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We study the phenomenon of gravitational particle production as applied to a scalar spectator field in the
context of α-attractor inflation. Assuming that the scalar has a minimal coupling to gravity, we calculate the
abundance of gravitationally produced particles as a function of the spectator’s massmχ and the inflaton’s α
parameter. If the spectator is stable and sufficiently weakly coupled, such that it does not thermalize after
reheating, then a population of spin-0 particles is predicted to survive in the Universe today, providing a
candidate for dark matter. Inhomogeneities in the spatial distribution of dark matter correspond to an
isocurvature component, which can be probed by measurements of the cosmic microwave background
anisotropies. We calculate the dark-matter-photon isocurvature power spectrum and by comparing with the
upper limits from Planck, we infer constraints on mχ and α. If the scalar spectator makes up all of the dark

matter today, then for α ¼ 10 and TRH ¼ 104 GeV we obtain mχ > 1.8 × 1013 GeV ≈ 1.2mϕ, wheremϕ is
the inflaton’s mass.

DOI: 10.1103/PhysRevD.103.103532

I. INTRODUCTION

Modern cosmology is characterized by an abundance of
precision data. Cosmological surveys, including measure-
ments of the cosmic microwave background and large scale
structure, tell us how the Universe evolved from the big
bang and what makes up the Universe today. These
empirical observations indicate that most of the matter in
the Universe takes the form of an as-yet unidentified dark
matter [1], and measurements of inhomogeneities on
cosmological scales indicate that the very early Universe
experienced a period of accelerated expansion known as
cosmological inflation [2]. But despite the variety and
precision of these cosmological observations, we are still
left wondering about the nature of dark matter and the
physics that drove inflation.
There is no shortage of particle physics theories when it

comes to candidates for dark matter [3] or models of
inflation [4]. If we allow ourselves to be guided through the
vast landscape of theories by a principle of “simplicity,”
then we would naturally be drawn to a scenario in which
both the inflaton and the dark matter are scalar fields that
only interact with one another and with the Standard Model
particles through gravity. The inflaton potential would be
simply VðϕÞ ¼ m2

ϕϕ
2=2 as in quadratic chaotic inflation

[5–7] and the dark matter would be generated via gravi-
tational particle production [8–10]. In fact there have been
many studies of superheavy (WIMPzilla) dark matter
production in the context of quadratic inflation.
In this work, we suppose that the early period of

cosmological inflation can be described by the α-attractor

class of models [11–19], and we suppose that dark matter is
a spin-0 (scalar) particle that only interacts gravitationally,
being produced through the phenomenon of gravitational
particle production during inflation. We are interested in α
attractors for several reasons. First off, in the last several
years inflation with a quadratic potential has been excluded
by the Planck satellite’s observations of the cosmic micro-
wave background [2]. Alpha attractor models interpolate
between the now-excluded quadratic inflation and a family
of models that remain viable and testable with next-
generation cosmological surveys. In particular, the scalar
spectral index ns and the tensor-to-scalar ratio r are
predicted to obey the simple relations ns ≈ 1–2=Ncmb

and r ≈ 12α=N2
cmb [16], which are consistent with both

the measurement of ns for Ncmb ≈ 50–60 and the upper
limit on r for α < Oð10Þ. Moreover, certain value of α
correspond to well-studied theories of inflation including
Starobinsky inflation [20] at α ¼ 1. In this sense, the α-
attractor provides a convenient parametrization for study-
ing how the dark matter observables, i.e., relic abundance
and isocurvature, depend on the model of inflation.
Moreover, α-attractors models are interesting in their
own right, and they arise in theoretically compelling
theories of supergravity with a modified Kähler potential.
Finally, the subject of gravitational dark matter production
during α-attractor inflation has not been studied before.
Similar works in this line direction include nonthermal dark
matter produced during reheating or preheating [21–24],
gravitational-mediated inflaton decay [25], gravitational
production of gravitino dark matter in Starobinsky
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inflation [26,27], or gravitational dark matter production in
Palatini preheating [28].
Using standard techniques from the study of quantum

field theory in curved spacetime, we calculate the evolution
of the inflaton field and the spacetime geometry during
inflation and the period afterward, during which reheating
occurs. Assuming a scalar spectator field that is non-
conformally coupled to gravity, we calculate the spectrum,
relic abundance today, and isocurvature of the spin-0
spectator field particles that are produced via the phenome-
non of gravitational particle production.
The outline of this article is as follows. We begin in

Sec. II with a brief review of the α-attractor models of
inflation. Then in Sec. III we discuss inflationary gravita-
tional particle production in the context of a minimally
coupled scalar field, which is a spectator field during
inflation. Our main results appear in Sec. IV, where we
study the evolution of the spectator field’s mode functions
in the inflationary spacetime background, we calculate the
spectrum of gravitationally produced particles, we infer
their relic abundance today as a function of the reheating
temperature, we calculate the dark matter isocurvature
power spectrum, and we impose constraints on the param-
eter space of these theories. Finally Sec. V contains our
summary and conclusion.

A. Conventions

We use natural units in which the speed of light and the
reducedPlanck constant are set equal to unity,c ¼ ℏ ¼ 1.We
denote the reduced Planck mass by Mp ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
≃

2.435 × 1018 GeV whereGN is Newton’s constant. Our sign
conventions for gravitational tensors correspond to ð−;þ;þÞ
in the Misner, Thorne, and Wheeler scheme [29]. In particu-
lar, the Minkowski spacetime metric is ημνdxμdxν ¼
ðdx0Þ2 − ðdx1Þ2 − ðdx2Þ2 − ðdx3Þ2.

II. α-ATTRACTOR MODELS OF INFLATION

This section is a brief overview of α-attractor models. We
specify the inflaton potentials that define these models and
discuss the viable parameter space. We numerically solve
the inflaton’s equation of motion for a fiducial parameter
choice to illustrate the evolution of the inflaton field and the
scale factor. The nonadiabatic evolution of the scale factor
results in the phenomenon of gravitational particle pro-
duction, which is discussed in the following section.
We consider both the T-model and E-model α attractors.

