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We study particle production and unitarity violation caused by a curved target space right after
inflation. We use the inflaton field value instead of cosmic time as the time variable, and derive a
semiclassical formula for the spectrum of produced particles. We then derive a simple condition for
unitarity violation during preheating, which we confirm by our semiclassical method and numerical
solution. This condition depends not only on the target space curvature but also on the height of the
inflaton potential at the end of inflation. This condition tells us, for instance, that unitarity is violated
in running kinetic inflation and Higgs inflation, while unitarity is conserved in α-attractor inflation and
Higgs-Palatini inflation.

DOI: 10.1103/PhysRevD.103.103536

I. INTRODUCTION

Inflation is a successful paradigm that describes the
beginning of the universe and provides seeds for large scale
structure and the cosmic microwave background (CMB)
anisotropies. Inflation is typically driven by the potential
energy of a scalar field, i.e., an inflaton, that slowly rolls
down its potential. After inflation, the inflaton typically
oscillates around the minimum of its potential and its
energy is released by particle production, a process referred
to as (p)reheating. The (p)reheating dynamics is of great
importance since the inflationary observables such as the
spectral index and tensor-to-scalar ratio depend on the
reheating temperature through the duration of the reheating
phase. In addition, interesting physical processes in the
early universe such as baryogenesis and dark matter
production often depend on the reheating temperature.
Recently, it was pointed out that the preheating dynamics

of Higgs inflation can be more violent than previously
thought [1]. In Higgs inflation the standard model Higgs
is identified as the inflaton and,with thehelp of a nonminimal
coupling to gravity ξ, the model is consistent with the CMB
observation [2–5],making it one of themost popular inflation
models on the market. Reference [1] found that an effective
mass term of the Goldstone (or equivalently longitudinal
gauge) bosons shows a “spiky” feature as the Higgs passes

the origin. The typical energy scale of particles produced
by this spike exceeds the cutoff scale of the theory for
ξ≳Oð100Þ,1 resulting in unitarity violation. In other words,
this phenomena invalidates the low energy description of
Higgs inflation and requires a UV completion.2 The unitarity
violation ofHiggs inflationwas originally found by studying
the dynamics of the inflaton in the Jordan frame, but this is
also nicely understood as a result of the target space curvature
in the Einstein frame [6,7]. Since there are many other
inflation models that have nontrivial target space curvatures
in the Einstein frame, it is then natural to ask if unitarity
violation happens in those other models.
In this paper, we study particle production and unitarity

violation from the target space curvature during preheating
in detail. Throughout this work, we study preheating by a
set of linearized mode equations, and we neglect the
backreaction to the inflaton field. This treatment allows
us to obtain analytical expressions for the spectrum after the
first inflaton zero crossing.3 In Sec. II, we study particle
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1The CMB requires ξ2 ≃ 2 × 109λ, where λ is the Higgs quartic
coupling, and hence this is the case unless λ is (tuned to be) tiny at
the inflationary energy scale.

2We discuss different viewpoints on the unitarity issue of
Higgs inflation in Sec. III C.

3In the case of efficient particle production, the linearized
treatment quickly breaks down and—in the case of large
occupation numbers—one should resort to lattice simulations
for an accurate description of the particle production process.
Generally speaking, the linearized equations give a good de-
scription of the spectrum after the first inflaton zero crossing.
Even when preheating is very strong, it allows us to estimate the
typical momentum of the produced particles.
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production of a scalar field χ coupled to the inflaton ϕ.4

This section is intended to be generic, and hence we take
the effective mass term of χ to be a general function of ϕ
and its velocity _ϕ without specifying its origin. In general,
it is challenging to study particle production analytically
when the kinetic term of the inflaton is nontrivial, since the
inflaton is not a simple function of the cosmic time t in such
a case. Instead, we use the inflaton field value ϕ itself as the
time variable and work solely in the scalar field space, not
referring to t. In this method, the inflaton velocity is
expressed as a function of ϕ by using an (approximately)
conserved quantity such as the inflaton energy density. This
enables us to apply a phase integral approximation to obtain
a semiclassical formula of the spectrum that reproduces the
numerical results quite well.
We then address the question of unitarity violation in

Sec. III. In particular, we find that the following simple
condition works as a criterion for unitarity violation:

VðΦÞ≳ Λ4; ð1:1Þ

where VðΦÞ is the height of the inflaton potential at the end
of inflation with Φ the inflaton amplitude, and Λ is the
typical mass scale of the target space curvature. Note that Λ
is the cutoff scale of the theory at the same time since it
enters the scattering amplitude of, e.g., ϕϕ → χχ. For
instance, VðΦÞ ∼ λM4

P=ξ
2 and Λ ∼MP=ξ for Higgs infla-

tion with λ the Higgs quartic coupling and MP the reduced
Planck scale [8–12], and hence the condition (1.1) reads

λξ2 ≳ 1; ð1:2Þ

which agrees with the condition known in the literature [1].
The condition (1.1) tells us that not only the target space
curvature but also the height of the inflaton potential is
important for unitarity violation. We derive this condition
based on an intuitive argument, and confirm it by the
method developed in Sec. II as well as numerical compu-
tations. We find in particular that this condition explains the
different character of the preheating dynamics of Higgs and
Higgs-Palatini inflation [13–15]. We also point out that
unitarity violation can occur in running kinetic inflation
[16,17], which, to our knowledge, has not yet been noted in
the literature (except for a brief comment in Ref. [1]). In
addition, we see that the method in Sec. II provides a good
approximation of the spectrum even when unitarity is
preserved.
Although our main focus is on the preheating dynamics

after inflation, particle production and unitarity violation
from the target space curvature are possible even beyond

this context. As an example, we comment on a super-
symmetric axion model in the end of Sec. III. This model
acquires a nontrivial target space as an induced metric after
integrating our heavy degrees of freedom. The radial
component of the Peccei-Quinn field, or the saxion field,
plays the role of ϕ, and its motion induces a spiky feature in
the effective mass term of the axion χ that may cause
unitarity violation within the low energy description.
We finally summarize our results in Sec. IV, with

comments on possible UV completions of running kinetic
inflation and Higgs inflation.

II. SEMICLASSICAL ANALYSIS OF PARTICLE
PRODUCTION IN FIELD SPACE

In this section, we study the particle production of a
scalar particle χ during an inflaton oscillation epoch after
inflation. In particular, we use the inflaton field value
instead of the cosmic time as our time variable, which we
may refer to as an analysis in the (scalar) field space. This
enables us to derive an semiclassical expression of the
occupation number after one inflaton oscillation. We will
show that the semiclassical analysis reproduces numerical
results well in two specific cases. These results turn out to
be useful to understand particle production from a target
space curvature, as we will see in Sec. III. We ignore the
Hubble expansion in this section since it is irrelevant for our
discussion.

A. Preliminary

In this subsection, we summarize the basic equations for
particle production. We consider the following Lagrangian
for the inflaton field ϕ:

L ¼ 1

2
hϕϕð∂ϕÞ2 − V; ð2:1Þ

where hϕϕ ¼ hϕϕðϕÞ and V ¼ VðϕÞ are general functions
of ϕ. We will see in Sec. III that this form of Lagrangian
describes, e.g., running kinetic inflation [16,17], Higgs
inflation [2–4], α-attractor inflation [18,19] and Higgs-
Palatini inflation [13,14].5 The inflaton equation of motion
is given by

hϕϕϕ̈þ 1

2
h0ϕϕ _ϕ

2 þ V 0 ¼ 0; ð2:2Þ

where the dot and prime denote the derivatives with respect
to t and ϕ, respectively. This system has a conserved
quantity,4Since the target space is trivial if there is only one scalar field,

we always assume that there are (at least) two scalar fields in this
paper. Remember that, for instance, Higgs inflation has four real
scalar degrees of freedom.

5This corresponds to the action in the Einstein frame for
(Palatini) Higgs inflation.
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1

2
hϕϕðϕÞ _ϕ2 þ VðϕÞ ¼ VðΦÞ; ð2:3Þ

where Φ is the initial inflaton amplitude.
We consider the production of a scalar particle χ whose

action is given by

Lχ ¼
1

2
ð∂χÞ2 − 1

2
m2

χðϕ; _ϕÞχ2: ð2:4Þ

Here we do not specify the origin of the massm2
χ and take it

as a general function of ϕ and _ϕ. We will study the mass
originating from the curvature of the scalar field target
space in Sec. III. Moving to Fourier space, we obtain the
mode equation as

χ̈k þ ðk2 þm2
χÞχk ¼ 0: ð2:5Þ

We impose plane wave initial conditions

χk ¼
1ffiffiffiffiffiffiffiffi
2ωk

p ; _χk ¼ −i
ffiffiffiffiffiffi
ωk

2

r
; ð2:6Þ

where the frequency is given by

ω2
k ¼ k2 þm2

χ : ð2:7Þ

Since the mass term and hence the frequency depend on
time through ϕ and _ϕ, positive and negative frequency
modes get mixed with each other as time evolves, which is
interpreted as particle production (see, e.g., Ref. [20]). This
mixing is described by the Bogoliubov coefficients αk and
βk whose equations of motion are given by

_αk ¼
1

4ω2
k

dω2
k

dt
βke

2i
R

t dtωk ;

