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All axisymmetric solutions to the near-horizon geometry equation with a cosmological constant defined
on a topological 2-sphere were derived. The regularity conditions preventing cone singularity at the poles
were accounted for. The one-to-one correspondence of the solutions with the extremal horizons in the Kerr–
(anti–)de Sitter spacetimes was found. A solution corresponding to the triply degenerate horizon was
identified and characterized. The solutions were also identified among the solutions to the Petrov type D
equation.
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I. INTRODUCTION

Einstein’s equations imply constraints on the intrinsic
and extrinsic geometry of the extremal Killing or isolated
horizon [1–3]. There are several such equations: the best-
known constraints induced the metric tensor and the second
fundamental form of the extremal horizon. That constraint
was faced by Hájicek [4], it was written down explicitly
by Isenberg and Moncrief in the case of a horizon that
admits a toroidal section [5], and finally it was rediscov-
ered, generalized to all the spacetime dimensions larger
than two and systematically investigated in [1–3,6–14].
Because of its relevance for so-called near horizon geom-
etry (NHG), the constraint was later named the NHG
equation [6]. In the current paper we focus on the vacuum
four-dimensional spacetime case with a cosmological con-
stant, that is, on the NHG equation imposed on a metric
tensor and a one-form defined on a two-dimensional
section of the extremal horizon. For 2-manifolds of a
genus higher than 0, the general solution of the NHG
equation with the cosmological constant is known [12]. On
a 2-manifold diffeomorphic to S2, on the other hand, all the
axisymmetric solutions with a vanishing cosmological
constant were derived and proven to correspond to the
extremal Kerr Killing horizons [2]. They were also proven
to be isolated in the possibly bigger space of all the
solutions, also nonaxisymmetric [13]. Axisymmetric sol-
utions of the NHG equation with a cosmological constant,
on the other hand, are studied in [7,11]. The gap we are
filling in the current paper is the regularity conditions at
the poles of S2. We also compare our solutions with the
intrinsic-extrinsic geometry of extremal horizons in the
Kerr–(anti–)de Sitter spacetimes and show the one-to-one
correspondence. Another new question we address in the

paper is which solution to the NHG equations corresponds
to a triple (rather than a double) root of the polynomial
defining the horizons in those spacetimes. Finally, we
compare our solutions with the axisymmetric solutions
of the Petrov type D equation [15]. We identify the
solutions of the Petrov type D equation that are solutions
to the NHG equation.
The knowledge of all possible extremal Killing horizons

was found useful for the black hole uniqueness theorems
[16–19]. The one-to-one correspondence with the extremal
Kerr horizons in the case of a vanishing cosmological
constant Λ was applied in the literature to fill some gaps
concerning the extremal black holes. The generalization
of the uniqueness property of the NHG equation in the
Λ ≠ 0 case provided in the current paper shall be useful in a
similar way as soon as the black hole uniqueness theorems
of mathematical relativity get generalized to the asymp-
totically (anti–)de Sitter spacetimes. That makes the
research on the NHG equation still relevant and interesting
for our understanding of black holes.

II. ISOLATED, EXTREMAL HORIZON

The focal point of our paper is the NHG equation.
In general it can be defined on any n-dimensional manifold
Δ and endowed with metric tensor qAB of signature
ðþ þ � � � þÞ and one-form ωA. The NHG equation reads [3]

∇ðAωBÞ þ ωAωB −
1

2
RðqÞ
AB þ Λ

n − 2
qAB ¼ 0; ð1Þ

where ∇A is the corresponding metric and torsion-free

covariant derivative, RðqÞ
AB is the Ricci tensor (we will mark

tensors on Δ with uppercase Latin indices: A;B;…)
associated with qAB, and Λ is a parameter.
In order to lend this equation some physical meaning, we

define extremal isolated horizon H, which can be used to
describe the surface of a black hole. Next we identify its
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section (its codimension 1 submanifold) with Δ. Then the
NHG equation is a constraint on geometrical data defined
onΔ implied by Einstein’s equations satisfied by spacetime
at the extremal isolated horizon.
We give two equivalent definitions of the extremal (also