Thesemodels are specified by the scalar potentials [14,16,30]

VTðϕÞ ¼ αμ2M2
ptanh2

ϕffiffiffiffiffiffi
6α

p
Mp

and

VEðϕÞ ¼ αμ2M2
p

�
1 − e−

ffiffiffiffiffiffiffi
2=3α

p
ϕ=Mp

�
2
; ð1Þ

where the inflaton field ϕ has a canonically normalized
kinetic term. Each model has two parameters: a mass scale μ
and a dimensionless parameter α that affects both the scale
and shape of the inflaton potential. The inflaton’s mass,
mϕ ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
V 00ð0Þp

, is given by

mϕ ¼
�
μ=

ffiffiffi
3

p
; Tmodel

2μ=
ffiffiffi
3

p
; Emodel

: ð2Þ

InFig. 1we show the inflaton potential for several values ofα.
Note how the α → ∞ limit reduces to a quadratic potential,
VT; VE → m2

ϕϕ
2=2. The α ≪ 1 regime gives a potential that

flattens into a plateau where ϕ > Oð ffiffiffi
α

p
MpÞ.

The inflaton’s energy drives the cosmological expansion
during inflation and reheating. Since the inflaton field is
nearly homogeneous, we model the background geometry
with the homogeneous and isotropic Friedmann-Robertson-
Walker (FRW) spacetime. The metric is

FIG. 1. Inflaton potentials for the T-model and E-model α attractors. Each panel shows several values of α, and the value of mϕ is
chosen such that As agrees with the value measured by Planck. There are three dots along each curve; the red dot indicates the value of ϕ
at the end of inflation, the magenta dot indicates 10 e-foldings before the end of inflation, and the blue dot indicates 60 e-foldings before
the end of inflation.
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ds2 ¼ aðηÞ2ðdη2 − jdxj2Þ; ð3Þ
where aðηÞ is the dimensionless scale factor, η is the
comoving time coordinate (conformal time), and x is the
comoving spatial coordinate threevector. Time derivatives of
aðηÞ give the Hubble parameterHðηÞ ¼ a0=a2 and the Ricci
scalar RðηÞ ¼ −6a00=a3.
The inflaton field equation and the Einstein field

equation, when restricted to homogeneous field configu-
rations and the FRWmetric, lead to the following equations
of motion:

ϕ00 þ 2aHϕ0 þ a2
dV
dϕ

¼ 0 and

3M2
pH2 ¼ V þ ðϕ0Þ2=ð2a2Þ: ð4Þ

Here VðϕÞ stands for either VT or VE from Eq. (1). We
show the FRW spacetime evolution in Fig. 2. Note how

HðηÞ and RðηÞ are approximately constant during inflation
while aðηÞ grows. We define the fiducial “end of inflation”
as the time ηend ≡ ηe when dð1=aHÞ=dη ¼ 0, such that the
comoving Hubble scale 1=ðaHÞ stops decreasing and
begins increasing at the end of inflation. Without loss of
generality, we shift the time coordinate such that ηe ¼ 0.
After inflation has ended, H and R tend to decrease like a
power law, but they also display an oscillatory component,
which follows from the oscillations of the inflaton field
around the minimum of its potential. In particular, note that
R oscillates to both positive and negative values. In the next
section, we will discuss how the evolution of aðηÞ leads to
the phenomenon of gravitational particle production in
fields that are coupled to gravity nonconformally.
The parameters α and μ must be chosen so that the

α-attractor model predicts a scalar power spectrum that is
in agreement with the observed cosmic microwave back-
ground (CMB) temperature anisotropies. The comoving

FIG. 2. Evolution of the spacetime background for a fiducial model of inflation. We show the T-model α attractor with α ¼ 1 and
μ ¼ 2.5 × 1013 GeV, implying mϕ ¼ 1.5 × 1013 GeV, Hcmb ¼ 1.4 × 1013 GeV, He ¼ 5.9 × 1012 GeV, and Ncmb ¼ 60. The top
panels show the FRW scale factor a (top left) and the Hubble parameter H (top right). Both bottom panels show the Ricci scalar R with
the bottom-right panel showing an enlargement to highlight oscillations near the end of inflation. A vertical black line indicates the end
of inflation at η ¼ ηe ¼ 0, and the top of the frame shows the number of e-foldings after the end of inflation NðηÞ ¼ ln aðηÞ=ae.
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wave number of the CMB-scale modes is taken to be the
pivot scale kcmb ¼ 0.002 Mpc−1a0 where a0 ¼ aðη0Þ is the
value of the scale factor today. The quantity of interest is
the dimensionless ratio kcmb=aeHe where ae ≡ aðηeÞ and
He ≡HðηeÞ. For the α-attractor models that we consider,
the Universe is matter dominated from the end of inflation
until reheating at time ηRH, which implies [31,32]

a0
ae

¼
�

90M2
pH2

e

π2g�S;0T3
0TRH

�
1=3

; ð5Þ

where TRH is the plasma temperature at reheating, T0 ≃
0.234 meV is the temperature today, and g�S;0 ≃ 3.91.
Combining these expressions gives

kcmb

aeHe
≃ ð6.09 × 10−24Þ

�
He

1013 GeV

�
−1=3

�
TRH

109 GeV

�
−1=3

;

ð6Þ

where the numerical prefactor is approximately e−53. The
CMB-scale modes left the horizon at a time ηcmb such that
kcmb¼acmbHcmb with acmb≡aðηcmbÞ and Hcmb ≡HðηcmbÞ.
Solving this relation for ηcmb yields the number of
e-foldings between CMB horizon crossing and the end
of inflation, Ncmb ¼ lnðae=acmbÞ. For He ¼ 1013 GeV and
TRH ¼ 109 GeV we have Ncmb ≈ 54.
The predicted amplitude of the scalar power spectrum

follows from a standard calculation [33], and we find

As ¼
A
8π2

α2μ2

M2
p
sinh4

�
ϕcmbffiffiffiffiffiffi
6α

p
Mp

�
; ð7Þ

where A ¼ 1 for the T model and A ¼ 4 for the E model.
The field amplitude at the time when the CMB-scale modes
left the horizon is denoted by ϕcmb ≡ ϕðηcmbÞ; it is given by

