to them (8) or (9), i.e.:

ϕða2Þ ¼
Z

dc2Aðc2ÞψHHða2; cÞ ð36Þ

ϕðbÞ ¼
Z

dc2Aðc2ÞψCSðb; cÞ: ð37Þ

The amplitude Aðc2Þ is the same in both representations.
We are finally ready to construct states compliant with a

quantum version of the torsion-free condition. They should
be coherent states centered at c ¼ 0. Given that c does not
have a momentum there is some arbitrariness in the
construction. Specifically, in order to fit the measure
dc2, we could have replaced (14) by3:

S → Sþ
Z

dtð _c2pc2 − λpc2Þ ð38Þ

suggesting we build coherent states from:

½ĉ2; p̂c2 � ¼ iℏ ⇒ p̂c2 ¼ −iℏ
∂
∂c2 : ð39Þ

As with the case for free-particles (lacking a potential
term in the Hamiltonian), the fact that pc does not appear in
the Hamiltonian means there is a free length scale, l,
required to define dimensionless quadratures and “annihi-
lation” operators (see [26], for a very pedagogical review).
Thus, coherent states will be eigenstates of:

Ẑ ¼ l2ffiffiffi
2

p ĉ2 þ i
1

ℏl2
ffiffiffi
2

p p̂c2 ¼
l2ffiffiffi
2

p c2 þ 1

l2
ffiffiffi
2

p ∂
∂c2 : ð40Þ

The scale l can be the Planck length, Lambda’s length
scale jΛj−1=2, or any function thereof (we could also appeal
to Vc). In particular, we can investigate:

3Note that this choice implies that the term c2 in the
Hamiltonian density is now linear in the configuration variable
which may alternatively be regarded as a term proportional to the
momentum of pc2 . Models containing such contributions can be
candidates for emergent clocks in quantum gravity [25] but we
will not explore this further in the present paper.
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l ¼ ðlnPΛ−m=2Þ 1
nþm: ð41Þ

The case n ¼ 2 andm ¼ 1 is studied in [22,27] and leads to
interesting mesoscopic implications. The choice n ¼ 1 and
m ¼ 2 leads to effects on the scale of 102 Hz, of possible
interest for gravity wave detection. The fact that l is not
fixed is not surprising and we will comment on it at the end
of this section, once coherent states are constructed.
The torsion-free condition may be implemented by

constructing coherent states centred at the origin, i.e., by
solving ẐAðc2Þ ¼ 0, with Ẑ as in (40). These have the
form:

Aðc2Þ ¼
exp ð− c4

4σ2c
Þ

ð2πσ2cÞ1=4
; ð42Þ

the denominator chosen so as to enforce (35). Here we use
the (slightly misleading) notation:

σ2c ¼ hc4i ¼ 2=l4 ð43Þ

to avoid the heavy alternative σ2c2 . The amplitude (42) will
be used for the rest of this paper.
We close by noting that we could have built coherent

states centered around any point fc20; pc2
0
g. For example, for

the quasi-Euler theory [20,23,28] we should set pc2
0
¼ 0,

but c20 could be any constant. We could also have
considered squeezed coherent states. The more general
expression is

Aðc2Þ ¼ 1

ð2πζ2σ2cÞ1=4
exp

�
−
ðc2 − c20Þ2
4ζ2σ2c

þ i
ℏ
pc2

0
c2
�
; ð44Þ

where ζ is the squeezing parameter.
The uncertainty in the length scale l (and so in σc) is

therefore an uncertainty in the definition of squeezing,
since only σcζ appears in the states. Its origin lies in the fact
that the conjugate momentum to c2 does not appear
anywhere, so it can be defined in a number of ways. We
can saturate the Heisenberg bound imposed by the com-
plementarity of c2 and its momentum, but have no way to
define “balanced” uncertainties between conjugates for an
coherent state (or how unbalanced they are for a squeezed
state). Note that a similar situation happens for a free
particle [26], amounting to the introduction of a length
scale to define dimensionless quadratures.

