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Hořava gravity is a proposal for completing general relativity in the ultraviolet by interactions that
violate Lorentz invariance at very high energies. We focus on (2þ 1)-dimensional projectable Hořava
gravity, a theory which is renormalizable and perturbatively ultraviolet-complete, enjoying an asymp-
totically free ultraviolet fixed point. Adding a small cosmological constant to regulate the long-distance
behavior of the metric, we search for all circularly symmetric stationary vacuum solutions with vanishing
angular momentum and approaching the de Sitter metric with a possible angle deficit at infinity. We find a
two-parameter family of such geometries. Apart from the cosmological de Sitter horizon, these solutions
generally contain another Killing horizon and should therefore be interpreted as black holes from the
viewpoint of the low-energy theory. Contrary to naive expectations, their central singularity is not resolved
by the higher derivative terms present in the action. It is unknown at present if these solutions form as a
result of gravitational collapse. The only solution regular everywhere is just the de Sitter metric devoid of
any black hole horizon.
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I. INTRODUCTION

Despite huge efforts in the last few decades, the formu-
lation of a quantum theory of gravitation remains elusive. In
particular, there lingers the open question of how to put
together a theory that reproduces the well-known and tested
infrared (IR) behavior of general relativity (GR) at the scales
of the Solar System and cosmology, while having a
consistent ultraviolet (UV) limit. While to describe many
low-energy systems it is often enough to consider GR as an
effective field theory (EFT), where the low-energy
Lagrangian is complemented with an infinite series of
higher-dimensional operators encoding the effect of UV
physics, there are situations in which a full description (valid
for all ranges of energies) is needed.
The most prominent of such situations is provided by the

existence of singularities within GR. The latter are regions
of divergent spacetime curvature, where strong quantum
gravitational effects cannot be neglected. The most worri-
some singularities are cosmological and those occurring in
the interior of black holes (BHs). In this paper we focus on
the latter. Although there are reasons to believe that BH

singularities may always be hidden behind a horizon [1],
thus remaining inaccessible to exterior observers, they are
nevertheless the end point of any worldline crossing the
event horizon of a BH. Any observer falling into the BH
will unavoidably hit the singularity, thus quitting the range
of validity of any EFT of gravity. Resolving the dynamics
of the spacetime in the high-curvature region near singu-
larities will therefore require a theory of quantum gravity.
At present, we still do not have such a theory at our

disposal. A possible candidate, which has attracted much
interest in recent years, is quadratic gravity [2,3], where the
Einstein-Hilbert Lagrangian is complemented by adding
terms quadratic in the Riemann tensor, which make it
renormalizable [4–6]. However, this theory contains a ghost
in the spectrum, as a consequence of the presence of four time
derivatives in the action, leading to violation of unitarity or
catastrophic instabilities at high energies. Moreover, BH
solutions in quadratic gravity—such as the Schwarzschild
metric, which is still a solution of the field equations [7,8]—
are not free of singularities. Therefore, resolution of curva-
ture singularities within quadratic gravity would require a
separate mechanism, unrelated to renormalizability.
A compelling workaround to the ghost problem was

proposed in 2009 byHořava [9]. If the spacetime is endowed
with a preferred time foliation, then one can construct a
theory that has only higher-order spatial derivatives, thus
avoiding the presence of a ghost. By including in the action
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all marginal and relevant operators under an anisotropic
(Lifshitz) scaling1

t → bdt; xi → bxi; ð1Þ
whereb is constant andd is the number of spatial dimensions,
one can make the theory power-counting renormalizable.
The presence of a time foliation, and thus that of a

privileged time direction, make it natural to formulate the
theory by using the Arnowitt-Deser-Misner (ADM) decom-
position of the metric [10]

ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ð2Þ

where N and Ni are, respectively, the lapse function and
shift vector and γij is the metric of the spatial hypersurfaces.
The presence of a preferred foliation also breaks the full
diffeomorphism invariance of GR. The gauge group of the
theory reduces to foliation-preserving diffeomorphisms
(FDiff); i.e., it consists of the direct product of time-
dependent spatial diffeomorphisms and time reparametri-
zations

t → t̃ðtÞ; xi → x̃iðt; xÞ; ð3Þ
where t̃ðtÞ is a monotonic function.
Locally, the presence of the preferred foliation breaks

Lorentz invariance by allowing for dispersion relations
with higher powers of the spatial momentum, i.e.,
ω2 ¼ c21k

2 þ c22k
4 þ � � � þ c22dk

2d, with constant coeffi-
cients cI . Lorentz invariance may only be recovered as
an accidental symmetry in the IR, when higher derivatives
are neglected and if the low-energy velocities c1 flow to the
same value for all particle species.
The splitting of FDiff into two distinct symmetries

allows for formulating two versions of the theory, depend-
ing on how one deals with time reparametrization invari-
ance. In the projectable theory, one assumes that the lapse
is independent of the spatial coordinates, i.e., a function
NðtÞ of time only. In that case, one can set its value to a
constant, which can be chosen to be unity for convenience
[NðtÞ ¼ 1], gauge fixing time reparametrization invari-
ance away.
After Hořava’s seminal paper, therewas a surge of activity

in understanding the consequences of the theory and its
soundness as a proposal for quantum gravity. Soon, it was
realized that the extra propagating scalar mode of the theory
—present alongside the transverse-traceless graviton—was
problematic. Although stable at high energies, in all dimen-
sions higher than d ¼ 2 it behaves as a tachyon in the IR,
signaling that flat space is not a stable vacuum of the theory
[11]. This can be solved by abandoning projectability and
allowing the lapse Nðt; xiÞ to be a function of all spacetime

coordinates. This choice gives rise to a version of the theory
known as nonprojectable Hořava gravity. In this case, new
terms are allowed in the Lagrangian, preventing the insta-
bility in the IR [12]. However, it comes at the cost of
reintroducing time reparametrization invariance as a full-
fledged gauge symmetry. This causes the presence of an
instantaneous propagating mode [11,13] and complicates
quantization of themodel [14], although efforts to pursue this
endeavor have not been spared [15–18].
On the other hand, the projectable model has been proven

to be fully renormalizable in any spacetime dimension [19],
preserving gauge invariance to all orders in the loop
expansion [6]. Moreover, in 2þ 1 dimensions it has been
shown to be UV-complete [20], while propagating a stable
nontrivial degree of freedom, thus representing a bona fide
theory of quantum gravity in this dimensionality. There are
also some hints that UV-completeness could hold in 3þ 1
dimensions [21], although a proof is not yet available.
The existence of BHs has been extensively studied in the

IR limit of nonprojectable Hořava gravity, where the theory
can be shown to be related to Einstein-aether theory [22–24].
IR BH solutions have a structure similar to those of GRBHs,
with a Killing horizon hiding a central singularity where
every in-falling worldline ends [13,25–28]. Additionally,
they also possess a “universal horizon” [13,25], i.e., a
compact hypersurface of constant preferred time that sur-
rounds the central singularity and from which no modes
(even instantaneous ones) can escape. Its behavior mimics
that of an event horizon in GR [29–31]. However, as
mentioned, these are low-energy solutions, obtained by
disregarding the higher derivative terms that should be
important when an observer gets close to the singularity.
A complete understanding of the interior of BHs and of the
fate of the universal horizon would require one to consider
the full Lagrangian of the theory, carefully studying the effect
of the UV-completing terms.
In this work we tie together all these issues and study the

effect of renormalizability on the resolution of curvature
singularities in a controllable playground, that of project-
able Hořava gravity in 2þ 1 spacetime dimensions. As
previously mentioned, this is a perturbative UV-complete
theory, meaning that it completely describes gravity, at any
energy.2 The Lagrangian functional form of the theory
should be valid up to arbitrary high energies—albeit with
varying values for the coupling constants, as predicted by
the renormalization group flow. If the solution to BH
singularities is linked to the renormalizable character of
the theory, without the need for any additional mechanism,
it must then be contained within the dynamics dictated by
the action. In other words, we use this model to address the
following question: does a UV-complete gravity theory
resolve BH singularities?

1Latin indices run over space dimensions only (i ¼ 1;…; d),
while Greek indices include time.