ϕcmb ¼
ffiffiffiffiffiffi
3α

2

r
Mparcsech

�
3α

4Ncmb þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12=α

p
�

ð8aÞ

in the T model, and it is given by the solution of

Ncmb ¼
3α

4

�
e

ffiffiffi
2
3α

p
ϕcmb
Mp þ ln

�
1þ 2ffiffiffiffiffiffi

3α
p

�
− 1

�

−
ffiffiffiffiffiffi
3α

p

4

�
2þ

ffiffiffi
2

p ϕcmb

Mp

�
ð8bÞ

in the E model. After accounting for the α dependence in
ϕcmb, we see that As is insensitive to α in the T model. In
order to reproduce the value measured by Planck, namely
lnð1010AsÞ ≃ 3.044� 0.014 [2], we choose the scale
parameter μ to satisfy Eq. (7) with Ncmb ¼ 60 for
each α. After making this restriction, the T model and
E model each have one free parameter, which is α.

For α ≪ Ncmb, the scalar spectral index, ns, and the
tensor-to-scalar ratio, r, are given by 1 − ns ≈ 2=Ncmb
and r ≈ 12α=ðNcmbðNcmb þ 3α=2ÞÞ [30]. A combo of
Planck and BICEP/Keck infers an upper limit of r <
0.064 (95% C.L.) [2], which implies α≲ 38 for Ncmb ¼ 60.
The energy scale of inflation is given by Hcmb ≈

½VðϕcmbÞ=3M2
p�1=2 from Eq. (4). Lowering α reduces the

energy scale of inflation; for instance, the T model has

Hcmb ¼
4π

ffiffiffiffiffiffiffiffiffiffi
6αAs

p
Mpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4Ncmb þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12=α

p Þ2 − 9α2
q ; ð9Þ

which is approximately Hcmb ≃ ð1.43 × 1013 GeVÞ×
ðNcmb=60Þ−1

ffiffiffi
α

p
for α ≪ 2Ncmb=3.

To close this section, let us comment on reheating. The
inflaton condensate must eventually transfer its energy into
a thermal bath of relativistic particles, thereby giving rise to
the radiation-dominated Universe, which connects to the
standard hot big bang cosmology [34]. Alpha-attractor
models admit several inflaton decay channels that can play
a role in reheating [35–41]. We do not describe the physics
of reheating in this work, but instead we assume that the
Universe remains matter-dominated during reheating, and
that the radiation-dominated phase begins with a plasma
temperature of TRH, which is taken to be a free parameter.
However, we require that

TRH < ð8 × 108 GeVÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχ=GeV

q
; ð10Þ

where mχ is the mass of the scalar spectator field,
corresponding to the gravitationally-produced dark matter.
This condition ensures that 3HðtÞ < mχ before reheating is
completed; e.g., see the “late reheating” regime of Ref. [42]
(see also Ref. [43]). In this regime, the comoving number
density of gravitationally produced particles is insensitive
to the reheating temperature, and the late-time relic
abundance only depends on TRH through a simple scaling
law (23).

III. GRAVITATIONAL PARTICLE PRODUCTION

During inflation and reheating, fields that are coupled to
gravity nonconformally, e.g., through their mass, are put
out of their vacuum state due to the nonadiabatic influence
of the cosmological expansion. At late times, this excited
state of the field corresponds to a nonzero density of
particles that have been produced gravitationally. The
subject of gravitational particle production has been studied
extensively [44–50], and in the context of the inflaton
field’s quantum fluctuations, these are the seeds of structure
that we observe on cosmological scales today. In the
context of a spectator field, whose energy density is
subdominant to the inflaton’s during inflation, the phe-
nomenon of gravitational particle production has important
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implications for the creation of superheavy particles,
mχ ∼Hinf , including a variety of dark matter candidates
[8,42,43,51–68]. In this section, we briefly review how one
calculates the relic density of particles that results from
gravitational particle production. For additional details
on quantum fields in curved spacetime, we refer the
reader to several excellent reviews and textbooks including
Refs. [69–71].
One can study the phenomenon of gravitational particle

production during the inflationary era for various different
theories, which are distinguished by the spectator field’s
representations under the Lorentz group, its mass, and its
coupling to gravity. For concreteness, we focus here on the
a real scalar spectator field, which corresponds to a spin-0
dark matter particle.
Consider the real scalar field χðxÞ, whose properties and

interactions are described by the action1

S½χðxÞ; gμνðxÞ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μχ∂νχ −

1

2
m2

χχ
2

�
;

ð11Þ

where g ¼ detðgμνÞ is the metric determinant, and gμν is the
inverse metric. In the FRW spacetime (3), the action
becomes

S½χðη; xÞ� ¼
Z

∞

−∞
dη

Z
d3x

�
1

2
½∂ηðaχÞ�2 −

1

2
½∇ðaχÞ�2

−
1

2
a2m2

effðaχÞ2 −
1

2
∂η½aHðaχÞ2�

�
: ð12Þ

The last term is a total derivative, which does not contribute
to the equations of motion, so we can neglect it. The field
aχ has a canonically normalized kinetic term, and an
effective squared mass parameter, a2m2

eff with

m2
eff ≡m2

χ þ
1

6
R; ð13Þ

which is time dependent through both aðηÞ and RðηÞ. For
example, during inflation the spacetime metric is approx-
imately the de Sitter one and we have R ≈ −12H2, which
gives m2

eff ≈m2
χ − 2H2. For a sufficiently light scalar

spectator (small mχ) the field may be tachyonic (m2
eff < 0).