called degenerate in mathematical literature), isolated
horizon. Let ðM; gÞ be (nþ 2)-dimensional spacetime, that
is, pseudo-Riemannian manifold, with metric tensor g of
signature ð−þ � � � þÞ. The first definition is expressed in
terms of the geometry of the ambient spacetime.
Definition 1. Codimension 1 hypersurface H ⊂ M is

said to be an extremal isolated horizon if it is null, and there
is a vector field N defined in M in a neighborhood of H,
such that the spacetime metric g and spacetime covariant
derivative ∇ satisfy the following conditions at H:

(i) N does not vanish at any point of H.
(ii) N is orthogonal to H.
(iii) NμNμjH ¼ 0.
(iv) LNgjH ¼ 0.
(v) ½LN;∇ðgÞ�jH ¼ 0.
(vi) ∇ðgÞ

N NjH ¼ 0.
The second, equivalent definition uses intrinsic struc-

tures induced on H, only (we will mark tensors on H with
lowercase Latin indices: a; b;…).
Definition 2. Codimension 1 hypersurface H ⊂ M is

said to be an extremal isolated horizon if it is null, and there
is a vector field l defined on and tangent toH, such that the
induced, degenerate metric tensor q and a covariant
derivative D, induced on H by the reduction of the
spacetime∇ (the reduction is well defined due to properties
of q assumed below) satisfy the following conditions:

(i) l does not vanish at any point of H.
(ii) lalbqab ¼ 0.
(iii) Llq ¼ 0.
(iv) ½Ll; D� ¼ 0.
(v) Dll ¼ 0.
Comparing the two definitions, it is clear thatNjH ¼ l, q

is the pullback of g toH, and owing to the condition ðivÞ of
Definition 2 the spacetime covariant derivative ∇ preserves
the bundle tangent to H; hence it reduces and induces a
covariant derivative D.
Given an extremal isolated horizon ðH;l; q; DÞ, we

define a rotation one-form potential ω,

Dalb ≕ωalb: ð2Þ
Finally, consider a codimension 2 surface Δ ⊂ M that is

a spacelike section of H, transversal to the vector field l.
Denote by qAB and ωA the data induced on Δ by q and ω.
Now, if the spacetime metric tensor g satisfies Einstein’s
equations (we will mark spacetime tensors with lowercase
Greek indices: α; β;…),

RðgÞ
μν −

1

2
RðgÞgμν þ Λgμν ¼ 0; ð3Þ

at the surface H, then Eq. (1) is defined on Δ.

In the current paper we consider a two-dimensional
section Δ of a three-dimensional extremal isolated horizon
in four-dimensional, vacuum spacetime with cosmological
constant; hence the NHG equation takes the following
form:

∇ðAωBÞ þ ωAωB −
1

2
RðqÞ
AB þ Λ

2
qAB ¼ 0: ð4Þ

By integrating (4) over Δ, and applying the Gauss-
Bonnet theorem, one can derive the following equation
[12]:

Λ ¼
R
ω2η

AreaðΔÞ þ
R
Δ Kη

AreaðΔÞ ¼
R
ω2η

AreaðΔÞ
þ 4π

AreaðΔÞ ð1 − GenusðΔÞÞ

≤
4π

AreaðΔÞ ð1 − GenusðΔÞÞ; ð5Þ

where η is the area two-form of Δ and K its Gaussian
curvature. It is also known that all the solutions defined on a
compact 2-manifold Δ of

GenusðΔÞ ≠ 0 ð6Þ

are such that [12]

ω ¼ 0 and K ¼ Λ: ð7Þ

On the other hand,

Λ ≤
4π

AreaðΔÞ for Δ ≅ S2: ð8Þ

III. ADAPTED COORDINATES AND
INTEGRATING CONSTRAINTS

We can use complex, null basis

mAmA ¼ m̄Am̄A ¼ 0; mAm̄A ¼ 1; ð9Þ

and write metric q in the form

qAB ¼ mAm̄B þ m̄AmB: ð10Þ

Now the covariant derivative of these basis vectors can be
expressed as

mB∇Am̄B ¼ −ðα − β̄ÞmA þ ðᾱ − βÞm̄A ¼ −m̄B∇AmB;

