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A measurement of the sum of neutrino masses is one of the main applications of upcoming
measurements of gravitational lensing of the cosmic microwave background (CMB). This measurement
can be confounded by modelling uncertainties related to so-called “baryonic effects” on the clustering of
matter, arising from gas dynamics, star formation, and feedback from active galactic nuclei and supernovae.
In particular, a wrong assumption about the form of baryonic effects on CMB lensing can bias a neutrino
mass measurement by a significant fraction of the statistical uncertainty. In this paper, we investigate three
methods for mitigating this bias: (1) restricting the use of small-scale CMB lensing information when
constraining neutrino mass; (2) using an external tracer to remove the low-redshift contribution to a CMB
lensing map; and (3) marginalizing over a parametric model for baryonic effects on large-scale structure.
We test these methods using Fisher matrix forecasts for experiments resembling the Simons Observatory
and CMB-S4, using a variety of recent hydrodynamical simulations to represent the range of possible
baryonic effects, and using cosmic shear measured by the Rubin Observatory’s LSST as the tracer in
method (2). We find that a combination of (1) and (2), or (3) on its own, will be effective in reducing the
bias induced by baryonic effects on a neutrino mass measurement to a negligible level, without a significant
increase in the associated statistical uncertainty.
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I. INTRODUCTION

With improving measurements of the cosmic microwave
background (CMB), a cosmological measurement of the
sum of the neutrino masses is envisioned within the next
decade. Within the standard model of particle physics,
the three neutrinos are massless particles; thus, the first
measurements of neutrino flavor oscillations [1,2], a
process that only occurs if there exist mass differences
between the species, were key developments in the search
for beyond-standard-model physics. Neutrino oscillation
experiments are sensitive to the difference in the squares
of the masses of neutrinos, Δm2

ij ≡m2
i −m2

j ; however, a
cosmological neutrino detection will be sensitive to the
sum of the neutrino masses Mν ≡P

3
i¼1mi, and thus will

be important in setting the overall scale of the neutrino
masses. The current lower limit on Mν (from neutrino
oscillation experiments) is Mν ≳ 60 meV [3]. Until now,
cosmological experiments have only placed upper limits on
Mν; the best is that of the Planck survey [4], which gives
Mν < 120 meV.
Massive neutrinos have a well-understood effect on

the matter power spectrum Pmðk; zÞ. After becoming

nonrelativistic when their temperature Tν was comparable
to their mass, they started contributing to Pmðk; zÞ; how-
ever, due to their small masses, they do not cluster on small
scales, instead free streaming, leading to a suppression
of power on small scales. See [5,6] for reviews on the
cosmological effects of neutrinos.
Planck’s upper bound on the neutrino mass was obtained

from a joint analysis of the CMB temperature and polari-
zation maps, CMB lensing maps, and baryonic acoustic
oscillation (BAO) measurements. As the neutrinos were
still relativistic at the time of recombination when the CMB
was released, the majority of a CMB survey’s constraining
power on Mν comes from the CMB lensing information,
which is sensitive to large-scale structure at all redshifts. In
coming years, experiments such as the Simons Observatory
(SO) [7], SPT-3G [8], and, further in the future, CMB-S4
[9], will make better measurements of the CMB lensing
power spectrum, and have been forecast to measure the
neutrino mass to between 20 and 30 meV [7,9,10].
To be able to reach this level of constraint, the CMB

lensing power spectrum must be well understood theoreti-
cally. In particular, the lensing power spectrum is a
projection of the matter power spectrum Pmðk; zÞ over
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all redshifts; however, there are certain effects that currently
limit our understanding of Pmðk; zÞ, in particular effects
due to baryonic processes (such as gas cooling and feed-
back from supernovae and active galactic nuclei) in the
Universe. Most predictions of Pmðk; zÞ only account for
gravitational forces, neglecting the complex baryonic
interactions that we know exist; our current best method
for understanding Pmðk; zÞ including baryonic physics is
performing large hydrodynamical simulations.
Measurements of Pmðk; zÞ from different simulations differ
due to different numerical schemes and phenomenological
implementations of baryonic processes that cannot be
directly simulated at a given resolution. While the “true”
impact of baryonic effects on the matter power spectrum is
not known, a general conclusion is that baryons contribute
to a suppression of power on small scales [e.g.,
0.1h Mpc−1 ≲ k≲Oðfew × 10Þh Mpc−1 at z ¼ 0].
Uncertainty due to baryonic feedback has been exten-

sively studied in the context of cosmic shear surveys
[11–18], as the scales affected by feedback directly
correspond to the scales that current shear surveys are
most sensitive to. However, Ref. [16] and recently Ref. [19]
found that uncertainty from baryonic effects can also be
important in the search for neutrino masses from CMB
lensing, in spite of the higher redshifts and larger length
scales involved. If we are to trust a measurement of Mν

from CMB lensing, it will be important to have an inference
which is robust to these baryonic effects. Furthermore,
the sensitivity of CMB lensing to baryonic effects implies
that we could learn about the latter from observations
of the former, an avenue explored for cosmic shear in
Refs. [20–23].
Reference [19] explored the lensing power spectrum

suppression and associated bias on neutrino mass from a
suite of recent hydrodynamic simulations, finding that the
range in possible biases is non-negligible compared with
expected statistical uncertainties. They found a significant
scatter between different simulations, comparable to the
statistical uncertainty in the measurement. In this paper, we
consider various methods of mitigating this bias on the
inference of Mν from CMB lensing surveys similar to SO
and CMB-S4. We describe various techniques to remove
the sensitivity to the relevant baryonic processes and test,
using Fisher forecasts, how these techniques will reduce the
bias for the series of simulations examined by Ref. [19].
The first mitigation method we consider is a simple scale
cut, where the smallest scales of the CMB lensing con-
vergence (which are most sensitive to baryonic effects) are
removed from the analysis. Second, we consider a method
of using external cosmic shear measurements to estimate
and subtract the low-z contribution to the CMB lensing
potential—as baryonic effects are relatively late-Universe
phenomena, we expect the high-z portion of the CMB
lensing potential to be less sensitive to them, while still
retaining sensitivity to Mν. Finally, we ask whether

marginalizing over the parameters of a general model for
baryonic effects will reduce the bias while preserving the
Mν constraints.
We find that imposing a scale cut of Lmax ∼ 1000 on the

lensing multipoles used for constrainingMν can reduce the
bias from baryonic effects by up to a factor of 2, with more
aggressive cuts significantly increasing the statistical uncer-
tainty. On the other hand, combining this scale cut with
subtraction of a low-z tracer, or marginalizing over a
baryonic model (with or without a scale cut) will be much
more effective in eliminating the bias, reducing it by at least
a factor of 5 in the first case and 10 in the second case for
all simulations we consider. The maximum residual bias
associated with these simulations is ∼3 meV in either case,
well below the level that would interfere with a high-
significance detection of the minimum allowed neutrino
mass sum.
The paper is organized as follows. In Sec. II we discuss

the CMB lensing power spectrum and review the range of
possible baryonic effects as represented by current hydro-
dynamical simulations. In Sec. III we present our Fisher
forecast formalism for calculating the forecast constraint
and biases on the inference of Mν from these simulations.
In Sec. IV we discuss the effects of a small angular-scale
cutoff in Cκκ

L . In Sec. V we discuss the effect of “sub-
tracting” a low-z tracer to isolate the high-z contribution to
the CMB lensing map. In Sec. VI we discuss the effect of
marginalizing over parameters that describe the baryonic
effects on the matter power spectrum. We discuss our
results in Sec. VII.