2Up to, perhaps, presently unknown nonperturbative
obstructions.
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In this work we make the first steps in this direction and
analyze all circularly symmetric vacuum solutions of the
theory with vanishing angular momentum. Recall that GR in
(2þ 1) dimensions does not have any BH solutions with flat
or de Sitter asymptotics.3 By contrast, we find that project-
able Hořava gravity admits solutions that can be legitimately
called BHs. We start by considering the low-energy limit of
the theory and solve the equations of motion analytically
when higher derivatives are neglected. The solutions present
a Killing horizon and a curvature singularity at the origin of
the coordinates. They therefore physically represent BHs,
and one can use them as asymptotic solutions far from the
center, where the curvature is small and neglecting higher
derivatives is a good approximation.
We will then attempt to extend our solutions numerically

to the higher curvature region of the spacetime, including
all the terms in the Lagrangian. By numerical investigation
and analytic arguments, we show that there exist no
vacuum solutions that are free of central curvature singu-
larities and which reduce far from the center to the BH
solutions found in the IR limit of the theory. In other words,
we show that the higher-order derivatives, although they
make the theory UV-complete and renormalizable, do not
resolve the central singularity, at least classically. We will
comment on the implications of this finding.
This paper is organized as follows. In Sec. II, we review

projectable Hořava gravity. In Sec. III, we introduce our
circularly symmetric and stationary ansatz, which we use to
obtain BH solutions in the IR limit of the theory in Sec. IV.
The embedding of these BH solutions into the full UV
theory is discussed in Sec. V, where we argue that such UV
BH solutions necessarily present a curvature singularity at
the center. This is further substantiated in Sec. VI by
utilizing a boundary-layer expansion. We discuss our
findings and the mass of our BH solutions in Sec. VII.
Throughout this paper, we use units in which ℏ ¼ c ¼ 1
and metric signature −þþ.

II. PROJECTABLE HOŘAVA GRAVITY

We formulate Hořava gravity in terms of the ADM
variables in Eq. (2). Under FDiff transformations the
components of the metric behave as

N → N
dt
dt0

;

Ni →

�
Nj ∂x0i

∂xj −
∂x0i
∂t

�
dt
dt0

;

γij → γkl
∂xk
∂x0i

∂xl
∂x0j : ð4Þ

Their anisotropic scaling dimension under Eq. (1) is

½N� ¼ ½γij� ¼ 0; ½Ni� ¼ d − 1: ð5Þ

The requirement of FDiff invariance, time-reversal
invariance, parity, power-counting renormalizability under
Eq. (1) and absence of ghosts fixes the action to be

S ¼ 1

κ

Z
dtddx

ffiffiffi
γ

p
NðKijKij − λK2 − VÞ; ð6Þ

where κ ¼ 16πG and λ are dimensionless coupling con-
stants in the sense of Eq. (1) (i.e., they are invariant under
that rescaling) and V contains all possible marginal and
relevant operators with respect to the anisotropic scaling.
Here, Kij is the extrinsic curvature of the slices:

Kij ¼
1

2N
ð∂tγij −∇iNj −∇jNiÞ; ð7Þ

with ∇i the covariant derivative compatible with γij.
Hereinafter we will focus on the projectable model; thus,

from now on we will assume that NðtÞ is independent of the
spatial coordinates. We can therefore set it to NðtÞ ¼ 1 by
exploiting time reparametrization invariance, leaving time-
dependent spatial diffeomorphisms as the only remaining
gauge symmetry.4 The potential V will thus be built
exclusively out of FDiff invariants, constructed with the
spatial metric and covariant derivatives. Its form in d ¼ 2 is

V ¼ 2Λþ μR2; ð8Þ

where R is the scalar curvature constructed from Rijkl, the
Riemann tensor of the spatial slices. Note that we are
omitting a linear term in R, since it corresponds to the
Gauss-Bonnet density in d ¼ 2, thus being a total deriva-
tive. Here Λ is the cosmological constant which will serve
as a regulator for the long-distance behavior of the BH
solutions. The total action that we consider then takes the
form

S ¼ 1

κ

Z
dtd2x

ffiffiffi
γ

p ðKijKij − λK2 − μR2 − 2ΛÞ: ð9Þ

Although in 2þ 1 dimensions GR propagates no local
degrees of freedom, this is not the case for Hořava gravity.
Due to the reduced symmetry group, there is an extra scalar
degree of freedom in the spectrum of the theory, with
dispersion relation

ω2 ¼ 4μ
1 − λ

1 − 2λ
k4 ð10Þ3BHs with anti–de Sitter (AdS) asymptotics do exist in the

presence of a negative cosmological constant [32]. We do not
consider this case in the context of projectable Hořava gravity
as the constant-lapse condition forces the AdS metric to be time
dependent.

4This implies disregarding the global Hamiltonian constraint
δS=δN ¼ 0.
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around flat space. Note the absence of k2 term, as a
consequence of the triviality of the piece linear in R in
the Lagrangian. Unitarity and stability then require μ > 0

and either λ < 1
2
or λ > 1. We will consider the latter case

throughout this work, for reasons that will become clear in
a moment.
When regarded as a quantum field theory, the action (9)

corresponds to a renormalizable theory. Within perturba-
tion theory, all UV divergences can be absorbed by a
corresponding redefinition of the coupling constants.
Correlation functions of observables are then essentially
the same as their classical values, with κ, λ and μ replaced
by κðk�Þ, λðk�Þ, and μðk�Þ, respectively, where k� is a
parameter that sets the interaction scale. The running of the
couplings was computed in the one-loop approximation in
Ref. [20] and reads

dλ
d log k�

¼ 15 − 14λ

128π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2λ

1 − λ

r
κ̃; ð11aÞ

dκ̃
d log k�

¼ −
ð16 − 33λþ 18λ2Þ

128πð1 − λÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ

1 − 2λ

r
κ̃2; ð11bÞ

where we have defined κ̃ ¼ κffiffi
μ

p . It can be shown that the

flows of κ and μ are separately gauge dependent. However,
those of κ̃ and λ are independent of the choice of gauge.
This signals that only these parameters appear in correla-
tion functions of gauge-invariant observables and in physi-
cal observables of the theory.
The fact that the theory is stable against radiative

corrections suggests a justification for attempting a
classical treatment down to arbitrarily short scales.
Indeed, the magnitude of quantum fluctuations can be
estimated from the action (9) as follows. Setting that for
fluctuations the action is of order unity, δS ∼ 1, and
assuming a regular geometry, we obtain

ðδKijÞ2 ∼
κ

τl2
; ðδRÞ2 ∼ κ

μτl2
; ð12Þ

where τ and l are the characteristic time and length scales,
respectively, of the perturbations. The fluctuations of
the extrinsic and intrinsic curvatures are related to the
metric fluctuations as δKij ∼ τ−1δγij and δR ∼ l−2δγij.
Substituting into (12) and taking the product to get rid
of τ and l, we obtain

δγij ∼
ffiffiffĩ
κ

p
; ð13Þ

which remains small at all scales, as long as κ̃ is small.
Note that the set of β functions (11) contains a fixed point

of the renormalization group flow in the region λ > 1 for
the values

λ• ¼
15

14
; κ̃• ¼ 0: ð14Þ

This shows that the theory enjoys asymptotic freedom
at high energies, thus representing a perturbatively
UV-complete quantum field theory. A second fixed point
appears at λ ¼ 1=2. However, in the vicinity of that point
the expansion parameter is κ̃ð1 − 2λÞ−1=2 and it remains
arbitrary at one loop. Thus, it cannot be said whether this
fixed point persists or not unless a two-loop computation is
performed. We will therefore focus on the first fixed point.
After fixing the lapse to NðtÞ ¼ 1 by using the project-

ability condition, the dynamical variables left in the theory
are the shift Ni and the spatial metric γij. Varying the action
with respect to them, we get the following equations of
motion:

Pi ≡∇jKij − λ∇iK ¼ 0; ð15aÞ

Gij ≡ −DtðKij − λγijKÞ − ð1 − 2λÞKKij − 2KikKj
k

þ 1

2
KklKklγ

ij þ λ

2
K2γij þ μ

2
R2γij þ 2μΔRγij

− 2μ∇i∇jR − Λγij ¼ 0; ð15bÞ

where we have used that Rij ¼ Rγij=2 in two dimensions.
Here the covariant time derivative is defined as

