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The effect of energy absorption during the binary evolution of Exotic-compact-objects (ECOs) is
extensively studied. We review the underlying mechanism that provides the energy dissipation in material
objects—tidal friction. We show that unlike typical astrophysical objects, where absorption due to viscosity
is negligible, in ECOs, absorption could potentially mimic the analogous effect of black-holes (BHs)—tidal
heating. We stand for their differences and similarities in the context of energy dissipation during the
inspiral. Inspired by the membrane paradigm and recent studies, we demonstrate how viscosity is a defining
feature that quantifies how close is the ECO absorption to that of a classical BH absorption. We show that
for ECOs, viscosity can induce significant modifications to the GW waveform, which in some favorable
scenarios of supermassive binaries of equal mass and spin, enables the measurement of the ECO absorption
in the future precision gravitational-wave (GW) observations. Finally, we discuss the implications on the
ECO reflection coefficient and the relation to the universal viscosity to volume entropy bound.
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I. INTRODUCTION

Inspired by current observations from LIGO [1–3] and
future Laser Interferometer Space Antenna (LISA) [4,5],
the era of gravitational-wave (GW) spectroscopy entails an
outstanding opportunity for strong gravity tests with
precision GWmeasurement and to examine the consistency
of Einstein’s general relativity (GR) with GWobservations.
One of the most tantalizing GR predictions is the existence
of BHs and their event horizon, a surface characterized by
the discontinuity of the causal structure and possess the
unique property of being a perfect absorber. Thus, any
deviations aside from the ultimate absorption support the
possibility of the existence of ECOs and the emergence of
new physics [6,7].
In GR, the emergence of new physics is expected to

appear in the strong-field regime, when approaching the
UV cutoff. At this regime, modifications to GR arise
naturally, and additional quantum scales such as the string
scale enters [8,9]. Furthermore, the existence of these
quantum motivated dark compact object is necessary for
a consistent description of evaporating BHs as well as other
open questions [10,11]. Among the quantum inspired
ECOs alternatives are known BH polymers [12,13], fuzz-
balls [14], Firewalls [15,16], gravastars [17] in addition to
other quantum effects that were recently studied [18–23],
(see also [24] for an extensive review). Moreover, recent
GW observations do not exclude the existence of dark
compact objects [25,26]. Therefore, the corrections

demonstrated by these beyond GR models, especially those
that modify the BH absorption, should be taken into
account when performing an ECO search.
During the inspiral evolution of BHs, and in particular at

its early stages, the GW emission is governed by the point
mass orbital motion. At later stages, the mutual tidal
interaction of the companions becomes significant, this
gives rise to a dissipation of energy and angular momentum,
a phenomenon known as tidal heating [27–32]. The effect of
tidal heating in BHs can be illustrated from a Newtonian
dynamic perspective [33–35]. Where one of the companions
is an ECO, characterized by an average kinematic viscosity
νECO, then dissipation of energy and angular momentum are
attributed to tidal work and tidal torque exerted by the
external tidal field on the body. The tidal heating-Newtonian
dynamics correspondence is best emphasized from a thermo-
dynamic picture [34]. Where for a fluid star, energy is
dissipated into heat according to _Q ¼ _W −ΩECO

_J, which
means that heat generation is attributed to the tidal work ( _W)
and to the angular momentum flow ðΩECO

_JÞ where ΩECO is
the body’s angular velocity. In the analogous BH thermo-
dynamic description we have ðκ=8πÞ _A ¼ _M −ΩBH

_J, where
TBH ¼ ðκ=2πÞ is the BH temperature, κ is its surface gravity
and SBH ¼ A=4 is the BH entropy. Then, from the second
law of thermodynamic δQ ¼ TδS, we find that BHs dis-
sipates energy in similar to a Newtonian viscous body.
The uniqueness of the effect is revealed when observing

the frequency content of the heating formula. From [31,32]
tidal heating takes _M ∝ ΩðΩ −ΩBHÞ and the rotational
energy flow ΩBH

_J ∝ ΩBHðΩ − ΩBHÞ, then dissipation into*sherfyo@post.bgu.ac.il
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heat reads _Q ∝ ðΩ − ΩBHÞ2, where Ω is the orbital angular
velocity. At low spins, ΩBH ≪ Ω heat generation is gov-
erned by Ω and gets smaller as the body’s spin increase
where exact cancellation occurs for ΩBH ¼ Ω, this threshold
case is known as tidal locking. At higher spins, ΩBH ≫ Ω,
which is a typical situation at the inspiral phase, _Q ∝ Ω2

BH,
and the entire effect is dominated by the object’s spin.
Moreover, since _J < 0 the body’s rotational energy flows
outward and angular momentum conservation implies that
spin angular momentum is removed to the orbit. The
phenomena of energy extraction from the rotating body is
the underlying mechanism for superradiance [35,36].
Here we study the viscous dissipation at the inspiral

phase, which as previously mentioned, since the inspiral
time scale is longer than the binary timescaleΩ−1 ≪ 1=R∼
Ω−1

ECO, viscous dissipation is governed by ΩECO. Motivated
by the membrane paradigm [33] and the similarity shared
by the tidal interaction of BHs and Newtonian viscous
bodies. We show that in some cases dissipation in ECOs is
comparable to that of a BHs and due to the large dephasing
can produce an observable imprint on the GWwaveform as
demonstrated in different context at [37–40], which even-
tually could be detected with LISA.