_βk ¼
1

4ω2
k

dω2
k

dt
αke

−2i
R

t dtωk : ð2:8Þ

The initial condition (2.6) translates to

αk ¼ 1; βk ¼ 0; ð2:9Þ

at the initial time. Finally, the occupation number of a given
mode is computed as

fk ¼ jβkj2: ð2:10Þ

B. Inflaton field value as a time variable

If hϕϕ is nontrivial, the dynamics of the inflaton ϕ
generally depend on t in a complicated manner, and an
analytic expression can be obtained only in a some specific
cases and/or for a limited field range. This makes an
analytical estimation of the particle production quite

difficult (see, e.g., Ref. [1] in the context of Higgs
inflation).
In this paper, we propose using the inflaton field value ϕ

instead of t as the time variable to study the particle
production within one oscillation. The inflaton field value
ϕ is a monotonic function of t within half of an oscillation,
and hence it is equally a good time variable. The inflaton
velocity _ϕ can be expressed as a function of ϕ by exploiting
the conserved quantity (2.3). Avirtue of this method is that,
once hϕϕ and V are given, it is straightforward to derive
an analytic formula for m2

χ in terms of ϕ without any
approximation, as we will see explicitly below. This
enables us to perform a semiclassical analysis of the
particle production and estimate the spectrum analytically.
In terms of ϕ instead of t, the Bogoliubov coefficients

satisfy

dαk
dϕ

¼ 1

4ω2
k

dω2
k

dϕ
βk exp

�
2i
Z

ϕ
dϕ

ωk

_ϕ

�
;

dβk
dϕ

¼ 1

4ω2
k

dω2
k

dϕ
αk exp

�
−2i

Z
ϕ
dϕ

ωk

_ϕ

�
; ð2:11Þ

where ωk is now understood as a function of ϕ. The
exponent contains the velocity _ϕ due to a change of
integration variable. It follows from Eq. (2.3) that _ϕ is
expressed as a function of ϕ as

_ϕ2 ¼ 2
VðΦÞ − VðϕÞ

hϕϕðϕÞ
: ð2:12Þ

Since _ϕ has a definite sign within half of an oscillation,
there is no issue in solving the square in this equation. We
define Φ as the inflaton amplitude at the end of inflation.
Focusing on particle production after inflation and ignoring
particle production during inflation, we take the initial
condition as

αkðΦÞ ¼ 1; βkðΦÞ ¼ 0; ð2:13Þ

and solve the equations until ϕ ¼ −Φ. The occupation
number after the first zero crossing is then given by

fk ¼ jβkð−ΦÞj2: ð2:14Þ

Here is a comment. Although we restrict ourselves to
Eq. (2.1) in this paper, it is obvious that the idea of using ϕ
instead of t as a time variable can be applied for a broader
class of models, such as the generalized Galileon theory
[21,22]. One caution here is that it is sometimes nontrivial
to find an approximately conserved quantity. The energy
density is approximately conserved even if one turns on the
cosmic expansion in the model (2.1), and hence one can use
it to express _ϕ by ϕ as long as the process of one’s interest
occurs faster than the expansion as we will see in Sec. III.
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For a more general model, however, the energy density can
highly oscillate, and cannot be used to express _ϕ in terms of
ϕ (see, e.g., Ref. [23,24]). In such a case, an adiabatic
invariant discussed in Ref. [25] will be a useful alternative
to the energy density.

C. Semiclassical analysis

We now explain our semiclassical analysis to estimate
the occupation number. We exploit the Born approxima-
tion, αk ≃ 1, that is valid when the occupation number is
small, which results in

dβk
dϕ

≃
1

4ω2
k

dω2
k

dϕ
exp

�
−2i

Z
ϕ
dϕ

ωk

_ϕ

�
: ð2:15Þ

This equation is trivially integrated as

fk ≃
����
Z

Φ

−Φ

dϕ
4

1

ω2
k

dω2
k

dϕ
exp

�
−2i

Z
ϕ
dϕ

ωk

_ϕ

�����2: ð2:16Þ

We further assume that the inflaton amplitude Φ is much
larger than the field value region in which the particle
production dominantly happens. Then we can take the limit
Φ → ∞ and we obtain

fk ≃
����
Z

∞

−∞

dϕ
4

1

ω2
k

dω2
k

dϕ
exp

�
−2i

Z
ϕ
dϕ

ωk

_ϕ

�����2: ð2:17Þ

We now rely on the phase integral method (see, e.g.,
Refs. [26,27] and references therein). We assume that the
integral contour of Eq. (2.17) can be closed either in the
upper or lower half of the complex ϕ-plane. This is
typically the case due to the exponential factor in
Eq. (2.17). Then, according to Cauchy’s residue theorem,
the integral can be replaced by a sum of poles

fk ≃
π2

4

����Xϕ⊗
Resϕ¼ϕ⊗

�
1

ω2
k

dω2
k

dϕ
exp

�
−2i

Z
ϕ

0

dϕ
ωk

_ϕ

������2;
ð2:18Þ

where the sum is taken over all the poles ϕ ¼ ϕ⊗ in either
the upper or lower half planes. If the inflaton has a Z2

symmetry ϕ ↔ −ϕ, the poles always appear in pairs, and
hence there is no difference between taking either the upper
or lower half plane, as long as one ensures that the spectrum
is exponentially suppressed, not enhanced, in the final
expression. Since the overall phase does not contribute to
the spectrum, we take the lower end of the integral in the
exponent as ϕ ¼ 0 in this formula. Figure 1 describes the
schematic picture of our procedure outlined above.
Here we clarify our assumptions and limitations of the

above formula. First, we used the Born approximation, and
hence the above formula works only when the occupation
number does not exceed unity. Wewill see below that this is
indeed a good approximation in the case of our interest.
Second, we took the limit Φ → ∞ for the end points of the
integral. This limit corresponds to, e.g., ξ ≫ 1 in Higgs
inflation, which is indeed the case of our main interest. We
will also see in Sec. III that this approximation is valid even
when ξ ¼ 102, for which unitarity is preserved. Third, we
implicitly assumed that the modes of our interest satisfy
ω2
k > 0 so that αk and βk are well defined. If a mode

becomes tachyonic during an inflaton oscillation, however,
one has to smoothly connect the regions ω2

k > 0 and ω2
k < 0

as in Ref. [28]. This requires a separate treatment that is
beyond the scope of this paper. In our context, whether this
happens depends on the sign of the target space curvature,
and this prevents us from applying the above semiclassical
method to, e.g., α-attractor inflation.

FIG. 1. Integration contours in the complex ϕ-plane, for two different types of pole structure, corresponding to the two examples in
Sec. II D. The extension of the integration range from ½−Φ;Φ� to ½−∞;∞� is justified when the particle production dominantly occurs
only around the origin jϕj ≲ Λð≪ ΦÞ. The extended integration contour can then be closed at complex infinity, reducing the integral to
the sum of the residues at the poles.
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In the following, we demonstrate how the general
procedure we outlined above works in practice with two
examples. These results will be extensively used in Sec. III.

D. Examples

In the following examples, we take the following metric

hϕϕ ¼ 1þ ϕ2

Λ2
; ð2:19Þ

where Λ is a suppression scale. The conserved quantity
then determines

_ϕ2 ≃
2VðΦÞ

1þ ϕ2=Λ2
; ð2:20Þ

where we further ignored the VðϕÞ term in the numerator
which is valid in the limit Φ=Λ → ∞. In this example, the
approximation that lets Eq. (2.17) follow from Eq. (2.16)
also corresponds to the limit Φ=Λ → ∞.

1. Example 1: Mass with simple poles

Here we take the effective mass term

m2
χ ¼ c

_ϕ2

Λ2
; ð2:21Þ

where c is a numerical factor. By using Eq. (2.20), this can
be rewritten as

m2
χ ≃ 2c

VðΦÞ
Λ2

1

1þ ϕ2=Λ2
; ð2:22Þ

which has a pair of simple poles. The quantities necessary
for the semiclassical analysis are given by

1

ω2
k

dω2
k

dϕ̄
¼ −

2ϕ̄

1þ ϕ̄2

1

k̄2ð1þ ϕ̄2Þ þ 1
; ð2:23Þ

ω2
k
_̄ϕ
2
¼ cðk̄ð1þ ϕ̄2Þ þ 1Þ; ð2:24Þ

where we defined the dimensionless parameters

ϕ̄≡ ϕ

Λ
; k̄2 ≡ 1

2c
k2Λ2

VðΦÞ : ð2:25Þ

The prefactor of the integral has poles at

ϕ̄ ¼ �i; �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k̄2

p
k̄

; ð2:26Þ

and hence Eq. (2.18) reads

fk ≃
π2

4

���� exp
�
−

ffiffiffi
c

p �
1þ

�
k̄þ 1

k̄

�
arctanðk̄Þ

��

− exp

�
−
π

ffiffiffi
c

p
2

k̄2 þ 1

k̄

�����2: ð2:27Þ

For comparison, we also solve Eqs. (2.2) and (2.8)
numerically, using a quartic potential

VðϕÞ ¼ λ

4
ϕ4:

We add an additional term to the mass of the χ-particle

m2
χ ¼ c

_ϕ2

Λ2
þ 2c̃

VðϕÞ
Λ2

; ð2:28Þ

which is irrelevant for the particle production around ϕ ∼ 0,
but prevents adiabaticity violation as _ϕ ∼ 0, k → 0. We
have rescaled the momentum k by

ffiffiffi
λ

p
Λ, such that all

dependence on λ drops out. Here, and in the following, we
evaluate the numerical spectrum at the point ϕ ¼ ϕ�, which
is the first turning point of the inflaton, i.e., the point _ϕ ¼ 0
after the first zero crossing. In the case where we neglect
expansion, ϕ� ¼ −Φ. In Fig. 2, we compare the numerical
solution to the semiclassical formula (2.27). As one can see,
the formula (2.27) reproduces the numerical results
extremely well. This demonstrates the power of our semi-
classical analysis.
Equation (2.27) indicates that the spectrum depends only

on the height of the inflaton potential VðΦÞ and not on its
detailed structure. We numerically computed the spectrum
with a quadratic potential instead of quartic, and confirmed
that the spectrum is indeed intact as long as one takes the
coefficient of the quadratic potential (or the inflaton mass)
such that VðΦÞ is the same as the quartic case.
We point out that, as c increases or c̃ decreases, the

correspondence between the semiclassical approximation
and the numerical result becomes worse at small k, as we
will see explicitly in Sec. III C. The cause is particle
production by ordinary parametric resonance around
_ϕ ¼ 0, affecting the region of small k.6 As this type of
resonance is well studied in the literature, we will not
pursue it any further.