Varying the action (12) with respect to the field yields the
field equation,

½∂2
η − ∇2 þ a2m2

eff �ðaχÞ ¼ 0: ð14Þ

When expressed in terms of conformal time, η, and the
canonically normalized field, aχ, this field equation is
simply the usual Klein-Gordon one with the replacement
m2

χ → a2m2
eff . Here we can anticipate how the cosmological

expansion must lead to particle production. If there were no
cosmological expansion (a ¼ 1 and R ¼ 0) then Eq. (14)
would reduce to the familiar Klein-Gordon equation, and
its solutions would be the usual plane waves. In this regime,
no particle production occurs, since the vacuum mode
functions have a static amplitude. However, if the Universe
is expanding (∂ηa ≠ 0), then the vacuum mode functions
develop time-dependent amplitudes, as the field “responds”
to its varying effective mass, and there is a particle
production associated with the nonadiabaticity of this mass
evolution.
Since the inflationary spacetime is nearly homogeneous,

and described by the FRW metric, it is convenient to
perform a Fourier decomposition of the field. We introduce
a set of complex-valued mode functions χkðηÞ labeled by a
three vector k called the comoving wave vector. The
Fourier decomposition is written as

χðη; xÞ ¼ aðηÞ−1
Z

d3k
ð2πÞ3 χkðηÞe

ik·x; ð15Þ

where the mode functions obey χkðηÞ ¼ χ−kðηÞ�, ensuring
that χðη; xÞ ¼ χðη; xÞ� is real. The field equation (14) yields
a set of equations of motion for the various mode functions

ð∂2
η þ ω2

kÞχk ¼ 0; ð16Þ

where we have defined the comoving squared angular
frequency,

ω2
k ¼ k2 þ a2m2

χ þ
1

6
a2R; ð17Þ

which only depends on k via the comoving wave number
k ¼ jkj.
The mode equations (16) must be solved along with a set

of initial conditions. To study gravitational particle pro-
duction in the inflationary era, we recognize that the early-
time limit η → −∞ corresponds to a → 0, a2R → 0, and
ωk → k. In other words, as we send η → −∞ the modes
with jkj ¼ k are deep inside the horizon, meaning that
aH ≪ k, and they are relativistic, meaning that amχ ≪ k.
Consequently, their mode equation is approximately the
same as the one in Minkowski space with ωk ¼ k. This
observation motivates the so-called Bunch-Davies initial
condition,

lim
η→−∞

χkðηÞ ¼
1ffiffiffiffiffi
2k

p e−ikη; ð18Þ

1If the inflaton has a large nonminimal coupling to gravity,
then the spectator-field action may be divided by the conformal
factor Ω ¼ ½1þ ξϕ2=M2

pl�1=2, which can further enhance produc-
tion of χ particles [28].
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where the factor of 1=
ffiffiffiffiffi
2k

p
ensures that the canonical

commutation relations are properly normalized.
For a given spacetime background, encoded in aðηÞ, and

for a given model, parametrized by m2
χ, the mode equa-

tions (16) are solved along with the corresponding Bunch-
Davies initial condition (18) to obtain the mode functions
χkðηÞ. The spectrum of gravitationally produced particles is
derived from the Bogoliubov coefficients, αk and βk, that
relate an observer at asymptotically early time to an
observer at asymptotically late time.2 The relevant combi-
nations of Bogoliubov coefficients are extracted using

jβkj2¼ lim
η→∞

	
ωk

2
jχkj2þ

1

2ωk
j∂ηχkj2þ

i
2
ðχk∂ηχ

�
k−χ�k∂ηχkÞ



;

ð19aÞ

Re½αkβ�ke−2i
R

η
ωk � ¼ lim

η→∞

	
ωk

2
jχkj2 −

1

2ωk
j∂ηχkj2



; ð19bÞ

Im½αkβ�ke−2i
R

η
ωk � ¼ lim

η→∞

	
1

2
ðχk∂ηχ

�
k þ χ�k∂ηχkÞ



; ð19cÞ

where
R
η ωk ≡

R
η
−∞ dη0ωkðη0Þ. Thanks to the spatial isot-

ropy, jβkj2 ¼ jβkj2 only depends on k ¼ jkj.
The spectrum of gravitationally produced particles mea-

sured by the late-time observer is calculated from jβkj2. The
comoving number density of χ particles is3

a3n ¼
Z

∞

k0

dk
k
N k; ð20Þ

where the comoving number density spectrum is

N k ¼ a3k
dn
dk

¼ k3

2π2
jβkj2: ð21Þ

Note that N k is static (independent of η) and the comoving
number density is conserved, i.e., ∂ηða3nÞ ¼ 0. Similarly,
the comoving energy density is4

a3ρ¼
Z

∞

k0

dk
k
EkðηÞ with EkðηÞ¼

k3

2π2
ωkðηÞ
aðηÞ jβkj

2; ð22Þ

where ωk=a ≈ ½ðk=aÞ2 þm2
χ �1=2 up to OðR;H2Þ terms. For

nonrelativistic modes, Ek ¼ mχN k. We introduce an IR
cutoff, k0 ¼ a0H0, corresponding to the comoving wave

number of modes entering the horizon today, a0 ≡ aðη0Þ
and H0 ≡Hðη0Þ. For mχ ≲He the spectra are slightly red
tilted and k0 regulates the integrals, but formχ ≳He, which
is the regime of interest, the low-k spectra are blue tilted
and the integrals are insensitive to k0. Modes with k < k0
are effectively homogeneous on the scale of our Hubble
patch and their incoherent superposition renormalizes the
zero mode k ¼ 0; see also Refs. [73–75].
If the gravitationally produced particles are sufficiently

long lived, they can survive in the Universe today, at
conformal time η ¼ η0, thereby providing a candidate for
the dark matter. We quantify the abundance of these
particles with the comoving number density, a3n from
Eq. (20), since this quantity is conserved in the absence of
particle-number-changing interactions, and we have a3n ¼
a30n0 where a0 ≡ aðη0Þ and n0 ≡ nðη0Þ. Alternatively we
can express their density today as a relic abundance,Ωh2 ¼
ρ0=ð3M2

pH2
100Þ where ρ0 ≡ ρðη0Þ ≈mχn0 is their energy

density today, Mp ≃ 2.435 × 1018 GeV is the reduced
Planck mass, and H100 ≡ 100 km= sec =Mpc. Assuming
that the comoving entropy density of the primordial plasma
is conserved, we can express the relic abundance as [42]