ð11Þ

where α and β are complex functions. The rotation one-
form is given by
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ωA ¼ ðαþ β̄Þ|fflfflfflffl{zfflfflfflffl}
≡π

mA þ ðᾱþ βÞ|fflfflfflffl{zfflfflfflffl}
≡π̄

m̄A: ð12Þ

It will be convenient to define Gaussian curvature K of our
horizon, proportional to its Ricci scalar RðqÞ:

K ¼ 1

2
RðqÞ ¼ δðα − β̄Þ þ δ̄ðᾱ − βÞ − 2ðα − β̄Þðᾱ − βÞ;

ð13Þ

where

δ ¼ mA∂A; δ̄ ¼ m̄A∂A: ð14Þ

The Ricci tensor is now given by a well-known relation-
ship,

RðqÞ
AB ¼ 1

2
RðqÞqAB ¼ KqAB: ð15Þ

We can use the Hodge decomposition of ω in complex
functions U and B in the following way [2]:

ω ¼ ⋆dU þ d logB: ð16Þ

Function U is defined up to an additive constant, and B up
to multiplicative constant. Through this decomposition,
function π is given by

π ¼ −iδ̄U þ δ̄ logB; ð17Þ

Using decomposition (16) constraints (4) can be rewrit-
ten as

iðδ̄δ − δδ̄ÞU þ ðδ̄δþ δδ̄Þ lnB − ðα − β̄ÞðiδU þ δ lnBÞ
− ðᾱ − βÞð−iδ̄U þ δ̄ lnBÞ − ðδUÞ2 − ðδ̄UÞ2
þ ðδ lnBÞ2 þ ðδ̄ lnBÞ2 þ 2iðδUδ lnB − δ̄Uδ̄ lnBÞ
− K þ Λ ¼ 0; ð18Þ

iδ̄2U − δ̄2 lnBþ iδ̄Uðα − β̄Þ − δ̄ lnBðα − β̄Þ
þ ðδ̄UÞ2 − ðδ̄ lnBÞ2 þ 2iδ̄Uδ̄ lnB ¼ 0: ð19Þ

Henceforth, we will be considering the NHG equation on
Δ diffeomorphic to S2 and for axisymmetric q and ω.
Therefore, we introduce on Δ spherical coordinates ðθ;φÞ
adapted to the axial symmetry, such that it is generated by
the vector field ∂φ. The general form of axisymmetric
metric q on Δ is

qABdxAdxB ¼ Σ2ðθÞðdθ2 þ sin2 θdφ2Þ: ð20Þ

We introduce coordinate x and parameter R (not to be
confused with Ricci scalar RðgÞ or RðqÞ)

dx ¼ Σ2ðθÞ sin θ
R2

dθ; ð21Þ

where R2 is defined in the following way:

AreaðΔÞ ¼
Z
Δ
Σ2ðθÞ sin θdθ ∧ dφ ¼ 2πR2ðx2 − x1Þ: ð22Þ

Coordinate x is defined up to an additive constant. We can
set, say x1, to an arbitrary value, and then we set x2 in such a
way that the area ofΔ is equal to 4πR2. Wewill fix x1 ¼ −1
and x2 ¼ 1 from now on. Now the metric takes the form

qABdxAdxB ¼ R2

�
1

P2ðxÞ dx
2 þ P2ðxÞdφ2

�
;

