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A plethora of observational data obtained over the last couple of decades has allowed cosmology to enter
into a precision era and has led to the foundation of the standard cosmological constant and cold dark matter
paradigm, known as the ΛCDMmodel. Given the many possible extensions of this concordance model, we
present here several novel consistency tests which could be used to probe for deviations from ΛCDM. First,
we derive a joint consistency test for the spatial curvature Ωk;0 and the matter density Ωm;0 parameters,
constructed using only the Hubble rate HðzÞ, which can be determined directly from observations. Second,
we present a new test of possible deviations from homogeneity using the combination of two datasets,
either the baryon acoustic oscillation (BAO) and HðzÞ data, or the transversal and radial BAO data, while
we also introduce two consistency tests for ΛCDM which could be reconstructed via the transversal and
radial BAO data. We then reconstruct the aforementioned tests using the currently available data in a model
independent manner using a particular machine learning approach, namely the genetic algorithms. Finally,
we also report on a ∼4σ tension on the transition redshift as determined by the HðzÞ and radial BAO data.

DOI: 10.1103/PhysRevD.103.103539

I. INTRODUCTION

Recent observations over the last couple of decades have
led to overwhelming support in favor of the cosmological
constant (Λ) and cold dark matter (CDM) model, known as
the ΛCDM model [1]. The latter significantly outperforms
alternative models, as it has been noted via Bayesian
analyses of astrophysical measurements [2]. However, even
though the concordance, spatially flat, ΛCDM model is
widely accepted, some recent reanalyses of the Planck 2018
data leave the window open for a possible nonflat universe,
as has been noted in Refs. [1,3,4]. This deviation from
flatness could be due to unaccounted for systematic errors
or due to a statistical fluctuation [5].
In this regard, great efforts are made to provide accurate

constraints on the spatial curvature of the Universe, as
measured by the parameter Ωk;0, since any statistically
significant deviation from flatness would provide insights
to the primordial inflation paradigm, aid to test physics of
the early universe and also help pinpoint to high precision
the age of the Universe. Moreover, accurately determining
the spatial curvature of the Universe would also help in
discriminating evolving dark energy density models with
curvature from a flat ΛCDM model, as in general evolving
dark energy and curvature are degenerate with each other
[6]. In this context several consistency tests and analyses

have been proposed [7–16]. Actually, a detection of non-
flatness, i.e., Ωk;0 ≠ 0, would severely constrain the num-
ber of inflationary models, see, e.g., Ref. [17]; and future
surveys, such as DESI and SKA, are targeting tighter
measurements of Ωk;0 by breaking parameter degenera-
cies [18,19].
Even though the aforementioned discrepancy might be

due to unaccounted for systematic errors, there also exists
the plausible possibility of new physics in the form of
modified gravity (MG) or dark energy (DE) models. In fact,
the ΛCDM scenario has some caveats as its main compo-
nents, namely, dark matter (DM) and dark energy (DE)
have not yet been detected in the laboratory and are not well
understood [20–22], hinting towards the idea that ΛCDM
could be an approximation to a more fundamental theory
that remains currently unattainable [23].
The existence of a large number of MG and DE models

makes it difficult for the observations to be interpreted,
because the results on the cosmological parameters, e.g.,
the value of the matter density of the UniverseΩm;0, depend
on the particular model assumed. In fact, great efforts
have recently been placed to provide a unified framework
which encompasses some of these models like the effective
field theory (EFT) [24,25] or the effective fluid approach
(EFA) [26–29].
One way to overcome the biases of choosing a theoreti-

cal defined model is to use nonparametric reconstruction
methods and model-independent approaches [30]. In this
context, machine learning (ML) algorithms have provided
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innovative solutions for extracting information in a theory
agnostic manner [31]. These tests are ideal to check for
possible tensions that could arise because of unaccounted
for systematics or could provide hints of new physics. Their
main advantage is that any deviations at any redshift from
the expected value imply the breakdown of any assump-
tions made [32]. Null tests have been used extensively for
the concordance ΛCDM model [30,33,34], interacting DE
models [35], the growth-rate data [32,36,37], the cosmic
curvature [38–41], and also to probe the scale independ-
ence of the growth of structure in the linear regime [42].
Here we provide a new method to probe the spatial

curvature and homogeneity of the Universe. First, we
present a new joint consistency test for the curvature
Ωk;0 and the matter density Ωm;0 parameters, constructed
using only the Hubble rate HðzÞ, which is determined
directly from observational data. This null test of the
ΛCDM model is an extension of the well-known Om
diagnostic [33], but with the added advantage that now
we do not have to assume flatness. Second, we also present
a null test that can be used to check for deviations from
homogeneity through the combination of two datasets,
either the baryon acoustic oscillations (BAO) andHðzÞ data
or the transveral and radial BAO data.
Furthermore, we also introduce two new consistency

tests for ΛCDM that could be tested through the trans-
versal, also known as angular, and radial BAO, respectively.
The first one is derived following a similar approach to that
of Ref. [43], where now we use the angular BAO scale
relation θðzÞ to present a new expression of ΛCDM, which
we will refer to as OmθðzÞ. We show that this test has the
advantage that it does not contain higher derivative terms,
which increase the error when noisy data are used, thus
providing stringent constraints for the ΛCDM model.
Finally, we use the radial BAO data ΔzðzÞ to reconstruct
the Hubble parameter HðzÞ and the deceleration parameter
qðzÞ and constrain the accelerated expansion of the
Universe.
In all cases the reconstructions of the cosmological data