VI. THE HARTLE-HAWKING BEAM

To complete our construction we evaluate explicit forms
for the wave packets. It is easier to put it all together in the b
representation. Inserting (42) into (37) (recalling (18))
leads to:

ϕðbÞ ¼ N ð8πσ2cÞ1=4 exp
�
−
9b2σ2c
Λ2h2

þ i
1

Λh
ðb3 þ 3kbÞ

�

¼ ð8πσ2cÞ1=4 exp
�
−
9b2σ2c
Λ2h2

�
ψCSðb; 0Þ: ð45Þ

The last expression relates the infinite norm zero-torsion
Chern-Simons state to the finite norm wave packet built
around zero-torsion. We see that it is dressed by a Gaussian,
which regularizes it. Indeed the associated probability
density is

PðbÞ ¼ jϕðbÞj2 ¼ N 2

ffiffiffiffiffiffiffiffiffiffi
8πσ2c

q
exp

�
−
18b2σ2c
Λ2h2

�
: ð46Þ

This is just a Gaussian distribution in b, with variance:

σb ¼
Λh
6σc

: ð47Þ

By using (26) we can check that the distribution is properly
normalized. To illustrate the effect of different values of σc
we can introduce the following dimensionless variables:

b̃ ¼ 3

βΛ
b
h

ð48Þ

σ̃c ¼ βσc ð49Þ

where

β ¼
�

3

Λh

�
2=3

ð50Þ

such that

Pðb̃Þ ¼
ffiffiffi
2

π

r
σ̃ce−2σ̃

2
cb̃

2 ð51Þ

satisfies
R
Pðb̃Þb̃ ¼ 1. In Fig. 1 we have plotted this

distribution. As σ̃c goes to zero, the probability approaches
a uniform distribution with infinitesimal density. The
higher the fluctuations in the torsion c, the more peaked
the distribution of b around zero. Quantum fluctuations in
the torsion seem to be acting as a “filter” suppressing high
quantum spacetime curvature.
In the a2 representation we must perform the integral

(36), with (42). This is best evaluated appealing to the
concept of Airy transform [29], which can be written as:

ϕαðyÞ ¼
1

α

Z
∞

−∞
fðxÞAi

�
y − x
α

�
dx ðα > 0Þ: ð52Þ

It is a standard result that the Airy transform of the
Gaussian function:
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GðxÞ ¼ 1ffiffiffi
π

p e−x
2 ð53Þ

is

ϕðGÞαðxÞ ¼
1

jαj e
1

4α3
ðxþ 1

24α3
ÞAi

�
x
α
þ 1

16α4

�
: ð54Þ

With this result in hand we find, after some algebra, that our
wave packet can be written in the form

ϕðã2Þ ¼ Ñ eσ̃
2
cðk̃−ã2þ2

3
σ̃4cÞAiðk̃ − ã2 þ σ̃4cÞ ð55Þ

where we have defined the following dimensionless
variables:

ã2 ¼ β
Λa2

3

k̃ ¼ βk

σ̃c ¼ βσc

Ñ ¼ ð8πσ2cÞ1=4N 0:

This can be more suggestively written as:

ϕða2Þ ¼ Ce−λaa
2

ψHHða2; c20Þ ð56Þ

which we call the Hartle-Hawking beam, and illustrate in
Fig. 2 for various values of σ̃c.
This beam is a Hartle-Hawking wave function dressed

with an exponential that makes it fall off at large a2 faster
than the usual (non-normalizable) power-law. Unlike the
equivalent result for the b representation [cf. Eq. (45)],
the state being dressed has an effective torsion, formally
given by:

c20 ¼ −
�

3

Λh

�
2

σ4c: ð57Þ

This shifts the zeros of the wave function, but does not
affect their spacing. The phenomenology described in [27],
therefore, is not expected to change. The suppression
exponent, λa, is given by:

λa ¼
3

Λh
σ2c ¼

54V2
c

Λl4Pl4
: ð58Þ

Depending on the torsion scale l and on the observation
volume this could have meso- and macroscopic observable
effects. We will return to this matter elsewhere.
Finally, we note that for a2 < 0 the dressing exponential

blows up, but the Airy function decays exponentially even
faster. The Hartle-Hawking beam is a perfectly well behaved
distribution. For completeness we include the irrelevant
expression for the proportionality constant C in (56):