6One often assumes an interaction of the form χ2ϕ2, and then
the parametric resonance happens at ϕ ¼ 0 since the adiabaticity
is broken at that point. In our case, since the interaction is of the
form χ2 _ϕ2, the parametric resonance (if any) happens at _ϕ ¼ 0,
not ϕ ¼ 0. In other words, the phase is shifted by a quarter of the
oscillation period.
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2. Example 2: Mass with poles of order two

Next, we take the effective mass term as

m2
χ ¼ c

_ϕ2

Λ2 þ ϕ2
; ð2:29Þ

where c is again a numerical factor. By using Eq. (2.20),
this is expressed as

m2
χ ≃ 2c

VðΦÞ
Λ2

1

ð1þ ϕ2=Λ2Þ2 ; ð2:30Þ

and hence it has a pair of poles of order two. The quantities
necessary for the semiclassical analysis are

1

ω2
k

dω2
k

dϕ̄
¼ −

4ϕ̄

1þ ϕ̄2

1

k̄2ð1þ ϕ̄2Þ2 þ 1
; ð2:31Þ

ω2
k
_̄ϕ
2
¼ c

�
k̄2ð1þ ϕ̄2Þ þ 1

1þ ϕ̄2

�
; ð2:32Þ

where we again defined the dimensionless parameters as

ϕ̄≡ ϕ

Λ
; k̄2 ≡ 1

2c
k2Λ2

VðΦÞ : ð2:33Þ

The prefactor of the integral has poles at

ϕ̄ ¼ �i; �i

ffiffiffiffiffiffiffiffiffiffiffi
1� i

k̄

r
; ð2:34Þ

and hence Eq. (2.18) reads

fk ≃
π2

4

���� exp
�
−2

ffiffiffi
c

p Z
ϕ̄þ

0

dϕ̄F
�
þ exp

�
−2

ffiffiffi
c

p Z
ϕ̄−

0

dϕ̄F
�

− 2 exp

�
−2

ffiffiffi
c

p Z
1

0

dϕ̄F

�����2; ð2:35Þ

where we defined

Fðk̄; ϕ̄Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2ð1 − ϕ̄2Þ þ 1

1 − ϕ̄2

s
;

ϕ̄� ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� i

k̄

r
: ð2:36Þ

In Fig. 3, we compare the full numerical results with the
semiclassical formula (2.35) for a quartic potential. To
temper the divergence at _ϕ ∼ 0, k → 0 we again add a
second term to the mass

m2
χ ¼ c

_ϕ2

Λ2 þ ϕ2
þ 2c̃

VðϕÞ
Λ2

: ð2:37Þ

As one can see, the formula (2.35) reproduces the numeri-
cal results well, especially for large k, including the
oscillatory behavior. This oscillation originates from an
interference between ϕ̄� which are generally complex. For
small k the ordinary parametric resonance around _ϕ ¼ 0
causes additional particle production. In practice, this
region is less important, as the contribution to the
energy density of a mode with momentum k scales as
ρk ∝ k3ωkfk. The total energy density is thus dominated by
the modes with large k, for which the semiclassical
approximation works very well. Finally, we again checked
that the large k modes do not change if we use a quadratic
inflaton potential instead of quartic as long as VðΦÞ is
the same.

III. UNITARITY VIOLATION
DURING PREHEATING

Recently, particle production after inflation, caused by
the curvature of the scalar field target space, has been
actively studied in the literature, in particular in the context

FIG. 2. Particle number spectra for χ-particles with a mass with a single pole. Solid lines correspond to the full numerical solution,
dashed lines to the semiclassical approximation. The initial amplitude isΦ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
MPΛ

p
. Left: Λ ¼ 10−3MP, c̃ ¼ 0.05 and c ¼ 5, 20, 30,

(blue, orange, green, respectively). Right: c ¼ 10, c̃ ¼ 0.05 and Λ ¼ 10−2MP; 10−3MP; 10−4MP, (blue, orange, green, respectively).
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of Higgs inflation.7 Reference [1] found that the effective
mass term of Goldstone modes exhibits a “spiky” feature
(see also Ref. [30]) in Higgs inflation, whose origin is now
understood as the target space curvature in the Einstein
frame [6,7]. The spike is of great phenomenological
importance since it produces Goldstone modes whose
energy scale can be greater than the cutoff scale of the
theory, causing unitarity violation.8 This indicates that one
cannot determine the reheating temperature and hence the
inflationary observables such as the spectral index and the
tensor-to-scalar ratio within the validity of the theory.
Alternatively, one can put an upper bound on the non-
minimal coupling ξ between the Higgs and the Ricci scalar
as ξ≲Oð100Þ to avoid the unitarity violation during
preheating.
Since there are many inflation models other than Higgs

inflation with curved target spaces, it is natural to ask if a
similar phenomenon happens in those models. In the
following, we provide a general condition for a mass term
from a curved target space to cause unitarity violation.
We will see that not only the target space curvature but also
the height of the inflaton potential at the end of inflation
plays an important role. We then consider four inflation
models as examples, i.e., running kinetic inflation [16,17],
Higgs inflation [2–4], α-attractor inflation [18,19] and
Higgs-Palatini inflation [13,14], and study particle produc-
tion from the target space curvature. We will see that the
method we developed in Sec. II provides a useful estima-
tion of the spectrum of produced particles. In this section,
we include the Hubble expansion in our computation for
completeness, although it is of little importance for our
purpose.

A. Mass term from target space curvature

In this subsection, we review the covariant formalism
and remind readers that the target space curvature induces a
mass term [31–37].9 Let us begin with the following action
in the Einstein frame:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ 1

2
habgμν∂μϕ

a∂νϕ
b − V

�
; ð3:1Þ

where MP is the reduced Planck mass scale, gμν is the
spacetime metric with g its determinant, hab ¼ habðϕÞ is
the target space metric and ϕa is a scalar field with a
labeling its flavor.
Assuming the Friedmann-Lemaître-Robertson-Walker

(FLRW) metric, the background equation of motion is
given by

0 ¼ D _ϕa
0

Dt
þ 3H _ϕa

0 þ habVb; ð3:2Þ

H2 ¼ 1

3M2
P

�
hab
2

_ϕa
0
_ϕb
0 þ V

�
; ð3:3Þ

_H ¼ −
1

2M2
P
hab _ϕ

a
0
_ϕb
0; ð3:4Þ

where the subscript “0” is given to background quantities,
H is the Hubble parameter, and Vb is a shorthand notation
for ∂V=∂ϕb. The covariant derivative is defined as

FIG. 3. Particle number spectra for χ-particles with a mass with a double pole. Solid lines correspond to the full numerical solution,
dashed lines to the semiclassical approximation. The initial amplitude is Φ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
MPΛ

p
and the numerical spectra are evaluated at

ϕ ¼ ϕ�. Left: Λ ¼ 10−3MP, c̃ ¼ 0.05 and c ¼ 5, 20, 30, (blue, orange, green, respectively). Right: c ¼ 10, c̃ ¼ 0.05 and
Λ ¼ 10−2MP; 10−3MP; 10−4MP, (blue, orange, green, respectively).

7See, e.g., Ref. [29] for particle production from the target
space curvature during inflation.

8Longitudinal gauge bosons play the same role as the Goldstone
modes in a gauged model due to the equivalence theorem.