are performed using the genetic algorithms (GA), which is
a stochastic minimization and symbolic regression algo-
rithm. One of its main advantages is that it is a non-
parametric method which allows us to make the least
number of assumptions concerning the underlying cosmol-
ogy and thus avoid the issue of biases.
The outline of our paper is as follows: in Sec. II we

introduce our theoretical framework. In Sec. III we set out
our spatial curvature and homogeneity test, and in Sec. IV
we outline our ΛCDM consistency tests. Then, in Sec. V
we describe the data used in our analysis and in Sec. VI we
discuss the genetic algorithms used to do the reconstruc-
tions. Later, in Sec. VII we present our results and in
Sec. VIII we summarize our conclusions. Finally, in
Appendix we present the results for the complementary
joint null test for ðΩm;ΩkÞ of Ref. [44].

II. THEORETICAL FRAMEWORK

In this section we review the formalism used in the
analysis and the consistency tests. Assuming that at scales
of order ∼100 Mpc the Universe is homogeneous and
isotropic, then it can be described by the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric at the back-
ground level, which in reduced spherical polar coordinates
can be written as

ds2¼−dt2þaðtÞ2
�

dr2

1−kr2
þ r2dθ2þ r2sin2θdϕ2

�
; ð1Þ

where t is the cosmic time and the scale factor aðtÞ is
related to the redshift z as a ¼ 1

1þz. The spatial slices can be
interpreted as flat Euclidean space with k ¼ 0, closed
hyperspherical space with k ¼ þ1 or open hyperbolic
space with k ¼ −1. The spatial curvature of the Universe
can be parametrized as Ωk;0 ¼ − c2

H0
k, thus at late times,

when we can neglect radiation since Ωr;0 ∼ 0, we find that
the Friedmann equation can be written as

H2ðzÞ
H2

0

¼Ωm;0ð1þ zÞ3þΩk;0ð1þ zÞ2

þð1−Ωm;0−Ωk;0Þexp
�
3

Z
z

0

1þwðz0Þ
1þ z0

dz0
�
; ð2Þ

where Ωm;0 represents the matter content of the Universe,
Ωk;0 its curvature and w the DE equation of state. Since the
cosmological constant has w ¼ −1, then Eq. (2) gives for
the ΛCDM model that

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3 þ Ωk;0ð1þ zÞ2 þ ΩΛ;0

q
; ð3Þ

where ΩΛ;0 is related to Ωm;0 and Ωk;0 via the consistency
relation

Ωm;0 þ ΩΛ;0 þΩk;0 ¼ 1: ð4Þ

The comoving distance at some redshift z can be written
as [45]

rðzÞ¼ c
H0

1ffiffiffiffiffiffiffiffiffiffiffiffi
−Ωk;0

p sin

� ffiffiffiffiffiffiffiffiffiffiffiffi
−Ωk;0

p Z
z

0

c
Hðz0Þ=H0

dz0
�
; ð5Þ

while the luminosity and angular diameter distances are
related via

dLðzÞ ¼ ð1þ zÞrðzÞ; ð6Þ

dAðzÞ ¼ ð1þ zÞ−1rðzÞ: ð7Þ

The deceleration parameter qðzÞ is defined as

RUBÉN ARJONA and SAVVAS NESSERIS PHYS. REV. D 103, 103539 (2021)

103539-2



qðzÞ ¼ −
äa
_a2

¼ −1þ ð1þ zÞ d lnðH=H0Þ
dz

; ð8Þ

and assuming Eq. (3), at the present time (z ¼ 0) it can be
expressed as

q0 ≡ qðz ¼ 0Þ

¼ 1

2
ð−2þ 2Ωk þ 3ΩmÞ: ð9Þ

Finally, assuming Eq. (3), the transition redshift zt can be
defined as the redshift at which the deceleration parameter
changes sign, i.e., qðztÞ ¼ 0. This implies that

zt ¼
�
2ΩΛ;0

Ωm;0

�
1=3

− 1

¼
�
2ð1 −Ωm;0 − Ωk;0Þ

Ωm;0

�
1=3

− 1; ð10Þ

which is a prediction of the ΛCDM model.

III. THE NULL TESTS

A. Test 1: Deviations from flatness

Defining x ¼ 1þ z, from Eq. (3) we can write the matter
density parameter Ωm;0 in terms of the Hubble function and
the curvature Ωk;0 as

Ωm;0 ¼
h2ðxÞ − 1þΩk;0ð1 − x2Þ

x3 − 1
; ð11Þ

which reminds us of the Om diagnostic of Ref. [33] when
Ωk;0 → 0 and where we have defined hðxÞ ¼ HðxÞ=H0.
The problem in this case is that now the curvature
parameter, which cannot be measured in a model indepen-
dent fashion, enters in the right-hand side of Eq. (11). To
avoid this problem, we can use the deceleration parameter
evaluated at z ¼ 0 given by Eq. (9), as it can indeed be
determined independently from the data, see, for example,
Ref. [43]. Thus, using Eqs. (3) and (9) we can simulta-
neously solve the algebraic system of equations for Ωk;0

and Ωm;0 to find expressions that depend on only mea-
surements of the Hubble rate HðzÞ. Doing so we find