II. CMB LENSING AND BARYONS

The CMB photons we detect have been gravitationally
lensed by any matter they encounter along the paths they
have travelled since their “release” during recombination,
at z ∼ 1100. Structures at any redshift after recombination
can act as lenses, making CMB lensing a powerful probe
of the evolution of the matter content of the Universe.
We mainly quantify this information via the convergence
power spectrum Cκκ

L , which is a line-of-sight integral over
the matter power spectrum Pmðk; zÞ (see e.g., [24]),

Cκκ
L ¼

Z
χCMB

0

dχ
Wκ

CMBðχÞ2
χ2

Pm

�
k ¼ Lþ 1=2

χ
; z

�
; ð1Þ

where Wκ
CMBðχÞ is the CMB lensing efficiency kernel

Wκ
CMBðχÞ ¼

3

2
Ωm

�
H0

c

�
2 χ

aðχÞ
χCMB − χ

χCMB
; ð2Þ

withH0 the Hubble constant today, c the speed of light,Ωm
the density of matter today, χCMB the comoving distance
to the surface of last scattering (at which the CMB was
released), and aðχÞ ¼ 1

1þzðχÞ and the scale factor at
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comoving distance χ. Equation (1) assumes the Limber
approximation [25,26], which is valid in the small-scale,
flat-sky limit; and the Born approximation, where the
integral is taken over the photon’s undeflected path, valid
in the small-deflection limit [27,28].
To make an accurate inference of Mν from a CMB

lensing survey, we need to trust our theoretical model of the
lensing convergence; i.e., we need to understand every
component of Eq. (1). The cosmological ingredients that
enter CMB lensing kernel WκðχÞ are well understood. On
the other hand, Pmðk; zÞ is most commonly computed from
linear gravitational perturbation theory on large scales,
supplemented on small scales by nonlinear extensions of
gravitational perturbation theory, phenomenological mod-
els, N-body simulations, or emulators. Generally, these
only account for gravitational interactions between the
matter; i.e., they treat all matter as “dark.”
However, about 15% of matter is not dark but baryonic,

and has complex interactions with itself and with light.
These interactions effect changes to how matter clusters
on ∼Mpc and smaller scales: as examples, gas cooling and
AGN feedback cause matter to condense and expand
respectively (e.g., [29]). Our models currently lack a
first-principles calculation of the power spectrum
Pmðk; zÞ incorporating these interactions, and they are
typically neglected when considering CMB lensing sur-
veys. However, some of the baryonic effects on Pmðk; zÞ—
particularly the suppression of power on small scales—
mimic the effects of massive neutrinos, and neglecting
these in the theoretical modeling of Cκκ

L can lead to
significant biases on the neutrino mass inference [16,19].
In Fig. 1, we illustrate the suppression of the CMB

lensing power spectrum by baryonic effects, as computed in
Ref. [19]1 for a selection of recent hydrodynamical sim-
ulations (see Sec. III C). At large scales, the power spectra
coincide, while the baryonic suppression becomes relevant
at L≳ 1000. We also show the effect of a nonzero neutrino
mass on the lensing power spectrum, by plotting the ratio of
the fiducial Mν ¼ 60 meV power spectrum to one where
Mν ¼ 0 meV (with all other cosmological parameters
unchanged). In this case, we see a power suppression with
much milder scale dependence than for baryonic effects.
This difference indicates that it may be possible to disen-
tangle the two types of suppression, motivating the meth-
ods we consider in this work.

III. NEUTRINO MASS: CONSTRAINTS AND BIAS

A. Forecasting the 1σ constraints

We consider an analysis where Mν is allowed to vary
along with other cosmological parameters; as such we
consider a parameter vector

θ⃗ ¼ ðh;Ωbh2;Ωch2; τ; ns; As;MνÞ ð3Þ

with fiducial values fh ¼ 0.675;Ωbh2 ¼ 0.0222;Ωch2 ¼
0.1197; τ ¼ 0.06; ns ¼ 0.9655; As ¼ 2.2 × 10−9; Mν ¼
0.06 eVg corresponding to the best-fit parameters of the
Planck analysis [4] for the first six parameters, namely,
the Hubble parameter in units of 100 km s−1Mpc−1, the
physical baryon density, the physical cold dark matter
density, the optical depth to recombination, the primor-
dial scalar fluctuation slope and amplitude (with a
pivot scale of 0.05 Mpc−1). We take a fiducial value of
60 meV (the minimum allowed value) for the sum of the
neutrino mass Mν. We compute the fiducial matter power
spectrum with CAMB [31], with the nonlinearities and
treatment of neutrinos given by the extended halo model
from Ref. [32].
As the cosmological parameters will also be constrained

from the primary CMB, we include information from the
primary CMB temperature and polarization as measured by
the experiment we are forecasting for (see Sec. III D), as
well as a prior from BAO measurements from DESI [33],
which improves the analysis by breaking the geometric
degeneracy in the CMB.
To compute the information from the CMB and CMB

lensing, we use the Fisher formalism, in which the Fisher
matrix F approximates the inverse covariance matrix of the
parameters, with the diagonals of F−1 giving the squares
of the expected 1σ uncertainties on each parameter (with
all other parameters marginalized over). We calculate F
according to

FIG. 1. The effect of baryons on the CMB lensing power
spectrum Cκκ

L jbary in a selection of large hydrodynamical simu-
lations (see Sec. III C), as computed in Ref. [19], shown as a ratio
with the spectrum for dark matter only, Cκκ

L jDMO. The effect of
nonzero Mν is also shown. The different scale dependences of
baryonic and neutrino-mass effects indicate that it may be
possible to distinguish between the two in lensing measurements.

1These computations are available from Ref. [30].
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FCMB
ij ¼

X
l

2lþ 1

2
fskyTr

�∂CCMB
l

∂θi ðCCMB
l Þ−1

×
∂CCMB

l

∂θj ðCCMB
l Þ−1

�
: ð4Þ

In Eq. (4), fsky is the fraction of sky area which the
surveys cover and CCMB

l is the covariance matrix of the
CMB:

CCMB
l ¼

0
BB@

CTT
l CTE

l CTκ
l

CTE
l CEE

l CEκ
l

CTκ
l CEκ

l Cκκ
l

1
CCA; ð5Þ

where CTT
l is the power spectrum of the observed temper-

ature anisotropies (including noise); CEE
l is the power

spectrum of the observed E-mode polarization anisotropies
(also including noise); and CTE

l is their cross power
spectrum. Cκκ

l includes the reconstruction noise for CMB
lensing. Although the CMB we measure is lensed, we use
the unlensed primary CMB power spectra CTT

l ; CEE
l , and

CTE
l to avoid double counting of the lensing information.

A proper treatment including lensed CMB power spectra
would involve including the covariances between the CMB
power spectra induced by lensing, and also the covariances
between the lensing convergence and the CMB power
spectra [34,35]; neglecting the extra information onMν that
comes from the lensed CMB power spectra makes our
calculation conservative. CTκ

l and CEκ
l , the cross power

spectra of CMB lensing with CMB temperature and
E-mode polarization, respectively, are nonzero only on
very large scales due to correlations induced by the late-
Universe effects on the CMB such as the integrated Sachs-
Wolfe (ISW) effect [36] and polarization generated after
reionization [37], but can be neglected in our analysis as we
restrict to multipoles l > 300 for the primary CMB.
We also include a prior on τ, the optical depth to

reionization, which will be an important limiting factor
in the inference of Mν from lensing surveys [10]. We
consider two different scenarios: the Planck design sensi-
tivity σpriorðτÞ ¼ 0.006 (equal to the value achieved by the
analysis of Planck data in Ref. [38]) and the cosmic
variance limit σpriorðτÞ ¼ 0.002 [9]. We include this as a
Gaussian prior with width σpriorðτÞ. The final Fisher matrix
we use for forecasting is

F ¼ FCMB þ C−1
prior ð6Þ

where Cprior is the sum of the BAO prior and the τ prior.
Note that FCMB contains both primary CMB and lensing
information, as it is calculated from the covariance matrix
in Eq. (5); however, as the cross power spectra between the
primary CMB and the CMB lensing potential are set to

zero, this can be separated as a sum of an inverse prior from
the primary CMB and a Fisher matrix due to lensing alone.
Within this setup, the lower bound on the marginalized

constraint on parameter i is

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

q
: ð7Þ

B. Calculating the baryonic bias

Predictions for the CMB lensing power spectrum are
typically computed with the dark-matter-only (DMO)2

nonlinear matter power spectrum PDMOðk; zÞ. However,
since the true power spectrum includes (unknown) baryonic
effects, the deviation from the DMO prediction that these
effects induce might mimic the neutrino mass signal and
result in an incorrect (“biased”) inference of the mass. If we
can compute the power spectrum incorporating a given
model of baryonic effects [Pbaryðk; zÞ], we can calculate the
bias that would be induced in the inference of the parameter
θi by (e.g., [16])