9The target space in this formalism should be understood as
defined only in the Einstein frame as it is variant under the frame
transformation. An alternative frame-invariant definition of the
target space is possible by including the conformal mode of the
metric [38].
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Dva

Dt
¼ _va þ Γa

bc
_ϕb
0vc; ð3:5Þ

where va is an arbitrary target space vector field and Γa
bc is

the Christoffel symbol constructed from hab.
We may fix the gauge degrees of freedom of the general

coordinate transformation as

ds2 ¼ N 2dt2 − a2ðdxi þ βidtÞðdxi þ βidtÞ; ð3:6Þ
whereN is the lapse function, βi is the shift vector and a is
the scale factor. Here we ignored the tensor part since it is
irrelevant for our discussion. The equations of motion ofN
and βi provide constraint equations, which are solved to
leading order in perturbations as

N − 1 ¼ H
_ϕ0

ϵTaφ
a; ð3:7Þ

where

φa ≡ ϕa − ϕa
0; _ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hab _ϕ

a
0
_ϕb
0

q
;

Ta ¼
_ϕa
0

_ϕ0

; ϵ ¼
_ϕ2
0

2M2
PH

2
; ð3:8Þ

and the flavor indices are lowered by hab. Here we do not
show the solution of βi explicitly since the quadratic action is
linear in βi and hence it drops independently of its explicit
form after substituting the above form ofN . The linearized
equation of motion of the perturbation is then given by

0 ¼ D2φa

Dt2
þ 3H

Dφa

Dt
−

1

a2
∂2
iφ

a þ habM2
bcφ

c; ð3:9Þ

where [39]

M2
ab ¼ ∇bVa − _ϕc

0
_ϕd
0Racdb þ

2H
_ϕ0

ϵðVaTb þ VbTaÞ

þ 2ð3 − ϵÞϵH2TaTb; ð3:10Þ
and all the geometrical quantities are constructed from hab.
Note in particular that the second term of Eq. (3.10)
originates from the target space curvature Racdb.
From now, for simplicity, we consider the two-field case,

with the inflaton ϕ and another particle χ̃. We assume that χ̃
does not have any background field value, and focus on
production of χ̃. Thus, in the following,we omit the subscript
“0” as ϕ is always a background inflaton field and χ̃ (or
equivalently χ defined below) is always a perturbation.
Assuming a Z2 symmetry under which only χ̃ is odd, the
mode equation of χ̃ is always decoupled from the fluctuation
of the inflaton.10 We may redefine χ̃ as

χ ≡
ffiffiffiffiffiffiffi
hχχ

q
χ̃; ð3:11Þ

where hχχ here is a function of only the background field ϕ.
Then the equation of motion simplifies significantly to

0 ¼ χ̈ þ 3H _χ −
1

a2
∂2
i χ þm2

χχ; ð3:12Þ

where

m2
χ ¼ ∇χVχ − _ϕ2Rχ

ϕϕχ : ð3:13Þ

Here we used the fact that11

_χ ¼
ffiffiffiffiffiffiffi
hχχ

q Dχ̃

Dt
; ð3:14Þ

and that the Z2 symmetry ensures that Vχ ¼ 0 at the
background level. The second term of Eq. (3.13) induces
the spiky feature and its geometrical nature is clear in this
formalism.
It is then a standard exercise to move to Fourier space

and quantize the modes. The equations of motion of the
Bogolibuv coefficients αk and βk are given by

dαk
dτ

¼ 1

4ω2
k

dω2
k

dτ
βke

2i
R

τ dτωk ;

dβk
dτ

¼ 1

4ω2
k

dω2
k

dτ
αke

−2i
R

τ dτωk : ð3:15Þ

where τ is comoving time. The frequency is given by

ω2
k ¼ k2 þ a2m2

χ −
1

a
d2a
dτ2

; ð3:16Þ

with k understood to be the comoving momentum. The
comoving occupation number is given by

fk ¼ jβkj2: ð3:17Þ

B. Condition for unitarity violation

As we mentioned, it is known that the mass induced from
the target space curvature causes unitarity violation during
preheating in Higgs inflation. On the other hand, although
having a curved target space, unitarity violation is not
observed in, e.g., α-attractor inflation and Higgs-Palatini
inflation in an explicit analysis of these models [15,40–42].
This indicates that a nontrivial target space curvature alone
is not sufficient for unitarity violation. The purpose of this

10This is because we assume that χ̃ does not have any
background field value and hence the Z2 symmetry is not
spontaneously broken.

11Note that this holds even if ∂χhϕχ ≠ 0 after substituting the
background field configuration.
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subsection is to derive a handy condition of when we
expect unitarity violation from the target space curvature
during preheating.
In this work, we assume that unitarity is violated during

preheating if the momentum of the mode which contributes
most dominantly to the energy density, kmax, is larger than
the unitarity cutoff scale. Thus, we estimate kmax of particle
production from the target space curvature in a model-
independent way in the following. Let Λ denote the typical
mass scale of the target space curvature around the origin.
Since scattering amplitudes of scalar fields depend on the
target space curvature (see, e.g., Ref. [43] and references
therein), this scale Λ corresponds to the (small field) cutoff
scale of the theory at the same time12; we will comment on
this choice at the end of this subsection. We expect that the
dynamics of the inflaton is drastically different in the
regimes jϕj≳ Λ and jϕj ≲ Λ. The duration of the inflaton
passing the regime jϕj≲ Λ, Δt, is estimated as

_ϕΔtjjϕj≲Λ ∼ Λ; ð3:18Þ

and hence we expect the typical energy scale of particles
produced by this change as

�
k
a�

�
max

∼ Δt−1 ∼
_ϕ

Λ

����
jϕj≲Λ

; ð3:19Þ

where k is understood to be comoving and a� is the scale
factor at the first turning point of the inflaton, at which
ϕ ¼ ϕ�. We further take the scalar kinetic terms canonical
around the origin, hϕϕ ≃ 1 for jϕj≲ Λ. Energy conservation
then tells us that the inflaton velocity around the origin is
related to the inflaton potential at the end of inflation via

_ϕ2jjϕj≲Λ ∼ VðΦÞ; ð3:20Þ

where Φ is the inflaton amplitude at the end of inflation.
The condition for unitarity violation, ðk=a�Þmax ≳ Λ, now
reads

VðΦÞ≳ Λ4: ð3:21Þ

Thus, we expect that unitarity violation happens if the
potential at the end of inflation is larger than the target
space curvature around the origin.
We can derive the same condition for the examples in

Sec. II D. There the momentum k always appears in the
combination

k̄2 ¼ 1

2c
k2Λ2

VðΦÞ ; ð3:22Þ

and hence the typical energy scale of the particle
production is �

k
a�

�
2

max
∼
VðΦÞ
Λ2

; ð3:23Þ

where we assumed that c is of order unity, and reinterpret k
in Sec. II D as k=a�. Requiring that ðk=a�Þmax is larger than
Λ, we arrive at the same condition.
Let us now comment on our choice of unitarity cutoff

scale. Depending on the model, the cutoff scale can depend
on the background field value, as is the case for Higgs
inflation [12,44]. Although we evaluate the spectrum at
the end point of the oscillation, particle number for the
UV-modes is already well defined at jϕj ∼ Λ. For this
reason, we adopt the small-field value of the cutoff scale
when we determine whether unitarity is violated.
In the following, we consider running kinetic inflation,

Higgs inflation, α-attractor inflation and Higgs-Palatini
inflation, and study particle production and unitarity viola-
tion caused by the target space curvature. We will see that
Eq. (3.21) is satisfied for the former two models, while it is
violated for the latter two models, explaining the different
unitarity structures of these models during preheating.

C. Analysis of specific inflation models

From now, we consider running kinetic inflation, Higgs
inflation, α-attractor inflation and Higgs-Palatini inflation
in turn. We study the particle production and the unitarity
structure of these models after one inflaton oscillation. It
will turn out that the method we developed in Sec. II is a
powerful tool to study the spectrum analytically. In contrast
to Sec. II, we include the expansion of the universe in our
computations for completeness, although it is unimportant
for our main discussion.

1. Running kinetic inflation

First, we consider running kinetic inflation. We consider
the following action

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ1

2

�
1þϕ2

Λ2
−cK

χ2

Λ2

�
ð∂ϕÞ2þ1

2
ð∂χÞ2

−
�
1þcV

χ2

Λ2

�
λϕ4

4

�
; ð3:24Þ

where we put couplings between ϕ and χ just by hand, and
assume that cK; cV > 0, since otherwise χ can be tachyonic.
If we instead identify the inflaton as, e.g., the Higgs and
consider production of the Goldstone modes, the analysis
would be closer to Higgs inflation which we discuss
hereafter. This model reduces to a chaotic inflation model

12Strictly speaking, gravitons also contribute to scattering
amplitudes, and hence it is the target space curvature that contains
not only scalar fields but also the (scalar part of) gravity defined
in Ref. [38] that determines the cutoff scale. Practically, however,
this point is not important for Λ ≪ MP as long as one works
solely in the Einstein frame as we do in this paper.
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with a quadratic potential in the large field region, which is
now disfavored by the CMB observation. This can be
overcome however by taking the exponent of ϕ in the
prefactor of the kinetic term larger. Although our analysis,
in particular the argument in Sec. II, equally applies to such
a case, for simplicity we will stick to Eq. (3.24) in the
following.
Obviously this model has the target space metric

hab ¼ diag
�
1þ ϕ2

Λ2
− cK

χ2

Λ2
; 1
�
: ð3:25Þ

The background equations of motion are given by

0¼
�
1þϕ2

Λ2

�
ϕ̈þ3H

�
1þϕ2

Λ2

�
_ϕþ ϕ

Λ2
_ϕ2þλϕ3; ð3:26Þ

H2 ¼ 1

3M2
P

�
1

2

�
1þ ϕ2

Λ2

�
_ϕ2 þ λ

4
ϕ4

�
; ð3:27Þ

_H ¼ −
1

2M2
P

�
1þ ϕ2

Λ2

�
_ϕ2: ð3:28Þ

Inflation happens for ϕ2 ≳MPΛ in this model, and the
CMB normalization requires that