II. TIDAL HEATING–VISCOUS DISSIPATION
CORRESPONDENCE

In the current setup we consider the inspiral phase of a
binary system, whose companions are ECOs of comparable
masses M and radii R. The objects revolve on a circular
orbit of radius b ≫ M. At this phase the companions
are tidally interacting, the mutual interaction is character-
ized to leading order by the quadrupolar tidal field Eab,
which for Newtonian theory is defined in terms of the
external Newtonian potential by Eab ¼ ∂a∂bUext.
As a result of the slowly varying induced tidal field, the
material body develops, to leading order, quadrupole
moment, given asymptotically in Cartesian coordinates
by Qab ¼

R
ρd3xðxixj − 1

3
r2δijÞ, in which ρ is the mass

density. The strength of the response to the external tidal
field depends on the body composition and is quantified in
terms of the tidal Love number, which relates the induced
quadrupole moment to the quadrupolar tidal field by
Qab ¼ − 2

3
k2R5Eab. Here k2 is the dimensionless l ¼ 2

electric tidal Love number [41–43] and R is the stars radius.
In the absence of viscosity, the tidal forces produced by

each of the companions raise a bulge in the object, the
height of the bulge and its position are determined by the
external tidal field. The relation of the bulge to the external
tidal field is obtained by demanding that the potential
energy gained by the raised bulge ΔR, is conserved with
respect to the external potential such that ðM=RÞΔR ∼ Uext,
where Uext is evaluated at the tides position. Then,
expanding the Newtonian potential in b ≫ R we get
Uext ∼ ER2, where E ¼ Mext=b3 is the magnitude of the

tidal field. Eventually, the height of the bulge takes the
form ΔRðtÞ ∼ EðtÞR3, where the time dependence indicates
that the object response to the applied tidal field is
instantaneous.1 However, when the body’s internal proper-
ties are considered, the effect of viscosity might be non-
negligible. In this case, the response of the body to the
exerted tidal force is not instantaneous and it suffers a time
lag, characterized by the viscous time delay τ. As a result,
the tidal bulge is misaligned with the companion position,
an effect that displays a time delay in the induced quadru-
pole moment [34], which for slowly-spinning becomes

QijðtÞ ¼ −
2

3
k2R5Eijðt − τÞ; ð2:1Þ

where τ is the viscous time delay. For the case of our
interest we assume that the time scale associated with
changes in the tidal field, given by Ω−1 ∼ E−1=2, where Ω−1

is the orbital evolution timescale, is long compared to the
viscous time delay τ ≪ Ω−1. Then, the tidal field can be
expanded into

QijðtÞ ≈ −
2

3
k2R5ðEij − τ _EijÞ: ð2:2Þ

In general, the dependence of the viscous time delay in the
internal properties is given by [34]

τ ¼ αν: ð2:3Þ

Where ν is the average kinematic viscosity and α is a
dimensionless coefficient that depends on the objects
interior. For example, an isotropic incompressible viscous
body with compactness C has α ¼ α0 ¼ 19

2C [34]. For
anisotropic fluids α ¼ α0=A, where A is the anisotropy
factor, with A ¼ 1 denoting isotropic fluid [46]. The
importance in considering ECOs composed of anisotropic
matter is due to their natural appearance at high densities,
in addition to their ability to sustain gravity above the
Buchdahl bound C > 4=9 [47], and up to the BH limit
C ¼ 1=2 [46].
For the BH viscous delay, we follow the membrane

paradigm [33] where the BH horizon is treated as one way
viscous membrane with an effective kinematic viscosity
of νBH ¼ MBH. We find that for BHs, where the only
relevant scale is the BH scale τBH ¼ RBH, so α ¼ 2. The
result is also consistent with the calculation of the phase
lag of the bulge relative to the external companion position
[45], where for nonspinning BHs ϕ ¼ 4MΩ, then since
ϕ ¼ ωτ, and ω ¼ 2Ω is twice the orbital frequency, we
obtain τBH ¼ RBH. Besides, it is important to mention that
although, as pointed out in [48], horizon scale corrections