Bi ¼ F−1
X
l

2lþ 1

2
fskyTr

�∂CCMB
l

∂θi ðCCMB
l Þ−1

× ΔClðCCMB
l Þ−1

�
; ð8Þ

where ΔCl is the change in the covariance matrix due to
baryonic effects

ΔCl ≡ Cljbary − CljDMO; ð9Þ

and where, as in the previous subsection, the covariance
matrix CCMB

l includes the instrumental noise for the given
survey. Note that of all the power spectra in the covariance
matrix (5), only Cκκ

l is affected by the baryons, and
ΔCXY

l ¼ 0 for XY ≠ κκ (the κT and κE correlations are
too small to be relevant). Thus, Eq. (8) simplifies to

Bi ¼ F−1
X
l

2lþ 1

2
fsky

∂Cκκ
l

dθi
1

ðCκκ
l Þ2

ΔCκκ
l : ð10Þ

We use the forecasting code from Ref. [39]3 to compute the
Fisher matrices and biases in our forecasts. Note that the
bias depends on the experiment, because both the Fisher

2“Dark-matter-only” computations could perhaps be more
accurately described as “gravity only,” since these computations
do not neglect the baryonic contribution to the Universe’s matter
content but instead treat baryonic identically to dark matter, with
only gravitational forces at play. However, “dark matter only” is
the term most commonly seen in the literature, so we also adopt it
in this work.

3See Ref. [40].
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matrix and ðCκκ
l Þ−2 factors in Eq. (10) depend on the

assumed beam and noise.
To obtain a range of possible forms for Pbary, and

therefore ΔCκκ
l , we turn to hydrodynamical simulations,

as described in the next subsection.

C. Simulations

We use Cκκ
L computations from Ref. [19], which con-

siders seven baryonic scenarios from four different families
of large hydrodynamical simulations (see Ref. [19] for
further descriptions):

(i) The “AGN” member of the OWLS simulation suite
[41–43].

(ii) The base BAHAMAS simulation [43–45], along
with the “Low-AGN” and “High-AGN” versions
that, respectively, contain weaker and stronger AGN
feedback than the base simulation.

(iii) The “AGN” member of the Horizon simulation suite
[46–48].

(iv) The TNG100 and TNG300 runs of the IllustrisTNG
simulations [49–54].

The matter power spectrum P̂ðk; zÞ is measured from the
simulation outputs at several different redshifts, both from
DMO runs (which treat baryons and dark matter identi-
cally) and from runs that include baryonic processes along
with gravity. The measured power spectra have consid-
erable uncertainty due to sample variance arising from the
finite number of modes within each simulated volume, but
the majority of this sample variance arises from random-
ness in the initial conditions that manifests primarily at
large scales. Each pair of DMO and full-hydro runs begins
with the same initial conditions (i.e., amplitudes and phases
of modes at the initial time), and therefore the sample
variance errors mostly cancel4 in the ratio

R̂ðk; zÞ≡ P̂baryðk; zÞ
P̂DMOðk; zÞ

: ð11Þ

The corresponding CMB lensing power spectrum Cκκ
l jbary

can then be computed by using

Pbaryðk; zÞ ¼ Pfidðk; zÞR̂ðk; zÞ ð12Þ

in Eq. (1), where Pfidðk; zÞ is the fiducial DMO prediction
for the matter power spectrum. Note that the different
simulations have been run with different cosmological
models, while we compute Pfid using a single cosmology
in our forecasts. References [43,56,57] have found that
R̂ðk; zÞ has only a weak dependence on background
cosmology, so Eq. (12) is sufficient for our forecasts,
while for work requiring percent-level accuracy, the cos-
mology dependence of R̂ðk; zÞ should be carefully
accounted for.5

D. Experimental configurations

Several CMB experiments are planned or being built that
will begin observations this decade and that are aimed at
measuring CMB fluctuations on small scales, for gravita-
tional lensing reconstruction and other secondary anisot-
ropies. Here, we consider an experiment similar to the
SO [7], due to begin taking data in the first half of the
2020s. The large aperture telescope for this experiment will
have a 6 m diameter and will observe large fractions of the
sky at high angular resolution in six frequency channels.
We also consider an experiment like CMB-S4 [9,59], which
will have comparable angular resolution and frequency
coverage but higher sensitivity; it is expected to begin
taking data on a later timeline than SO. We include
Gaussian instrumental white noise on the CMB power
spectra:

Nl ¼ NTe
lðlþ1ÞΘ2

FWHM
8 ln 2 ; ð13Þ

where NT is the noise variance and ΘFWHM is the beam
size of the experiment. For both experiments, we use
ΘFWHM ¼ 1.40; for SO, we use NT corresponding to a
map noise level of 6 μK-arcmin and for S4 we use NT
corresponding to 1 μK-arcmin.
For Cκκ

L , we include reconstruction noise Nκκ
L corre-

sponding to the minimum-variance reconstruction of
Ref. [60] relevant to the experiment we are considering
(SO or S4). We include multipoles 90 ≤ L ≤ 3100 in the
lensing power spectra, with the upper limit chosen based on
where the statistical sensitivity drops off, and the lower
limit having negligible impact on the results. For the
primary CMB, we include multipoles 300 ≤ l ≤ 3000

for CTT
l and 300 ≤ l ≤ 5000 for CEE

l , with the upper
limits based on where uncleaned foregrounds are expected
to become significant in the lensing reconstruction [61,62].
We assume a sky fraction of fsky ¼ 0.4 and full overlap
between all the fields we consider. For the EB-based
reconstruction, which dominates the information at S4
noise, we include iterated delensing [63].

4The ratio R̂ðk; zÞ will itself have some sample variance,
because it is dominated by baryonic effects on the highest-mass
halos within a given simulation volume, and the set of such halos
will depend on the initial conditions. Reference [55] quantified
the sample variance in R̂ðk; zÞ for a subset of the simulations
considered in this work, finding it to be at the few-percent level
for k ≲ 20h Mpc−1 (Refs. [43,48] reached similar conclusions.).
This is acceptable for our work, which is focused on the range of
R̂ðk; zÞ between different simulations rather than the absolute
precision of any one simulation.

5An example is precise comparisons of Pbary to predictions
from perturbation theory [58]. We thank Matthew Lewandowski
for discussions on this point.
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IV. STRATEGY 1: SMALL ANGULAR-SCALE
CUTOFF

The forecasts in Ref. [19] considered all scales over
which future CMB surveys will have appreciable sensi-
tivity to the lensing power spectrum—i.e., a summation
over multipoles 90 < L < 3100. However, baryonic effects
are concentrated at a different (though not disjoint) range of
scales than the neutrino mass constraint (see Fig. 1).
With this in mind, the first mitigation strategy we

implement is a simple Lmax cutoff, where Lmax is the
maximum lensing multipole included in the analysis. In
Fig. 2, we show the behavior of the 1σ constraint on Mν as
well as the biases from different models of baryonic effects
as we introduce this cutoff. It is clear that for all of the
experimental setups, the constraints saturate at around
Lmax ∼ 1000 and there is no benefit to including multipoles
L≳ 1000; this happens because the suppression of Cκκ

L is
roughly constant for L≳ 1000, while the experimental
error bars on Cκκ

L increase with L over the same range
(compare Fig. 1 of this work with Fig. 1 of Ref. [19]).
Meanwhile, we see that including higher multipoles does
indeed increase the bias, and imposing Lmax ∼ 1000 can
reduce the bias by a factor of ∼2 in some cases. However, in
particular for the most advanced experimental configuration,
the biases can still be of the same order of magnitude as the
expected constraint, and so further mitigation methods will
be needed to reduce the bias to an acceptable level.