Dt ¼ ∂t − LN⃗ ; ð16Þ

where LN⃗ is the Lie derivative along the shift vector, so that
for a two-index tensor we have

DtAij ¼ ∂tAij − Nk∇kAij þ Aik∇kNj þ Ajk∇kNi: ð17Þ

On top of this and like in any gauge theory, local invariance
under spatial time-dependent diffeomorphisms (4) imposes
a “Bianchi” identity [25,28,33]

∇jGji þ γijDtPj þ KPi ¼ 0: ð18Þ

We assume the cosmological constant to be small
compared to the UV scale set by μ−1, Λμ ≪ 1. It is needed
to regulate the long-distance behavior of the solutions. This
is a peculiarity of (2þ 1) dimensions, where the gravita-
tional field of a localized source does not vanish at infinity
even in GR, persisting as a global angle deficit. We find that
the problem gets aggravated in Hořava gravity, where in the
limit Λ → 0 the conical deficit grows indefinitely at large
radii, despite the fact that all curvature invariants tend to
zero. Introduction of nonvanishing Λ turns this into a well-
behaved de Sitter asymptotics with a finite angle deficit.
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III. CIRCULARLY SYMMETRIC SPACETIMES

In the following, we will write the equations of motion
for a general nonrotating circularly symmetric and sta-
tionary ansatz. We use polar coordinates ðr; θÞ for the
spatial slices and write the ADM metric in the preferred
foliation as

ds2 ¼ ð−1þ NiNiÞdt2 þ 2Nidxidtþ γijdxidxj; ð19Þ

where we have already fixed NðtÞ ¼ 1.
Stationarity of the solution imposes ∂tNi ¼ ∂tγij ¼ 0,

while the requirement of circular symmetry enforces
Nθ ¼ 0. Finally, any two-dimensional metric is confor-
mally flat, implying that γij can only depend on a single
function GðrÞ. We thus adopt, without loss of generality,
the ansatz

ds22 ¼ dr2 þ r2GðrÞ2dθ2 ð20Þ

for the two-dimensional spatial metric.
Putting all this together and defining Nr ¼ FðrÞ, our

ansatz for the full metric finally takes the form

ds2 ¼ ð−1þ FðrÞ2Þdt2 þ 2FðrÞdtdrþ dr2 þ r2GðrÞ2dθ2:
ð21Þ

This chart of coordinates is reminiscent of the well-known
Gullstrand-Painlevé coordinates (see e.g., Ref. [34]) in
standard solutions—e.g., the Schwarzschild metric and the
Banados, Zanelli and Teitelboim BHs [32].
We now insert this ansatz into the equations of motion

(15). From Pr and Gθθ we obtain differential equations that
are second order in derivatives for FðrÞ and fourth order for
GðrÞ. Since the precise form of the equations is cumber-
some and not very illuminating, we relegate them to
Appendix A. Schematically, their form is

E1½F;F0; F00; G;G0; G00� ¼ 0; ð22aÞ

E2½F;F0; F00; G;G0; G00; Gð3Þ; Gð4Þ� ¼ 0; ð22bÞ

where a prime denotes a derivative with respect to the
argument of the function. From now on we will suppress
the arguments for clarity whenever needed.
From Grr we can in principle obtain another second-

order equation for FðrÞ. However, one can combine it with
Eq. (22) to eliminate F00ðrÞ and rewrite it as a constraint:

E3½F;F0; G;G0; G00; Gð3Þ� ¼ 0: ð23Þ

Furthermore, using the Bianchi identity (18), one can show
that

E0
3 þ 2GrF0E1 þ

�
G0

G
þ 1

r

�
ðE2 − 2E3Þ ¼ 0: ð24Þ

Therefore, we see that the system is not overdetermined.
The condition (24) implies that once the constraint equa-
tion (23) is imposed at a point, e.g., at a boundary r0, then
the constraint is propagated throughout r, provided that the
equations of motion (22) are satisfied.
Close examination of Eqs. (22) and (23) reveals that they

are invariant under constant rescalings of GðrÞ [i.e., if
ðF;GÞ is a solution, also ðF; kGÞ, with k a constant
rescaling factor, is a solution to the same theory]. Thus,
we can take advantage of this and further simplify the
equations of motion by defining a new variable

ΓðrÞ ¼ 1

r
þ G0ðrÞ

GðrÞ : ð25Þ

This reduces Eq. (22) to a third-order system in ΓðrÞ of the
form

E1 ≡ ðλ − 1ÞðF00 þ F0Γþ FΓ0Þ þ FΓ0 þ FΓ2 ¼ 0; ð26aÞ

E2 ≡ μð−8Γ000 − 16ΓΓ00 − 12ðΓ0Þ2 þ 8Γ2Γ0 þ 4Γ4Þ
þ ðλ − 1Þð2FF00 þ ðF0Þ2 þ 4FF0Γþ 2F2Γ0 þ F2Γ2Þ
þ 2FF00 þ 2ðF0Þ2 − 2Λ ¼ 0; ð26bÞ

while the constraint (23) becomes a second-order equation
in ΓðrÞ:

E3 ≡ μð8ΓΓ00 − 4ðΓ0Þ2 þ 8Γ2Γ0 − 4Γ4Þ
þ ðλ − 1Þð−ðF0Þ2 − 2FF0Γ − F2Γ2Þ
− 2FF0Γþ 2Λ ¼ 0: ð26cÞ

Henceforth, instead of dealing with the original equations
E1 and E2, we can instead solve the system consisting of E1

and E3 (i.e., the system consisting of one of the evolution
equation and the constraint equation), effectively dealing
with a second-order system in both FðrÞ and ΓðrÞ and thus
requiring only four integration constants. One can always
do this because the Bianchi identity ensures that the
remaining equation E2 will be satisfied by the solution.
In the case of vanishing cosmological constantΛ, we can

identify two symmetries of the equations of motion
(besides the aforementioned invariance under constant
rescalings of G), corresponding to shifts and rescaling of
the radial coordinate. In more detail, the field equations are
invariant under

FðrÞ ↦ bFðbrþ aÞ; ð27aÞ

ΓðrÞ ↦ bΓðbrþ aÞ; ð27bÞ
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with arbitrary constants a and b. This symmetry will play
an important role in the numerical analysis of Sec. V.

A. Black holes

We will define the concept of a BH from the perspective
of an observer in the IR limit of the theory, in analogy to the
general relativistic case. If we were dealing with GR, then a
BH would be characterized by the presence of a trapped
surface for null trajectories [35], i.e., for (massless)
particles with dispersion relation ω ¼ k. The outermost
of all trapped surfaces is usually referred to as the apparent
horizon, which in stationary circularly symmetric configu-
rations coincides with the Killing and event horizons. By
analogy, we will assume that in the IR limit of Hořava
gravity, massless particles move with dispersion relation
ω ¼ kþOðk2Þ, and therefore we will borrow the same
definition of a BH.
The Killing horizon can be identified by requiring the

timelike Killing vector ∂=∂t to have vanishing norm at the
position of the horizon. For our metric ansatz, this leads to
the condition

∂
∂t ·

∂
∂t ¼ gtt ¼ −1þ F2ðrÞ ¼ 0: ð28Þ

Since our ansatz for the metric is stationary, the Killing
horizon coincides with the apparent horizon—which is
defined in turn by the constant r surfaces becoming null
gμν∂μr∂νr ¼ 0 [34]—and with the event horizon.
It is worth noting here an important difference with

known BH solutions in nonprojectable Hořava gravity
[13,25]. In that theory, solutions are characterized by the
presence of a universal horizon, a compact surface that
traps all signals, regardless of their dispersion relation. Its
position can be identified by requiring the unit vector
orthogonal to the foliation,

Uμ ¼ −Nδtμ; ð29Þ

to become orthogonal to the Killing vector ∂t (which is
tangent to hypersurfaces of constant r), i.e.,

U ·
∂
∂t ¼ −N ¼ 0: ð30Þ

Because of the condition NðtÞ ¼ 1, it is impossible for
solutions in projectable Hořava gravity to present universal
horizons. Thus, we can expect signals of arbitrary speed to
be able to eventually probe the interior of the BH (as
defined in the IR) and escape from it.