1For a more detailed analysis regarding the relation of ΔR to E
see at [44,45] in the context of the shape Love number.
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leave an indistinguishable imprint on the spacetime of
ECOs in comparison to that of BHs, the behavior of the BH
bulge is different than the ECO bulge. The difference in the
bulge behavior is not related to the compactness of the
objects, nor how similar their spacetimes are, rather, it is
related to the definition of the event horizon—a globally
defined surface, where no light rays can escape from it to
spatial infinity. Thus, no local physical experiment can
locate the event horizon [49]. Owing to this property, the
boundary conditions imposed on the event horizon are
teleological [33]. As a result, the bulge displays an acausal
behavior, which means that in contrast to material bodies, it
leads the orbit when Ω > ΩBH and lags when Ω < ΩBH.
This acausal behavior guarantees the stability of the hole
under perturbations, as shown in [33], where causal
evolution leads to an exponential expansion of the BH
and eventually destroys it (see also [50] for a similar
discussion in the context of BHs area theorem). Moreover,
the ECOs considered here are horizonless, and so their
outer surface is locally defined and smoothly connected to
timelike geodesics.
Here we consider ECOs whose outer surface positioned

around their photonsphere R ∼ 3M.2 In the presence
of viscosity, the work exerted on the star by the external
tidal field is partially converted into heat (tidal friction)
and partially leads to angular momentum flow (tidal
torque exerted on the bulge). This is also reflected by
the energy balance formula _Eν ¼ _Qþ ΩECO

_J (we label
_W ¼ _Eν). Where in the case of slowly spinning objects
(Ω ≫ ΩECO), most of the work exerted by the tidal field is
dissipated into heat by the interior viscosity. In Newtonian
theory, the work applied by the tidal field on a fluid element
dm is Eν ¼ − 1

2

R
Eabxaxbdm. For the rate of tidal work,

differentiation and integration by parts yields

_Eν ¼
1

2
Qij

_Eij: ð2:4Þ

Then, substituting the induced quadrupole from Eq. (2.2)
and dismissing total derivatives, viscous dissipation
reads [34,45]3

_Eν ¼
1

3C5
k2τM5 _Eij

_Eij: ð2:5Þ

Where C ¼ M=R is the ECO compactness, _E ¼ ΩMext=b3

and Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mext=b3

p
is the orbital frequency.

To proceed, we extend the relations of viscous bodies
Eq. (2.2)–(2.5) to GR BHs. First, mentioning that for non-
spinning BHs, the rate of tidal heating takes the form of

Eq. (2.4), _M ¼ 1
2
QBH

ij
_Eij [32,33], where the induced quad-

rupole moment of a mass M BH is given by

QBH
ij ¼ 32

45
M6 _Eij; ð2:6Þ

and is not proportional to the tidal field, as implied from
the BHs no-hair properties. For the rate of tidal heating,
substituting QBH

ij into _M immediately reads (we label
_M ¼ _EBH)

_EBH ¼ 16

45
M6 _Eij

_Eij: ð2:7Þ

The similarity of these effects is revealed when the
viscous dissipation is given in terms of the tidal heating
dissipation.

_Eν ¼ γ _EBH: ð2:8Þ

Where γ is defined as the dimensionless effective absorp-
tion coefficient, that is given in terms of the viscous time
delay τ Eq. (2.3) by

γ ¼ 15α

32C5

ν

M
k2: ð2:9Þ

The effective absorption coefficient γ quantifies how close
is the body absorption to that of a GR BH absorption,
alternatively, how good is the body as a BH mimicker. By
definition, 0 ≤ γ ≤ 1, where γ ¼ 0 describes empty, non-
viscous interior. On the contrary, γ ¼ 1 defines objects
whose dissipation matches the BH dissipation. In general,
for ordinary matter γ ≪ 1, to show this we consider cold
neutron stars (T ≈ 106 K) that posses large viscosities
νNS ≈ 3 × 105 kg

m·s [51,52] (see Appendix for more details).
To estimate γ from Eq. (2.9), we take α0 and choose typical
neutron star parameters R ¼ 104 m,M ¼ 1.4 M⊙ and tidal
deformability parameter k2 ¼ 1=3, the effective absorption
for neutron stars reads

γNS ∼ 9 × 10−5 ×

�
ν

3 × 105 kg
m·s

��
1.4 M⊙

M

�
: ð2:10Þ

Then, since γNS ≪ 1 we conclude that for typical matter,
viscous dissipation is negligible in comparison to the
analogous effect in BHs. However, this might not be the
case for exotic matter, in which the viscosity can be orders
of magnitude larger than the value given in Eq. (2.10).
Eventually, in such scenarios, the resulted effective
absorption becomes significant and approaches the BH
absorption γ ≲ 1.
The motivation in considering matter providing non-

negligible absorption, and hence large viscosity, is impor-
tant when performing an ECO search, where any departure

2In the next section we extend the results for ultracompact-
objects R ¼ 2Mð1þ ϵÞ, which requires full GR treatment.