Ωm;0 ¼
2ð−1þ h2ðzÞ − ð1þ q0Þzð2þ zÞÞ

z2ð3þ 2zÞ ; ð12Þ

Ωk;0 ¼
3 − 3h2ðzÞ þ 2ð1þ q0Þzð3þ zð3þ zÞÞ

z2ð3þ 2zÞ ; ð13Þ

where hðzÞ ¼ HðzÞ=H0.
As can be seen, the joint test of Eqs. (12)–(13), is an

extension of the Om diagnostic of Ref. [33] as it allows us
to distinguish evolving dark energy (DE) models from the

cosmological constant, without having to assume any value
for the curvature parameter. Our expressions presented here
resembles that of Ref. [44], but in our case we do not
explicitly have derivatives of the Hubble rate HðzÞ, albeit
only a derivative evaluated at a single point is implicitly
contained in the deceleration parameter q0. As we will see
in later sections, this difference allows our approach to have
much smaller error bars in the reconstruction compared to
that of Ref. [44].

B. Test 2: Deviations from homogeneity

Here we expand on tests of homogeneity as proposed in
Ref. [46]. Homogeneity implies a consistency relation that
holds in FLRW between the angular diameter and comov-
ing distances, given by dAðzÞ and rðzÞ, respectively,
described by Eq. (7). Any violation of Eq. (7) implies
we live in a non-FLRW Universe, however, one would still
expect variations on the order of ∼10−5 due to perturbations
from large-scale structure.
One way we can test this assumption is by reconstructing

separately the angular diameter distance using the BAO
data and the comoving distance from the HðzÞ data. To do
so, we make use of the comoving observed BAO angle,
which is given by

θBAO ¼ rd
ð1þ zÞdAðzÞ

; ð14Þ

and the same for the HðzÞ data

θHðzÞ ¼
rd
rðzÞ ; ð15Þ

where in both cases rd is the comoving sound horizon at the
drag epoch rd ≡ rsðzdÞ, given by

rsðzdÞ ¼
Z

∞

zd

csðzÞ
HðzÞ dz; ð16Þ

with zd the redshift at the drag epoch, see Eq. (4) of
Ref. [47], while csðzÞ is the sound speed given by

cs ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ RÞp ; ð17Þ

where R ¼ 3ρb
4ργ

¼ 3Ωb;0

4Ωγ;0
a.

Then, we can create the following expressions that can
be used to search for deviations from homogeneity using
BAO and HðzÞ data:
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ζ ¼ 1 −
θHðzÞ
θBAO

¼ 1 −
ð1þ zÞdAðzÞ

rðzÞ ; ð18Þ

which should be zero at all z for any FLRW model.
In this case we can use BAO measurements and HðzÞ

data to directly reconstruct the angular diameter distance
dAðzÞ and the comoving distance rðzÞ, respectively. One
issue with this though is that the HðzÞ cannot constrain the
curvature parameter directly, as we reconstruct the data
agnostically with the GA, thus for this test we will assume
flatness, i.e., Ωk;0 ¼ 0 in order to calculate the comoving
distance rðzÞ from theHðzÞ data. Furthermore, had we used
any data that depend on the conservation of the number of
photons to measure the luminosity distance dLðzÞ, as is, for
example, the case for the type Ia supernovae, then the test of
Eq. (18) would in fact be a test of the cosmic distance duality
(Etherington) relation dLðzÞ ¼ ð1þ zÞ2dAðzÞ instead.
We can also express Eq. (18) using alternatively the

radial Δz and angular θðzÞ BAO data, as dAðzÞ and θðzÞ are
related via Eq. (14), while the radial BAO Δz and HðzÞ are
related via the following relation

Δz ¼ rd ·HðzÞ
c

; ð19Þ

where c is the speed of light. Then, by using Eqs. (14) and
(19) we have also the following expression:

ζ ¼ 1 −
θH
θBAO

¼ 1 −
�
θBAOðzÞ

Z
z

0

1

Δzðz0Þ dz
0
�

−1
; ð20Þ

which should be zero at all redshifts in the ΛCDM model.
This test has the added advantage that the radial and angular
BAO are direct observables and in fact, the sensitivity of the
angular BAO scale is complementary to that of the radial
BAO [48].

IV. COMPLEMENTARY NULL TESTS

A. Test 1: The angular BAO

As mentioned before, the angular BAO can be
expressed as

θðz;Ωm;0Þ ¼
rd

ð1þ zÞdAðz;Ωm;0Þ
; ð21Þ

thus, defining the following quantity

θ̃ðz;Ωm;0Þ ¼
θ

rd
¼ 1

ð1þ zÞdAðz;Ωm;0Þ
; ð22Þ

we can now apply the Lagrange inversion theorem to
θ̃ðz;Ωm;0Þ and write Ωm;0 as a function of θ̃ðzÞ, i.e.,