IV. BLACK HOLES IN THE IR LIMIT

We will now face the issue of obtaining circularly
symmetric solutions to the equations of motion (26).
This is not an easy task in general. The nonlinear character

of the equations renders the problem hard to tackle
analytically. However, there is a regime in which solutions
can be found rather easily, namely the IR limit of the theory,
which one can obtain by setting μ ¼ 0. Solutions obtained
in this way will be valid whenever the spatial curvature of
the slices is low. This corresponds to focusing on the region
r ≫ ffiffiffi

μ
p

, where we expect this to happen and where higher
derivative terms can be ignored.
We start by considering the combination ðE2 þ E3Þ=2 −

FE1 of the equations, which yields

FF00 þ ðF0Þ2 − FF0Γ − F2Γ0 − F2Γ2 ¼ 0: ð31Þ

Assuming that FðrÞ is nonvanishing everywhere and
introducing a new variable

Y ¼ Γ −
F0

F
; ð32Þ

this equation can be cast into the simple form

−Y 0 þ 2Y2 − 3YΓ ¼ 0: ð33Þ

Note that the derivative of Γ has disappeared from the
equation.
Let us first consider the solution Y ¼ 0 to this equation,

which implies Γ ¼ F0=F. Substituting this relation in
Eq. (26c) (with μ ¼ 0), we find that the function F is linear:

F ¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ

2λ − 1

r
: ð34Þ

Note that this solution exists for positive Λ only if λ > 1=2
and that it corresponds to a constant radial function

GðrÞ ¼ G∞: ð35Þ

For G∞ ¼ 1, this reduces to the de Sitter metric, which is
regular everywhere and has a cosmologicalKilling horizon at

rdS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

Λ

r
: ð36Þ

Other choices of G∞ lead to an angle deficit and a conical
singularity at the origin.
We now consider the case of nonvanishing solutions to

Eq. (33), Y ≠ 0. We assume Y > 0 without loss of general-
ity.5 From Eqs. (32) and (33), we can express Γ and F0=F in
terms of Y and its derivative:

Γ ¼ −
Y 0

3Y
þ 2

3
Y;

F0

F
¼ −

Y 0

3Y
−
Y
3
: ð37Þ

5Positive Y can always be achieved by changing the sign of r,
as manifest from the definitions (32) and (25).
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The second of these equations can be integrated if we
introduce a new function XðrÞ such that

X0 ¼ Y; ð38Þ

yielding

F ¼ C

Y1=3 e
−X=3; ð39Þ

where C is an integration constant. Substituting this and the
first relation (37) into Eq. (26), we obtain a differential
equation involving X and Y:

0 ¼ −
ð4λ − 2ÞðY 0Þ2

9Y2
þ ð4λ − 2ÞY 0

9
þ ð5 − λÞY2

9

þ 2Λ
C2

Y2=3e2X=3: ð40Þ

Recalling that Y is the derivative of X, we observe that this
is a second-order differential equation for the function
XðrÞ. Importantly, this equation does not contain explicitly
the variable r, and thus can be reduced to a first-order
equation if we choose X to be our independent variable,
instead of r. We therefore substitute

Y 0 ¼ dY
dX

X0 ¼ dY
dX

Y ð41Þ

and obtain

0 ¼ −
2ð2λ − 1Þ

9

�
dY
dX

�
2

þ 2ð2λ − 1Þ
9

Y
dY
dX

þ 5 − λ

9
Y2

þ 2Λ
C2

Y2=3e2X=3: ð42Þ

This is further simplified by the definition Y ¼ Ŷ3=2eX=2,
which yields

−ð2λ − 1Þ
�
dŶ
dX

�
2

þ Ŷ2 þ 4Λ
C2

¼ 0: ð43Þ

Again, in the case of positive Λ (on which we focus in this
paper) the solution exists only if λ > 1=2. Solving for Ŷ and
substituting into the expression for Y we find

Y ¼
�
� 2

ffiffiffiffi
Λ

p

jCj sinh
X − X0ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p
�

3=2
eX=2; ð44Þ

where X0 is an integration constant and the signs � are
chosen to have the expression in brackets positive. The
constant X0 can be absorbed in the shift of X and
subsequent rescaling C ↦ CeX0=3, which leave both Y
and F invariant. Therefore we set X0 ¼ 0 henceforward.

The solutions presents two branches corresponding to
the plus (minus) sign and positive (negative) X. Let us focus
on the case X < 0 (we will comment on the branch with
X > 0 at the end of the section). Using Eqs. (38), (39) and
the first of Eqs. (37), we obtain the solution in parametric
form

ffiffiffiffi
Λ

p
r ¼ B

2

Z
X

−∞

e−X
0=2

ðsinh −X0ffiffiffiffiffiffiffiffi
2λ−1

p Þ3=2 dX
0; ð45aÞ

F ¼ �B
e−X=2

ðsinh −Xffiffiffiffiffiffiffiffi
2λ−1

p Þ1=2 ; ð45bÞ

rG ¼ G∞B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

Λ

r
eX=2

ðsinh −Xffiffiffiffiffiffiffiffi
2λ−1

p Þ1=2 ; ð45cÞ

where we have introduced a new integration constant G∞
and defined

B ¼
� jCj3
2

ffiffiffiffi
Λ

p
�

1=2
: ð46Þ

The � in Eq. (45) corresponds to the sign of the original
integration constant C, which can be both positive or
negative, whereas B is strictly positive. Note also that B
is dimensionless and that the integral in Eq. (45a) converges
at the lower end, as long as λ < 5, and diverges as X → 0−,
so that r varies from 0 toþ∞. This is a relevant range for λ,
as it includes the fixed point (14), and we will focus on it in
the following.
Let us study the asymptotics of the solution (45).

Consider first X → 0−, corresponding to r → þ∞, which
yields

ffiffiffiffi
Λ

p
r ≈ ð2λ − 1Þ3=4 Bffiffiffiffiffiffiffi

−X
p ; ð47aÞ

F ≈�ð2λ − 1Þ1=4 Bffiffiffiffiffiffiffi
−X

p ≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ

2λ − 1

r
r; ð47bÞ

rG ≈ G∞
ð2λ − 1Þ3=4ffiffiffiffi

Λ
p Bffiffiffiffiffiffiffi

−X
p ≈G∞r: ð47cÞ

In these expressions we recognize the de Sitter metric
[Eqs. (34) and (35)] with the deficit angle set by G∞. The
integration constant B has dropped out. Therefore, at
sufficiently large radii, the solution given by Eq. (45)
approaches the de Sitter geometry.
Second, we consider the other extreme X → −∞, cor-

responding to r ≪ B=
ffiffiffiffi
Λ

p
. In this limit, we obtain

ffiffiffiffi
Λ

p
r≈

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2λ−1

p

3−
ffiffiffiffiffiffiffiffiffiffiffiffi
2λ−1

p ffiffiffi
2

p
Bexp

��
3

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2λ−1

p −
1

2

�
X

�
; ð48aÞ
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F ≈�
ffiffiffi
2

p
B exp

��
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p −
1

2

�
X

�
¼ �F0ð

ffiffiffiffi
Λ

p
rÞ−σ;

ð48bÞ

G ≈
G∞B
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2λ − 1Þ

Λ

r
exp

��
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p þ 1

2

�
X

�

¼ G0ð
ffiffiffiffi
Λ

p
rÞ2σ; ð48cÞ

where

σ ¼ λ − 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p

5 − λ
> 0; ð49Þ

F0 ¼ ð
ffiffiffi
2

p
BÞ1þσ

�
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p
�

−σ
; ð50Þ

G0 ¼ G∞
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p
ð

ffiffiffi
2

p
BÞ−2σ

�
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1

p
�

1þ2σ

: ð51Þ

Remarkably, these solutions present a second Killing
horizon besides the cosmological one, located at

rH ¼ F1=σ
0ffiffiffiffi
Λ

p : ð52Þ

From the point of view of the low-energy theory, this
solution then describes a black (white) hole for positive
(negative) FðrÞ. The second horizon is well within the de
Sitter radius (36) as long as F0 ≪ 1, which holds if B ≪ 1.
Note that B ≪ 1 also implies G0 ≫ G∞.
Were these solutions to be trusted in the whole space-

time, extrapolating them inward would lead to curvature
singularities at the origin, as can be seen in the different
curvature scalars