λΛ2 ∼ 10−10M2
P; ð3:29Þ

which indicates that Λ=MP ≪ 1 unless λ is tiny.
We now apply the condition (3.21) to this model. The

height of the inflaton potential at the end of inflation is
given by

VðΦÞ ∼ λM2
PΛ2: ð3:30Þ

Since the cutoff scale of this theory is of order Λ if we
assume cK to be of order unity, we obtain

VðΦÞ
Λ4

∼
λM2

P

Λ2
∼ 10−10

�
MP

Λ

�
4

; ð3:31Þ

where we used Eq. (3.29) in the second similarity. The ratio
can be larger than unity for small Λ, and thus we expect
unitarity violation in this model. To our knowledge, we are
pointing out the possibility of unitarity violation during
preheating in running kinetic inflation here for the first time
(except for a brief comment in Ref. [1]).
We now study the spectrum of the produced particles in

detail with the method developed in Sec. II. The relevant
geometrical quantities are given by

Rχ
ϕϕχ ¼ −

cK
Λ2

; ∇χVχ ¼ cV
λϕ4

4Λ2
; ð3:32Þ

and hence the effective mass is given by

m2
χ ¼

1

Λ2

�
cK _ϕ2 þ cV

λϕ4

2

�
: ð3:33Þ

Numerically we can simply substitute this expression and
solve Eq. (3.15) with the background equations of motion.
The spectrum is then given by Eq. (3.17).
In order to interpret the numerical results analytically, we

ignore cV and the Hubble parameter since they are expected
to be subdominant for the particle production. This sim-
plifies the mass as

m2
χ ≃ cK

_ϕ2

Λ2
: ð3:34Þ

If we ignore the Hubble expansion, energy conservation
tells us that

_ϕ2 ≃
λ

2

Φ4

1þ ϕ2=Λ2
; ð3:35Þ

where Φ ¼ Oð ffiffiffiffiffiffiffiffiffiffiffi
MPΛ

p Þ is the inflaton amplitude at the end
of inflation. These relations correspond to the first example
in Sec. II D, and hence we can directly apply the analysis
there to this model. As a result, we estimate the occupation
number as

fk ≃
π4

4

���� exp
�
−

ffiffiffiffiffiffi
cK

p �
1þ

�
k̄þ 1

k̄

�
arctanðk̄Þ

��

− exp

�
−
π

ffiffiffiffiffiffi
cK

p
2

k̄2 þ 1

k̄

�����2: ð3:36Þ

where

ϕ̄ ¼ ϕ

Λ
; k̄2 ≡ 2

cK

k2Λ2=a2�
λΦ4

: ð3:37Þ

In our semiclassical formula, we always take Φ as the
inflaton field value at the point ϵ≡ − _H=H2 ¼ 1. Note also
that we use the scale factor at the first turning point a� in the
definition of k̄. Since the argument in Sec. II does not
include the cosmic expansion, we have small uncertainties
related to the choice of Φ and a here, which we cannot
resolve within our semiclassical analysis without including
the Hubble expansion.
In Fig. 4, we compare the numerical results with the

analytical estimate (3.36), choosing

λ ¼ 10−10
�
MP

Λ

�
2

: ð3:38Þ

Note that we no longer rescale the physical momentum byffiffiffi
λ

p
Λ, but just by the unitarity cutoff scale Λ, such that it is

easy to see if unitarity is violated. The result now depends
on what value is chosen for λ. We initialize the background
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equation sufficiently early, such that it follows the attractor
solution toward the end of inflation (set by the slow
roll parameter ϵ ¼ 1). We initialize the mode functions
2 e-folds before the end of inflation. At this point, all modes
are adiabatic, i.e., j _ωk=ω2

kj ≪ 1, and particle number is well
defined. The particle number and energy density shown in
Fig. 4 are evaluated at ϕ ¼ ϕ�, when all modes are
adiabatic again.13

The left panel of Fig. 4 shows that the semiclassical result
approximates the numerics reasonably well, although the
correspondence is somewhat worse thanwe saw in Fig. 2 for
the single pole case. Two factors cause the deviation. First,
we expect some particle production from ordinary para-
metric resonance, which is not described by Eq. (3.36). This
contribution increaseswith cK andwould also have occurred
in the single pole case of Fig. 2 if we had chosen a larger
value of c. Second, the inflaton amplitude decreases due to
Hubble expansion, and the conserved quantity as defined in
Eq. (2.3) is only approximately conserved.
Nevertheless, the right panel of Fig. 4 shows that the

semiclassical result gives an excellent estimate of kmax and
can thus be used to determine unitarity violation. Here the
vertical axis is the physical energy density ρk=a4� per
log k=a�, where ρk ≡ k3ωkfk=2π2 is the comoving energy
density. In the left panel of Fig. 5, we show the numerical
results for the ratio of the maximum physical momentum
ðk=a�Þmax and the cutoff scale. Assuming that unitarity is
violated when this ratio is larger than 1, we find that
unitarity is violated for Λ ≲ 2 × 10−3MP, consistent with
our estimate of Eq. (3.31). We also note that the semi-
classical formula works well even for Λ ¼ 10−2MP, a
regime in which unitarity is not violated. The semiclassical

formula is thus not only useful for the determination of the
minimum value of Λ to avoid unitarity violation, but also to
study the spectrum in the case without unitarity violation.
Now let us make a brief comment on possible UV

completions of the present model. If unitarity is violated
during the preheating stage as seen above, it is necessary to
consider a UV-completed theory to discuss preheating. One
example of the renormalizable action is something as
follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ 1

2
ð∂ψÞ2 þ 1

2
ð∂ϕÞ2 þ 1

2
ð∂χÞ2

−
1

2
ðmψ − cϕϕ2 − cχχ2Þ2 − VðϕÞ

�
; ð3:39Þ

where ψ , ϕ and χ are real scalar fields, cϕ and cχ are
constants assumed to be positive. We assume that m is
larger than any other scale appearing in VðϕÞ. We may then
integrate out ψ by using the relation mψ ¼ cϕϕ2 þ cχχ2

and the inflationary trajectory is taken to be mψ ¼ cϕϕ2

with χ ¼ 0. Then the action reduces to the form of
Eq. (3.24) with Λ ¼ m=ð2cϕÞ and cK ¼ cχ=ð4cϕÞ.
Another example is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ 1

2
ð∂ψÞ2 þ 1

2
ð∂ϕÞ2 þ 1

2
ð∂χÞ2

−
1

4
ðm2 − cψψ2 þ cϕϕ2 þ cχχ2Þ2 − VðϕÞ

�
; ð3:40Þ

where we assume that cϕ and cψ are positive and satisfy
cϕ ≫ cψ and again m is larger than any other scale
appearing in VðϕÞ. Then, for jϕj≲m= ffiffiffiffifficϕ

p , it reduces to
the effective action (3.24) with Λ ¼ ffiffiffiffifficψ

p m=cϕ and cK ¼
cχ=cϕ after eliminating ψ with the use of the constraint
cψψ2 ¼ m2 þ cϕϕ2 þ cχχ2. Both models give the same

FIG. 4. Particle number density and energy density for running kinetic inflation. The solid lines indicate the numerical solution to the
mode equation, the dashed line the semiclassical approximation. Left: particle number density for Λ ¼ 10−2MP, cV ¼ 0.1 and cK ¼ 1,
5, 10, (blue, orange, green, respectively). Right: energy density for cK ¼ 10, cV ¼ 0.1 and Λ ¼ 10−2MP; 10−3MP; 10−4MP, (blue,
orange, green, respectively).

13Note that we can not choose cV too small, as otherwise
adiabaticity is violated when _ϕ ∼ 0 for the IR modes. This is not
the case for our chosen value of cV .
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effective theory (3.24) in a certain parameter range and field
space, but phenomenological implications are quite differ-
ent. In the model (3.39), one should take into account the
production of the heavy mode that would have been
integrated out in the effective theory, but it may not have
significant phenomenological impact as far as it decays into
lighter degrees of freedom or the Standard Model sector
quickly. On the other hand, in the model (3.40), there is a
possibility of domain wall formation if VðϕiniÞ≳m4 due to
the multifield scalar dynamics, since the action has a Z2

symmetry under which ϕ and ψ change their sign and the
final vacuum expectation values ðϕ;ψÞ ¼ ð0; ffiffiffiffifficψ

p mÞ spon-
taneously break theZ2 symmetry. The formation of domain
walls during the preheating is a cosmological disaster
unless there are some mechanisms to make the domain
walls unstable. This inspection shows that one should be
careful about the unitarity violation in the effective theory.
Even if one can safely use the effective theory like (3.24)
during slow-roll inflation, the validity of that theory may
not always be guaranteed for the analysis of (p)reheating.
Once unitarity violation is observed, one should go back to
the UV-completed theory, and the phenomenological con-
sequences are sensitive to the concrete model of UV
completion.

