
 

Novel higher-curvature variations of R2 inflation
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We put forward novel extensions of Starobinsky inflation, involving a class of “geometric” higher-
curvature corrections that yield second-order Friedmann-Lemaître equations and second-order-in-time
linearized equations around cosmological backgrounds. We determine the range of models within this class
that admit an extended phase of slow roll inflation as an attractor. By embedding these theories in anti-de
Sitter space, we derive holographic “unitarity” bounds on the two dominant higher-order curvature
corrections. Finally we compute the leading corrections to the spectral properties of scalar and tensor
primordial perturbations, including the modified consistency relation r ¼ −8nT . Remarkably, the range of
models singled out by holography nearly coincides with the current observational bounds on the scalar
spectral tilt. Our results indicate that future observations have the potential to discriminate between
different higher-curvature corrections considered here.
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I. INTRODUCTION

Starobinsky realised long ago that the trace anomaly of a
large number of light matter fields can support a de Sitter
phase in the early universe [1,2]. The de Sitter solution is
unstable but can be long-lived, and decays via slow roll into
a matter dominated Friedman-Lemaître Robertson-Walker
(FLRW) universe. Starobinsky’s motivation was to dem-
onstrate that quantum effects of matter fields might resolve
the big bang singularity. From a modern perspective it is
interesting that the conformal anomaly might have been the
source of a finite but significant period of slow roll inflation
in the early universe.
Starobinsky showed that the de Sitter solution supported

by the trace anomaly is unstable both to the future and to
the past, so it was not clear how the universe could have
entered the de Sitter state. However, this problem can be
overcome by an appeal to quantum cosmology [3,4].
Specifically, the semiclassical no-boundary wave function
predicts that a classical expanding universe with a large
number of conformal matter fields emerges through the de
Sitter phase Starobinsky identified [5–7].
Remarkably, the predictions of Starobinsky inflation for

the fluctuations in the cosmic microwave background

(CMB) are in excellent agreement with current observa-
tions [8]. If the present horizon scale left during the slow
roll phase then the phenomenology is to a large extent
determined by the R2 term in the action, which acts as an
inflaton and is responsible for the instability of the de Sitter
solution in the first place. For this reason, the original
Starobinsky model is often reduced to R2 inflation.
Nevertheless, it has long been known that other higher
derivative terms featuring in the trace anomaly as well as
the nonlocal effects it gives rise to, affect the details of the
pattern of primordial perturbations (see, e.g., [1,2,5]).
Moreover since this class of models is most naturally
viewed in the context of an effective field theory (EFT)
expansion around general relativity (GR), there is no
justification to exclude on ad hoc grounds yet further
higher derivative contributions to the action.
These considerations are no longer of merely theoretical

interest since the next generation of CMB experiments has
the potential to unlock this region of parameter space,
opening up the bright prospect to observationally differ-
entiate between variations of trace anomaly inflation. Thus
there is a strong motivation to further explore this class of
inflationary models, as theoretically appealing and obser-
vationally viable alternatives to scalar field driven inflation.
What is the space of higher-derivative theories in the
neighbourhood of the Starobinsky model that admit infla-
tion, and what is their phenomenology?
In this spirit, higher-derivative theories with R3 and

R∇2R terms have been considered [9–13] as well as more
general modifications of the form fðRÞ and fðR;∇2RÞ
(See, e.g., resp. [14–16] and [17]). These are somewhat
special, however, since models of this kind are equivalent to
scalar-tensor theories with second-order equations of
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motion [18]. On general grounds one expects an EFT
expansion of GR to include also a tower of operators
containing explicit Ricci and Riemann tensors. In this paper
we study the viability and phenomenological implications
of adding a particular class of such more general terms as
perturbative extensions to R2 inflation.
The specific higher-curvature Lagrangians we consi-

der were identified in1 [22–24]. A distinctive property of
this family of theories is that they give rise to second-order
Friedmann-Lemaître equations and, at least some, possess
linearized equations that are second order in time deriva-
tives [23]. These properties render possible a comprehen-
sive analysis of their cosmological backgrounds and of the
evolution of perturbations. In the context of R2 inflation the
effect of these higher-curvature terms is, essentially, to
modify the response of the spacetime geometry to the
matter content. For this reason we call these “geometric”
corrections, as opposed to the R2 term.2

We determine the range of models within this class that
admit an extended phase of slow roll inflation as an
attractor solution. We also evaluate the semiclassical no-
boundary wave function of the universe in the presence of
the higher-curvature corrections and show that its predic-
tion of an inflationary origin is robust. By embedding these
theories in anti–de Sitter space, we also derive holographic
“unitarity” bounds on the two dominant higher-order
curvature corrections and argue these translate into con-
straints on the theories in the de Sitter context too. We find
that these constraints require that the couplings of the
higher-order terms must be much smaller than the coef-
ficient of the R2 term, providing a theoretical ground for the
scale separation between these couplings that we adopt.
Nevertheless,Oð1Þ effects are still allowed by these bounds
at the beginning of inflation. Taking this into account, we
investigate the effect of the leading cubic and quartic
higher-curvature corrections on the spectral properties of
the tensor and scalar perturbations in R2 inflation. We
compute in particular the changes to the tensor to scalar
ratio r, the scalar tilt ns and the consistency relation r ¼
−8nT and quantify the promising prospects to observatio-
nally discriminate between these variations of R2 inflation.