P2ðxÞ ¼ Σ2ðθÞsin2θ
R2

; ð23Þ

and the null tangent and cotangent frame, respectively, are
defined by

mA∂A ¼ 1ffiffiffi
2

p
R

�
P∂x þ i

1

P
∂φ

�
;

m̄AdxA ¼ Rffiffiffi
2

p
�
1

P
dx − iPdφ

�
: ð24Þ

In this basis Gaussian curvature K is given by

K ¼ −
1

2

1

R2
∂2
xP2; ð25Þ

and one can easily calculate thatR
Δ Kη

AreaðΔÞ ¼
1

R2
: ð26Þ

It follows from the definition of the function P that

Pðx ¼ �1Þ ¼ 0: ð27Þ

Moreover, to avoid a conic singularity that is to ensure that
the length of a circle of radius δx about each pole is
2πδxþ oðxÞ,

∂xP2ð�1Þ ¼∓ 2: ð28Þ

Notice that this is just the continuity condition on the metric
tensor q.
Because of the axial symmetry, functions B and U can

only depend on x. Real and imaginary parts of constraint
(19) can be written, respectively, as

∂2
xB − ð∂xUÞ2B ¼ 0; ð29Þ

∂xðB2∂xUÞ ¼ 0; ð30Þ
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while constraint (18) takes the form

2
PP;x

R2
∂x logBþ P2

R2
ð∂x logBÞ2 þ

P2

R2
∂2
x logB

−
P2

R2
ð∂xUÞ2 þ 1

2

1

R2
∂2
xP2 þ Λ ¼ 0: ð31Þ

Equation (30) can be integrated to obtain

U;xB2 ¼ Ω̃: ð32Þ

In general Ω̃ can take any value, so we will discuss the
Ω̃ ≠ 0 and Ω̃ ¼ 0 cases separately.

A. Case Ω̃ ≠ 0

By inserting (32) into (29)–(30) and integrating, we
obtain

B2 ¼ B2
0½Ω2 þ ðx − x0Þ2�

U ¼ arctan

�
x − x0
Ω

�
þ U0; ð33Þ

where

B0; U0; x0 ¼ const; Ω ¼ Ω̃
B2
0

: ð34Þ

Constraint (19) can be written as

∂2
xP2 þ 2ðx − x0Þ

ðx − x0Þ2 þΩ2
∂xP2 þ 4Ω2

½ðx − x0Þ2 þΩ2�2 P
2

¼ −2ΛR2 ≡ b: ð35Þ

The solution to (35) is

P2 ¼ 1

Ω2 þ ðx − x0Þ2
�
c1ðΩ2 − ðx − x0Þ2Þ þ 2c2Ωðx − x0Þ

þ 1

2
bðx − x0Þ2ðΩ2 þ 1

3
ðx − x0Þ2Þ

�
: ð36Þ

Applying boundary conditions (27) is laborious, but it turns
out that both x0 and c2 have to vanish. This leads to

c1 ¼ −
1

2
b
Ω2 þ 1

3

Ω2 − 1
; ΛR2 ¼ Ω2 − 1

Ω2 − 1
3

⇔ Ω2 ¼ 1 − 1
3
ΛR2

1 − ΛR2
;

ð37Þ

and so we must have

P2 ¼ ðx2 − 1ÞΛR
2ðΛR2 − x2ðΛR2 − 1Þ − 5Þ þ 6

ΛR2 þ 3x2ðΛR2 − 1Þ − 3
: ð38Þ

Positivity of both this metric and Ω2 forces the following
restriction:

ΛR2 ∈� −∞; 1½∪ f3g: ð39Þ

Now, at

ΛR2 ¼ 3; ð40Þ

we have

Ω ¼ 0 ¼ Ω̃; ð41Þ

the case excluded in this section. Therefore, we are left with

ΛR2 ∈� −∞; 1½; ð42Þ

which is compatible with (8) and (26). The rotation one-
form is equal to

ω ¼ x
Ω2 þ x2

dx −
P2Ω

Ω2 þ x2
dφ

¼ xð1 − ΛR2Þ
x2ð1 − ΛR2Þ þ ð1 − 1

3
ΛR2Þ dx

− P2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ΛR2Þð1 − 1

3
ΛR2Þ

q
x2ð1 − ΛR2Þ þ ð1 − 1

3
ΛR2Þ dφ; ð43Þ

where we have taken the positive root of Ω2 from (37).