3The calculations are performed in M1 local asymptotic rest
frame (LARF1).
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from the complete absorption indicate on the existence of
ECOs. The existence of matter providing these properties is
inspired from both classical hydrodynamic and quantum
mechanics perspective. Where large viscosity is attributed
to a matter whose viscosity is of order of the analogous
horizon viscosity [33], where according to the membrane
paradigm, from νBH ¼ M

νBH ≈ 2.7 × 1013
m2

s

�
M

65 M⊙

�
: ð2:11Þ

An example for such matter can be found in nonrotating
strongly magnetized (B ¼ 1015 G) neutron stars, in which
their viscous damping time τν ∼ R2=ν is compared to the
Alfven time scale, then, for a typical neutron star param-
eters we find ν ∼ 4 × 1010 m2=s [53,54]. For boson stars,4

with radius R ∼ 3M and mass 65 M⊙, the damping time of
the l ¼ 2 mode is τ ∼ 320 ms, which yields a viscosity of
ν ∼ 2 × 1010 m2=s [54]. As for the quantum mechanical
perspective, motivated by the information paradox, where
unitarization requires nonlocal effects, or exotic matter
that provides strong quantum effects that is outside of the
standard model [11,12,15,19,55,56]. These theories
involves a new scale of order of the Planck scale (as in
string theory), which leads to deviation from the horizon
and thus, display small corrections to the would be BH
entropy SECO ¼ A=ð4gl2PÞ, where g≳ 1 is a new dimen-
sionless scale of order unity or more, as predicted in string
theory g ∼ l2s=l2P, with ls being the string scale [57]. The
link to viscosity is made by the requirement that the exotic
matter saturates the universal shear viscosity to entropy
volume density (see also Sec. VA for more details),
4πη=s ¼ 1. Then since η ¼ ρν, where ρ is the mass density,
we find that the ECO viscosity is suppressed in comparison
to the BH viscosity νECO ∼ νBH=g [13,33,58]. The quantum
perspective is discussed separately in Sec. III.
At this stage, motivated by the vast BH alternatives, we

turn to the evaluation of the ECO effective absorption
Eq. (2.9). From the analogous BH viscosity νBH ¼ M, we
get γECO ¼ βν=νBH. Where β depends on the ECO interior
and can be found by specifying the ECO equation-of-state
(EOS). For example, we notice that for the previous exotic
alternatives suggested ν ∼ 10−3νBH, and extremely compact
models with C ¼ 1=3 have k2 ∼ 10−2 and α ∼ 10 (see
examples for several NS models at [41]). This leads to
βν≲ νBH, which implies that viscous dissipation in ECOs
is comparable to horizon dissipation in an equal mass BHs.
Here we do not examine the specific details of the ECO
interior neither the underlying mechanism that provides
large viscosity, rather, we are satisfied with knowing that
such scenarios are physically viable. Hence we define the
ECO effective viscosity βν ¼ νECO, and focus on scenarios

where νECO=νBH ≲ 1 in addition to their implications on
future GWobservations. Then, we define the ECO effective
absorption coefficient

γECO ¼ νECO
νBH

: ð2:12Þ

Where 0 ≤ γECO ≤ 1, and is maximized when νECO
approaches νBH, so γECO → γBH ¼ 1.
The conclusion is that in general, viscous dissipation in

ECOs can mimic the effect of tidal heating in BHs, and as
we show in details below, under some favorable conditions
can leave a significant imprints on the emitted GW wave-
form during the inspiral phase as well at the ringdown
phase in the form of echoes when the ECO are very
compact R ¼ 2Mð1þ ϵÞ, where ϵ ≪ 1.
The effect of spin In the previous section, we focused on

the absorption of nonspinning ECOs. However, the inclu-
sion of spin effects increases the energy dissipation at 1.5
PN relative order and therefore is essential to the detect-
ability estimation of γECO.
The generalization of γECO to the spinning case follows

the procedure given above, where now _EECO and _ETH are
amplified due to the effect of rotation. The corresponding
expressions for dissipation of energy in the spinning case
can be found at [31,32]. Here for simplicity we consider the
case of a rigid rotation on equatorial orbits, then, to leading
order, we find that Eq. (2.4) is valid and the relation given
in Eqs. (2.8) holds. Hence, to leading order in the spin, tidal
dissipation is given by

_Ei ¼ γi
32

45
M6E2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �
ð1þ 3χ2ÞΩðΩ −ΩiÞ:

ð2:13Þ

Where the subscript i ¼ ðBH;ECOÞ, Ωi is the BH/ECO
angular velocity, γBH ¼ 1. In addition, from the viscous
dissipation of rotating stars given in [34] we obtain the
spin-dependent ECO effective absorption

γECOðχÞ ¼
νECO
νBH

2

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þð1þ 3χ2Þ

: ð2:14Þ

We first note that at low spins we recover the nonrotating
results Eqs. (2.5), (2.7), and, from [59] we also know that at
low spins the ECO metric can be approximated to that of a
Kerr BH. Thus, the quadratic spin modifications to γECO
can be regarded as a relativistic corrections of the fluid
velocity. For a viscous body, the velocity of a fluid element
positioned at the outer surface vRþ ¼ RþΩECO ∼ χ (where

Ωi ¼ χ=2Rþ), so spin effects brings to _EECO relativistic
corrections of order ðv=cÞ2 [34]. Eventually, we conclude
that the net effect of spin corrections is to reduce the non-
rotating ECO effective absorption at high spins (χ ≳ 0.85)
by not more than a factor two, γECOðχ ≳ 0.85Þ ∼ 2γECO.