Ωm;0ðz; θ̃ðzÞÞ via the following steps. First, in the flat
ΛCDM model and neglecting radiation, the angular diam-
eter distance dAðz;Ωm;0Þ is given by

dAðz;Ωm;0Þ ¼
c

H0ð1þ zÞ
Z

z

0

1

HðxÞ dx

¼ c
H0

2ð1þ zÞffiffiffiffiffiffiffiffiffi
Ωm;0

p
�

2F1

�
1

6
;
1

2
;
7

6
;
Ωm;0 − 1

Ωm;0

�

−
2F1ð16 ; 12 ; 76 ; Ωm;0−1

Ωm;0ð1þzÞ3Þffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�
: ð23Þ

Then, to derive the angular BAO test we do a series
expansion on Eq. (22) around Ωm;0 ¼ 1 and keep the
first 10 terms in order to obtain a reliable unbiased
estimation, so as to avoid theoretical systematic errors.
We have chosen to keep the first 10 terms so that at
high redshifts, in particular at z ∼ 2.3 where the last of the
data points are, the theoretical systematic errors are well
below ∼1%.
Then, we apply the Lagrange inversion theorem to

invert the series and to write the matter density Ωm;0 as
a function of the angular BAO θ̃. Then, the first two terms
of the test are

Omθ ¼ 1þ
28ð− 1

2−2
ffiffi
a

p θ̃Þ
ð6þ5

ffiffiffi
a

p þ4aþ3a3=2þ2a2þa5=2ÞþOðθ̃2Þ;

ð24Þ

where the scale factor a is related to the redshift z as a ¼
1

1þz and when θ̃ corresponds to the ΛCDM model, this
should reduce to Ωm;0. This expression has the main
advantage that it does not require taking derivatives of
the data as we use the angular BAO directly and the
parameter rd can also be directly obtained from the data;
see Sec. V for more details.

B. Test 2: The radial BAO

In a flat ΛCDM universe, the OmHðzÞ quantity is
constant and equal to the matter energy density [33]

OmHðzÞ ¼
h2ðzÞ − 1

ð1þ zÞ3 − 1
≡Ωm;0; ð25Þ

where hðzÞ≡HðzÞ=H0. From Eq. (19) we have that

hðzÞ ¼ c
100rsh

Δz; ð26Þ

where the combination rsh ¼ rd · h can be easily deter-
mined in a model independent fashion by fitting the radial
BAO with the GA, see Sec. V for more details. Then given
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the relation between the Hubble parameter and the radial
BAO, we can also rewrite the aforementioned expression as

OmΔzðzÞ ¼
hðzÞ2 − 1

ð1þ zÞ3 − 1

¼
ð c
100rsh

Þ2Δz2ðzÞ − 1

ð1þ zÞ3 − 1
: ð27Þ

C. Test 3: The deceleration parameter

The deceleration parameter specified by Eq. (8) can also
be estimated by using the radial BAO, see Eq. (19). Hence,
we can measure the rate of accelerated expansion of the
Universe in a model independent fashion with a different
dataset other than HðzÞ and also constrain the transition
redshift zt of the acceleration phase. In this case, we can
write the deceleration parameter as

qðzÞ ¼ −1þ ð1þ zÞ d lnðH=H0Þ
dz

;

¼ −1þ ð1þ zÞΔz
0ðzÞ

ΔzðzÞ ; ð28Þ

and the transition redshift zt is the value at which qðztÞ ¼ 0.
The main advantage in this case is that the radial BAO data
have a much smaller error with respect to the HðzÞ data,
hence can provide stringent constraints on the deceleration
parameter qðzÞ.

V. DATA

Here we present the data we have used for our recon-
structions in our analysis.

A. Hubble rate data

The Hubble rate data HðzÞ used in our analysis is
obtained by two interrelated methods. The first dataset
comes from the clustering of galaxies or quasars, being a
direct probe of the Hubble expansion by determining the
BAO peak in the radial direction [49]. The second compi-
lation is obtained by the differential age method, which is
connected to the redshift drift of distant objects over long
periods of time. Recall that in general relativity (GR) the
Hubble parameter can also be written in terms of the time
derivative of the redshift as HðzÞ ¼ − 1

1þz
dz
dt. We should

note that with this last approach there are assumptions on
galaxy evolution characteristics [50].
The HðzÞ data used in our analysis (in units of

km s−1 Mpc−1) comes from a compilation of 36 points
which spans a redshift range of 0.07 ≤ z ≤ 2.34 and is
based on those of Refs. [51–58] and Ref. [59]. The
compilation, which can be found at Table I of Ref. [26],
comes in the form ðzi; Hi; σHi

Þ. We have minimized the χ2

analytically over H0, finding

χ2H ¼ A −
B2

Γ
; ð29Þ

H0 ¼
B
Γ
; ð30Þ

where the parameters A, B, and Γ are defined as

A ¼
XNH

i

�
Hi

σHi

�
2

; ð31Þ

B ¼
XNH

i

HiEthðziÞ
σ2Hi

; ð32Þ

Γ ¼
XNH

i

�
EthðziÞ
σHi

�
2

; ð33Þ

and we designate the theoretical value of the Hubble
parameter as EthðzÞ ¼ HthðzÞ=H0, while the number of
points is NH ¼ 36.
This dataset has been used to extract different cosmo-

logical information such as measuring the Hubble constant
H0, determine the deceleration transition redshift, constrain
the spatial curvature of the Universe along with distance
redshift data and also the nonrelativistic matter and DE
parameters as can be seen in Ref. [60].