V. STRATEGY 2: SUBTRACTION
OF EXTERNAL TRACERS

A. Isolating the low-z contribution
to the CMB lensing potential

Baryonic phenomena begin to imprint themselves on
structure formation at a much later time in cosmological

history than neutrino mass effects. As the CMB lensing
kernel is an integral over all redshifts, we receive
(weighted) information from all of cosmological history
since recombination. However, if we could “subtract” the
low-z contribution to the lensing map to isolate the high-z
effects, we could potentially remove most of the bias while
still being sensitive to Mν.
To illustrate the ideal outcome of such a procedure, we

define a high-z CMB lensing field by

Cκhκh
L ¼

Z
χCMB

χmin

dχ
WκðχÞ2

χ2
Pm

�
k ¼ Lþ 1=2

χ
; z

�
; ð14Þ

where χmin is some lower bound of the integration; χmin ¼ 0
corresponds to the standard CMB lensing scenario. We
forecast the 1σ errors and baryonic biases on Mν as in
Sec. III but replacing Cκκ

L with Cκhκh
L , and we consider their

dependences on the lower limit of integration χmin.
We show in Fig. 3 the behavior of the constraints and

the biases plotted against zmin ¼ zðχminÞ. Here we see
explicitly that the biases are introduced in the late
Universe at around z≲ 2, while the constraints on Mν

come from a much larger redshift range. It is clear that if
we could isolate the portion of the lensing map that is
sourced at z≳ 2, then we could remove a significant
portion of the baryonic bias on Mν without sacrificing
much constraining power on Mν.
Of course, we do not have direct access to measurements

of the field κh and so the configuration in Fig. 3 is
simply a toy model for illustrative purposes. However,
through cross-correlation with a low-z external tracer
X̂ (such as a cosmic shear map), we could remove the
low-z portion of the CMB lensing field by defining a new
field

FIG. 2. Demonstrating mitigation strategy 1: the calculated biases on Mν plotted against the maximum CMB lensing multipole Lmax
included in the forecast for the different simulations. In each case the 1σ constraint is shown as a dotted line. Note that the TNG100 and
TNG300 lines are almost identical.
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κ̂subðLÞ ¼ κ̂ðLÞ − CXκ
L þ NXκ

L

CXX
L þ NXX

L
X̂ðLÞ; ð15Þ

where κ̂ðLÞ is the original CMB lensing convergence, and
in this subsection we use hats to denote quantities that
include noise (i.e., CÂ B̂

L ¼ CAB
L þ NAB

L ). In Eq. (15), we
weight X̂ with a matched filter designed to extract the
portion of X correlated with κ, assuming that this corre-
lation is dominated by low redshifts. Note that, in our
implementation, we will assume that the filter is computed
using theoretical expressions with the fixed fiducial cos-
mological parameters, such that it is not varied in our Fisher
calculations.
To see how Eq. (15) accomplishes our goal, observe that

if the weights perfectly match the true statistics of X̂ and κ̂,
the power spectrum of κ̂sub reduces to

Cκ̂sub κ̂sub
L ¼ Cκκ

L þ Nκκ
L −

ðCXκ
L þ NXκ

L Þ2
CXX
L þ NXX

L
: ð16Þ

Furthermore, if we decompose κ into uncorrelated pieces
sourced by low and high redshifts, κ ¼ κlow þ κhigh, and
assume that XðLÞ ¼ TðLÞκlowðLÞ, so that X is perfectly
correlated with κlow with a transfer function TðLÞ, Eq. (16)
becomes

Cκ̂subκ̂sub
L ¼ Cκlowκlow

L þ C
κhighκhigh
L þ Nκκ

L

−
ðTðLÞCκlowκlow

L þ NXκ
L Þ2

TðLÞ2Cκlowκlow
L þ NXX

L
: ð17Þ

With high noise on X, we recover Cκ̂ κ̂
L , but in the low-noise

limit (NXκ
L ; NXX

L → 0), we obtain

Cκ̂subκ̂sub
L ¼ C

κhighκhigh
L þ Nκκ

L ; ð18Þ

and therefore the low-z contribution to the lensing power
spectrum is perfectly subtracted.6

In reality, for a tracer we can directly measure, such as
cosmic shear, the assumption of perfect and exclusive
correlation with the low-z contribution to CMB lensing
does not exactly hold; however, if this correlation is
sufficiently high, we expect that we can still subtract a
significant portion of the unwanted low-z contribution to a
lensing map. We consider an explicit example in the
following sections.

B. Cosmic shear from the Rubin Observatory

Cosmic shear is an ideal candidate for an external tracer
X̂ that we can use to isolate and subtract the low-redshift
contribution to CMB lensing maps. As light rays from
distant galaxies travel through the Universe, their paths are
deflected by the intervening matter (just as the CMB is
lensed), and this introduces correlated ellipticities in the
observed images of these galaxies. These correlations,
either amongst these galaxies or between the galaxies
and another tracer of large-scale structure, are most
commonly measured directly from catalogs of observed
galaxy shapes. In our forecasts, we will assume that these

FIG. 3. The biases (solid lines) and the forecast 1σ constraints onMν, plotted against the minimum z (zmin) used to integrate the CMB
lensing kernel, assuming that perfect removal of the z < zmin contribution is possible. We see that the baryonic bias starts to become
relevant at zmin ∼ 2, and that the bias is larger for S4 than for SO due to its higher sensitivity at small scales. However, constraining
information for Mν comes from higher z. Note that the x axis is scaled logarithmically in (1þ z).

6An alternative strategy to the map-level subtraction we have
considered here would be to perform the forecasts when includ-
ing all auto- and cross-power spectra between the lensing map
and the other tracer, as performed in, e.g., Refs. [64–66] in the
context of using CMB lensing to mitigate systematic effects seen
in cosmic shear surveys. However, this method is more sensitive
to the baryonic biases sourced at low z, and should be imple-
mented with a mechanism for marginalizing over baryonic
models, which we do not consider in this section for simplicity
(although we will consider such a mechanism for the CMB
lensing alone case in Sec. VI).
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catalogs can be converted into lensing convergence maps,7

and take X̂ to refer to such a map constructed from galaxies
in a given redshift bin.
The lensing efficiency for a source galaxy at comoving

distance χS is given by Eq. (2) with χCMB replaced by χS:

Wκðχ; χSÞ ¼
3

2
Ωm

�
H0

c

�
2 χ

aðχÞ
χS − χ

χS
: ð19Þ

In practice, galaxies are binned into photometric redshift
bins with a finite extent in redshift space, and so we
measure the cosmic shear from galaxies at a range of
sources. To calculate the shear efficiency for such a bin of
galaxies, we integrate over the redshift extent of the bin and
weight by the galaxy distribution dn

dχ:

WiðχÞ ¼ 1

ni

Z
χfi

χii

dχS
dn
dχS

Wκðχ; χSÞ; ð20Þ

for a bin i between χii and χfi , where ni is the total number

density of the bin ni ¼
R χfi
χii

dχ dn
dχ. We consider explicitly the

distribution predicted for the Rubin Observatory’s LSST
(Legacy Survey of Space and Time) Gold sample of
galaxies [72], a sample that will be used to measure cosmic
shear. We take the distribution from Ref. [73]

dn
dz

¼ nsz1.24 exp

�
−
�

z
0.5

�
1.01

�
; ð21Þ

with a total number density ns ¼ 26 arcmin−2. dn
dχ can be

found from Eq. (21) by computing dn
dχ ¼ dn

dz
dz
dχ.