4In most cases bosonic matter is assumed to have low
viscosity.
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III. VISCOUS DISSIPATION IN
ULTRACOMPACT OBJECTS

In this section, we would like to extend the previous
formalism to another subfamily of ECOs—Ultra-compact-
objects (UCOs), in which their outer surface positioned at
R ¼ 2Mð1þ ϵÞ where ϵ ≪ 1 (see classification at [24]).
Inspired by various quantum motivated models [see
Introduction and discussion below Eq. (2.11)] and espe-
cially by the BH membrane paradigm, where the horizon
is modeled as a one-way viscous membrane with shear
viscosity ηBH ¼ 1=ð16πÞ. We extend the viscous descrip-
tion of BHs and generalize it to UCOs by considering
horizon scale corrections and non-negligible viscosity
ηUCO ≲ ηBH.
The key point is the realization that the viscous dis-

sipation of inspiraling UCOs is similar to the tidal dis-
sipation of BHs [38].
Equations (2.7), (2.13), since as pointed out at [48] the

external geometry of UCOs can be well approximated by
the Schwarzschild geometry (or by the Kerr geometry in the
spinning case) up to some higher-order corrections in the
perturbative parameter ϵ. Therefore, Eq. (2.13) is valid in
addition to the correspondence Eq. (2.8). The only differ-
ence is encoded in the UCO effective absorption coefficient
γUCO, which in contrast to the above reviewed ECOs,
whose outer surface lies at R ∼ 3M so relativistic correction
are small, the surface of UCOs lies deep inside their
photonsphere and requires the full GR treatment. To
proceed, we express Eq. (2.13) in terms of the UCO
reflection coefficient R [38],

_EUCO ¼ ð1 − jRj2Þ _ETH; ð3:1Þ

and yields the relation jRj2 ¼ 1 − γECO. This implies that a
perfect absorber with γUCO ¼ 1 has R ¼ 0 which corre-
sponds to ηUCO ¼ ηBH, alternatively a perfect reflector
has R ¼ 1 which corresponds to negligible absorption
ηUCO ≪ ηBH.
In order to find the UCO viscosity dependent reflection

coefficient, we follow the derivation given in [60] (see also
[61]) and extend their results for the inspiral phase where
Mω ≪ 1. We consider the quadrupolar l ¼ 2 perturbations,
sourced by the external tidal field. Gravitational perturba-
tion of the even-parity sector in the exterior Schwarzschild
geometry are given by a simple wavelike differential
equation [62,63]

d2ψðxÞ
dx2

þ ðω2 − VÞψðxÞ ¼ 0 ð3:2Þ

where the even-parity potential is given by

VðrÞ ¼ fðrÞ 24r
2ðrþMÞ þ 18M2ð2rþMÞ

r3ð2rþ 3MÞ2 ð3:3Þ

here x is the familiar tortoise coordinate dx=dr ¼ 1=fðrÞ
and fðrÞ ¼ 1–2M=r. The scalar field ψ obeys purely
outgoing boundary conditions at infinity and a super-
position of an incoming and a reflected outgoing waves
near the UCO surface

ψðxÞ ∼ eiωx x → ∞ ð3:4Þ

ψðxÞ ∼Reiωx þ e−iωx x → xðRÞ ð3:5Þ

To relate the properties of the membrane to the external
geometry and in order to compensate the discontinuity of the
extrinsic curvature due to the viscous membrane, we impose
a junction condition on the extrinsic curvature5 [33,60]

Khab − Kab ¼ 8πTab; ð3:6Þ

whereKab is the extrinsic curvature about the 3-dimensional
membrane parametrized by the intrinsic coordinates ðt; θ;ϕÞ,
K ¼ habKab is the trace with respect to the induced metric
hab of the 3-dimensional membrane. The stress-energy-
momentum tensor (SEM) on the surface

Tab ¼ ρuaub þ ðp − ΘξÞγab − 2ηUCOσab ð3:7Þ

where ρ; p; ua are the density, pressure and the velocity of a
fluid element on the membrane. ξ;Θ are the bulk viscosity
and the expansion, γab ¼ hab þ uaub is the projection metric
and σab is the shear tensor. As demonstrated in [60]
by imposing the junction condition Eq. (3.6) on the UCO
surface, we get a boundary condition that relates the UCO
reflection coefficient to the membrane properties

ψ 0ðxÞ
ψ

¼ −i
νUCO
νBH

ωþGðR;ω; ν; ξÞ x → xðRÞ: ð3:8Þ

Where GðR;ω; ν; ξÞ is a function that depends on the
membrane properties and is given in the Appendix. We solve
Eq. (3.8) for the reflectioncoefficient near theUCOsurface by
imposing the boundary condition Eq. (3.5). Then, to first
order in ϵ ≪ 1 and for the low frequency tidal perturbation
Mω ≪ 1 that is related to the orbital frequencyΩ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=b3

p
by ω ¼ 2Ω, the UCO reflection coefficient reads6

jRj2 ≈
�
1− νUCO=νBH
1þ νUCO=νBH

�
2
�
1−

512ð16π − 3νUCO=νBHÞ
77ð1− ν2UCO=ν

2
BHÞ

ϵ

�
:

ð3:9Þ

5We assume that the extrinsic curvature of the interior is zero
[33].