B. BAO data

The different BAO data used in our analysis comes from
6dFGS [61], SDDS [57], BOSS CMASS [62], WiggleZ
[56], MGS [63] and BOSS DR12 [64], DES [65], Lya [66],
DR—14 LRG [67] and quasars [68]. The following
functions that we will present now are used to describe
the data. First, we define the ratio of the sound horizon at
the drag redshift to the so-called dilation scale:

dz ≡ rsðzdÞ
DVðzÞ

; ð34Þ

where the sound horizon is given by Eq. (16) and zd is the
redshift at the dragging epoch, see Eq. (4) of Ref. [47].
In the ΛCDM model the sound horizon can be approxi-
mated as

rsðzdÞ ≃
44.5 logð 9.83

Ωm;0h2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 10ðΩb;0h2Þ3=4
q Mpc; ð35Þ

while the dilation scale is given by

DVðzÞ ¼
�
ð1þ zÞ2dAðzÞ2

cz
HðzÞ

�
1=3

; ð36Þ

where we have defined the Hubble distance
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DHðzÞ ¼ c=HðzÞ: ð37Þ

Then, the 6dFGs and WiggleZ BAO data are specified as

z dz σdz
0.106 0.336 0.015
0.44 0.073 0.031
0.6 0.0726 0.0164
0.73 0.0592 0.0185

; ð38Þ

where their inverse covariance matrix is

C−1
ij ¼

0
BBB@

1
0.0152 0 0 0

0 1040.3 −807.5 336.8

0 −807.5 3720.3 −1551.9
0 336.8 −1551.9 2914.9

1
CCCA ð39Þ

with the χ2 given by

χ26dFS;wig ¼ ViC−1
ij V

j; ð40Þ

and Vi ¼ dz;i − dzðzi;Ωm;0Þ.
The BAO measurements for MGS and SDSS (LowZ and

CMASS) are given by DV=rs ¼ 1=dz via

z 1=dz σ1=dz
0.15 4.46567 0.168135
0.32 8.62 0.15
0.57 13.7 0.12

ð41Þ

and the

χ2MGS;SDSS ¼
X�

1=dz;i − 1=dzðzi;Ωm;0Þ
σ1=dz;i

�
2

: ð42Þ

At this point we should stress that these aforementioned
data points were provided by their respective collabora-
tions, 6dFGs and WiggleZ for the ones in Eq. (40) and
MGS and SDSS for Eq. (42) in that exact form, as this is
how they are extracted from the raw data. Hence, we have
not made any assumptions from our part at this stage.
The BAO data from DES are of the form dAðzÞ=rs with

ðz; dAðzÞ=rs; σÞ ¼ ð0.81; 10.75; 0.43Þ and the χ2 given by

χ2DES ¼
X�

dAðz; iÞ=rs − dAðzi;Ωm;0Þ=rs
σdAðz;iÞ=rs

�
2

: ð43Þ

We also include the BAO data from Lya, which are of the
form fBAO ¼ ðð1þ zÞdA=rs; DH=rsÞ and are given by

z fBAO σfBAO
2.35 36.3 1.8
2.35 9.2 0.36

ð44Þ

with the χ2 given by

χ2Lya ¼
X�

fBAO;i − fBAOðzi;Ωm;0Þ
σfBAO

�
2

: ð45Þ

Finally, the DR-14 LRG and quasars BAO data make the
assumption of rs;fid ¼ 147.78 Mph=h and are given by
DV=rs ¼ 1=dz

z 1=dz σ1=dz
0.72 2353

rs;fid
62

rs;fid

1.52 3843
rs;fid

147
rs;fid

ð46Þ

and the χ2 given by

χ2LRG;Q ¼
X�

1=dz;i − 1=dzðzi;Ωm;0Þ
σ1=dz;i

�
2

: ð47Þ

The total χ2 is then given by

χ2tot ¼ χ26dFS;Wigþχ2MGS;SDSSþχ2DESþχ2Lyaþχ2LRG;Q: ð48Þ

Note that the previous equation carries the assumption that
the data are independent, hence we can just add the χ2

together. As some of the data points are from the same
survey, there must be galaxies in common between the
overlapping datasets, and therefore some potentially strong
covariances, something which poses an important limita-
tion of our analysis.
In the particular cases, e.g., the WiggleZ data, where the

correlations between the points, quantified in terms of a
covariance matrix Cij, are known, we have then included
the Cij in our analysis. However, in most cases the full
correlations are in practice not publicly available or it is
impossible to correctly estimate a covariance matrix, even
if a few attempts have been made in the literature, e.g., for a
similar discussion for the fσ8 data see Ref. [69].
One way to resolve this important issue was proposed in