The shear power spectrum of bin i is given by

Cκiκi
L ¼

Z
χfi

0

dχ
WiðχÞ2
χ2

Pm

�
k ¼ Lþ 1=2

χ
; z

�
: ð22Þ

We consider a survey with N source bins containing equal
numbers of galaxies for the cosmic shear fields, and as
we wish to use them to subtract as much of the low-z
contribution to the CMB lensing kernel as possible, we
combine them in such a way to maximize their correlation
with the CMB lensing convergence. As such, we consider a
linear combination of shear fields

X̂ ¼
X
i

ciX̂i; ð23Þ

where X̂i is the convergence map of bin i. The coefficients
ci are chosen to maximize the correlation coefficient
between X̂ and the CMB lensing potential; we compute
them following the linear-algebraic methods of Ref. [74]
(see their Appendix).8 The ci that maximizes the correlation
coefficient of X̂ with the CMB lensing potential

rL ≡ CXκ
Lffiffiffiffiffiffiffiffiffiffiffi

CXX
L Cκκ

L

p is

ciðLÞ ¼
X
j

ðCκAκB
L Þ−1ij CκjκCMB

L ; ð24Þ

where CκAκB
L is the covariance matrix of the cosmic shear

fields (including noise), and C
κjκCMB

L is the cross-power
spectrum between the cosmic shear field j and the CMB
lensing convergence. The elements of CκAκB

L are

CκAκB
L ij ¼

Z
dχ

WiðχÞWjðχÞ
χ2

Pm

�
k¼Lþ 1=2

χ
; z

�
þN

κiκj
L ;

ð25Þ

with shear noise power spectrum N
κiκj
L given by

N
κiκj
L ¼ δij

σ2ϵ
ni

; ð26Þ

where σϵ is the intrinsic shape noise (we take σϵ ¼ 0.26
[73]) and ni is the total angular number density of bin i. The
cross-power spectrum between CMB lensing convergence
and cosmic shear in bin i is given by

C
κjκCMB

L ¼
Z

dχ
WjðχÞWκ

CMBðχÞ
χ2

Pm

�
k ¼ Lþ 1=2

χ
; z

�
;

ð27Þ

whereWκ
CMBðχÞ is the CMB lensing efficiency kernel given

in Eq. (2).

C. Intrinsic alignments

It is a nontrivial exercise to separate the apparent
ellipticities induced by cosmic shear from the inherent
ellipticities of galaxies. Under the assumption that the
galaxies have a random distribution of ellipticities, this is
not a problem, as taking a high number of galaxies in the
sample ensures that the average intrinsic alignment (IA)
averages to zero and there is no bias to the signal (although
Poissonian noise remains). However, if there is an intrinsic
alignment to the galaxies’ true ellipticities (e.g., as caused
by alignment with the large-scale tidal field), this will bias7For recent work on such “mass-mapping” techniques for

cosmic shear, see Refs. [67–70], several of which are extensions
to the method first presented in Ref. [71]. Alternatively, it may be
possible to implement our proposal in Sec. V starting directly
from shear catalogs, but we leave this to future work.

8Such a map, combining samples in the mid-infrared and far-
infrared from WISE and Planck to be maximally correlated with
CMB lensing, was generated in Ref. [75].
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one’s inference of a lensing signal. With this in mind, we
introduce an intrinsic alignment contribution to our fore-
casts involving cosmic shear to ensure that the effect of
intrinsic alignments on the ability of cosmic shear to
subtract the low-z information of the CMB lensing kernel
is accounted for.
To quantify the intrinsic alignment contribution, the

observed ellipticity γ can be separated into a part induced
by gravity γG and a part that is intrinsic γI,

γ ¼ γG þ γI; ð28Þ

such that the two-point correlation of γ with itself is

hγγi ¼ hγGγGi þ hγGγIi þ hγIγGi þ hγIγIi: ð29Þ

In terms of the angular power spectra between the elliptic-
ities of galaxies in two redshift bins labeled by i and j, we
can write

Cγiγj

L ¼ C
GiGj

L þ C
GiIj
L þ C

GjIi
L þ C

IiIj
L : ð30Þ

Correlations between the tidal field responsible for the
intrinsic alignments of foreground galaxies and the gravi-
tational field lensing the images of distant galaxies can

cause C
GiIj
L to be nonzero when the redshift bin j is in front

of bin i (negligibly small contributions, which are exactly
zero in the Limber approximation, come in the case when i
is in front of j). This extra contribution to the correlation is
also present in the CMB lensing-cosmic shear cross power
spectra:

C
κjκCMB

L ¼ C
GjκCMB

L þ C
IjκCMB

L : ð31Þ

The gravitational contributions C
GiGj

l and C
GjκCMB

l are the
cosmic shear expressions given in Eqs. (25) and (27). For
the other terms, the power spectrum of intrinsic shear
PIIðk; zÞmust be introduced. Then, the I − I correlations in
redshift bin i are given (within the Limber approximation)
by an integral over the redshift bin, weighted by the galaxy
density:

CIiIi
L ¼ 1

n2i

Z
χfj

χij

dχ

�
dn
dχS

�
2

PII

�
k ¼ Lþ 1=2

χ
; z

�
: ð32Þ

The cross-power spectra between bins C
IiIj
L is zero (within

the Limber approximation) for i ≠ j, as the redshift
window functions do not overlap. For the cross-term
CGI
L we introduce the cross-power spectrum between matter

and intrinsic ellipticities PI;mðk; zÞ such that

C
GiIj
L ¼ 1

nj

Z
χfj

χij

dχ

�
dn
dχS

�
WiðχÞ
χ2

PI;m

�
k ¼ Lþ 1=2

χ
; z

�
;

ð33Þ

where WiðχÞ can be replaced by Wκ
CMBðχÞ to get C

IjκCMB

L .
As mentioned earlier, this is only nonzero for j in front of i
as WiðχÞ is zero for χ > χfi , i.e., over the integration range
of Eq. (33) if bin j is behind bin i.
A simple model for the power spectrum PIIðk; zÞ

assumes that (on large scales) galaxies are aligned with
their host dark matter halos, which are given ellipticities
by their local tidal field, implying that, in the linear
regime [76,77],

Plin
II ðk; zÞ ¼

�
AIAC1ρ̄a2

D̄

�
2

Plin
m ðk; zÞ; ð34Þ

where ρ̄ is the mean matter density of the Universe at

redshift z, D̄ ¼ DðzÞ
a where DðzÞ is the growth factor

normalized to 1 today; and Plin
m ðk; zÞ is the linear matter

power spectrum. C1 is a constant amplitude
C1 ¼ 5 × 10−14h−2 M−1

⊙ Mpc3, chosen to match the IA
amplitude of superCOSMOS in [78] and AIA is an overall
normalization parameter with a fiducial value of unity
which should be marginalized over due to uncertainty in
the overall amplitude of the intrinsic alignment power. The
cross spectrum between the intrinsic ellipticities and
the matter power spectrum PI;mðk; zÞ is given (again in
the linear regime) by

Plin
I;mðk; zÞ ¼ −

�
AIAC1ρ̄a2

D̄

�
Plin
m ðk; zÞ: ð35Þ

In [77] this linear alignment model was extended to a
“nonlinear linear alignment model” by replacing Plin

m ðk; zÞ
with the nonlinear Pmðk; zÞ. We use this latter model in our
forecasts.
In cosmic shear analyses, it is customary to use a very

wide prior on the normalization AIA. However, recent shear
surveys have been successful in constraining this parameter
in combination with photometric or spectroscopic galaxy
clustering: for example, when ignoring galaxy colors, the
Dark Energy Survey obtained σðAIAÞ ≈ 0.33 with its year-1
data [79], and the KiDS survey achieved σðAIAÞ ≈ 0.5 in
Ref. [80], with both surveys also able to distinguish the
amount of intrinsic alignments associated with red and
blue galaxies (see also Ref. [81]). Future shear surveys are
expected to improve upon this, especially if accompanied
by coordinated wide-field spectroscopy (e.g., [82]). Thus,
in our baseline forecasts we include a prior of 25% of the
fiducial value of AIA, but we also explore the dependence of
our results on this choice.
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D. Impact of shear subtraction
on neutrino mass inference