6The results agree with [60] for ϵ ≪ 1, where here we also
neglected the bulk viscosity since it is insignificant to the
absorption coefficient in the BH limit.
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Obviously, for νECO ≪ 1 absorption is negligible and the
UCO reflection is maximized R ≈ 1. On the other hand, for
νUCO ≈ νBH reflection is negligible R ≪ 1.
From the relation jRj2 ¼ 1 − γECO and to leading order,

we obtain the UCO effective absorption coefficient

γUCO ¼ 4νUCO=νBH
ð1þ νUCO=νBHÞ2

: ð3:10Þ

As expected, in the absence of viscosity γECO ¼ 0, alter-
natively, when νUCO ¼ νBH we recover the BH absorption
γUCO ¼ 1. Furthermore, we notice that the effective absorp-
tion of ECOs Eq. (2.12) is recovered in the BH limit, where
for νUCO=νBH ≈ 1 we find γUCO ≈ νUCO=νBH.
Finally, as previously explained, the UCO viscous dis-

sipation is obtained by substituting γUCO into Eq. (2.13).
Moreover, we argue that although the reflection coefficient is
calculated for nonspinning UCOs, Eq. (3.10) is still a good
approximation for rotating UCOs. This claim is justified
in the UCO corotating frame with angular velocity ΩUCO ¼
χ=ð2Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
ÞÞ, where the frequency of the external

tidal perturbation is shifted to Ω −ΩUCO such that at high
spins χ ≲ 1 the low-frequency approximation breaks.
However, from Eq. (3.8) we notice that higher orders in
the frequency are coupled to ϵ through the function GðωÞ.
Thus, since we are particularly interested in quantum
corrections to the horizon where ϵ ≪ 1, which is parametri-
cally orders of magnitude smaller than the dimensionless
spin parameter ϵ ≪ χ. Higher-order spin corrections are
always suppressed by ϵ and are unimportant to the absorp-
tion properties of the membrane.

IV. DETECTABILITY

In this section, we discuss the possibility of measuring
the ECO effective absorption γECO in future LISA obser-
vations of supermassive, highly spinning equal-mass bina-
ries. Which according to [4], LISA could track for a time
period T ∼ 1 year and observe from the early stages of the
inspiral and up to the coalescence with high SNR (≳103).
We show that for such binary systems, the statistical error
due to the detector noise enables to set constraints on γECO,
which according to Eq. (2.12) constraints the properties
of the exotic matter through νECO. When spin effects are
considered, we find that the higher the spin of the rotating
body, the lower the relative statistical error. The improve-
ment in accuracy at large spins is mainly since tidal heating
effects of spinning BHs are leading to the nonspinning
case at 1.5 PN relative order, where the spinning (non-
spinning) enters at 2.5 PN (4PN) relative to the leading
order GW phase term. Another important reason is due
to the signal-to-noise-ratio (SNR) sensitivity at the late
stages of the inspiral, where the orbital frequency is large

SNR2 ∼
R
max
min

h̃ðfÞ2
SnðfÞ df. Where h̃ðfÞ is the Fourier transform

GW waveform and SnðfÞ is the detector noise spectral

density. We find this effect to be extremely important for
UCOs whose outer surface lies deep inside their photon-
sphere. We denote fmax ¼ fISCO, and fKerrISCO is Kerr’s ISCO
which for certain spins (χ ≳ 0.7) modifies fmax substan-
tially fKerrISCO=f

χ¼0
ISCO ≈ 3 [64].

The analysis given below follows the analysis given in
[40], there it is shown that highly spinning super massive
BHs characterized by maximal absorption γBH ¼ 1 can be
distinguished from ECOs with zero absorption γECO ¼ 0,
which means that the statistical error due to the detector
noise is small enough and enables the measurement of the
absorption coefficients with high certainty. However, here
we consider the possibility that dissipation effects in ECOs
can mimic the effect of dissipation at the horizon, as
described by _EECO ¼ γECO _EBH. Therefore, as displayed in
Eq. (2.12), ECOs could, in principle, produce comparable
effects to the BH absorption, namely γECO ≲ 1. The results
are displayed in Fig. 1.
To proceed, our aim is to estimate the statistical error

in the measurement of γECO. We apply a parameter
estimation method based on the Fisher information matrix
that is accurate for large SNR events and described by a
Gaussian distribution. Where for a given detector signal
sðtÞ ¼ hðt; θiÞ þ n, where n is the noise and hðt; θiÞ is the
model signal that depends on the parameters θi. The
posterior probability distribution can be approximated by