C ¼ exp

��
3

Λh

�
2

σ2c

�
kþ 2

3

�
3

Λh

�
2

σ4c

��
: ð59Þ

VII. BEYOND MINISUPERSPACE

One may wonder if our normalization procedure can
extend beyond minisuperspace. The answer is yes, as we
proceed to schematically show, drawing heavily on [4,30]
(to which we refer the reader for details). In general, we
should apply to our constructions the correspondence:

a2 → Ea
i ð60Þ

b → Ki
a ð61Þ

FIG. 1. Comparison of Pðb̃Þ for various values of σ̃c. FIG. 2. Comparison of jϕðãÞj2 for various values of σ̃c. For ease
of illustration, plots are normalized so that

R jϕj2dã2 ¼ 1.
Formally, as σ̃c → 0, the solution ϕ approaches proportionality
with the Hartle-Hawking wave function ψHH.
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where Ea
i are the densitized inverse triads, Ki

a are the
extrinsic curvature 1-forms (the imaginary part of the
Ashtekar self-dual connection, Ai

a), with i the SUð2Þ
indices and a the spatial coordinate indices. The spatial
connection Γi

a (the real part of Ai
a) can be split into a

torsion-free part Γ̄i and a contorsion Γ̃i:

Γi ¼ Γ̄iðEÞ þ Γ̃i: ð62Þ

In minisuperspace, k ¼ �1 provides an example of the
effect of the first term, c of the second. We shall say more
about this splitting in the next section.
With this dictionary in hand we can reproduce most of

the steps in this paper in a setting beyond minisuperspace.
The Fourier transform defined in (5) becomes the one
proposed in [30]:

ψEðE;ΓÞ ¼
Y
x⃗;a;i

Z
d½Ki

aðx⃗Þ�ffiffiffiffiffiffiffiffiffi
2πl2P

p e
− i
l2
P
Ea
i ðx⃗ÞKi

aðx⃗Þ
ψKðK;ΓÞ; ð63Þ

where the product include all spatial points x⃗, discretized or
as a continuum of infinitesimals. The inner product that
generalizes (6) is:

hψ1ðΓÞjψ2ðΓ0Þi ¼
Y
x⃗;a;i

δVc

Z
d½Ki

aðx⃗Þ�ψ⋆
K1ðKi

aðx⃗Þ;Γi
aðx⃗ÞÞ

× ψK2ðKi
aðx⃗Þ;Γi0

aðx⃗ÞÞ ð64Þ

where δVc is the volume element around point x⃗ introduced
for convenience in the next steps, mimicking our con-
struction in minisuperspace. Indeed, the generalization of
(18) is [4]:

ψCS ¼ N exp

�
−

3i
Λl2P

Z
Kið3ÞRi − ϵijk

KiKjKk

6

�
: ð65Þ

This is the general solution to the Hamiltonian constraint in
the connection representation, with the torsion left in. It
should be seen as the general state which is still kinematical
with regards to the torsion, but not otherwise. It has dual
metric representations, with formal definition and examples
beyond minisuperspace given in [30]. It factorizes as:

ψCS ¼
Y
x⃗;a;i

N aiðx⃗Þ

× exp

�
−
3iδVc

Λl2P
ϵabc

�
Ki

a
ð3ÞRi

bc − ϵijk
Ki

aK
j
bK

k
c

6

��
:

ð66Þ

As in minisuperspace, when we evaluate the inner product
for states with different Γi (using (64)), the cubic term in Ki

cancels out, leaving us only with linear terms that lead to
delta-functions. Hence, in general we have:

hψCSðΓÞjψCSðΓ0Þi ¼
Y
x⃗;a;i

δðð3ÞR̃iaðx⃗Þ − ð3ÞR̃ia0 ðx⃗ÞÞ ð67Þ

with ð3ÞR̃ia ¼ ϵabcð3ÞRi
bc and

N aiðx⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2πΛl2P

s
: ð68Þ

We can now build wave packets out of these states with
generic amplitudes AðΓÞ.
We see that a general treatment generates delta normali-

zation most naturally in terms of the dual of the 3-curvature.
In minisuperspace this reduces to the single parameter:

kc ¼ k − c2 ð69Þ

Obviously if we fix k this is equivalent to the normalization
in c2 found before. Nothing changes with regards to the
definition of the Hartle-Hawking beam. But an intriguing
possibility is raised. Given that states are now indexed by
kc, could states with different k but the same kc be the
same? Could there be cross talk between the 3 types of
FRW Universe? We will investigate this possibility further
in [31], with direct reference to the infamous flatness
problem in big bang cosmology.

VIII. TORSION IN THE EINSTEIN-CARTAN
THEORY

But there is more. As already noted in Sec. II, in the
canonical connection formalism there are two types of
torsion: that contained in Γi (c in minisuperspace), and that
contained in Ki (the T in b ¼ _a=N − T). They are treated
very differently classically: the vanishing of the first
follows from solving second class constraints (having
imposed a partial gauge fixing on the theory), the second
is set to zero by a combination of constraints and
Hamilton’s equations. According to our procedure, quan-
tum mechanically they are treated even more differently.
And yet, classically one can convert one type of curvature
into the other as we now show.
To recap, the action for the Einstein-Cartan theory is

given in differential forms notation by:

S½e;ω� ¼
Z

ϵIJKLeIeJRKLðωÞ ð70Þ

where I; J;… are SOð1; 3Þ indices, eI ¼ eIμdxμ is the co-
tetrad, ωI

J ¼ ωI
Jμdxμ is the spin connection and RIJ ¼

dωIJ þ ωI
Kω

KL is the curvature two-form. Considering the
action (70) to be a functional of eI and ωIJ as independent
fields, variation of ωIJ yields the following classical
equation of motion

deI þ ωI
JeJ ≡ TI ¼ 0 ð71Þ
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where TI is the torsion two-form. Alternatively, one may
consider the following decomposition of ωIJ at the level of
the action:

ωIJ ¼ ω̄IJðeÞ þ CIJ ð72Þ

where ω̄IJðeÞ is the unique solution of Eq. (71) for ωIJ

assuming that eIμ considered as a matrix is invertible and
CIJ is the contorsion one-form. Using this ansatz in (70)
and discarding a boundary term leads to the action

S½e; C� ¼
Z

ϵIJKLeIeJðRKLðeÞ þ CK
MCMLÞ: ð73Þ

The first term is simply the Einstein-Hilbert action of
general relativity. The action can be written as follows:

S½e; C� ¼
Z

ð2R̄þ CI
KICKJ

J − CI
JKCJK

IÞ
ffiffiffiffiffiffi
−g

p
d4x ð74Þ

where R̄ is the Ricci scalar built from gμν and its Christoffel
symbols, and CIJK ≡ eKμCIJ

μ . In passing to the
Hamiltonian formulation of this theory, one can consider
a phase space coordinatized by the spatial metric
qabðxc; tÞ—where xa are spatial coordinates—its momen-
tum Πabðxc; tÞ as well as CIJKðxa; tÞ and its momentum
PIJKðxa; tÞ. Equivalence of the classical Euler-Lagrange
equations and Hamilton’s equations would require the
imposition of primary constraints PIJK ≈ 0 and requiring
the preservation of this constraint in time would impose
further that CIJK ≈ 0, which is indeed the Euler-Lagrange
equation for CIJK.
Explicitly, the Hamiltonian density H will be given by a

sum of constraints:

H ¼ NHþ NaHa þ λIJKPIJK þ ξIJKCIJK ð75Þ

where N and Ni are the lapse and shift functions while λIJK

and ξIJK are Lagrange multiplier fields and

H ¼ −2
ffiffiffi
q

p
R̄þ 2ffiffiffi

q
p

�
ΠabΠab −

1

2
Πa

aΠb
b

�

−
ffiffiffi
q

p ðCI
KICKJ

J − CI
JKCJK

IÞ ð76Þ

Hi ¼ −4
ffiffiffi
q

p
qac∂b

�
1ffiffiffi
q

p Πcb

�
ð77Þ

where q is the determinant of qab and R̄ is the Ricci scalar
built from qab and its Christoffel symbols.
An interpretation of the results in this paper is that we

have adopted the approach of constructing a quantum
theory built by implementing only the constraints H and
Hi on quantum states and then building wave packets that
represent coherent states around zero contorsion. We have

now seen that it is possible to motivate the appearance of all
the torsion components in the constraintH. To illustrate the
point in minisuperspace, this is the action we would start
from:

S½a;Π; T; c�

¼ 6κVc

Z
dt

�
a2 _Πþ Na

�
Π2 þ kþ T2 − c2 −

Λ
3
a2
��

:

ð78Þ

instead of (1). Thus the second type of torsion, T (i.e., the
part of the torsion which in the connection formalism was
not present in the minisuperspace action, but which, rather,
was revealed by a dynamical Poisson equation; see the
discussion around (12) and (13)), in this alternative
approach now appears in a similar role to c2 and can be
transferred to the spatial curvature. We could also transfer
just some of it or none at all. In fact, the action (78) has a
local (in time) SOCð1; 1Þ (complexified 2d Lorentz group)
gauge invariance—reflected in the invariance of T2 − c2.
With this approach, instead of (69) our states are

indexed by:

kc ¼ kþ T2 − c2: ð79Þ

Nothing changes in our construction of wave packets, and
yet the quantum theory looks totally different with now two
dimensions of torsion space present in the problem. The
million dollar question with regards to the other phenom-
enology is whether or not we have broken local Lorentz
invariance in our treatment of the torsion.

IX. CONCLUSIONS

The main achievement of this paper was to find a regular,
normalizable version of the Hartle-Hawking wave function,
which we called the Hartle-Hawking beam. The crucial
point is not to impose the torsion-free condition too soon,
namely classically, before quantization. The latter may
seem innocuous, but would amount to freezing quantum
fluctuations in the torsion, implying essentially states of the
form (34) with

Aðc2Þ ¼ δðc2Þ ð80Þ

so that their norm isZ
dc2jAðc2Þj2 ¼

Z
dxδ2ðxÞ ¼ ∞: ð81Þ

With the benefit of hindsight this should have been
obvious. Fixing the torsion to zero is to consider a wave
function with an amplitude in torsion space that is a delta
function. The integral of the square of a delta function is
infinite. By allowing the torsion to fluctuate, even with a
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state of minimal uncertainty, such as a coherent state
centered at the origin, we remove this infinity. We called
such a wave packet (which is a Gauss-Airy function), the
Hartle-Hawking beam.
We probably would not have found the Hartle-Hawking

beam, had we not received inspiration from its dual version,
the real Chern-Simons state. It has been known for a while
that the Euclidean version of that state is delta-function
normalizable, since it is a pure phase. A clear statement of
what that means was missing until this paper. Furthermore,
it has been found recently that the Lorentzian state is more
similar to the Euclidean state than thought before, as long
as an explicitly real theory is used [4]. Again, the matter
relates to what to do with torsion in a complexified theory.
Quite often reality conditions and torsion-free conditions
are mixed and confused. A separation of the two was
required in order to find a nonpathological normalizable
version of the Chern-Simons state. Its Fourier dual is
precisely the Hartle-Hawking beam.
Beyond these achievements, many questions remain to

be answered on a mathematical level. But foremost we can

look forward to investigating the phenomenology of torsion
fluctuations, particularly in situations where a mesoscopic
scale is present [22,27]. A major issue to be cleared is
whether or not our quantum treatment of torsion has broken
local Lorentz invariance. We will return to this matter in
the not too distant future. Another issue concerns the
torsion-full duals of the Chern-Simons state beyond min-
isuperspace. This matter has now received a preliminary
investigation [19] in the context of Bianchi models, but
much work remains to be done, specifically regarding black
holes (see [32] for similar wave packets in that context).
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