Subtracting the optimally-combined shear map of
Sec. V B from the CMB lensing map results in a significant
reduction of the baryonic bias on Mν without an appreci-
able increase in the statistical uncertainty. To illustrate the
redshift distribution of the field we subtract, we show in

Fig. 4 the redshift kernelWðχÞ dz
dχ for CMB lensing, cosmic

shear for the case when Nbins ¼ 4, and the linear combi-
nation of the 4 shear bins as determined by Eq. (23). We
also quote the numerical values of the relevant ci, which
demonstrate that the highest-redshift shear bin is the
dominant contribution to the optimal combination, but
with the other bins also playing a role in improving the
correlation with the CMB lensing redshift kernel.
In Fig. 5, we plot the constraints and bias on Mν against

Nbins, the number of galaxy redshift bins we use to
construct X̂. Increasing Nbins does not increase the number
of galaxies in the analysis, but it does have the effect of
increasing our redshift resolution and allowing us to weight
the galaxy kernels to match the CMB lensing kernel better.
Note, however, that at some value of Nbins, photometric
redshift errors will not allow for increasing Nbins to give us
better redshift resolution, and we expect the curves to
saturate around this point in a treatment where photometric
redshifts are included. However, for the redshift errors
expected of the Rubin Observatory’s LSST, we expect to be
able to significantly subtract the bias on Mν with this
method even with a small number of bins, in which case
photometric redshift errors will likely be insignificant due
to the wide extents of the bins.
Figure 5 shows that, with Lmax ¼ 3100 for CMB lensing,

implementing the shear subtraction generally decreases the

FIG. 4. The CMB redshift kernelWκ
CMB (black), along with the

subtracted field for the Nbins ¼ 4 case (blue). The separate
redshift kernels for each bin are also shown in dashed lines.
The coefficient of each bin in the linear combination is included
in the caption.

FIG. 5. Demonstrating mitigation strategy 2: the decrease in the bias when an optimal combination of Nbins cosmic shear bins is
subtracted from the CMB lensing map. With the exception of Nbins ¼ 0 (which corresponds to the no-subtraction case), the total redshift
extent and number of galaxies are held constant, withNbins controlling the slice thickness. On top is for an analysis with Lmax of 3100; on
bottom we have applied a scale cut of Lmax ¼ 1000 (as well as subtracting cosmic shear). All curves shown include marginalization over
intrinsic alignments for cosmic shear, with a 25% prior on the intrinsic alignment amplitude. It is clear that the bias onMν can be reduced
significantly in the latter case, without appreciably loosening the constraint on Mν.
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bias onMν associated with all but one simulation by factors
of 3 to 7 for SO, and a factor of ∼2 for S4 (we denote
the no-subtraction case by Nbins ¼ 0 in the figure). With
Lmax ¼ 1000, we similar improvements for SO, but closer
to a factor of 5 improvement for S4, in addition to the factor
of 2 improvement arising from the Lmax cut. In all cases, the
bulk of the improvement can be obtained with only 2 shear
redshift bins (with boundaries z ¼ ½0; 0.93; 4�) for the
LSST specifications we use. Concurrent with the decrease
in bias is an increase in the statistical uncertainty onMν, by
at most ∼20%.
Most simulations in Fig. 5 display similar behavior, with

the bias on Mν decreasing with Nbins, but Horizon-AGN
exhibits the opposite trend, with the bias increasing as
more redshift bins are used for the subtraction. This is due
to the stronger effect of baryons on high-redshift (z≳ 3)
clustering observed in Horizon-AGN as compared to the
other simulations (contrast Fig. 2 of Ref. [48] with results
from other simulations summarized in Refs. [43,55]). If the
high-redshift clustering in Horizon-AGN (primarily driven
by gas pressure delaying the collapse of dark matter into
halos, rather than AGN feedback [48]), as opposed to that
in the other simulations (in which the effect of baryons at
high z is much more mild) is reproduced in the actual
Universe, then isolating the high-z part of a CMB lensing
map will not be sufficient to mitigate the impact of baryons
on a neutrino mass constraint.
In Fig. 6, we show the effect of varying the prior on the

intrinsic alignment amplitude AIA on the uncertainty and
bias on Mν, for Nbins ¼ 5 and the bias associated with the
OWLS-AGN simulation. For CMB-S4 with the tighter τ
prior, loosening σðAIAÞ from 0.25 to 3 degrades the
expected error bar on Mν by 15% for Lmax ¼ 3100 or
40% for Lmax ¼ 1000, and increases the bias on Mν by a
factor of ∼2 compared to the σðAIAÞ ¼ 0.25 case. Thus,
with the wider AIA prior, the shear subtraction combined

with the Lmax cut is generally still able to reduce the bias on
Mν by a factor of ∼5–6 compared to the case with no
mitigation strategy. On the other hand, exact knowledge of
AIA leads to improvements in the uncertainty and bias on
Mν of a few tens of percents. Note that the nonlinear
alignment model we have used for intrinsic alignments will
likely be superseded by more detailed models for future
shear surveys (e.g., [83,84]), but our exploration of priors
on AIA can be taken as indicative of how one’s knowledge
of intrinsic alignments affects the shear subtraction pro-
cedure we have described.

VI. STRATEGY 3: MARGINALIZATION OVER
ADDITIONAL PARAMETERS

The mitigation strategies we considered above involved
removing portions of the data most sensitive to baryons, via
scale cuts and/or subtracting proxies for low-redshift infor-
mation in CMB lensing, while retaining as much con-
straining power on Mν as possible. However, as biased
constraints on Mν arise from neglecting baryonic effects in
the theoretical modelling of the matter power spectrum, one
can instead incorporate a model for these effects; by
marginalizing over the associated parameters, we can hope
to reduce the bias on Mν without requiring precise knowl-
edge of the impact of baryons. Examples of such models
include perturbation theory [58,85,86], extended halo mod-
els [32,56,87–90], empirical fitting functions [20,43], or
principal-component decompositions [91–93] for the matter
power spectrum from simulations, “baryonification” algo-
rithms that modify the outputs of N-body simulations
[94–97], emulators [98], or approaches based on machine
learning [99,100].
We choose to test this marginalization approach using

the model from Ref. [32]. This model is based on the halo
model (e.g., [101]), with a modified 1-halo term for the

FIG. 6. The effect of marginalizing over the intrinsic alignment amplitude. If a prior is not included the constraint on σðMνÞ can
increase significantly, as is shown on the left; the bias also increases, as is shown on the right for OWLS-AGN.
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matter power spectrum. Baryonic effects are parametrized
by two parameters. The first, A, is the amplitude of the halo
concentration-mass relationship cðM; zÞ:

cðM; zÞ ¼ A
1þ zfðMÞ
1þ z

; ð36Þ

where zfðMÞ is the formation redshift of halos of mass M;
this is designed to capture the effects of processes such as
gas cooling, which can cause increased halo concentration.
The second parameter, η, alters the (Fourier-transformed)
halo density profile uðk;MÞ via

uðk;MÞ → uðνηk;MÞ; ð37Þ

where ν ¼ δc
σðMÞ with δc the critical density required for

spherical collapse and σðMÞ variance in the initial density
fluctuation field when smoothed with a top-hat filter with
the size of the virial radius of the halo. The Fourier-
transformed halo profile is given by

uðk;MÞ≡ 1

M

Z
rv

0

dr4πr2ρðr;MÞ sinðkrÞ
kr

; ð38Þ

where rv is the virial radius of the halo and ρðr;MÞ is the
halo density profile in real space. For positive η, the
modification (37) “puffs out” higher-mass halos (ν > 1)

and contracts lower mass halos, and as such η is referred to
as the “halo bloating parameter.” This is intended to capture
some of the effects of AGN feedback on halo profiles. By
fitting A and η to the OWLS simulations, Ref. [56] found
that it was adequate to use a single redshift-independent
value for A, while the redshift dependence of η was well
captured by

ηðzÞ ¼ η0 − 0.3σ8ðzÞ; ð39Þ

with a single η0, where σ8 is the variance of density
fluctuations over a sphere with radius 8h Mpc−1, and we
use those choices in our calculations.
To ensure that the parameter space of A and η0

sufficiently describes the baryonic effects in the simulations
we are considering, in Appendix we fit these parameters to
the Pbary=PDMO ratios from each simulation, and compare
the “best-fit” predictions with the simulations’ measure-
ments. We indeed find that the model is able to reproduce
all simulation results with a precision of ∼5% over the
scales we are concerned with, which is an acceptable level
since we are more concerned with the range of simulation
results rather than exactly reproducing any one simulation.
This agreement also justifies our use of the model from
Ref. [32] as opposed to turning to more recent updates
(e.g., [88,89]).