Ωh2 ¼
�

π2g�S;0T3
0

270MpH2
100

��
mχHeTRH

M3
p

��
a3n
a3eH3

e

�
;

≃ ð0.114Þ
�

mχ

1010 GeV

��
He

1010 GeV

�

×

�
TRH

108 GeV

��
a3n
a3eH3

e

�
; ð23Þ

where g�S;0 ≃ 3.91 and T0 ≃ 0.234 meV. The measured
relic abundance of dark matter is Ωdmh2 ≃ 0.12 [1].
The isocurvature power spectrum in the comoving

gauge is

Δ2
Sðη; kÞ ¼

1

ρðηÞ2
k3

2π2

Z
d3rhδρðη; xÞδρðη; xþ rÞie−ik·r;

ð24Þ

where the energy density in the χ field at time η has been
written as ρðηÞ þ δρðη; xÞ. By expressing δρðη; xÞ in terms
of χkðηÞ, we can write [76,77]

Δ2
SðkÞ ¼

a−8

2ρ2
k2

2π2

Z
d3k0

ð2πÞ3 fj∂ηχk0 j2j∂ηχk−k0 j2

þ a4m4jχk0 j2jχk−k0 j2
þ a2m2½ðχk0∂ηχ

�
k0 Þðχk−k0∂ηχ

�
k−k0 Þ

þ ðχ�k0∂ηχk0 Þðχ�k−k0∂ηχk−k0 Þ�g; ð25Þ

and by using the identities in Eq. (19), we can also write
this as

2For a pedagogical discussion of Bogoliugov coefficients in an
inflationary context, we refer the reader to Refs. [33,70–72].

3See, for example, Secs. 2.8 and 2.9 of Ref. [71].
4In the derivation of these expressions for a3n and a3ρ, one

encounter ultraviolet divergences that must be regulated and
renormalized. We have used the standard adiabatic regularization
scheme [45–48]. So n and ρ correspond to the renormalized
quantities.
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Δ2
SðkÞ ¼

a−3

nðηÞ
k3

2π2
þ a−6

nðηÞ2
k3

2π2

Z
d3k0

ð2πÞ3 fjβk0 j
2jβk−k0 j2

þ Re½αk0β�k0e−2i
R

η
ωk0 �Re½αk−k0β�k−k0e−2i

R
η
ωk−k0 �

þ Im½αk0β�k0e−2i
R

η
ωk0 �Im½αk−k0β�k−k0e−2i

R
η
ωk−k0 �g:

ð26Þ

The first term ∝ k3 is entirely negligible for the CMB-scale
modes, and generally only the second term will be relevant.

IV. NUMERICAL RESULTS

In this section we present the main results of our study,
including the evolution of the scalar spectator field’s mode
functions in an α-attractormodel of inflation, the spectrum of

gravitationally produced particles, the isocurvature power
spectrum, and the constraints imposed by Planck data.

A. Evolution

The mode equations (16) are solved numerically for a
few choices of k ¼ jkj and model parameters, and we
present the resulting mode functions in Fig. 3. Initially
χkðηÞ matches the Bunch-Davies vacuum mode function
(18), indicated by the dashed curve. As inflation continues,
χkðηÞ starts to deviate from the Bunch-Davies vacuum; this
effect is more pronounced for smaller k=aeHe, correspond-
ing to the first two panels. After inflaton ends, the mode
functions begin to oscillate in such a way that ajχkj2 has a
fixed amplitude. At late times when the mode of interest is
inside the horizon (aH < k) and nonrelativistic (amχ < k),
the dispersion relation is approximately ωk ≈ amχ, and the

FIG. 3. Evolution of the scalar spectator’s mode functions near the end of inflation. All panels correspond to the T-model α attractor
with α ¼ 0.1 and μ ¼ 2.528 × 1013 GeV and a minimally coupled scalar spectator with mass mχ ¼ 3mϕ. From top to bottom the rows
correspond to different modes with wave numbers k=aeHe ¼ 0.01, 0.1, 1, and 10. For each mode we show the scaled amplitude of the
mode function, aðηÞmχ jχkðηÞj2, as a function of scaled conformal time aeHeη. Inflation ends at η ¼ ηe ¼ 0. The solid-blue curve shows
the numerical solution, and the dashed-blue curve shows the Bunch-Davies mode function (18), which sets the initial condition
at early time.
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quantity plotted here, amχ jχkj2, is just the first term in the
Bogoliubov coefficient, jβkj2 from Eq. (19a).
We can understand the evolution of these mode functions

by solving the mode equations analytically in different
regimes of interest. See Refs. [42,43] for a similar analysis
in the case of a vector spectator field. Combining Eqs. (16)
and (17) lets us write the mode equations as

�
∂2
η þ k2 þ a2m2

χ þ
1

6
a2R

�
χk ¼ 0: ð27Þ

During inflation the Ricci scalar is R ≈ −12H2 and the
Hubble parameter is approximately constant H ≈He,
implying aðηÞ ≈ ae=½1 − aeHeðη − ηeÞ�. Long before the
end of inflation, a ≈ −1=ðHeηÞ. In Fig. 3 we have shown
only a model with mχ ¼ 3mϕ. For such a model, the mode
equation is approximately