B. Case Ω̃ = 0

We have the logarithm of B in Eq. (16), so we must
assume

B > 0: ð44Þ

By (32) it has to be that U;x ¼ 0; therefore (we hope that
repetitions in notation will not lead to misunderstandings),

U ¼ U0; B ¼ B1xþ B0; ð45Þ

where U0, B0, and B1 are constants. As it will soon be
apparent, we have to separate our investigation into two
subcases, namely B1 ≠ 0 and B1 ¼ 0.

1. Subcase B1 ≠ 0

In this case constraint (19) is reduced to

2B1

B1xþ B0

∂xP2 þ ∂2
xP2 ¼ b; ð46Þ

which can be integrated to yield
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P2 ¼ 1

3
b
B0

B1

xþ 1

6
bx2 −

c1
B1ðB1xþ B0Þ

þ c2: ð47Þ

As we can see, this solution is ill-defined for B1 ¼ 0. After
some manipulations the boundary conditions (27) give us

b ¼ −6 ⇔ ΛR2 ¼ 3; B0 ¼ 0; c1 ¼ 0; c2 ¼ 1;

ð48Þ
which leads to following function B:

B ¼ B1x; ð49Þ
which violates the definition (16) of the function B. Hence,
we exclude that case.

2. Subcase B1 = 0

On the other hand, if we take B1 ¼ 0, that means that
now both the functionsU and B are constant, and hence the
constraint (18) takes the form

K ¼ Λ ð50Þ
because ω vanishes. That implies

∂2
xP2 ¼ b; ð51Þ

which gives us

P2 ¼ 1

2
bx2 þ c1xþ c2: ð52Þ

By applying the boundary conditions (27) we get

b ¼ −2 ⇔ ΛR2 ¼ 1; c1 ¼ 1; c2 ¼ 0; ð53Þ

which leads to

P2 ¼ 1 − x2 and ω ¼ 0: ð54Þ

These results are compatible with (7) and (26).

IV. COMPARISON WITH EARLIER RESULTS

A. Review article by H. K. Kunduri and J. Lucietti

In a review article [7] the authors calculated the solution
to the same problem:

P2

R2
¼ 4β

4k2 þ β2x2

×

�
−
βΛx4

12
þ
�
A0 −

2Λk2

β

�
x2 −

4k2

β2

�
A0 −

Λk2

β

��
;

ð55Þ

where β, k, and A0 are real constants. However, they did not
consider the problem of conical singularity, thus leaving an

independent parameter. By applying boundary conditions
(27) we get relationships between constants in (55) and our
parameters

4k2

β2
¼ 1 − 1

3
ΛR2

1 − ΛR2
;

2A0

β
¼ Λ

�
1 − 2

3
ΛR2

1 − ΛR2
−

1

ΛR2

�
: ð56Þ

Thus the following equation constraints parameters in (55):

A0 ¼ Λβ
ð1 − 3 16k4

β4
þ 6 4k2

β2
Þ

12ð1 − 4k2

β2
Þ : ð57Þ

Furthermore, as the authors suggest in [20], one of the
constants β, k, or A0 can be eliminated via rescaling. This
and Eq. (57) reduce the number of parameters to one, just as
in our case.

B. Solution to Petrov type D equation

In [15] an equation is considered that is an integrability
condition for our NHG equation (every metric satisfying
the latter also satisfies the former; see [12]), namely

ðδ̄þ α − β̄Þδ̄Ψ−1
3

2 ; ð58Þ

where the complex valued functionΨ2 can be expressed via
functions defined on Δ,

Ψ2 ¼ −
1

2
ðK þ iOÞ þ Λ

6
; ð59Þ

where

O ¼ −½δδ̄þ δ̄δ − ðα − β̄Þδ − ðᾱ − βÞδ̄�U: ð60Þ

All the axisymmetric solutions are derived. The metric
calculated in [15] has the form

P2 ¼ ð1 − x2Þ − 1

1 − γΛ
6

ð1 − x2Þ2
x2 þ η2

; ð61Þ

where parameters γ and η are real. It was not analyzed
which of those solutions correspond to solutions of the
NHG equation, but it is done in this section.
If we substitute