2. Higgs inflation

Next we consider Higgs inflation. We start from the
Jordan frame action

S¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

P

2
Ω2RJ þ

1

2
gμνJ ∂μϕ

a∂νϕ
a −VJðϕ; χÞ

�
;

ð3:41Þ

where the subscripts “J” denote quantities in the Jordan
frame, ϕa ¼ ϕ; χ, and we define

Ω2ðϕ; χÞ ¼ 1þ ξϕϕ
2 þ ξχχ

2

M2
P

; ð3:42Þ

and

VJðϕ; χÞ ¼
λϕ
4
ϕ4 þ g2

2
ϕ2χ2 þ λχ

4
χ4: ð3:43Þ

Here we have slightly generalized the model, and the case
ξχ ¼ ξϕ and λχ ¼ g2 ¼ λϕ corresponds to the original
(Abelian) Higgs inflation model.14 We always assume that
ξϕ and ξχ are of comparable order.
It is convenient to go to the Einstein frame by rescaling

the metric as

gJμν → gμν ¼ Ω2gJμν; ð3:44Þ

resulting in

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ 1

2
habgμν∂μϕ

a∂μϕ
b − Vðϕ; χÞ

�
;

ð3:45Þ

with the potential in the Einstein frame given by

Vðϕ; χÞ ¼ VJðϕ; χÞ
Ω4

; ð3:46Þ

and the target space metric

FIG. 5. Ratio of ðk=a�Þmax to the unitarity cutoff scale for running kinetic inflation, with cK ¼ 1 and cV ¼ 0.1, (left) and Higgs
inflation, with ξϕ ¼ ξχ , (right) (with Λ ¼ MP=ξϕ). The solid line shows the numerical result and the dashed line the semiclassical
approximation.

14The discussion below is the same for an SU(2) case as long
as a linearized mode equation is concerned.
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hab ¼
1

Ω4

�
Ω2δab þ

3

2
∂aΩ2∂bΩ2

�

¼ 1

Ω4

0
B@Ω2 þ 6ξ2ϕϕ

2

M2
P

6ξϕξχϕχ

M2
P

6ξϕξχϕχ

M2
P

Ω2 þ 6ξ2χχ
2

M2
P

1
CA: ð3:47Þ

For generic initial conditions, this model does not display
strong turning, so without loss of generality, we can take ϕ
to be the inflaton. The background value of χ will remain
zero (this was checked on the lattice for 1 < ξϕ < 100

[45,46]) as long as the parameters satisfy

g2

λϕ
≥
ξχ
ξϕ

; ð3:48Þ

which we assume to be the case [see Eq. (3.56)]. This
allows us to apply the argument of Sec. III A to this model.
In the single-field limit, the background equation of the

inflaton field is

0 ¼ ϕ̈þ 3H _ϕ

þ
�

ξϕð1þ 6ξϕÞϕ
1þ ξϕð1þ 6ξϕÞϕ2=M2

P
−

2ξϕϕ

1þ ξϕϕ
2=M2

P

�
_ϕ2

M2
P

þ λϕϕ
3

ð1þ ξϕϕ
2=M2

PÞð1þ ξϕð1þ 6ξϕÞϕ2=M2
PÞ

; ð3:49Þ

and the Friedman equations are

H2¼ 1

3M2
P

�
1þξϕð1þ6ξϕÞϕ2=M2

P

2ð1þξϕϕ
2=M2

PÞ2
_ϕ2þ λϕϕ

4

4ð1þξϕϕ
2=M2

PÞ2
�
;

ð3:50Þ

_H ¼ −
ð1þ ξϕð1þ 6ξϕÞϕ2=M2

PÞ
2ð1þ ξϕϕ

2=M2
PÞ2

_ϕ2

M2
P
: ð3:51Þ

Higgs inflation is well known to be consistent with the
CMB observation [5], and the CMB normalization requires
that

ξ2ϕ
λϕ

≃ 2 × 109: ð3:52Þ

This indicates that ξϕ ≫ 1 unless λϕ is tiny at the infla-
tionary scale. This large value of ξϕ is an active subject of
discussion. A notable consequence is that the cutoff scale of
the theory becomes as low as Λ ∼MP=ξϕ [8–11].15 This is
called the unitarity issue of Higgs inflation, and different

viewpoints on this issue are discussed at the end of this
subsection. Our point in this paper is that, even if the
analysis during inflation is not spoiled due to the field-
dependence of the cutoff [12,44], unitarity can still be
violated after inflation [1]. The preheating dynamics of
Higgs inflationwas studied in great detail in Refs. [7,45,46].
Now we apply the condition (3.21) to this model.

Inflation happens for ϕ≳MP=
ffiffiffiffiffi
ξϕ

p
, and hence the height

of the inflaton potential at the end of inflation is given by

VðΦÞ ∼ λϕM4
P

ξ2ϕ
: ð3:53Þ

Since the cutoff scale of this theory is Λ ∼MP=ξϕ, we
obtain

VðΦÞ
Λ4

∼ λϕξ
2
ϕ ∼ 10−9ξ4ϕ; ð3:54Þ

where we used Eq. (3.52) in the second similarity. The ratio
can be larger than unity for large ξϕ, and thus the condition
(3.21) indeed signals unitarity violation in this model.
We now study the spectrum of the produced particles in

detail with the method developed in Sec. II, confirming the
above estimation. The relevant geometrical quantities are
given by

Rχ
ϕϕχ ¼ −

1

6M2
PΩ4ðΩ2 þ 6ξ2ϕϕ

2=M2
PÞ

×

�
Ω4ð1þ 6ξϕÞð1þ 6ξχÞ −

�
Ω2 þ 6ξ2ϕϕ

2

M2
P

�
2
�
;

ð3:55Þ

∇χVχ ¼
ϕ2

Ω4

�
−λϕξχ

ϕ2

M2
P
þ g2Ω2 −

λϕξϕð1þ 6ξχÞϕ2=M2
P

Ω2 þ 6ξ2ϕϕ
2=M2

P

�
;

ð3:56Þ

where χ is set to zero in Ω in these expressions, and hence
the effective mass is given by

m2
χ ¼

_ϕ2

6M2
PΩ4ðΩ2 þ 6ξ2ϕϕ

2=M2
PÞ

×

�
Ω4ð1þ 6ξϕÞð1þ 6ξχÞ −

�
Ω2 þ 6ξ2ϕϕ

2

M2
P

�
2
�

þ ϕ2

Ω4

�
−λϕξχ

ϕ2

M2
P
þ g2Ω2 −

λϕξϕð1þ 6ξχÞϕ2=M2
P

Ω2 þ 6ξ2ϕϕ
2=M2

P

�
:

ð3:57Þ

It is now numerically straightforward to solve Eq. (3.15)
with the background equations of motion and obtain the
spectrum (3.17).

15As we mentioned above, we assume that ξχ and ξϕ are
comparable in this paper. The cutoff scales as MP=

ffiffiffiffiffiffiffiffiffi
ξχξϕ

p
for

ξϕ; ξχ ≫ 1 when ξϕ and ξχ are not comparable, as can be seen in
Eq. (3.55). This is related to the fact that ξϕ is physical only when
χ is present (without the inflaton potential) [11].
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In order to understand the numerical results analytically,
we focus on the leading order terms in the large ξϕ and ξχ
limit, since they are expected to dominantly contribute to
the particle production. This simplifies the mass to

m2
χ ≃

ξχ
ξϕ

6ξ2ϕ
M2

P

_ϕ2

ð1þ 6ξ2ϕϕ
2=M2

PÞ
: ð3:58Þ

If we ignore the Hubble expansion, the energy density is
conserved, which in our case leads to

_ϕ2 ≃
λϕ
2

Φ̃4

1þ 6ξ2ϕϕ
2=M2

P
;

Φ̃4 ¼ Φ4

ð1þ ξϕΦ2=M2
PÞ2

; ð3:59Þ

where Φ ¼ OðMP=
ffiffiffiffiffi
ξϕ

p Þ is the inflaton amplitude at the
end of inflation. Here we again kept only the leading-order
terms in ξϕ. Now these equations correspond to the second
example in Sec. II D, and hence we can directly apply the
analysis there. As a result, we estimate the spectrum as

fk≃
π2

4

����exp
"
−2

ffiffiffiffiffi
ξχ
ξϕ

s Z
ϕ̄þ

0

dϕ̄F

#
þ exp

"
−2

ffiffiffiffiffi
ξχ
ξϕ

s Z
ϕ̄−

0

dϕ̄F

#

−2exp

�
−2

ffiffiffiffiffi
ξχ
ξϕ

s Z
1

0

dϕ̄F

�����2; ð3:60Þ

where

ϕ̄ ¼ ξϕϕffiffiffi
6

p
MP

; k̄2 ¼ ξϕ
ξχ

k2M2
P=a

2�
3λϕξ

2
ϕΦ̃

4
;

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2ð1 − ϕ̄2Þ þ 1

1 − ϕ̄2

s
; ϕ̄� ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� i

k̄

r
: ð3:61Þ

We again take Φ as the inflaton field value at the point
ϵ ¼ 1, and use the scale factor at the first turning point a� in
the definition of k̄ in these expressions.
In Fig. 6, we compare the numerical results with the

analytical estimate (3.60). We take

g2 ¼ λϕ

�
ξχ
ξϕ

þ 0.2

�
; ð3:62Þ

and fix λϕ by Eq. (3.52). We again initialize the background
field such that it follows the attractor solution in the region
where we solve the mode equation. We initialize the mode
functions 2 e-folds before the end of inflation and we
evaluate the particle number and energy density at ϕ�.
The left panel of Fig. 6 shows the particle number

spectrum for ξϕ ¼ 100 and ξχ ¼ 100, 300, 500. The
physical momenta have been rescaled by MP=ξϕ, which
roughly corresponds to the UV cutoff scale, which scales as
Λ ∼MP=

ffiffiffiffiffiffiffiffiffi
ξϕξχ

p
. For ξχ ¼ 300, 500 the particle number is

smaller than 1 and the Born approximation is expected to
be valid. The semiclassical approximation captures the UV
part of the spectrum very well, even in the case where we
include the expansion of the universe. For ξχ ¼ 100 the
produced particle number is larger than 1 and the Born
approximation is thus less powerful in the IR. Yet, the
UV-tail is practically the most relevant, as can be seen in the
right panel of Fig. 6, where the contribution to the energy
density is shown for ξϕ ¼ 102; 103; 104 and ξχ ¼ ξϕ. Even
in this case, where the Born approximation breaks down in