	
∂2
η þ k2 þ 1

η2

�
m2

χ

H2
e
− 2

�

χk ¼ 0

ðduring inflation; η < ηe ¼ 0Þ: ð28Þ

Here, m2
χ=H2

e − 2 is a positive number of order unity.
Initially the mode in question is deep inside the horizon,
k2 ≫ 1=η2, and the solution is χk ∼ e−ikη giving
amχ jχkj2 ∼ a. For k < aeHe the mode in question will
leave the horizon before the end of inflation. Once the
mode is outside the horizon, k2 ≪ 2=η2, the solution
becomes χk ∼ η1=2 ∼ a−1=2 and amχ jχkj2 ∼ a0. After infla-
tion is ended, the nonadiabaticity drops far below unity, the
solution becomes χk ∼ a−1=2 and amχ jχkj2 converges to a
constant. We can see from Fig. 3 that the numerical solution
amχ jχkj2 tracks the Bunch-Davies initial condition at early
times and converges to a constant after inflation ends. Note
that for modes with higher k, the numerical solution tracks
the Bunch-Davies initial condition to until later times in the
inflation; this highlights the fact that lower-k modes leave
the horizon earlier, as they should due to the horizon-
crossing condition k ¼ aH.

B. Spectrum

The spectrum of gravitationally produced particles is
calculated by scanning over a range of k ¼ jkj, and the
results are shown in Fig. 4. Recall from Eq. (21) thatN k ¼
a3kdn=dk ¼ k3jβkj2=2π2 is the comoving number density
per logarithmic wave number interval. In particular, we are
interested in how the spectrum changes as α is varied.
For α ≫ 1 we regain the well-known results for chaotic

inflation with V ¼ m2
ϕϕ

2=2 [10]. In particular, for a light
spectator (mχ ≪ He) the spectrum is nearly scale invariant
for modes that left the horizon during inflation (k ≪ aeHe),
with the scale invariance violation induced by the gradual
decrease of the Hubble parameter (∂ηH < 0). For modes

that remained inside the horizon throughout inflation
(k > aeHe) the spectrum is highly suppressed [8–10,
78,79]. Raising the mass of the scalar spectator tilts the
slightly red spectrum into a blue spectrum, meaning that
N k → 0 as k → 0, which is a familiar result from the study
of light spectators in de Sitter spacetime [33,72].
For smaller values of α, the energy scale of inflation

decreases and the plateau in the α-attractor inflaton poten-
tial becomes more relevant; see Fig. 1. By lowering the
energy scale of inflation with smaller α, the abundance of
gravitationally produced particles is reduced, and this is
reflected in smaller values of the spectra a3kdn=dk. More
specifically, numerical results suggest that a3kdn=dk ∼H3

e

holds at low α and low k, andHe ∼ α1=2 holds at low α. The
scaling of He can be understood in the following way: He

can be estimated viaHe ≈ ½VðϕfÞ=3M2
p�1=2, where ϕf is set

by the end of inflation condition in terms of the potential
M2

pðV 0ðϕfÞ=VðϕfÞÞ2=2¼1. For the T model, this gives us:

He ≈
ffiffiffi
α

3

r
μ tanh

�
1

2
sinh−1

�
2ffiffiffiffiffiffi
3α

p
��

: ð29Þ

It is clear from this estimate that He ∼ α1=2 at low α.
Numerical results also confirm that this estimate is accurate
up to Oð0.1Þ. Note that as we lower α, the ratio Hcmb=He
converges to 1. This can be seen as an effect due to the
flattening of the potential V: as V becomes flatter, the
hubble scale experience less change during inflation,
see Fig. 1.
In the high-momentum tail of the spectrum (k≳ aeHe) a

threshold effect can be seen. If the mass of the scalar
spectator is smaller than the mass of the inflaton, mχ ≤ mϕ,
then the high-k spectrum drops off like a power law from
k=aeHe ¼ 1 to 10. However, if the scalar’s mass is larger,
mχ > mϕ, then the spectrum drops more steeply, as an
exponential. This abrupt change in behavior at mχ ¼ mϕ

can be understood as a threshold effect [58,80], as we now
explain. When mχ ≤ mϕ, the high-k particles are primarily
produced by oscillations in the inflaton field after the end of
inflation. It is helpful to understand this kind of particle
production as a ϕϕ → χχ scattering process, mediated by
an off-shell graviton [58]. By conservation of energy, we
know that such a process cannot happen at mχ > mϕ.
Moreover, in the case that mχ ≤ mϕ, it is possible to derive
a formula for the high-k tail of the spectrum, and show that
the spectral index of this tail is −3=2.

C. Relic abundance

We calculate the comoving number density of gravita-
tionally produced particles, a3n, by integrating the spec-
trum, N k, as in Eq. (20). Then the relic abundance, Ωh2, is
given by Eq. (23). Recall that there are four free model
parameters: fT orEmodel; α; TRH; mχg where the reheat-
ing temperature TRH only enters Ωh2 as a simple scaling
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law. Rather than performing an exhaustive parameter-space
scan, we show several representative “slices” of this
parameter space to illustrate the parametric dependence.
First we consider the T-model α attractor. The comoving

number density and relic abundance are shown in Fig. 5 as
a function of the parameter α and the scalar spectator’s
mass mχ . For a given value of α the mass dependence
follows the expected behavior. For a light spectator