η2 ¼ 1 − 1
3
ΛR2

1 − ΛR2
; γ ¼ 6R2

ΛR2 − 3
; ð62Þ

then both (61) and (38) agree. Solution (54), corresponding
to ΛR2 ¼ 1, is also the same. Therefore we have repro-
duced results from [15] for

ΛR2 ∈ � −∞; 1�: ð63Þ
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This is the way the solutions calculated in the current paper
are sitting among the solutions found in [15].
Equation (58) has also applications to nonextremal

isolated horizons. Recall that the Weyl tensor of four-
dimensional spacetime has principal directions, 4-distinct
and null in the generic case. At an isolated horizon, two of
the principal null directions come together and are tangent
to the horizon. That makes the Weyl tensor to be of the
Petrov type II. If the remaining two null directions coincide
as well, then the Weyl tensor is said to be of the Petrov type
D. The remaining possibilities are excluded at isolated
horizons except when the Weyl tensor vanishes [21]. The
assumption that the Weyl tensor is of the Petrov type D at a
nonextremal isolated horizon leads to Eq. (58) [21] (and
earlier in [22]).

V. EMBEDDING IN KERR–(ANTI–)DE
SITTER SPACETIME

The Kerr–(anti–)de Sitter spacetimes are the Petrov type
D vacuum solutions to Einstein’s equations with a cos-
mological constant and set a family parametrized by
constants m, a, and Λ. They contain Killing horizons that
are automatically our isolated horizons. For special values
of the parameters, two of the generically distinct horizons
coincide. Then, the resulting horizon is extremal also in the
meaning of our definition of the extremal isolated horizon.
Our aim now is to compare the axially symmetric solutions
to the NHG equation derived in the current paper with the
data defined on a section of the Kerr–(anti–)de Sitter
extremal horizons (Sec. VA), which will lead us to the
uniqueness theorem (Sec. V B).

A. Extremal Kerr–de Sitter spacetime

Kerr–de Sitter spacetime has a metric of well-known
form

g ¼ −
Δr

χ2ρ2
ðdt − asin2θdφÞ2

þ Δθsin2θ
χ2ρ2

ðadt − ðr2 þ a2ÞdφÞ2 þ ρ2
�
dr2

Δr
þ dθ2

Δθ

�
;

ð64Þ
where

ρ2 ¼ r2 þ a2cos2θ;

Δθ ¼ 1þ 1

3
Λa2cos2θ;

χ ¼ 1þ 1

3
Λa2;

Δr ¼ ðr2 þ a2Þ
�
1 −

1

3
Λr2

�
− 2Mr: ð65Þ

The vanishing of polynomial Δr discerns values of r ¼ r0
for which Killing vectors form a horizon. Extremal

horizons correspond to its multiple roots. By simple
manipulations it can be shown that both metric P2 and
quantity R2 can be expressed [15] as

P2 ¼ ð1 − x2Þ 1þ
1
3
Λa2x2

1þ 1
3
Λa2

r20 þ a2

r20 þ a2x2
;

R2 ¼ r20 þ a2

1þ 1
3
Λa2

; ð66Þ

and coordinate x takes the form

x ¼ − cos θ: ð67Þ

Extremal horizons can be found by equating the discrimi-
nant of Δr to zero. The discriminant can be expressed only
in terms of a2,Λ, and R2 by calculatingM fromΔr ¼ 0 and
eliminating r0 using the definition of R2 in (66):

Λ
a2ðΛR2 − 3Þ þ 3R2

½a2Λþ 3�

× ½a2ðΛR2 − 3ÞðΛR2 − 2Þ þ 3R2ðΛR2 − 1Þ�
× ðΛR2 − 3Þ½a4Λ3R4ðΛR2 þ 1Þ
þ 6a2ðΛR2ðΛR2 − 6ÞðΛR2 þ 3Þ þ 54Þ
þ 9R2ðΛR2 − 4ÞðΛR2 − 3Þ� ¼ 0: ð68Þ