FIG. 6. Particle number and energy density for Higgs inflation. Solid lines show the numerical solution of the mode equation and the
dashed lines the results from the semiclassical approximation. Left: particle number density for Higgs inflation with ξϕ ¼ 100 and
ξχ ¼ 100, 300, 500 (blue, orange, green, respectively). Right: energy density for Higgs inflation with ξϕ ¼ 102; 103; 104 (blue, orange,
green, respectively) and ξχ ¼ ξϕ.
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the IR, as the particle number exceeds 1 for all three cases,
the approximation works well at the peak of the energy
density. The value of ðk=a�Þmax is reproduced up to a factor
2. This also becomes clear in the right panel of Fig. 5,
where the ratio of ðk=a�Þmax over the cutoff scale (taken to
be MP=ξϕ) is plotted as a function of ξϕ. According to our
numerical solution, unitarity is violated for ξϕ ≳ 300 and
this value is reasonably reproduced by the semiclassical
result. We also emphasize that the semiclassical formula
works well even for ξϕ ¼ 102, for which unitarity is not
violated.
Let us make a brief comment on possible UV comple-

tions of Higgs inflation. For this case, some UV comple-
tions have been suggested in the literature [47–52]. In the
large-N limit, a healing mechanism arises [53–55], which
restores unitarity, where N denotes the number of real
scalar fields (N ¼ 4 for the Standard Model Higgs). This
healing mechanism is now understood in the language of
the (frame-independent) nonlinear sigma model with the
scalaron corresponding to the σ-meson [38]. These UV
completions can greatly alter the preheating dynamics, as
was demonstrated in Refs. [56–60].

3. α-attractor inflation

Next we consider α-attractor inflation. We consider the
following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ ð∂ϕaÞ2

2ð1 − ϕaϕa=Λ2Þ2 −
λ

4
ðϕaϕaÞ2

�
;

ð3:63Þ

where ϕa ¼ ϕ; χ. This complex scalar field version of
α-attractor inflation is discussed, e.g., in Ref. [40].
We now see that this model does not violate unitarity

during preheating by using the condition (3.21). In this
model, inflation happens when the inflaton field is close to
the pole of its kinetic term, ϕ ∼ Λ, and hence the height of
the inflaton potential at the end of inflation is given by

VðΦÞ ∼ λΛ4: ð3:64Þ

Since the cutoff scale of this theory is of order Λ, we obtain

VðΦÞ
Λ4

∼ λ≲Oð1Þ; ð3:65Þ

where we assume that λ is less than order one by
perturbativity constraints. Then, according to the discus-
sion in Sec. III B, we expect that unitarity is preserved
during preheating in this model. Indeed no unitarity
violation during preheating is observed in the literature.

In this model, the geometrical quantities are given by

Rχ
ϕϕχ ¼

4

Λ2

1

ð1 − ϕ2=Λ2Þ2 ;

∇χVχ ¼ λϕ2

�
1 −

ϕ4

Λ4

�
; ð3:66Þ

and hence the mass term is given by

m2
χ ¼ −

4

Λ2

_ϕ2

ð1 − ϕ2=Λ2Þ2 þ λϕ2

�
1 −

ϕ4

Λ4

�
: ð3:67Þ

In particular, the contribution from the target space curva-
ture is tachyonic. This requires a separate treatment and we
cannot straightforwardly apply our semiclassical method in
Sec. II. Therefore we do not discuss particle production of
this model any further. See Refs. [40–42] for more on the
preheating dynamics of this model.

4. Higgs-Palatini inflation

Finally we consider Higgs-Palatini inflation. The action
in the Jordan frame is given by

S¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p

×

�
M2

P

2
Ω2RJðΓÞþ

1

2
gμνJ ∂μϕ

a∂νϕ
a−

λ

4
ðϕaϕaÞ2

�
; ð3:68Þ

where the subscripts “J” again denote quantities in the
Jordan frame, ϕa ¼ ϕ; χ, and we defined

Ω2 ¼ 1þ ξϕaϕa

M2
P

: ð3:69Þ

This form of the action is the same as Eq. (3.41), but an
essential point of the Palatini formulation is that one takes
the spin connection independent of the vierbein at the level
of the action, and it is given as a solution of the equation of
motion (which results in a constraint equation). Since the
equation of motion is of first order in derivatives, it is
sometimes called the first order formalism [61].
It is again convenient to go to the Einstein frame by

rescaling the metric as

gJμν → gμν ¼ Ω2gJμν; ð3:70Þ

resulting in

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ 1

2Ω2
gμν∂μϕ

a∂μϕ
a −

λ

4

ðϕaϕaÞ2
Ω4

�
:

ð3:71Þ
Note that the target space metric is different from that of
Higgs inflation because the Ricci scalar transforms
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differently under the Weyl transformation in the metric and
Palatini formalisms. In the Einstein frame, the equation of
motion tells us that the spin connection is given in terms of
the vierbein in the standard form, and hence we can equally
think of it as the metric theory.
We now apply the condition (3.21) to this model. In this

model, inflation happens for ϕ≳MP=
ffiffiffi
ξ

p
where the addi-

tional term in the target space metric becomes important,
and hence the height of the inflaton potential at the end of
inflation is given by

VðΦÞ ∼ λM4
P

ξ2
: ð3:72Þ

Since the cutoff scale of this theory is Λ ∼MP=
ffiffiffi
ξ

p
, we

obtain

VðΦÞ
Λ4

∼ λ≲Oð1Þ; ð3:73Þ

where we again assume that λ is less than order one, from
the perturbativity requirement. Thus, according to the
discussion in Sec. III B, we expect that unitarity is
preserved during preheating in this model. This is in
contrast to Higgs inflation in the metric formalism, where
the ratio can be greater than unity for large enough ξ [see
Eq. (3.54)]. An essential difference is that the height of the
inflaton potential and the cutoff scale depend on the
different scales, MP=

ffiffiffi
ξ

p
and MP=ξ, in Higgs inflation,

while they depend on the common scale MP=
ffiffiffi
ξ

p
in Higgs-

Palatini inflation. Indeed no unitarity violation during
preheating is observed in the literature.
In this model, the inflaton amplitude at the end of

inflation is given by Φ ∼ ðMP=
ffiffiffi
ξ

p Þ ln ξ [13]. Since the
CMB requires ξ ∼ 1010λ, the logarithmic term in Φ can be
sizeable, ln ξ ∼Oð10Þ, unless λ is tiny. This causes a scale
separation between Φ and Λ ∼MP=

ffiffiffi
ξ

p
that may justify the

approximation Φ → ∞ in Eq. (2.17). Since the effective
mass term and the conserved quantities are not in the form
discussed in Sec. II D, we need a separate analysis in this
model. Therefore, although it would be interesting, we
leave a detailed semiclassical study of this model as a future
work. See also Ref. [15] for more on the preheating
dynamics of this model.

5. Comments on the unitarity issue of Higgs inflation

Before closing this subsection, let us clarify our attitude
on the unitarity issue of (metric) Higgs inflation in this
paper, since different points of view are taken on this issue
in the literature.
It is well known that the cutoff scale of Higgs inflation

for large ξ is given byMP=ξð≪ MPÞ in the vacuum [8–12],
referred to as the unitarity issue of Higgs inflation.
Reference [12] pointed out that the cutoff scale increases
as the Higgs gets a large vacuum expectation value, and

hence the unitarity issue does not necessarily spoil the
inflationary prediction of Higgs inflation. However, we are
aware of two types of arguments that cast doubt on the
validity of Higgs inflation, besides unitarity violation
during preheating.
Reference [49] constructed an explicit UV completion of

Higgs inflation by adding an additional scalar field to the
theory. The authors found that it is the additional scalar
field, and not the Higgs, that dominantly drives inflation,
and hence the model ceases to be “Higgs inflation” after the
UV completion. They expect that this situation is generic
and the inflationary prediction in general depends on the
specific form of UV completion.
References [62,63] take a slightly different point of view.

The main concern of the authors is on the relation between
the parameters such as λ, or more generally the shape of the
Higgs potential, at the electroweak scale and the infla-
tionary scale. According to their argument, even if one
assumes the existence of a UV theory in which inflation is
described by the Higgs field only (this itself may be a
strong assumption based on Ref. [49]), one has to introduce
a “threshold correction” that parametrizes one’s ignorance
of the connection between low and high energy physics.
This prohibits one to relate the parameters at the electro-
weak scale with the inflationary prediction, to say the least.
The threshold correction may even push λ negative, making
Higgs inflation impossible.
In our discussion of unitarity violation of Higgs inflation

during preheating above, we simply ignore these argu-
ments, e.g., by assuming that a UV completion does not
alter the inflationary dynamics of the Higgs, and taking λ
positive without caring about its relation to the value at the
electroweak scale. Our point is that, even if we put aside the
points raised here, Higgs inflation still causes an issue
during preheating, and an explicit UV completion is any-
way unavoidable for ξ≳Oð100Þ. In other words, we have
served yet another argument that demands an explicit UV
completion of Higgs inflation. Although not widely dis-
cussed in the literature, the same line of argument should
apply to running kinetic inflation.