(mχ ≪ He), the comoving density goes as a3n ∝ m−1
χ

and the relic abundance is insensitive to the mass, going
as Ωh2 ∝ m0

χ . For a heavy spectator (He ≲mχ), we see that
gravitational production is suppressed [78].
It is interesting to see how the amount of gravitational

particle production changes as α is varied. Equation (23)
tells us that the relic abundance Ωh2 is proportional to the
product of three factors: a3n=a3eH3

e, mχ , and He. By fixing

FIG. 4. The spectrum of spin-0 particles arising from gravitational particle production in an α-attractor model of inflation. We show the
comoving number spectrum a3nk where nk ≡ kdn=dk in units of a3eH3

e. All four panels correspond to the T-model α attractor with
inflaton massmϕ ≈ 6 × 10−6Mp, and the value of α is varied across the panels from α ¼ 1, 3, 10, to∞. In each panel, the various curves
show different values of the scalar spectator’s mass from mχ ¼ 0.001mϕ to 3.16mϕ.
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a ratio mχ=He, we can eliminate the free parameter mχ and
conclude that Ωh2 is proportional to ða3n=a3eH3

eÞH2
e,

leaving only dependence on a single parameter α. For
α ≫ 1 we regain the familiar results for a3n=a3eH3

e and He

in the case of chaotic inflation with V ¼ m2
ϕϕ

2 [10]. Since
both a3n=a3eH3

e and He converge as α → ∞, we have
Ωh2 ∼ α0 in that limit. On the other hand, for low α we
know from our discussion in Sec. IV B that a3n=a3eH3

e ∼ α0

and He ∼ α1=2, so we have Ωh2 ∼ α1.
To illustrate how the efficiency of gravitational particle

production varies across α-attractor models of inflation, we
have calculated Ωh2 for a light, scalar spectator, and we
present these results in Fig. 6. In the regime mχ ≪ He, the
relic abundance becomes insensitive to mχ , and Ωh2 is
controlled primarily by α for either the T-model or E-model
α attractor. Provided that the duration of reheating is
sufficiently long (10), the dependence on TRH is just an
overall scaling, Ωh2 ∝ TRH as seen in Eq. (23). We can
use (10) to check that our results are consistent with
the late reheating regime: typical values of mχ give
8 × 108 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχ=GeV

p
∼ 1015 GeV.

D. Isocurvature

We calculate the isocurvature power spectrum by per-
forming the wave number and angular integrals in Eq. (26).
The mode functions were obtained numerically, and we run
into numerical problems when k=aeHe is much smaller
than Oð1Þ. This is because the low-k modes leave the
horizon earlier, and the mode functions must be solved over
a longer time interval, corresponding to many more
oscillations of the mode functions, in order to get accurate
numerical results. To avoid these issues, we restrict our
attention to comoving wave numbers in the range

10−4 ≲ k=aeHe ≲ 1, which corresponds to the modes that
left the horizon within 10 e-foldings before the end of
inflation. An illustrative selection of our results appears in
Fig. 7, where we show the predicted dark matter-photon
isocurvature power spectrum for an α-attractor model with
α ¼ 3. If the spectator field is light (mχ ≪ mϕ), then the
power spectrum is slightly red-tilted at low k, associated
with the scale-invariance violation of the slowly rolling

FIG. 5. The abundance of spin-0 particles arising from gravitational particle production in α-attractor models of inflation. The left
panel shows the comoving number density a3n in units of a3eH3

e, and the right panel shows the dimensionless relic abundanceΩh2. This
calculation is performed for the T-model α attractor with μ ¼ 2.5 × 1013 GeV andmϕ ¼ 1.5 × 1013 GeV. We vary α and the spectator’s
mass, mχ . The right panel also takes TRH ¼ 105 GeV, and for models with a different reheating temperature, the relic abundance can be
inferred from Eq. (23) and using the left panel.

FIG. 6. The relic abundance of light (mχ ≪ He) scalar spectator
particles that arise from gravitational particle production in α-
attractor models of inflation. The relic abundance Ωh2 is
insensitive to mχ for mχ ≪ He, as seen in Fig. 5, and we take
mχ ¼ 10−3He here. We take TRH ¼ 102 GeV, and for other
reheating temperatures Ωh2 ∝ TRH as in Eq. (23). The blue and
orange curves show the predicted relic abundance Ωh2 for the T-
model and E-model α attractors, respectively. For comparison we
show the measured dark matter relic abundance Ωdmh2 ≃ 0.12
(red line) and the prediction of quadratic chaotic inflation (green-
dashed line), which is the limit of the T- and E-model α attractors
for α → ∞.
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inflaton field. As mχ=mϕ becomes larger than Oð1Þ, the
power spectrum develops a blue tilt [76,77]. Additionally
the amplitude of the power spectrum is suppressed, which
is the same suppression that we encountered for the
spectrum in Sec. IV B.
Measurements of the cosmic microwave background

have provided strong constraints on the dark matter-photon
isocurvature for the modes that are observed in the
CMB. Currently the strongest constraints come from
Planck,5 which correspond to Δ2

SðkcmbÞ < Δ2
SðkcmbÞmax ¼

7.3 × 10−11 at a pivot scale of kcmb ¼ 0.002 Mpc−1a0.
The pivot scale corresponds to roughly kcmb=aeHe ∼
e−50 ≃ 2 × 10−22 where we have used Eq. (6). To compare
our numerically evaluated isocurvature at 10−4 ≲ k=aeHe
with these constraints we perform a power-law extrapola-
tion to low-k. This extrapolation is expected to be very
reliable, since the Hubble parameter only changes by a
factor of 1≲H50=H10 < 2.1 across this range of modes.