TABLE I. Expected uncertainty and bias onMν with and without marginalization over the A and η0 parameters of modified halo model
from Ref. [32] (denoted “After marg.” and “No marg.” respectively),Expected uncertainty and bias on Mν with and without
marginalization over the A and η0 parameters of modified halo model from Ref. [32], using CMB lensing multipoles up to Lmax ¼ 3100.
With marginalization, the biases are reduced by a factor of ∼10 in most cases, while the uncertainty is only degraded by ∼15% at most.

σðMνÞ [meV] Bias ΔMν [meV] ΔMν=σðMνÞ
Experiment σpriorðτÞ No marg. After marg. Simulation No marg. After marg. No marg. After marg.

SO 0.006 22 24 OWLS-AGN 7.2 0.14 0.32 0.0060
BAHAMAS 6.6 0.74 0.29 0.031

BAHAMAS-LowAGN 3.8 0.43 0.17 0.018
BAHAMAS-HighAGN 12 1.4 0.55 0.059

Horizon-AGN 0.88 −0.81 0.039 −0.033
TNG100 0.92 0.090 0.041 0.0038
TNG300 0.92 0.088 0.042 0.0037

S4 0.006 20 22 OWLS-AGN 16 0.39 0.76 0.018
BAHAMAS 13 1.1 0.65 0.052

BAHAMAS-LowAGN 7.7 0.67 0.38 0.031
BAHAMAS-HighAGN 24 2.4 1.2 0.11

Horizon-AGN 3.2 −0.78 0.16 −0.036
TNG100 2.0 0.22 0.098 0.010
TNG300 2.1 0.20 0.10 0.0091

S4 0.002 12 14 OWLS-AGN 14 0.37 1.2 0.027
BAHAMAS 12 1.2 1.0 0.083

BAHAMAS-LowAGN 7.2 0.68 0.59 0.049
BAHAMAS-HighAGN 22 2.4 1.8 0.18

Horizon-AGN 2.8 −0.89 0.23 −0.064
TNG100 1.9 0.21 0.15 0.015
TNG300 2.0 0.19 0.16 0.014
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To include this model in our forecasts, we use the same
formalism as in Sec. III, but expanding the vector of
parameters in Eq. (3) to include A and η0:

θ⃗ ¼ ðh;Ωbh2;Ωch2; τ; ns; As;Mν;A; η0Þ: ð40Þ

The fiducial values we use for A and η0 are A ¼ 3.13 and
η0 ¼ 0.60, corresponding to those fit to the DMO run of
OWLS in Ref. [56]. We do not assume any prior knowledge
of the true values of these parameters, which is a
conservative choice given the multitude of other datasets
which could likely constrain them at some level. Upon
marginalizing over A and η0, along with the other cosmo-
logical parameters, we find the results in Table I. In
particular, we find that the uncertainty on Mν is degraded
by only ∼10% compared to the case where baryonic effects
are ignored in the modeling (equivalent to fixing A and η0
to their fiducial values), while the biases on Mν are
drastically reduced, by factors of ∼10 or more. In particu-
lar, for CMB-S4 with the tightest τ prior, the bias
corresponding to BAHAMAS-HighAGN is roughly 0.2σ,
while for all other simulations it is less than 0.1σ; without
marginalization, there are three simulations that induce a
bias exceeding 1σ.
To understand why this prescription works so well at

removing the bias while preserving the constraining power,
it is helpful to plot the derivatives of Cκκ

L with respect
to A, η0, and Mν; see Fig. 7. We see that A and η0 have
significantly different effects on the shape of the lensing
power spectrum thanMν: since they only modify the 1-halo
term in the matter power spectrum, they have the strongest
impact at small scales, while neutrino mass suppresses

structure growth over a wider range of scales (recall Fig. 1).
This lack of degeneracy implies that the Mν constraint is
not degraded when A and η0 are marginalized over;
furthermore, since the model covers the space of baryonic
effects well, the marginalization is effective at removing the
associated bias from a determination of Mν. These con-
clusions are consistent with other studies of cosmic shear
[17,18,102], which have found that when priors from the
primary CMB or other observations are included, margin-
alizing over a baryonic model with only a few parameters
enables unbiased constraints on neutrino mass without
large increases in uncertainty.

VII. DISCUSSION AND CONCLUSION

Upcoming measurements of CMB lensing have great
promise to measure the sum of neutrino masses (Mν), but
this measurement will only be possible if each of several
systematic effects are tightly controlled. In this work, we
considered one such systematic, related to the impact of
“baryonic effects” (the name given to astrophysical proc-
esses like gas cooling and AGN feedback) on the lensing
power spectrum. Recent simulations indicate that uncer-
tainty in these effects can bias a neutrino mass measure-
ment from CMB lensing by a sizeable fraction of the
statistical error bar if they are not incorporated in the
modeling or mitigated in some other way [19].
We investigated three strategies for mitigating this bias,

using Fisher forecasts that combine expected CMB lensing
and primary CMB measurements from upcoming experi-
ments, BAO constraints expected from DESI, and a prior
on the mean optical depth τ, either from current Planck
constraints or assuming a cosmic-variance-limited meas-
urement. Our chosen strategies and results are as follows:
(1) Decreasing the largest multipole Lmax (smallest

physical distance) used for neutrino mass constraints
(Sec. IV): baryonic effects are stronger at smaller
scales, so one can attempt to reduce sensitivity to
these effects by excluding smaller scales from an
analysis. We found that keeping Lmax ≳ 1000 is
necessary to avoid sacrificing significant con-
straining power on Mν, and that setting Lmax ¼
1000 can reduce the bias on Mν by as much as a
factor of 2 (compared to our fiducial forecast with
Lmax ¼ 3100). However, this reduction still allows
the bias be of the same order as the statistical error
bar on Mν, so further mitigation is needed.

(2) Removing the low-redshift contribution to the lens-
ing map using external tracers (Sec. V): CMB
lensing probes structures over a wide redshift range,
while simulations indicate that baryonic effects
should only have a sizeable effect on clustering at
the lower end of this range. Thus, one can attempt to
remove the low-z contribution from a CMB lensing
map, and use the resulting map for a neutrino mass
analysis. We have implemented this proposal using a

FIG. 7. The derivatives of the lensing power spectrum with
respect to the parameters of the model for baryonic effects from
Ref. [32], and also Mν, all normalized by their own values at
L ¼ 1000. Mν is tending towards a scale-independent effect on
Cκκ
L across a wide range of scales, while A and η0 are significantly

scale dependent, becoming increasingly important on small
scales.
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weighted sum of cosmic shear measurements in
different source redshift bins. We found that, with
Lmax ¼ 1000, subtracting a combination of 2 shear
redshift bins (modeled on the Rubin Observatory’s
LSST) from a CMB lensing map is sufficient to
reduce the bias onMν by factors of 5 or more, down
to 3 meV for the most extreme simulation we
consider. We also considered the effect of intrinsic
alignments in the LSST-like data on this procedure,
and found a minor impact, when assuming the priors
that are expected.

(3) Marginalizing over a parametrization of baryonic
effects (Sec. VI): if the effects of neutrino mass
and baryonic processes are sufficiently nondegenerate
in the lensing power spectrum, then one can consider
including a simple parametrization of the latter in the
matter power spectrum model, and marginalizing
over the corresponding parameters. After checking
that the modified halo model from Ref. [32] can
describe our set of simulations with appropriate
accuracy, we found that marginalizing over the
model’s two parameters only degrades the con-
straining power onMν by about 15%, while reducing

the bias on Mν by factors of 10 or more, down to
∼2meV for the most extreme simulation. This is true
even without a reduction in Lmax.