K ¼ −
�

F0

Λσ=2

� ð1þ σÞ
r1þσ ; ð53Þ

R ¼ −
4σð1þ 2σÞ

r2
; ð54Þ

KijKij ¼
�
F2
0

Λσ

� ð5σ2 þ 4σ þ 1Þ
r2þ2σ ; ð55Þ

as well as in the full three-dimensional spacetime curvature

Rð3Þ ¼ 2σð1þ 2σÞ
��

F2
0

Λσ

�
1

r2þ2σ −
2

r2

�
; ð56Þ

where we have made use of the Gauss-Codazzi relations.
In light of all this, we refer to these solutions as

“IR BHs.” We can think of them as akin to the
Schwarzschild–de Sitter BHs of GR. They are solutions

to the low-energy limit of a gravitational theory, and behind
a horizon they include a region (near the center) where the
description provided by the low-energy Lagrangian breaks
down and where one therefore needs to account for the
dynamics of the full theory. In particular, in the case at hand
we expect the effects of the μR2 term to become important
at a distance r ∼ ffiffiffi

μ
p

from the center. This ensures that for
any IR solution there is always a value of

ffiffiffi
μ

p ≪ rH for
which the UV corrections are only important deep inside
the geometry. Therefore, they do not modify the horizon,
and the solution still appears as a BH to exterior observers.
Let us discuss the limit of vanishing cosmological

constant Λ → 0. If one keeps the combinations
BΛ−σ=½2ð1þσÞ�, G∞Λ−σ2=ð1þσÞ fixed in this limit, the BH
horizon radius rH remains finite, whereas the de Sitter
asymptotics are pushed to infinity. The solution (48b) and
(48c) is then valid for arbitrary large radii. Note that the
curvature invariants K, KijKij, R and Rð3Þ of this solution
vanish as r → ∞, just like the projections of the Riemann
tensor on the (normalized) timelike and spacelike Killing
vectors (parallel, respectively, to ∂t and ∂θ). This implies
that the asymptotic geometry is locally flat, but not globally
such, because it presents an asymptotically increasing
negative deficit angle due to the growth of the function
G. This unappealing behavior is due to the peculiarity of
the two-dimensional spatial geometry, where a change of
the circumference of a circle does not affect the local
characteristics of space. We have seen how this long-
distance behavior is regulated by the presence of a positive
cosmological constant.
Finally, we comment on the X > 0 branch of solutions.

A similar analysis shows that it also presents de Sitter
asymptotics for X → 0þ. However, the solutions in this
branch do not have any additional Killing horizons, besides
the cosmological one. Moreover, the metric function rG
diverges at r → 0, a behavior that appears rather patho-
logical. For these reasons, we are not going to consider
these solutions further in this paper.

V. BLACK HOLES IN THE UV-COMPLETE
THEORY

We now analyze how the inclusion of the higher
derivative terms affects the BH solutions found in the
previous section. The higher derivative terms are important
at distances r ∼ ffiffiffi

μ
p ≪ 1=

ffiffiffiffi
Λ

p
. Therefore, in this section we

neglect the cosmological constant and use Eqs. (48b) and
(48c) as the large-distance form of the solution. In other
words, we will look for solutions of Eqs. (26a)–(26c) with
Λ ¼ 0, which have asymptotics

FðrÞ ¼ F∞r−σ; ð57aÞ

ΓðrÞ ¼ 1þ 2σ

r
; ð57bÞ
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at r → ∞, where F∞ is a constant. To simplify notations,
we will from now on measure distances in units of

ffiffiffi
μ

p
,

which corresponds to formally setting μ ¼ 1 in the
equations.
Based on generic arguments, one may expect a renor-

malizable UV-complete theory including higher-order spa-
tial derivatives to allow for “resolving” the central curvature
singularity of BHs, which is also present in the aforemen-
tioned IR solutions (see e.g., Ref. [36] for a mention of this
possibility). In the following, we will therefore try to seek
BH solutions to the UV-complete theory that implement
this feature.
In principle, the singularity could be resolved in (at least)

three possible ways: (a) the full solution may have a regular
center at r ¼ 0; (b) the full solution may extend all the way
down to r ¼ −∞, where it may open up into another
asymptotic region, thus describing a wormhole configura-
tion; (c) the full solution extends all the way down to
r ¼ −∞, with the metric function rG and all curvature
invariants remaining bounded: this would describe the
resolution of the singularity into an infinite throat.
To see if any of these options gets realized, we start by

counting the number of free parameters in the solution of
the system (26a)–(26c) once the large-distance asymptotics
(57) are fixed. We linearize the functions F and Γ around
their asymptotics by writing

FðrÞ ¼ F∞r−σð1þ fðrÞÞ; ð58aÞ

ΓðrÞ ¼ 1þ 2σ

r
ð1þ gðrÞÞ; ð58bÞ

where we assume f and g to be small at large r. Substituting
this into Eqs. (26a)–(26c) and expanding to linear order in f
and g we find a system of two second-order linear
equations, whose general solution reads (see
Appendix B for details)

f¼f∞r−2ð1−σÞ þC1

σ

r
þC2þC3f3ðrÞþC4f4ðrÞ; ð59aÞ

g ¼ g∞r−2ð1−σÞ þ C1

1

r
þ C3g3ðrÞ þ C4g4ðrÞ: ð59bÞ

Here the coefficients f∞ and g∞ are fixed in terms of λ and
F∞ and correspond to a particular solution of the linear
system. Notice that consistency of the asymptotic expan-
sion requires that these solutions decrease at r → ∞, which
implies σ < 1. This requirement is satisfied if λ < 5=2,
which includes the interesting fixed point (14).
The coefficients CI in Eqs. (59) are arbitrary. The

parameters C1 and C2 correspond to the symmetry (27)
of the equations, spontaneously broken by the asymptotic
form (58). One easily recognizes in the linearly indepen-
dent solutions they multiply the results of an infinitesimal
shift and rescaling of the asymptotics (58). The two

remaining linearly independent solutions ðf3; g3Þ and
ðf4; g4Þ are oscillating and can be found analytically in
the limit ðλ − 1Þ ≪ 1 using a version of the WKB expan-
sion [37] (see Appendix B). Importantly, the amplitude of
g3 and g4 grows at large r, destroying the desired
asymptotic behavior. To satisfy the boundary conditions
at infinity, we have to set C3 ¼ C4 ¼ 0. Thus, we conclude
that imposing the large-distance asymptotics (58) leaves
only two free parameters C1 and C2, both corresponding to
the exact symmetries of the equations.
As the next step, we include nonlinear corrections to the

asymptotic expansion. Motivated by the results of our
linearized analysis, we use an ansatz for F and Γ in the form
of a double series in inverse powers of r:

FðrÞ ¼ F∞r−σ
�
1þ

X
n;m

fðn;mÞ
rnþmσ

�
; ð60aÞ

ΓðrÞ ¼ 1þ 2σ

r

�
1þ

X∞
n;m

gðn;mÞ
rnþmσ

�
; ð60bÞ

with n and m integers such that nþmσ > 0. Plugging this
ansatz into the equations of motion, the latter can be solved
perturbatively in powers of r−1, in terms of only two
integration constants F∞ and fð1;0Þ.
We now fix F∞ ¼ 1 and fð1;0Þ ¼ 0 and numerically

integrate Eqs. (26a)–(26c) from large r toward the center.
The result is shown in Fig. 1. We see that F and Γ
monotonically grow as r decreases and diverge at a finite
value of r. (Note however that the areal radius jrGj goes to
zero as F and Γ diverge; i.e., the area of the singularity
vanishes.) The curvature invariants also diverge at that
point, indicating that the BH singularity persists even after
the inclusion of the higher derivative terms. Notice that
varying F∞ and fð1;0Þ will not change this result, aside from
rescalings or shifts of the solutions. As discussed above,

FIG. 1. Metric functions integrated inward and the correspond-
ing curvature invariants for F∞ ¼ 1, fð1;0Þ ¼ 0 and λ ¼ 15