pðθijsÞ ∝ e−
1
2
ΔθiΔθjΓij ; ð4:1Þ

Where Γij is the Fisher matrix defined by

Γij ¼
�∂h
∂θi

���� ∂h∂θj
�
; ð4:2Þ

and the inner product ð·j·Þ is defined by

ðh1jh2Þ ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df: ð4:3Þ

Here SnðfÞ denotes LISAs noise spectral density [4,65].
For the mass range considered below M ¼ 106 M⊙ the
minimal frequency is the entrance frequency to LISA’s
observation band is denoted by, fmin ≈ 10−5 Hz which
corresponds to observation time of about one year [66]. The
maximal frequency for UCOs is taken to be the frequency
at the Kerr’s ISCO fmax ¼ fKerrISCO [64], for ECOs we take
the contact point. The model signal and the true signal
are parametrized by θi ¼ ðlnA; lnM; ln η;Ψc; tc; χ1; χ2;
γECO=UCOÞ, whose arguments are the amplitude A, the
chirp mass M ¼ η3=5M, the symmetric mass ratio η ¼
M1M2=M2, the phase Ψc, the time at coalescence tc, the
dimensionless spin parameters χ1, χ2 and the ECOs/UCOs
dimensionless effective absorption coefficient given in
Eqs. (2.12), (3.10) respectively.
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For this set of parameters, the root-mean-square error in
measuring γECO=UCO is expressed through the inverse of the
Fisher matrix

σγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔγÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þγγ

q
: ð4:4Þ

For a binary inspiral, the Fourier transform of the signal is
modeled by h̃ðf; θiÞ ¼ AeiΨ, where

Ψ ¼ ΨPP þ γiΨTH; ð4:5Þ

are the phases of the point-particle and tidal heating effects
respectively [67]. i ¼ ðECO;UCOÞ denotes the ECO/UCO
effective absorption Eqs. (2.12), (3.10). The phase is
computed by solving the equation

d2Ψ
df2

¼ 2π
_E

dE
df

; ð4:6Þ

where E ¼ −M1M2=2b is the gravitational binding energy
of the binary system. The approximation method adopted
here is the analytical “TaylorF2 approximant” [68–70]. We
include correction terms to the GW phase in the form of
spin-orbit, spin-spin and cubic spin corrections up to 3.5PN
order relative to the leading-order GW term [71,72], and
tidal heating correction term for spinning objects to the
leading 2.5 PN order relative to the leading-order GW term
[24,71]. The amplitude is taken to leading PN order and
includes the sky-averaged prefactor [66].

V. DISCUSSION

A. Theoretical implications on black-hole mimickers

In this section we discuss, on a qualitative level, the
possible interpretations to a measurement of γUCO and
its deviations in BH mimickers. Furthermore, we show

explicitly how stringy inspired quantum corrections pro-
vides the deviation of the absorption coefficient from that
of a classical BH.
BHs-like objects are characterized by the BH compact-

ness and an entropy that matches the Bekenstein’s entropy
SBH ¼ A=4.7 This property is provided by quantum BHs
(QBHs) models considered in [12,14,15,75]. We can
express the UCO absorption Eq. (3.10) in terms of their
entropy (in units of ℏ ¼ kB ¼ 1), ρνBH ¼ ηBH ¼ sBH=ð4πÞ,
where sBH ¼ SBH=V is the entropy volume density. Then
from Eq. (3.10) at large viscosities γUCO ¼ ηUCO=ηBH, the
absorption coefficient becomes

γUCO ¼ 4π
ηUCO
s

: ð5:1Þ

So for UCO posses BH entropy, constraints on the
absorption coefficient translates to constraints on the
universal shear viscosity to entropy volume density, known
as the KSS bound [58] 4π ηUCO

s ≥ 1. Then, since the UCO
absorption is bounded from above (γUCO ≤ 1), the two
conditions implies γUCO ¼ 1.
The conjectured KSS bound found to agree with

common substances as water, helium, and nitrogen.
However, in strongly interacting systems such as quark-
gluon plasma, which appear at extreme densities and are
relevant for our understanding of the UCO interior, the ratio
found to be close to the bound and perhaps violating it [76].
Therefore, it is requested to explore the violation possibility
(γUCO < 1) and its implications on the UCO absorption.
Let us assume that the fluid interior is composed of

strongly interacting fluid in which, according to the fluid-
gravity correspondence [77] their higher dimensional

FIG. 1. The relative statistical error vs spin parameter for several values of γECO=UCO Eqs. (2.12), (3.10). We assume a binary of equal
spin and nearly equal massesM1=M2 ¼ 1.01 with luminosity distance Dl ¼ 2 Gpc. Points below the horizontal dashed line correspond
to detection at better than 1σ confidence. The γUCO ¼ ð0.3; 0.5; 0.7; 0.9Þ corresponds to νUCO=νBH ¼ ð0.08; 0.17; 0.29; 0.51Þ.