We conclude that either of strategies 2 or 3 should be
sufficient to reduce the bias in Mν from baryons to an
acceptable level (ΔMν ≲ 0.2σðMνÞ) for CMB-S4. These
results are summarized in Fig. 8.
Methods 2 and 3 are complementary in that method 2

relies on combining external data with CMB lensing maps,
while method 3 relies on the inclusion of extra modeling
ingredients. They can serve as useful cross-checks of each
other: the same result from two different approaches would
indicate a robust measurement of Mν.
There is a fourth mitigation strategy that we have not

explored in this work: using external measurements to
constrain or fix the form of baryonic effects on CMB
lensing. It has been shown that the matter power spectrum
suppression seen in a range of hydrodynamical simulations
is strongly correlated with the mean baryon fraction
of group- and cluster-scale halos (Mhalo ∼ 1014h−1 M⊙)
[43,90], so an external constraint on this quantity would
likely give a much sharper picture of how much power
suppression to include in the modeling. This constraint may

FIG. 8. A summary of the efficacy of our mitigation methods. For each experimental configuration and each mitigation method, we
show the forecast error bars forMν, centered on the fiducial value of 60 meV but offset by the bias forecast for each simulation. Without
any mitigation, the biases are substantial and have differing values for different simulations [19]. However, it can be seen that Lmax
reduction and shear subtraction each reduce the biases to some extent, and that when both methods are performed the biases are almost
completely removed. Marginalization over baryonic parameters also does an excellent job of almost completely removing the biases.
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be achievable with future x-ray observations of groups and
clusters (e.g., [103]). For example, when using the model
for baryonic effects from Ref. [95], Ref. [18] finds that gas
fraction measurements by the upcoming eROSITA tele-
scope [104], combined with cluster mass estimates from
Euclid weak lensing, will significantly reduce the uncer-
tainty on Mν from a combination of cosmic shear and
Planck CMB measurements. However, inference of gas
fractions from x-ray measurements requires a measure of
the total halo mass, and the various methods to obtain this
(e.g., assuming hydrostatic equilibrium or using weak
lensing of background galaxies) each come with their
own caveats. Furthermore, x-ray measurements are most
sensitive to hot gas in a halo’s interior, while Refs. [90,94]
have shown that gas at the outskirts of groups and clusters
has an important effect on the matter power spectrum.
This fainter, more diffuse gas can be probed using the

thermal and kinetic Sunyaev-Zel’dovich effects. Mean gas
fractions can be extracted from cross-correlations between
CMB maps and group/cluster catalogs [105–108], or more
generally, stacked gas and pressure profiles can be mea-
sured directly from these cross-correlations [109–112],
with upcoming surveys promising to provide much more
powerful measurements [113,114]. Further constraints are
possible by correlating thermal Sunyaev-Zel’dovich maps
and cosmic shear [115,116] or CMB lensing itself [117],
helping to break degeneracies between baryonic effects and
neutrino mass. Clearly, there are many avenues for inde-
pendent constraints of baryonic effects, which can be
incorporated into an analysis of CMB lensing. However,
the strategies presented in this paper do not depend on any
such constraints, and therefore represent a promising
approach to pursue in parallel.
Finally, it is worth noting that we have made specific

choices when implementing these strategies in our fore-
casts, but other choices are possible. For instance, one
could choose a low-redshift tracer other than cosmic shear
to implement the map-level subtraction from Sec. V;
another option would be to use spectroscopic or photo-
metric galaxy catalogs, although galaxy bias and selection
effects would need to be carefully accounted for in the
subtraction procedure. One could also consider marginal-
izing over other models for baryonic effects, such as
effective-field-theory-based perturbation theory, which
Ref. [58] found to be capable of describing baryonic
effects on CMB lensing at L≲ 2000 with suitable accuracy
for CMB-S4. Regardless of these specific choices, we
expect our general conclusions about these strategies to
hold. Therefore, it appears that baryonic effects on a
neutrino mass constraint from CMB lensing can be
straightforwardly reduced to a negligible level.
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APPENDIX: COMPARISON OF SIMULATIONS
AND PARAMETRIC MODEL FOR

BARYONIC EFFECTS

In Sec. VI, we investigated whether including a model
for baryonic effects in the prediction for the matter power
spectrum can reduce the bias on Mν after marginalization
over the model’s parameters. For this to be a valid method,
we must be reasonably confident that the model can capture
a realistic range of baryonic effects. In this appendix, we
check this for the hydrodynamical simulations we use in
this work, assuming that this set of simulations itself spans
a realistic range of effects. More detailed comparisons
between these simulations and observations will likely be
required to fully justify this assumption, but this is beyond
the scope of this work.
We compare model predictions from Ref. [32] with the

power spectrum ratios R̂ðk; zÞ measured from simulations,
using the following statistic:

ΔðA; η0Þ≡
X
i;j

�
R̂ðki; zjÞ −

Pmðki; zj;A; η0Þ
PDMOðki; zjÞ

�
2

; ðA1Þ

where PDMO is evaluated with the fiducial values of A and
η0 from Sec. VI. We sum over k and z points at which
simulation measurements are available over 0 ≤ z ≤ 2 and
1 Mpc−1 ≤ k ≤ 10 Mpc−1, chosen to correspond roughly
to the ranges in which baryonic effects significantly affect
Cκκ
L for L≲ 3000 [19]. Equation (A1) is equivalent to a χ2

statistic that weights all points equally, motivated by other
work that has found sample-variance uncertainties on R̂ to
be roughly scale independent [43,48,55]. Our goal is only
to examine the best-fit predictions of the model for each
simulation, rather than fully quantify the goodness of fit
(which we cannot do without better knowledge of the
uncertainties on R̂), so we simply use unit weights in
Eq. (A1). We evaluate Pm and PDMO at our fiducial
cosmology, because our goal is to check how well the
model from Ref. [32] can reproduce our range of R̂ curves
with cosmology held fixed.
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In Fig. 9, we show contour plots of ΔðA; η0Þ for each
simulation. These plots clearly imply a degeneracy
between A and η0 for each simulation, roughly consistent
with the degeneracy directions seen in the fits in Ref. [56]
(see their Fig. 6). Figure 10 shows the best-fitting

predictions for R̂ðk; zÞ from minimizing ΔðA; η0Þ with
respect to the two parameters, at a few representative
redshifts. We find that for all simulations, the model
can describe the power spectrum suppression to better
than ∼5% over the scales of interest, with better fits at

FIG. 10. Top: the response functions R̂ðk; zÞ measured from the simulations (solid lines) and the RðA; η0; k; zÞ (from the baryonic
model) that minimize ΔðA; η0Þ, at various redshifts. Bottom: ratios of best-fit and measured R functions. A dashed vertical line is
shown at the k that is equivalent to 3100=χðzÞ at each redshift, i.e., the maximum k used to calculate Cκκ

L in the Limber approximation
at each z.

FIG. 9. Contour plots in the A; η0 plane. We show contours of ΔðA; η0Þ, where ΔðA; η0Þ is defined in Eq. (A1). The points which
minimize ΔðA; η0Þ are shown, and the contours are filled in for values of ΔðA; η0Þ which ΔðA; η0Þ < Δmin þ 5 × 10−5, corresponding to
the separate Δmin for each simulation.
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lower z. While other models have been shown to match a
subset of these simulations at higher precision (e.g., [89]),
the ∼5% precision we find for the model from Ref. [32] is
sufficient to use it our proof-of-concept forecast in
Sec. VI. To see this, note that 5% systematic errors in

Pm over the scales we fit for translate into ∼2% errors in
Cκκ
L (see Fig. 11), and Fig. 1 shows that the simulation-

derived Cκκ
L curves are still distinguishable from the effect

of massive neutrinos even with this level of errors.
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