We must also account for the following conditions:

a2 ≥ 0; R2 > 0; r20 ≥ 0; P2 ≥ 0; M ≥ 0: ð69Þ

One can easily see that a2Λ ¼ −3 would make metric g ill-
defined, similar to ΛR2 ¼ 3. Setting Λ ¼ 0 makes the
discriminant vanish, but it will be contained in further
results.
It turns out that if we apply (69), then the only possible

solution for a2 is

a2 ¼ 3R2ð1 − ΛR2Þ
ð3 − ΛR2Þð2 − ΛR2Þ ; ð70Þ

which, together with (69), restricts our parameters in the
following way:

ΛR2 ∈� −∞; 1� ∪�2; 3½: ð71Þ

If we take the form of a2 from (70), then massM is given by

M ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 − ΛR2

r
ð3 − 2ΛR2Þ2

ð2 − ΛR2Þð3 − ΛR2Þ ; ð72Þ

which precludes ΛR2 > 2 from the allowed range of
parameters. Our metric must take the following form:
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P2 ¼ ðx2 − 1ÞΛR
2ðΛR2 − x2ðΛR2 − 1Þ − 5Þ þ 6

ΛR2 þ 3x2ðΛR2 − 1Þ − 3
; ð73Þ

where

ΛR2 ∈� −∞; 1�: ð74Þ
Function P2 in (73) has been calculated independently,

from (38), yet takes identical form. Thus every extremal
Kerr–de Sitter metric must take the form (38), with
parameters M and a2, given by (72) and (70), respectively,
and with ΛR2 ≤ 1.

B. The uniqueness of the axisymmetric extremal
isolated horizons

An important conclusion of the previous subsection is
the following uniqueness theorem.
Theorem 3. Suppose H is an isolated horizon in four-

dimensional spacetime that satisfies the vacuum Einstein
equations with a (possibly vanishing) cosmological con-
stant; suppose also that H satisfies each of the following
conditions:

(i) H admits a two-dimensional, spacelike section Δ,
diffeomorphic to S2,

(ii) the metric tensor qABdxAdxB induced on Δ and the
pullback ωAdxA to Δ of the rotation one-form
potential are axially symmetric.

Then, ðqAB;ωAÞ coincides with the data defined on a
section of an extremal horizon in one of the Kerr–(anti–)
de Sitter spacetimes.

C. Doubly extremal horizon

Wewill now investigate when the horizon of the Kerr–de
Sitter is extremal, that is, when roots of Δr merge. In
particular, we want to find out when three roots merge and
the horizon is doubly extremal. To describe the dependence
of roots of Δr on its coefficients, we will use rules
elucidated in [23] and the well-known Descartes rule of
signs. It will allow us to find a kind (real or imaginary,
positive or negative) of a root and its multiplicity in
the range of our parameters. This information is contained
in Table I.
Cases ðiiiÞ and ðivÞ are particularly interesting, because

we have three roots, two of them merged, that will all

become equal for ΛR2 ¼ ð3 − ffiffiffi
3

p Þ=2. We will now write
down their explicit forms:

r1 ¼
−

ffiffiffiffi
A

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C

ffiffiffiffi
A

pp
ffiffiffi
2

p ;

r2 ¼
ffiffiffiffi
A

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − C

ffiffiffiffi
A

pp
ffiffiffi
2

p ;

r3 ¼
ffiffiffiffi
A

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − C

ffiffiffiffi
A

pp
ffiffiffi
2

p ; ð75Þ

where

A ¼ ð2ΛR2 − 3Þ2
ΛðΛR2 − 2ÞðΛR2 − 3Þ ;

B ¼ 3

2Λ
þ R2ðΛR2 þ 3Þ
2ðΛR2 − 3ÞðΛR2 − 2Þ ;

C ¼ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 − ΛR2

r
: ð76Þ

As we can easily calculate, for positive ΛR2 the following
holds:

r1 ¼ r2 for ΛR2 > 0 ð77Þ

and

r1 ¼ r2 ¼ r3 ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
− 1

q
for ΛR2 ¼ 3 −

ffiffiffi
3

p

2
: ð78Þ

The first two positive roots are always merged, and the
equality of all three of them reduces to case ðivÞ. In case
ðiiÞ we get

a2 ¼ M2 ¼ r2 ¼ R2

2
; ð79Þ

which agrees with the results for the Kerr metric.