7These objects can have Planckian corrections at the horizon
scale, so ϵ ¼ lp and redshift arguments provides the Bekenstein’s
entropy SECO ¼ 1=ϵ2 [73,74].
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holographic dual is the stringy inspired ADS5 black
brane Gauss-Bonnet (GB) gravity. The Lagrangian density
L ¼ R − 2Λþ λGB

2
L2ðR2 − 4RμνRμν þ RμνρσRμνρσÞ, where

L is the ADS radius and Λ ¼ −6=L2. λGB is the dimen-
sionless parameter that controls the magnitude of the higher
curvature correction terms. In [78,79], the bound was
calculated from the holographic gravity dual at large N
and large ’t Hooft coupling λ (1 ≪ λ ≪ N), then to non-
perturbative order in λGB the result is given by

γUCO ¼ 1 − 4λGB ð5:2Þ

which can be expressed in terms of the reflection coefficient

jRj2 ¼ 4λGB ð5:3Þ

This demonstrates how quantum corrections in the form
of higher derivative terms modifies the BH absorption/
reflection. The positive sign of λGB that is required in order
to maintain causality [80] is consistent with the positivity of
jRj2 and the UCO absorption bound γUCO < 1.

VI. SUMMARY

In this paper, we investigated the effect of energy
dissipation in ECOs at the inspiral phase. In particular,
we were interested in whether and how can ECO mimic the
effect of tidal heating in BHs. Then, in analogy to the
membrane paradigm, by modelling ECOs as a Newtonian
viscous body and UCOs as a viscous membrane, we find
the corresponding absorption coefficients. Then, the ECOs
effective absorption was generalized to the spinning case,
according to Eq. (2.12).
The detectability of the ECO effective absorption γECO in

future LISA observations was discussed. We performed a
Fisher information analysis to estimate the statistical error
in measurement of γECO and to quantify how well can the
ECO viscous interior produce similar effects to that of a
BH. The results show that for supermassive, highly-
spinning comparable-mass binaries, a relative absorption
of γUCO ≳ 0.5; γECO ≳ 0.9 could be measured for binary at a
luminosity distance Dl ¼ 2 Gpc of M ¼ 106 M⊙ and spin
χ ≳ 0.75 with more than 1σ confidence, where at spins
close to extremality χ ∼ 0.95, γUCO can be measured with
more than 3σ confidence. Our results found to agree with
[40]. Nevertheless, a different approach for calculating the
reflection coefficient was recently studied in [81], which
by quantifying the linear response of the membrane to the
external tidal field, different boundary conditions are
imposed on the membrane.
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APPENDIX

1. Estimation of the neutron star shear viscosity

The estimated density for a typical neutron stars with
M ¼ 1.4 ×M⊙, R ¼ 10 km is

ρ ¼ 3

4π

M1

R3
1

≈ 6.3 × 1017
kg
m3

�
M

1.4 ×M⊙

��
104 m
R

�
3

:

ðA1Þ

The estimated viscosity for “cold” neutron star T < 109 K,
where the viscosity is governed by the electron scattering,
is given by [51,52]

νNS ≈ 3 × 105
m2

s

�
ρ

6.3 × 1017 kg
m3

��
106 K
T

�
2

: ðA2Þ

2. The function GðR;ω;νÞ
For completeness we bring the full form of the function

GðR;ω; νÞ Eq. (3.8), for the case of our interest we consider
zero bulk viscosity which found to be negligible when
ϵ ≪ 1. The function is taken from the Appendix of [60] and
defined by GðR;ω; νÞ ¼ A=B

A¼ −2ϵð49152π2ηw2ðϵ− 1Þ5ðηð4ϵ− 5Þ− 2Þ
þ 3ð−4w2ð4ϵðϵð4ϵ− 9Þ þ 6Þ þ 5Þðϵ− 1Þ2
þ 4ϵð2ϵð15− 8ðϵ− 1ÞϵÞ− 35Þ− 7Þ
− 512iπwðϵ− 1Þ3ðηðϵð16ϵ− 5Þ− 29Þ þ 8ðϵ− 1Þ2ÞÞ

B¼ 4ð7− 4ϵÞðϵ− 1Þ2ð8w2ð2ϵð4ϵð12ðϵ− 4Þϵþ 71Þ− 181Þ
þ 91Þðϵ− 1Þ3 þ 128iπηwð8ϵð4ϵððϵ− 4Þϵþ 6Þ− 17Þ
þ 11Þðϵ− 1Þ3 − 8ϵðϵð2ϵþ 3Þ− 3Þ− 11Þ; ðA3Þ

where w ¼ Mω and ω ¼ 2Ω is twice the orbital frequency.
ϵ ¼ ΔR=R ¼ ðR − 2MÞ=2M is the deviation from the
BH horizon. In accordance with Eqs. (3.8), (3.9), since
Gðϵ; wÞ ∝ ϵ, in the BH limit ϵ → 0 we get R ¼ 0, γUCO ¼
γBH ¼ 1 as expected.
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