Ref. [69], where the authors approximated the overall
covariance matrix of the fσ8 measurements as the percent
fraction of overlapping volume between the surveys to the
total volume of the two surveys combined. However,
clearly this approach cannot take into account any negative
correlations between the data as, in general, the effect of the
correlations can also be due to instrument systematics, etc.
Thus, approximating the covariance matrix with the percent
overlap can potentially lead to a strongly biased covariance
matrix.
On a related note, another limitation of this compilation

of the BAO data is that some of the data points, e.g., those
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coming from 6dFGs and WiggleZ, are given in terms of the
variable dzðzÞ, while some other points, e.g., from MGS
and SDSS, are given in terms of 1=dzðzÞ. This poses a
problem as we have to make an implicit assumption about
how the errors in those data points are distributed. For
example, we always assume symmetric error bars, but if
the errors are symmetric in 1=dzðzÞ, they will not be
symmetric in dzðzÞ and vice versa. This further compli-
cates the analysis as dzðzÞ and 1=dzðzÞ are not raw data
that can be reexpressed in a more consistent form, but they
are derived data products which makes it impossible to
rewrite them in the same form without making further
assumptions.
Finally, the BAO χ2 terms in Eq. (48) depend on the

sound speed at the drag redshift rd ¼ rsðzdÞ through
Eq. (34), which is complicated to estimate model inde-
pendently. In order to not assume a value for H0 in our
reconstruction when we fit the BAO data we have mini-
mized the χ2 over the quantity rsh ¼ rs · h, where rs is the
sound horizon at the drag redshift and h is the Hubble
parameter. Hence, we avoid any bias of the results due to
specifying a value of H0.

C. Radial BAO data

The 6 data points for the radial BAO Δz are taken
from Table III of the SDSS-IV spectroscopic survey
[70] coming from SDSS, SDSS-II, BOSS, and eBOSS.
As we did with the BAO data, to do not assume a value
for H0 in our reconstruction when we fit the radial BAO
data we have minimized the χ2 over the quan-
tity rsh ¼ rs · h.

D. Angular BAO data

The angular BAO, also known as the transversal
BAO scale data have been taken from Table I of
Ref. [71] where 15 measurements of θðzÞ are given and
where the data have been derived without assuming a
fiducial cosmology, following the approach of Ref. [72].
In particular, the compilation of the angular BAO data
comes from luminous red galaxies, blue galaxies, quasar
catalogs, and from diverse releases of the Sloan Digital
Sky Survey (SDSS); see Refs. [73–76]. For the fit of the
transverse BAO we have also minimized the χ2 over the
quantity rsh ¼ rs · h.

VI. GENETIC ALGORITHMS

The GA are a stochastic optimization machine learning
approach that can be used for nonparametric reconstruction
of a given dataset. The fundamental principle of the GA is
very loosely related to natural selection, where the species
evolve over the aeons due to evolutionary pressure of this
natural process. In our case our population under study
would represent a set of test functions that are going to
evolve and change over time through the stochastic

operations of mutation and crossover. The former refers
to the combination of different individuals to produce
offspring and the latter to a random swap in the chromo-
somes of an individual. Then the strategy of the GA is to
find an analytical function that represents the data employ-
ing on or more variables.
In our analysis we use the definition of the χ2 statistic to

specify how well each individual agrees with the dataset.
Then the probability that a population of functions will
produce offspring will be proportional to its fitness
defined by this χ2. The dataset used in the analysis is
described in Sec. V, where the HðzÞ compilation, the BAO
data, and the angular and radial BAO data are used to
reconstruct the Hubble rate HðzÞ, the angular diameter
distance dAðzÞ, the angular BAO θðzÞ and the radial BAO
ΔzðzÞ, respectively.
To perform the reconstructions in our analysis we

implemented the following approach. First, our grammar
included the following orthogonal basis of functions: exp,
log, and polynomials and a set of operations þ;−;×;÷;∧.
The choice of the grammar and the size of the population
has been extensively tested in Ref. [77], finding that it
does influence the convergence rate of the GA. We also
specified some assumptions motivated by physical reasons.
For instance, at the present day z ¼ 0 we have that
Hðz ¼ 0Þ ¼ H0, dAðz ¼ 0Þ ¼ 0 and similarly θðz ¼ 0Þ ∼
rsh
z and Δzðz ¼ 0Þ ∼ 100rsh

c , but we make no assumptions on
the curvature of the Universe or any MG or DE model. We
also imposed that all the functions the GA reconstructs are
continuous and differentiable, without any singularities in
the redshift scanned by the data to avoid overfitting or fake
reconstructions.
The GA will initialize with a random population, i.e.,

a set of functions whose size is a heuristic parameter.
When the starting population has been built, the fitness of
each individual is evaluated by a χ2 statistic. Afterwards,
choosing the candidates for crossover by considering
smaller groups of randomly selected individuals and
selecting the dominant member of each group of
Ref. [77], a process known as tournament selection,
the best-fitting functions in every generation are selected
and the operations of crossover and mutation are used.
To warranty convergence, the GA code is repeated
thousands of times and exploring different random seeds,
in order to rightly inspect the functional space. The final
output of the code then is a set of smooth and analytic
functions for HðzÞ, dAðzÞ, and θðzÞ, ΔzðzÞ that describe
the data.
Concerning the errors of the reconstructed functions,

they are obtained through a method originally implemented
in Refs. [78,79] known as the path integral approach. It
consists of estimating the error regions by integrating
analytically the likelihood over all possible functions that
might be constructed by the GA. This error reconstruction
method, which results in Gaussian errors, has been
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intensely examined and compared against a bootstrap
Monte Carlo simulation by Ref. [78].
A discussion on the implementation of the GA can also

be found in Sec. 4 of Ref. [80], Sec. C.1 of Ref. [81],
Appendix C of Ref. [82], Sec. 4 of Ref. [83], and Sec. 2 of

Ref. [43] among others. For recent applications of the GA
on cosmology see Refs. [43,77,78,80–84].