E. Constraints

We summarize our constraints on this model in Fig. 8.
Here, the dashed curves give the points in the fmχ ; αg
parameter space where the relic abundance constraint
Ωh2 ¼ 0.12 is satisfied exactly; namely, the dashed curves
show the cases in which χ makes up all the dark matter.
Since gravitational particle production a3n=a3eH3

e decreases
as mχ is increased, every point on the left of the dashed
curves is excluded, and for each α we obtain a lower limit

on mχ . From the figure we can conclude that the constraint
on mχ is the strongest as α → ∞, and it grows weaker as α
is lowered. For α ¼ 10 and TRH ¼ 104 GeV, we get a limit
of mχ ≳ 1.2mϕ ≈ 1.8 × 1013 GeV.
The solid curves in Fig. 8 show the surfaces of maximal

CMB-scale isocurvature, Δ2
SðkcmbÞ ¼ 7.3 × 10−11. As

explained in Sec. IV D, at a fixed α the isocurvature
amplitudeΔ2

SðkcmbÞ decreases for increasingmχ , so, similar
to the case for relic abundance constraints, we have a lower
limit on mχ at each α. Note that the mass constraints due to
isocurvature have a slight dependence on TRH: the mass
constraints are weaker when TRH is higher. This shift is due
to the kcmb dependence on TRH. If TRH is increased, we
know from Eq. (6) that kcmb must decrease accordingly, and
the isocurvature Δ2

SðkcmbÞ must also decrease since the
spectrum is blue tilted. The mass mχ for which the
isocurvature constraint is exactly satisfied must then be
lowered. For α ¼ 20 and TRH ¼ 106 GeV, we get a limit
of mχ ≳ 1.4mϕ ≈ 2.1 × 1013 GeV.
Assuming TRH ¼ 109 GeV, we also give two empirical

fitting formulas for the mass constraint due to isocurvature
as functions of α:

mχ ≥ m∞ −
1.1 × 1014 GeV

αþ 5.4
; ð30aÞ

mχ

He
≥
m∞

H∞
−

14.3
αþ 5.7

; ð30bÞ

where m∞ ¼ 2.5 × 1013 GeV and H∞ ¼ 7.3 × 1012 GeV
are the mass constraint and the Hubble scale at the end of
inflation for chaotic inflation, corresponding to α → ∞.
To cross-check our results against previous studies, we

consider the limit α → ∞, which corresponds to chaotic
inflation with V ¼ m2

ϕϕ
2=2 and mϕ ¼ 1.7 × 1013 GeV.

FIG. 7. The predicted isocurvature power spectrum Δ2
SðkÞ. As the spectator mass is raised from mχ=mϕ ≪ 1 to mχ=mϕ ≳ 1, the

spectrum’s low-k tail changes from a red spectral tilt (red-colored curves) to a blue spectral tilt (blue-colored curves). For this example
we take the T-model α attractor with mϕ ≈ 6 × 10−6Mp and α ¼ 3.

5Here we have used βisoðklowÞ < 0.035 at 95% C.L. (“axion I”
Planck TT, TE, EEþ lowEþ lensing) [2] where βiso ¼
Δ2

S=ðΔ2
ζ þ Δ2

SÞ and Δ2
ζ ¼ As ≃ 2.1 × 10−9. Planck provides lim-

its on several different models of axion-type isocurvature. The
“axion I” model was chosen since it implies an isocurvature
spectral index of nII − 1 ≈ 0, and this is comparable to the
isocurvature spectral index that we obtained numerically, 0.4.
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For TRH ¼ 104 GeV we find that the isocurvature con-
straint imposes mχ > 3.4He ≈ 1.7mϕ. This calculation
agrees well with an earlier studied of isocurvature that
obtains mχ ≳ 2.1mϕ for the same model [77] (see also
Ref. [76]).

V. CONCLUSION

In this article we have studied the gravitational produc-
tion of superheavy dark matter in an inflationary cosmol-
ogy. In particular, we have focused on spin-0 dark matter
and the α-attractor models of inflation, considering both the
T-model and E-model α attractors. In this background we
construct the mode equations for a scalar spectator field χ
that is minimally coupled to gravity, and we solve these
mode equations assuming a Bunch-Davies initial condition
to determine the scalar field’s mode functions. From these
mode functions we extract the Bogoliubov coefficients,
which are then used to calculate the relic abundance and
isocurvature power spectrum of the χ particles.
The key results of this study are summarized as follows. In

the regime α ≫ 1, we reproduce the known results for
quadratic chaotic inflation, which is a check of our numeri-
cal approach. Loweringα causes the energy scale of inflation

to become smaller, and our calculation shows that there is a
corresponding reduction in gravitational particle production
when TRH is held fixed; see Fig. 6. Alternatively a smaller α
can be offset by an increased TRH to leave the relic
abundance unchanged. This result agrees with the expected
scaling behavior based on dimensional analysis. We have
also calculated the isocurvature power spectrum, which
appears in Fig. 7. For a light spectator, mχ ≪ mϕ, we
observe a slightly red-tilted power spectrum, which turns
over into a blue-tilted spectrum as mχ is raised above the
inflatonmassmϕ. To avoid observational constraints on dark
matter isocurvature, with the strongest limits provided by
Planck, the power spectrum must be sufficiently blue tilted.
This translates into a lower limit on the spectator’s mass; see
Fig. 8 and the empirical fitting formulas in Eq. (30a).
The work presented in this article demonstrates the

continued viability of WIMPzilla dark matter, particularly
a superheavy and minimally coupled scalar. Many previous
numerical studies of WIMPzilla dark matter have focused
on quadratic chaotic inflation, which is now ruled out by
Planck. By extending these studies to the α-attractor class
of models, we have framed WIMPzilla dark matter in the
context of a compelling and testable inflationary cosmol-
ogy, namely α-attractor inflation.

FIG. 8. A slice of the parameter space with various constraints. We show the scalar spectator field’s massmχ , the T-model α attractor’s
parameter α, and we fix mϕ ¼ 6 × 10−6Mp. The solid curves denote the minimum mχ and maximum α at a given reheating temperature
TRH for which the predicted isocurvature is consistent with the upper bound on Δ2

SðkcmbÞ inferred by Planck. Along the dashed curves,
the scalar spectator’s predicted relic abundance saturates the measured dark matter relic abundance Ωh2 ≃ 0.12, and the spectator is
overproduced for smaller mχ or larger α at a given TRH. The gray-dashed line denotes the maximum α for which Planck and BICEP/
Keck’s constraint on the tensor-to-scalar ratio r < 0.064 (95% C.L.) is satisfied at Ncmb ¼ 60, and the limit strengthens to α≲ 20 at
Ncmb ¼ 50. Note that the parameter space shown here is consistent with the limit in Eq. (10).
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