D. Application to scalar dynamics
other than inflaton

So far we have considered particle production induced
by the inflaton motion. In theories beyond the Standard
Model, there often appear scalar fields other than the
inflaton that exhibit coherent motion in the field space
and lead to particle production in the early universe. In
supergravity, for example, the scalar potential often has
many flat directions along which the potential energy is
zero in the supersymmetric limit. Such flat directions may
be called moduli and their impacts significantly depend on
their masses and interaction strengths.
Here we consider one explicit example, the dynamics of

the saxion in supergravity [64–74]. The saxion is a scalar
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partner of the axion that solves the strong CP problem in
quantum chromodynamics [75,76]. The flatness of the
saxion potential is ensured by the holomorphy of the
superpotential combined with the Peccei-Quinn (PQ)
global U(1) symmetry in the supersymmetric limit. The
action of a supersymmetric axion model is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ j∂ψ1j2 þ j∂ψ2j2 − Vðψ1;ψ2Þ

�
;

ð3:74Þ

Vðψ1;ψ2Þ¼ λ2jψ1ψ2−Λ2j2þm2
1jψ1j2þm2

2jψ2j2; ð3:75Þ

where ψ1 and ψ2 are complex scalars and we assume
m2

1 ≃m2
2ð≡m2Þ ≪ Λ2. The action is invariant under the

global U(1) symmetry, ψ1 → eiθψ1 and ψ2 → e−iθψ2 with
a real parameter θ. Among four real degrees of freedom,
two obtain masses of order Λ, one obtains a mass of order
m corresponding to the saxion, and the last one is massless,
which is regarded as the axion.
Let us suppose that we can integrate out the heavy

modes of mass ∼Λ to consider the saxion dynamics. By
using the constraint ψ1ψ2 ¼ Λ2 and decomposing ψ1 as
ψ1 ¼ ðϕ= ffiffiffi

2
p Þeiχ=ϕ, we obtain the effective action for the

saxion ϕ and axion χ as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ 1

2
habgμν∂μϕ

a∂νϕ
b − VðϕÞ

�
;

ð3:76Þ

where we defined the vector ϕa ¼ ðϕ; χÞ and

hab ¼
�
1þ 4Λ4

ϕ4

��
1þ χ2

ϕ2 − χ
ϕ

− χ
ϕ 1

�
;

VðϕÞ ¼ m2

2

�
1þ 4Λ4

ϕ4

�
ϕ2: ð3:77Þ

Thus we obtained a curved target space with typical
curvature scale Λ as an induced metric. It has been pointed
out in Ref. [74] that the effective mass of the axion in this
setup shows a spiky behavior and the axion particle
production from the saxion dynamics is very different
from the standard scenario.
The general arguments in Secs. III A and III B can be

equally applied to this case. The relevant geometrical
quantities are given by

Rχ
ϕϕχ ¼

2ϕ2

Λ4

1

ð1þ ϕ4=4Λ4Þ2 ;

∇χVχ ¼ m2

�
1 − ϕ4=4Λ4

1þ ϕ4=4Λ4

�
2

; ð3:78Þ

and hence the effective mass of the canonical axion field is
given by

m2
χ ¼−

2ϕ2

Λ4

_ϕ2

ð1þϕ4=4Λ4Þ2þm2

�
1−ϕ4=4Λ4

1þϕ4=4Λ4

�
2

: ð3:79Þ

The first term that originates from the target space curvature
shows the spiky behavior around jϕj≲ Λ. Assuming that
the initial saxion field value satisfies Φ ≫ Λ, the typical
energy scale of the produced particles is given by

�
k
a�

�
2

max
∼
VðΦÞ
Λ2

; ð3:80Þ

where a� is the scale factor at the first turning point of the
saxion. If we require that it should be below the cutoff scale
Λ, we again obtain the same condition as in the preheating
analysis, VðΦÞ≲ Λ4. If this condition is violated, integrat-
ing out the heavy fields and the use of the effective action
may not be justified. For a large enough initial field value,
Φ≳ Λ2=m, we must use the original renormalizable action
(3.74) for the analysis of particle production. Actually for
such a large initial saxion field value, the field trajectory
significantly deviates from the flat direction and passes
through the region ψ1 ¼ 0 or ψ2 ¼ 0, which may lead to
nonthermal symmetry restoration and formation of topo-
logical defects [73,77,78]. Thus the cosmological effects of
the saxion dynamics are completely different depending on
whether the condition VðΦÞ ≲ Λ4 is satisfied or not.
This particular example demonstrates the phenomeno-

logical importance of the unitarity violation condition
beyond the context of inflation. Once the low energy
description breaks down, one must go back to a UV
completed model. In the UV model, however, the dynamics
should include heavy modes and they can have drastic
effects on cosmology. The formation of topological defects,
as seen in the saxion case, is an example of possible
dangerous effects. Another possible dangerous effect is
production of heavy particles that are stable against decay
or charged under some (approximate) symmetry.
Here is a general remark on the moduli cosmology. In the

context of string theory, the size and geometry of the
compactified extra dimensions may be characterized by
the moduli fields from the four-dimensional viewpoint, and
their interactions are often suppressed by some high energy
scale, leading to the notorious cosmological moduli
problem [79,80]. Usually the moduli potential is assumed
to be a simple quadratic form, but in general the flat
directions may have a complicated structure in field space.
In such a case particle production by the moduli and its
cosmological consequences can be much different from the
naive analysis.
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IV. SUMMARY

In this paper, we have studied particle production and
unitarity violation in inflationarymodels withmultiple scalar
fields and a curved target space during preheating after
inflation. In these models the curvature of the target
space causes a spiky feature in the mass of the other scalar
particle(s) that couple to the inflaton. This feature results in
efficient particle production and possibly in unitarity
violation.
In Sec. II we demonstrate how the particle number

spectrum after the first burst of particle production can be
estimated in a semiclassical analysis, relying on the Born
approximation (jαkj2 ∼ 1; jβkj2 ≪ 1). Instead of t, we use
the inflaton field ϕ as the time variable, hence referring to it
as an analysis in (scalar) field space. This is possible since
the inflaton field is a monotonic function of time between
the end of inflation and its first turning point. We replace
the finite integration range, from Φ to −Φ to an integration
over the entire ϕ-axis, where Φ is the inflaton oscillation
amplitude. Upon using Cauchy’s residue formula, the
spectrum can then be expressed as a sum over poles. We
demonstrate this procedure for two example mass terms,
with poles in ϕ of order one and two, by making use of the
potential energy at the end of inflation as a conserved
quantity. The semiclassical formula for the occupation
number shows an excellent agreement with the numerical
results for the two given examples.
In Sec. III C the analytical expressions are put to the test

for two inflationary models: running kinetic inflation and
Higgs inflation, which are similar to the pole of order one
and two cases respectively. In the case of running kinetic
inflation, the semiclassical approximation gives an excel-
lent estimate of the momentum kmax at the peak of the
produced energy density spectrum, which is most relevant
for the question whether unitarity is violated. The semi-
classical approximation also gives a good description of the
UV-part of the spectrum in the case of Higgs inflation,
where it allows a determination of kmax up to a factor 2.
In Sec. III B we provide a simple criterion for unitarity

violation during reheating

VðΦÞ≳ Λ4;

that is, unitarity is violated if the inflaton potential at the
end of inflation VðΦÞ is larger than the fourth power of Λ,
where Λ is the curvature of the target space as well as the

UV cutoff scale of the theory. The criterion immediately
indicates that, for couplings consistent with the CMB
normalization, unitarity can be violated for running kinetic
inflation and Higgs inflation. This is also confirmed in our
semiclassical analysis and numerical computations in
Sec. III C, confirming that unitarity is violated for Λ ≲
10−2MP for running kinetic inflation and for ξϕ ≳ 100 for
Higgs inflation. According to our condition, unitarity is not
violated for α-attractor models and Higgs-Palatini inflation,
as is consistent with the literature [15,40–42].
Furthermore, we point out that particle production due to

a curved target space is not exclusive to the preheating
phase. As an example, we show in Sec. III D how
integrating out the heavy field in a supersymmetric axion
model results in an effective theory for the axion and the
saxion with a curved target space. The axion has a spikelike
mass and unitarity violation is again possible, implying that
the effective theory is not valid. The case of unitarity
violation actually corresponds to the formation of topo-
logical defects in the original theory.
Unitarity violation is of great phenomenological impor-

tance, as it calls for a UV completion of the theory. If one
starts from a UV-complete theory, as in the case of the
saxion, one can simply go back to the original UV-complete
theory. If one starts from low energy theories as in the cases
of running kinetic inflation and Higgs inflation, however,
this is a nontrivial requirement. We discuss several impli-
cations of the UV completion of running kinetic inflation
and Higgs inflation in Sec. III C. For running kinetic
inflation, it is shown that phenomenological consequences,
possibly including domain wall formation, crucially
depend on the concrete model of UV completion. This
explicitly shows the limit of using effective theory during
(p)reheating in the presence of unitarity violation.
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