VII. RESULTS

In this section we present our GA fits to the data and the
corresponding consistency tests derived through our recon-
structions. In Table I we show the best-fit χ2 per degree of
freedom (d.o.f.) or, equivalently, per number of points, for
the GA functions and the best-fit ΛCDM model. As can be
seen, in all cases, the GA outperforms the ΛCDM model in
terms of the best-fit χ2=dof.
Concerning our probe for the curvature, in Fig. 1

we present the ΩmðH; q0Þ (left panel) and ΩkðH; q0Þ
(right panel) expressions given by Eqs. (12) and (13),

TABLE I. The χ2=d:o:f: for ΛCDM and GA using the Hubble
rate HðzÞ, the BAO data and the angular θðzÞ and radial ΔzðzÞ
BAO data.

HðzÞ BAO θðzÞ ΔzðzÞ
χ2ΛCDM=d:o:f: 0.541 0.911 0.843 0.734
χ2GA=d:o:f: 0.491 0.610 0.831 0.592
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FIG. 2. The ζ ¼ 1 − θH
θBAO

test, which aims to find deviations from homogeneity through our reconstructions from the HðzÞ and BAO
data (left panel) and our angular and radial BAO data (right panel). In both cases the black solid line and the gray region corresponds to
the GA best fit and the 1σ error, respectively. As can be seen, both reconstructions are consistent with the expectation of no deviation,
represented by the black dashed line, at the 1σ level in the left and at the ∼2σ in the right.
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FIG. 1. The GA reconstruction of the ΩmðH; q0Þ (left panel) and ΩkðH; q0Þ (right panel) expressions given by Eqs. (12) and (13),
respectively, and obtained using theHðzÞ data. In both cases the black solid line and the gray region correspond to the GA best fit and the
1σ error, respectively. As can be seen, both reconstructions are consistent with the flat ΛCDM model represented by the black dashed
line at the 1σ level.

RUBÉN ARJONA and SAVVAS NESSERIS PHYS. REV. D 103, 103539 (2021)

103539-8



respectively, obtained through our GA reconstruction of the
HðzÞ data.1 In both cases the black solid line and the gray
region correspond to the GA best fit and its 1σ error,
respectively. As can be seen, both reconstructions are
consistent with the best-fit flat ΛCDM model, represented
by the black dashed line, at the 1σ level.
In Fig. 2 we show the ζ ¼ 1 − θH

θBAO
test which aims to

find deviations from homogeneity through our reconstruc-
tions from the HðzÞ and BAO data (left panel) and our
angular and radial BAO data (right panel). In both cases the
black solid line and the gray region correspond to the GA
best fit and the 1σ error, respectively. As can be seen, both
reconstructions are consistent with the best-fit flat ΛCDM
model, represented by the black dashed line, at the 1σ level
in the left and at ∼2σ in the right panel.
In Fig. 3 we show our consistency tests of the ΛCDM

model. In particular, in the left panel we show the
reconstruction of the OmθðzÞ statistic, obtained through
our reconstruction of the angular BAO data using the GA.
On the right panel we have the reconstruction of the
OmΔzðzÞ statistics derived through our GA reconstruction
of the radial BAO data. In both cases the black solid line
and the gray region corresponds to the GA best fit and the
1σ error, respectively. Both reconstructions are consistent
with the best-fit flat ΛCDM model, represented by the
black dashed line, at the 1σ level. It is worth noting that the
best-fit value of the matter density for the flat ΛCDM
model is given by Ωm;0 ¼ 0.396� 0.154, which is some-
what higher than the one found by other observations [1]. A
possible explanation for this higher value of the matter
density could be due to the assumptions made in Sec. III,
where we are reducing the complex galaxy survey data to
single values of θðzÞ.

Furthermore, in Fig. 4 we present the deceleration
parameter given by Eq. (8) as reconstructed by using
Eq. (19). The black solid line and the gray region
corresponds to the GA best fit and the 1σ error, respec-
tively. Our model independent detection of the accelerated
expansion of the Universe is consistent with the best-fit flat
ΛCDM model, represented by the black dashed line, at the
1σ level. The transition redshift ztr corresponds to the point
where qðzÞ crosses zero, and qðzÞ is obtained via Eq. (28).
Finally, with our GA reconstructions we find the

following derived parameters:

rsðBAOÞ ¼ 101.873� 2.078 Mph=h; ð49Þ

CDM

GA

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

z

O
m

z
CDM

GA

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

z

O
m

z
z

FIG. 3. Left panel: The reconstruction of the OmθðzÞ statistics obtained through our reconstruction of the angular BAO data using the
GA. Right panel: The reconstruction of the OmΔzðzÞ statistics derived through our GA reconstruction of the radial BAO data. In both
cases the black solid line and the gray region corresponds to the GA best fit and the 1σ error, respectively. Both reconstructions are
consistent with the best-fit flat ΛCDM model represented by the black dashed line at the 1σ level.
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FIG. 4. The deceleration parameter given by Eq. (8) as
reconstructed by using Eq. (19). The black solid line and the
gray region correspond to the GA best fit and the 1σ error,
respectively. Our model independent detection of the accelerated
expansion of the Universe is consistent with the best-fit flat
ΛCDM model represented by the black dashed line at the 1σ
level. The transition redshift ztr corresponds to the point where
qðzÞ crosses zero.