VI. SUMMARY

We have studied axially symmetric solutions ðq;ωÞ to
the near horizon geometry equation with cosmological

TABLE I. Dependence of roots of Δr on parameters.

Case Parameter ranges Number and type of roots

ðiÞ ΛR2 < 0, R2 ≠ 0 1 real, positive, double; 2 imaginary
ðiiÞ ΛR2 ¼ 0 1 real, positive, double
ðiiiÞ ΛR2 ∈�0; 1�nf3−

ffiffi
3

p
2

g all real; 1 positive, double; 1 positive and 1 negative

ðivÞ ΛR2 ¼ 3−
ffiffi
3

p
2

both real; 1 positive, triple; 1 negative
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constant (4) on two-dimensional manifold Δ diffeomorphic
to sphere. We have shown that every solution is determined
by the values of cosmological constant Λ, and total area
4πR2, bounded by the following condition:

−∞ < ΛR2 ≤ 1: ð80Þ
The metric q is of the general form

qABdxAdxB ¼ R2

�
1

P2ðxÞ dx
2 þ P2ðxÞdφ2

�
; ð81Þ

where the function ½−1; 1� ∋ x ↦ PðxÞ is defined as
follows:

P2ðxÞ ¼ ðx2 − 1ÞΛR
2ðΛR2 − x2ðΛR2 − 1Þ − 5Þ þ 6

ΛR2 þ 3x2ðΛR2 − 1Þ − 3
;

ð82Þ
while the rotation one-form takes the form

ω ¼ xð1 − ΛR2Þ
x2ð1 − ΛR2Þ þ ð1 − 1

3
ΛR2Þ dx

� P2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ΛR2Þð1 − 1

3
ΛR2Þ

q
x2ð1 − ΛR2Þ þ ð1 − 1

3
ΛR2Þ dφ for ΛR2 < 1;

ω ¼ 0 for ΛR2 ¼ 1: ð83Þ
They are defined on ½−1; 1� × S1 endowed with coordinates
ðx;φÞ, and the regularity conditions at the poles x ¼ �1
make them continuous on S2.
We have compared our results with those contained in

the review by Kunduri and Lucietti [7]. In particular, we
have transformed our parameters to those used in the
review and solved explicitly the restrictions following from

our regularity assumptions: bounded ω and continuous q of
the signature (þþ).
It is known that the Petrov type D equation [21] is an

integrability condition for the NHG equation. Hence the
axisymmetric solutions to the Petrov type D equation found
in [15] contain solutions to the NHG equation; however,
they were not identified. We have filled that gap in the
current paper.
Furthermore, for every solution ðq;ωÞ we have deter-

mined the corresponding extremal Kerr–(anti–)de Sitter
spacetime (see Theorem in Sec. V B): given Δ, q, and ω
were embedded in the extremal horizon in that spacetime,
such that q coincides with the pullback of the spacetime
metric tensor and ω coincides with the pullback of the
spacetime rotation one-form potential. In particular, we
have identified those solutions ðq;ωÞ of the NHG equation
that correspond to a triple root of the polynomial, whose
roots define the horizons of the Kerr–(anti–)de Sitter
spacetimes.
The assumptions on the axial symmetry and Λ vacuum

made in this paper can be relaxed in future research. On
the one hand, coupling with the Maxwell or even Yang-
Mills fields should lead to a generalization of our result as it
is the case when Λ ¼ 0 [2,7]. The existence of nonaxially
symmetric solutions defined on a topological 2-sphere, on
the other hand, is a hard problem that has been approached;
however, only partial results are known [13]. Another
possibility is a generalization to higher dimensions.
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