14
. The

qualitative behavior of the solution is the same for other
values of λ.
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these parameters correspond to exact symmetries that
cannot turn a singular behavior into a regular one.
However, it is still premature at this point to claim the

absence of a regular solution with certainty because of the
following caveat in the above argument. It is logically
possible that the divergence observed in the numerical
solution is due to a spurious admixture (produced by
numerical errors) of modes that are regular throughout
the spacetime and modes that are instead singular. Thus, we
need to further scrutinize our numerical procedure to ensure
its stability.
Let us focus on the possibility that the BH might have a

regular center [option (a) above]. We thus impose regularity
by assuming that FðrÞ and GðrÞ are analytic near r ¼ 0,
with, respectively, only odd and even powers of r [38].6

Absence of an angle deficit at r ¼ 0 would also require
G ¼ 1 there, but that condition can be imposed without loss
of generality because the field equations are homogeneous
in G [i.e., as already mentioned, if ðF;GÞ is a solution, also
ðF; kGÞ, with k a constant rescaling factor, is a solution to
the same theory]. This ansatz implies, for F and Γ, the
functional form

FðrÞ ¼
X∞
n¼0

F2nþ1r2nþ1; ð61aÞ

ΓðrÞ ¼ 1

r
þ
X∞
n¼0

Γ2nþ1r2nþ1: ð61bÞ

Replacing this ansatz in the field equations (26) we find that
the coefficients F2nþ1 and Γ2nþ1 are all given in terms of
two integration constants, F1 and Γ1. We have checked that
the resulting perturbative solution leads to regular curvature
invariants KijKij, K, R and Rð3Þ at the origin. Note that
because we have fixed the center to be at r ¼ 0, in the
numerical investigation below wewill not be allowed to use
the shift symmetry [parameter a in Eqs. (27a) and (27b)],
whereas we will exploit the rescaling symmetry [para-
metrized by b in Eqs. (27a) and (27b)].
The strategy is to use the perturbative solution (61), valid

near the center, to provide initial data for F and Γ at some
small radius r ≪ 1, and integrate numerically outward
(once the integration constants F1 and Γ1 have been
chosen). Similarly, one can use the IR solution (60) (fixing
the integration constants F∞ and fð1;0Þ) to provide initial
data at a finite radius r ≫ 1 for a numerical integration
inward. One then matches the two solutions smoothly at
some fixed radius rm ∼ 1, where both solutions are regular,
by imposing

ΔFjrm ¼ ΔF0jrm ¼ ΔΓjrm ¼ ΔΓ0jrm ¼ 0; ð62Þ

where

ΔXjrm ¼ XoutðrmÞ − XinðrmÞ ð63Þ

refers to the difference between the values of the function
XðrÞwhen approaching the matching point rm from the two
directions. Equivalently, one can think of this problem as
that of finding the root(s) of the system

FðpÞ ¼ 0; ð64Þ

where p ¼ ðF1;Γ1; F∞; fð1;0ÞÞ and the components of F are
the jumps shown in (62).
As mentioned earlier, the symmetry under rescaling of

coordinates can still be used to eliminate one of the four
integration constants [F∞ and fð1;0Þ for the outer solution
and F1 and Γ1 for the inner one]. We choose for instance to
set F1 ¼ 1. The system we have to solve is then over-
determined: we have four junction conditions (62) for three
parameters. Thus, one does not expect existence of a
regular solution on general grounds. To verify this, we
consider three of the junction conditions given by Eq. (62),
and we solve them (with a Newton-Raphson method) in our
three variables Γ1, F∞ and fð1;0Þ. We then check whether
the fourth junction condition is satisfied (to within numeri-
cal errors) and it is not. We have checked that this result is
stable against the choice of the initial guess of the Newton-
Raphson algorithm.
Based on this overwhelming evidence, we can therefore

conclude that there exist no regular solutions approaching
at large radii the IR BHs that we identified previously, even
if we allow for a conical defect at the center. This result
excludes option (a) outlined in the beginning of the section.
Let us now consider option (b). In that case, the metric

function rGðrÞ must diverge at both r ¼ �∞, remaining
finite and nonvanishing in between. This implies that its
logarithmic derivative ΓðrÞ must change sign at finite
r ¼ r�. However, this is impossible due to Eq. (26c). If
Γðr�Þ ¼ 0, the left-hand side of this equation becomes a
sum of strictly negative terms, implying that also F0ðr�Þ and
Γ0ðr�Þ must vanish. The latter means that ΓðrÞ does not
actually cross zero, and we arrive at a contradiction.7

Option (c) still remains a logical possibility. We have not
attempted to rule out robustly for generic values of λ, as we
did with option (a). However, given our experience in the
structure of solutions to Eqs. (26a)–(26c), we believe it is
unlikely. This is corroborated by the analysis in the limit
ðλ − 1Þ ≪ 1 presented in the next section.

6This is needed to ensure that the metric (21) is C∞ at the
center when expressed in Cartesian coordinates but is also
automatically implied by the field equations themselves.

7One can be more careful and Taylor expand ΓðrÞ in the
vicinity of r� to see its behavior in more detail. One then obtains
ΓðrÞ ∝ ðr − r�Þ2, which confirms that ΓðrÞ does not change sign.
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VI. A PERTURBATIVE EXPANSION IN (λ − 1)
Let us now give an additional analytic argument showing

that no regular UVextension to our IR BH solutions exists.
The interesting UV fixed point of the renormalization
group flow (14) is close to λ ¼ 1 and, at least along some
of the flow lines, λ further approaches 1 when the theory
flows toward IR [20]. This motivates to study the behavior
of the solutions by performing a perturbative expansion
in ϵ≡ λ − 1.
According to standard techniques dealing with differ-

ential equations with small parameters in front of the
highest derivatives, we introduce a rescaled coordinate
r̃ ¼ r=ϵ1=2. Recalling that σ ≈ ðλ − 1Þ=2 in the desired
limit, the asymptotics (57b) and (60b) for ΓðrÞ suggest the
following ansatz:

Γðr̃Þ ¼ 1þ ϵg̃ðr̃Þ
ϵ1=2r̃

; ð65Þ

where the function g̃ is of order one and will interpolate
between small and large r̃. We will see shortly that this
ansatz provides the most general solution to the field
equations (26a)–(26c) in the relevant limit ϵ ≪ 1. Notice
that the divergence of Γðr̃Þ at r̃ ¼ 0 excludes the wormhole
(b) and throat (c) scenarios.
Substituting the ansatz into E1 and E3 and retaining only

the leading terms in ϵ, we obtain

F00 þ F0

r̃
−
F
r̃2
ð1 − r̃g̃0 − g̃Þ ¼ 0; ð66aÞ

8g̃00

r̃
−
16g̃
r̃3

− 2FF0 ¼ 0; ð66bÞ

where now the derivatives are taken with respect to r̃. Note
that, despite a lot of simplifications, this is still a system of
two second-order differential equations, like the original
system (26a)–(26c). Its general solution contains four
arbitrary integration constants, implying that we have
not lost any solutions in making the ansatz (65).
Equation (66b) can be integrated once, yielding

8

�
g̃0

r̃
þ g̃
r̃2

�
− F2 ¼ A; ð67Þ

where the integration constant A must be fixed by suitable
boundary conditions. Since σ ∼ ϵ=2 as ϵ → 0, the asymp-
totics (57) correspond to the boundary conditions

F → F∞; g̃ → 1 at r̃ → þ∞; ð68Þ

from which one obtains A ¼ −F∞. We can use the scaling
transformation [corresponding to the parameter b in
Eqs. (27)] to set F∞ ¼ 1 and hence A ¼ −1. Moreover,
from Eq. (67) we also obtain a subleading term in F:

Fðr̃Þ ¼ 1þ 4

r̃2
þO

�
1

r̃3

�
: ð69Þ

The combination of g̃ and its derivative in Eq. (67) is the
same as in Eq. (66a). By combining the two equations one
then obtains a closed second-order equation for Fðr̃Þ:

F00 þ F0

r̃
þ
�
F2 − 1

8
−

1

r̃2

�
F ¼ 0: ð70Þ

This is still a nonlinear differential equation, which, to the
best of our knowledge, cannot be solved analytically.
Nevertheless, its numerical analysis is straightforward.
Starting from large r̃ with the boundary conditions (69)
and integrating inward, we find that F diverges, producing
a curvature singularity at the center.
Alternatively, we can assume existence of a regular

center. From the expansion (61) near r̃ ¼ 0, it follows that
the corresponding boundary conditions are

F ≈ F̃1r̃; g̃ ≈ Γ1r̃2; ð71Þ

where F̃1 ¼ ϵ1=2F1 and Γ1 ¼ −1=24 is fixed from Eq. (67)
by using the boundary condition at spatial infinity
(A ¼ −1). We have numerically integrated Eq. (70) from
r̃ ¼ 0 with initial conditions Fð0Þ ¼ 0 and F0ð0Þ ¼ F̃1 and
scanned over different values of the single free parameter
F̃1. We have observed that the solution always oscillates at
large r̃ around 1 or −1 with a nonvanishing amplitude and
cannot be matched to the asymptotics (68). This once again
rules out the possibility of a regular center inside the IR BH.