1In Appendix we also present a complementary test for Ωk
containing derivatives of HðzÞ.
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rsðtransverse BAOÞ ¼ 103.938� 2.132 Mph=h; ð50Þ

rsðradial BAOÞ ¼ 103.477� 1.447 Mph=h; ð51Þ

while from the radial BAO we also find

qGA;0 ¼ −0.600� 0.031; ð52Þ

zGA;tr ¼ 0.769� 0.050; ð53Þ

where ztr is the value of the transition redshift, i.e.,
the moment when the deceleration parameter changes
sign. It should be noted that using HðzÞ data, Ref. [43]
had reported a value for the deceleration parameter
today of q0 ¼ −0.575� 0.132 and the transition redshift
ztr ¼ 0.662� 0.027, where the latter is ∼4σ away from the
value reported earlier, thus hinting at a possible tension
between the two datasets.
In this case, our constraint of the transition redshift using

theHðzÞ data and the radial BAO data comes from the same
method, the GA. Actually, the main cause of the difference
is due to the larger errors of the HðzÞ data, and the
associated possible systematics in the cosmic chronome-
ters, compared to the errors of the radial BAO. This
difference causes a small difference between the best-fit
value from ΛCDM and the GA for the HðzÞ data, while the
radial BAO the GA and the best-fit value of ΛCDM are
more in agreement. Hence, this points to possible issues
with the data, even if they have a small overlap with some
of the points.

VIII. CONCLUSIONS

In this work we have presented a set of new consistency
tests for the spatial curvature and homogeneity of the
Universe and the ΛCDM model, which is the target of
upcoming large-scale structure surveys. These tests will
provide us alternative and complementary tests of the
validity of the standard flat ΛCDM paradigm.
In our analysis we prefer to use the GA, compared to

other nonparametric approaches, e.g., various kinds of
orthogonal polynomials or Gaussian processes. The reason
is that the Gaussian processes still require the choice of a
mean function, arbitrarily assumed to be either some
constant, e.g., zero, or the cosmological constant ΛCDM
model. In previous works we have shown that the GA do
not suffer from this issue, hence we believe they are quite
appropriate for the problem at hand.
In our work we presented an extension of the consistency

diagnostic of flat ΛCDM of Ref. [33], by now including
both the curvature Ωk;0 and the matter density Ωm;0; see
Eqs. (12)–(13). We show how the latter can be derived from
the Hubble rate HðzÞ and can be determined directly from
observational data. We should stress that the added advan-
tage of our new null test of the ΛCDM model presented

here is the fact that we do not have to assume a flat
Universe.
Secondly, through the combination of the BAO andHðzÞ

data or the angular and radial BAO data, respectively, we
also presented a test to search for deviations from homo-
geneity; see Eqs. (18) and (20). Then, with the angular and
radial BAO data we also introduce two new consistency
tests for the ΛCDM model. The first one, namely, OmθðzÞ,
is derived following a similar approach as was shown in
Ref. [43], where in this case we use the angular BAO scale
relation θðzÞ to reconstruct null tests of the ΛCDM model,
with the advantage that this null test does not contain higher
derivative terms, which tend to increase the reconstruction
errors when using noisy data.
Finally, we also used the radial BAO dataΔzðzÞ to obtain

a model independent determination of the accelerated
expansion of the Universe by reconstructing the deceler-
ation parameter qðzÞ and we applied our Δz reconstruction
to the Om diagnostic [33]. Overall we find that our results
are consistent with the standard flat ΛCDM scenario,
however, we also noted a ∼4σ tension on the determination
of the transition redshift zt, i.e., the redshift where the
Universe transitions from decelerated to accelerated expan-
sion, between the HðzÞ and the radial BAO data.
Overall, we find that these new tests of the spatial

curvature and homogeneity of the Universe can be used, in
a model-independent fashion, to test some of the funda-
mental assumptions of the standard cosmological model.
However, our reconstructions are somewhat limited by the
current data, albeit this should be resolved in the near future
when high quality BAO data become available from the
next stage surveys.

Numerical Analysis Files. The Genetic Algorithm code
used by the authors in the analysis of the paper can be
found at [85].
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APPENDIX: COMPLEMENTARY NULL TESTS

Herewebriefly present a complementary ðΩm;0;Ωk;0Þ joint
test with a similar one from Ref. [44], which is defined as

Oð2Þ
m ðzÞ≡ 2

ð1þ zÞð1 − h2Þ þ zð2þ zÞhh0
z2ð1þ zÞð3þ zÞ ; ðA1Þ

OKðzÞ≡ 3ð1þ zÞ2ðh2 − 1Þ − 2zð3þ 3zþ z2Þhh0
z2ð1þ zÞð3þ zÞ ; ðA2Þ
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where h ¼ HðzÞ=H0 and the prime 0 is a derivative
with respect to z. The previous tests in the ΛCDM limit
reduce to

Oð2Þ
m ðzÞ ¼ Ωm;0; ðA3Þ

OKðzÞ ¼ Ωk;0: ðA4Þ

In Fig. 5 we show the two reconstructions for the curvature
test, on the left panel for our test given by Eq. (13) and in the
right panel for that of Ref. [44] given by Eq. (A2). The main
difference of the latter with our test comes at high redshifts
z > 1, where the estimated errors of the GA are smaller with
our test and also agree more at high redshifts with the
expectation from Planck of a nearly flat Universe.
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