VII. DISCUSSION

Many puzzles of quantum gravity are related to BHs.
To set up the stage for addressing these puzzles in a
UV-complete theory, we looked for circularly symmetric
stationary nonrotating vacuum solutions in (2þ 1)-
dimensional Hořava gravity. We found that in the presence
of a positive cosmological constant the theory possesses,
unlike (2þ 1)-dimensional GR, a family of solutions with
two Killing horizons: the outer cosmological horizon and
the inner horizon that corresponds to a BH from the low-
energy perspective. At large distances the solutions asymp-
totically approach de Sitter spacetime with a possible
finite angle deficit. In the limit of vanishing cosmological
constant the asymptotic spacetime is locally flat but
features a global growing (negative) deficit angle.
Motivated by the conjecture that the good quantum

properties of Hořava gravity may lead to resolution of
BH singularities (see e.g., Refs. [36,39]), we scrutinized the
regularity of our BH solutions. We found that they are
singular at the center, similar to BHs in GR, implying that
no resolution of singularities occurs in the pure vacuum
theory. Stated differently, we have ruled out the existence of
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regular classical solutions in pure (2þ 1)-dimensional
Hořava gravity (“gravitational solitons”) with BH-type
Killing horizons.
Our results can have several interpretations. It can be that

the BH solutions we found are merely physically irrelevant.
A more interesting possibility is that they may form as the
geometry describing the exterior of collapsing matter
configurations. In that case, the fate of the central singu-
larity will depend on the dynamics of matter. For example,
the latter can form a compact remnant inside the Killing
horizon, smoothing out the metric at the center.
Alternatively, regular solutions may be dynamical (see
e.g., Refs. [40,41]). For instance, matter can bounce back
from the center, in which case the BH solution will
correspond to transient configurations.8

In this context it is instructive to discuss the gravitational
energy of the BH solutions. Recall first that we did not
impose the global Hamiltonian constraint following from
the variation of the action with respect to the lapse NðtÞ,

δS
δN

¼0 ⇒
Z

d2x
ffiffiffi
γ

p ðKijKij−λK2þμR2þ2ΛÞ¼0:

We find this constraint meaningless for spacetimes with
noncompact spatial slices, like in our case: a positive energy
in one region of space can be compensated by a negative
contribution from another region infinitely far away. An
alternative viewpoint is that we have studied the version of
the theory where the lapse is set to N ¼ 1 from the start and
there is no gauge freedom of time reparametrization.
Therefore, the theory possesses a well-defined notion of
local and global energy, given by the Hamiltonian.
Applying the Legendre transform to the Lagrangian (9),

we find the Hamiltonian of pure Hořava gravity:

H ¼ 1

κ

Z
d2x

ffiffiffi
γ

p ðKijKij − λK2 þ μR2 þ 2ΛÞ

−
2

κ

Z
d2x

ffiffiffi
γ

p
PiNi þ 1

κ

I
dΣiqi; ð72Þ

where

qi ¼ 2NiðKij − λKγijÞ ð73Þ

and dΣi denotes the line element vector on the boundary at
spatial infinity. Notice that we do not include any York-
Gibbons-Hawking term [42,43] either in the action or in the
Hamiltonian. This is justified, since the field equations are
fourth order in spatial derivatives of the metric γij and thus
the variational principle requires fixing both δγij and its

derivatives on the spatial boundary to zero. The variation of
the action (9) is then well defined without any boundary
term. The Hamiltonian (72) does not include the contri-
bution of matter, which, as we argued, must be considered
in the full physical setup. However, we can use it to
compute the energy arising from the gravitational field
outside matter configurations.
To simplify further discussion, let us setΛ ¼ 0. Then, for

stationary solutions, like our BH metric, the gravitational
energy can be cast into a boundary integral using the
following relation:

ffiffiffi
γ

p ðKijKij − λK2 þ μR2Þ
¼ ffiffiffi

γ
p

γijGij þ ð1 − 2λÞ∂tð
ffiffiffi
γ

p
KÞ þ ffiffiffi

γ
p ∇ili; ð74Þ

where

li ¼ ð2λ − 1ÞNiK − 2μ∇iR: ð75Þ

Thus, using the Gauss law we can write

Htot ¼ Hout þHcenter þOðPi;GijÞ; ð76Þ

where

Hout ¼
1

κ

I
dΣiðli þ qiÞ; ð77Þ

the termHcenter includes possible matter contribution in the
central region, as well as the integral of li over the line
encompassing this region, and OðPi;GijÞ denotes terms
that vanish on shell (in vacuum and away from singular-
ities). The long-distance contribution Hout is evaluated
using the asymptotics F ¼ F∞r−σ and G ¼ Ĝ∞r2σ at
r → ∞ with the result

Hout ¼
2π

κ
F2
∞Ĝ∞ð1þ 3σÞ: ð78Þ

We observe that this contribution is finite and positive.
The finiteness of the BH gravitational energy is con-

sistent with the proposal that this metric can form outside
matter configurations during gravitational collapse. To
investigate this possibility in more detail, one would need
to follow the dynamics of time-dependent spherical col-
lapse in this theory. Unlike in the infrared limit of Hořava
gravity, where gravitational collapse has been studied in
several works [44–48], numerical simulations in the UV
theory are complicated by the presence of higher (spatial)
derivatives, which would require one to carefully examine
the character of the resulting (nonlinear) system of partial
differential equations, the well-posedness of the Cauchy
problem, etc. Clearly, more work is needed in this direction.

8Such bounce is in principle classically allowed in Hořava
gravity, because the Killing horizon is not the true event horizon
for high-energy modes that propagate with arbitrarily high
velocities.
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APPENDIX A: EQUATIONS OF MOTION

In this Appendix, we provide explicit expressions for the field equations in terms of the metric functions FðrÞ and GðrÞ,
using the same notation as in the main text. In more detail, the explicit expressions for Eqs. (15) are

E1 ¼ ðλ − 1Þðr2ðGF0G0 þ GðGF00 þ FG00Þ − FðG0Þ2Þ þG2rF0 − FG2Þ þ FGr2G00 þ 2FGrG0; ðA1Þ

E2 ¼ ðλ − 1Þ½Gr3ðFð2GðGF00 þ FG00Þ − FðG0Þ2Þ þG2ðF0Þ2 þ 4FGF0G0Þ þ 2FG2r2ð2GF0 þ FG0Þ − F2G3r�
þ μ½4r3ð−4ðG0Þ2G00 þ 4GGð3ÞG0 þGð3ðG00Þ2 − 2GGð4ÞÞÞ − 16r2ð−4GG0G00 þ 2ðG0Þ3 þG2Gð3ÞÞ
þ16Grð2GG00 − ðG0Þ2Þ − 32G2G0� þ 2G3r3ððF0Þ2 þ FF00Þ − 2G3r3Λ; ðA2Þ

while the constraint (23) is

E3 ¼ ðλ − 1Þ½−2FG2r2ðGF0 þ FG0Þ −Gr3ðGF0 þ FG0Þ2 − F2G3r�
þ μ½r3ð−8ðG0Þ2G00 þ 8GGð3ÞG0 − 4GðG00Þ2Þ þ 8r2ð−GG0G00 − 2ðG0Þ3 þ G2Gð3ÞÞ þ 16GrðGG00 − 3ðG0Þ2Þ
−16G2G0� − 2FG3r2F0 − 2FG2r3F0G0 þ 2G3r3Λ: ðA3Þ

APPENDIX B: LINEARIZED ANALYSIS AT LARGE RADIUS

To study the asymptotics of the general solution of the system ðE1; E3Þ at large r, we substitute the expansion (58) and
linearize, assuming the functions f and g and their first derivatives are small (f, g ≪ 1 and rf0, rg0 ≪ 1). We do not need to
make any assumptions about the second derivatives of f and g. Proceeding in this way, we obtain the system of linear
equations

ðλ − 1Þf00 þ ðλ − 1Þ
r

f0 þ λð1þ 2σÞ
r

g0 þ ð1þ 2σÞ2 − ðλ − 1Þσðσ þ 1Þ
r2

g ¼ 0; ðB1aÞ

8ð1þ 2σÞ2g00 þ 16σð1þ 2σÞ2
r

g0 − 2ðλþ σ þ λσÞF2
∞r1−2σf0 − ðλ − 1Þð1þ 4σ þ 3σ2ÞF2

∞r−2σg

¼ 16σð1þ 2σÞ2ð2þ σÞ
r2

: ðB1bÞ

Note that in deriving Eq. (B1) we have assumed that σ < 1 and neglected terms of orderOðr−2gÞ in Eq. (B1b), which are
small compared to the terms we have kept.
We are now interested in the solutions of this system at large r ≫ 1. A particular solution is provided by

f ¼ f∞r−2ð1−σÞ; g ¼ g∞r−2ð1−σÞ; ðB2Þ

where the coefficients f∞ and g∞ are determined from the linear algebraic equations

4ðλ − 1Þð1 − σÞ2f∞ þ ð1 − 2λþ 5σ − 3λσ þ 5σ2 þ 3λσ2Þg∞ ¼ 0; ðB3Þ

4ðλþ σ þ λσÞð1 − σÞf∞ − ðλ − 1Þð1þ 4σ þ 3σ2Þg∞ ¼ 16σð1þ 2σÞ2ð2þ σÞ
F2
∞

: ðB4Þ

In particular, at λ − 1 ≪ 1 we have f∞ ¼ 4ðλ − 1Þ=F2
∞ and g∞ ¼ 0.
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It is straightforward to see that two solutions of the
homogeneous system at large r have the form

f ¼ σ

r
; g ¼ 1

r
and f ¼ const; g ¼ 0: ðB5Þ

As discussed in the main text, they correspond to the shift
and rescaling of the nonlinear solution.
The two other solutions cannot in general be found

analytically. Still, they can be derived in the limit
ðλ − 1Þ ≪ 1. To simplify the subsequent analysis, we set
F∞ ¼ 1, as can always be achieved by the symmetry
transformation (27).
We observe that the highest derivative term in Eq. (B1a)

is multiplied by a small quantity, which suggests using the
Wentzel-Kramers-Brillouin (WKB) expansion [37]. The
derivatives of a function should be treated as enhanced by a
factor 1=

ffiffiffiffiffiffiffiffiffiffi
λ − 1

p
compared to the function itself. We will

need both the leading and the subleading terms in the
expansion in powers of

ffiffiffiffiffiffiffiffiffiffi
λ − 1

p
. With this in mind and

recalling that σ ≈ ðλ − 1Þ=2, we simplify Eqs. (B1), keep-
ing only the relevant terms:

ðλ − 1Þf00 þ λ − 1

r
f0 þ g0

r
þ g
r2

¼ 0; ðB6aÞ

8g00 − 2r1−2σf0 ¼ 0: ðB6bÞ

The form of the equations suggests the following ansatz:

f ¼ ðf0 þ
ffiffiffiffiffiffiffiffiffiffi
λ − 1

p
f1 þ � � �Þ exp

�
iQffiffiffiffiffiffiffiffiffiffi
λ − 1

p
�
; ðB7aÞ

g ¼
ffiffiffiffiffiffiffiffiffiffi
λ − 1

p
ðg0 þ

ffiffiffiffiffiffiffiffiffiffi
λ − 1

p
g1 þ � � �Þ exp

�
iQffiffiffiffiffiffiffiffiffiffi
λ − 1

p
�
: ðB7bÞ

We first consider the leading order, which corresponds to
terms Oð1Þ and Oð1= ffiffiffiffiffiffiffiffiffiffi

λ − 1
p Þ in Eqs. (B6a) and (B6b),

respectively. At this order, we obtain

−ðQ0Þ2f0 þ
iQ0

r
g0 ¼ 0; ðB8aÞ

−2ir1−2σQ0f0 − 8ðQ0Þ2g0 ¼ 0: ðB8bÞ

As f0 and g0 are nonvanishing by assumption, the system
must be degenerate, giving the condition

ðQ0Þ2 ¼ r−2σ

4
: ðB9Þ

Choosing the positive root, we find Q ¼ r1−2σ=2 and

g0 ¼ −
i
2
r1−σf0: ðB10Þ

The fact that Q is real implies that the solution is quickly
oscillating.
To find the behavior of the amplitude, we need to go to

the next WKB order. This corresponds to terms Oð ffiffiffiffiffiffiffiffiffiffi
λ − 1

p Þ
in Eq. (B6a) and Oð1Þ in Eq. (B6b). Using that
Q00 ¼ Oðλ − 1Þ, we obtain

2iQ0f00 þ
iQ0

r
f0 þ

g00
r
þ g0

r2
− ðQ0Þ2f1 þ

iQ0

r
g1 ¼ 0;

ðB11aÞ

16iQ0g00 − 2r1−2σf00 − 2iQ0r1−2σf1 − 8ðQ0Þ2g1 ¼ 0:

ðB11bÞ

Next, we multiply the second equation by iQ0r−1þ2σ=2 and
add it to the first one. This eliminates the functions f1 and
g1, so that we are left with an equation containing only f0
and g0. Using further the relation (B10), we obtain a
differential equation for f0:

f00 þ
ð1 − σÞf0

2r
¼ 0: ðB12Þ

We then obtain that f0 ∝ r−ð1−σÞ=2 and g0 ∝ rð1−σÞ=2, where
the latter is a growing function of the radial coordinate.
The above analysis shows that for ðλ − 1Þ ≪ 1 two

linearly independent solutions of the system (B1) oscillate
with a growing amplitude. By solving the system numeri-
cally we have found that this qualitative behavior persists at
finite (λ − 1) as long as λ≲ 5=2.
Let us make the following comment. At first sight, it may

be surprising to find oscillatory asymptotics in stationary
perturbations of a time-independent background. Normally,
one would expect such perturbations to obey an elliptic
equation, which should lead to solutions that exponentially
grow or decay at large r. The fact that the perturbations are
instead oscillating in r seems to suggest that the spatial part
of the eigenmode equation in the BH background has
turned hyperbolic, and one may worry if this leads to a
rapid gradient instability when the time evolution is
included. In more detail, the WKB result (B9) could
suggest that the dispersion relation for the short-wavelength
modes at small (λ − 1) has changed from (10) to

ω2 ¼ 4μðλ − 1Þk4 − F2ðrÞk2; ðB13Þ

where we have used that r−σ ¼ FðrÞ. This would imply an
instability on timescale τinst ∼ F=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðλ − 1Þp

, which would
be catastrophic.
Fortunately, this is not the case. The reason is that our BH

background is stationary, rather than static; i.e., it has a
nonvanishing shift vector. Therefore, the time derivative
operator in any field equations gets modified by an admix-
ture of a term with spatial derivatives [cf. Eq. (16)],
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∂t ↦ ∂t − Ni∂i þ � � �, where dots stand for terms without
derivatives acting on the field. As a consequence, the
dispersion relation for short-wavelengthmodes takes the form

ðω − FðrÞkÞ2 ¼ 4μðλ − 1Þk4; ðB14Þ

which for ω ¼ 0 is the same as Eq. (B13). But now ω never
becomes imaginary, and no catastrophic instabilities develop.
Notice that this does not prove the absence of long-wave-
length instabilities that are, anyway, less harmful.
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