II. INFLATIONARY COSMOLOGY IN
HIGHER-CURVATURE GRAVITY

The geometric higher-curvature corrections to R2 infla-
tion that we consider contain terms that depend explicitly
on the Riemann and Ricci tensors. We first introduce these
higher-curvature theories an sich and then discuss their role
as novel extensions of R2 inflation.

A. Geometric higher-curvature terms

In recent years, a new class of higher-curvature
Lagrangians known as generalized quasitopological
gravities (GQTGs) has been identified [33–39]. These
theories are characterized by having second-order linear-
ized equations on maximally symmetric backgrounds and
by allowing for single-function generalizations of the
Schwarzschild black hole whose thermodynamic properties
can be obtained exactly. We refer to [36,37] for more
precise information regarding the definition and properties
of these theories. It is worth pointing out that, when
considering perturbative couplings, GQTGs may provide
a basis for an EFT expansion of vacuum GR [40]. Thus, by
working with GQTGs one does not lose any information on
the EFT of gravity and in turn one is able to perform exact
computations rather than perturbative or approximate ones.
With regard to cosmology, Ref. [22] found that at the

cubic level in the curvature a particular GQTG leads to
second-order Friedmann-Lemaître equations. This result
was extended in Ref. [24] to higher orders in the curvature
and it was argued that Lagrangians of this kind exist at all
orders. Besides, it was reported in Ref. [23] that the linear
perturbations of the cubic theory around FLRW back-
grounds satisfy equations of motion of second order in time
derivatives. Here we show the existence of theories with
analogous properties at higher orders.
These features make this class of theories appealing for

cosmological studies. For general higher-order gravities the
presence of higher-order time derivatives sources short-
scale instabilities and one must necessarily resort to
perturbative schemes. By contrast, in these theories the
absence of higher-order time derivatives allows one, at least
in principle,3 to perform computations without having to
restrict to any approximations. In essence, the only effect of
these Lagrangians is to modify the response of the
geometry to the stress-energy.
On a different note, let us mention that the Friedmann-

Lemaître equations of these theories turn out to be
remarkably similar to those found in duality-invariant string
cosmology with α0 corrections [43]. This suggests that this
family of theories might have some connection with string
theory which would be worth exploring elsewhere.

1The nonlocal infinite-derivative gravities of [19] are another
family of theories intended to avoid ghosts and instabilities.
These were considered as modifications of Rþ R2 inflation in
[20,21].

2In [24] it was shown that higher-curvature Lagrangians of the
form [22–24] can lead to inflation in a radiation-dominated
universe without an R2 term or an inflaton field—a scenario that
was aptly called geometric inflation. However, in [25] it was
shown that a significant period of inflation in this case requires
trans-Planckian radiation or matter densities rendering this
scenario questionable. A possible way out is to include a scalar
field [26]. See also [27–32] for other follow-ups of the geometric
inflation scenario.

3As recently noted in Refs. [41,42], these theories may suffer
from other types of instabilities associated to strong coupling
issues. We comment on this below.
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Thus, at each order in the curvature n we consider
higher-derivative densities RðnÞ satisfying the following
properties4:
(1) They belong to the generalized quasitopolo-

gical class
(2) They yield second-order Friedmann-Lemaître (FL)

equations
(3) The linearized equations on FLRW backgrounds are

of second order in time derivatives
At each order in the curvature, there are usually several

nontrivial densities satisfying these requirements and the
number of these densities grows with n. However, as noted
in [24], the contribution of these densities to the FL
equations is degenerate, in the sense that the contributions
from all the densities of a given order n are proportional to
one another. On the other hand, the degeneracy will be
broken when considering general perturbations. Thus, the
terms RðnÞ will be composed of the sum of several
densities, but we can specify an overall normalization that
will determine their contribution to the FL equations. We
shall choose a normalization such that

R̄ðnÞ ¼ −
12

n − 2
ð−KÞn; ð1Þ

when evaluated on R̄μνρσ ¼ 2Kgμ½ρgσ�ν, corresponding to a
constant curvature background of curvature K.
The Einstein-Hilbert term R obviously satisfies the

requirements 1-3 and it is normalized according to this
rule up to a sign. At quadratic order, the Gauss-Bonnet
density X4 is the only Lagrangian satisfying the conditions
1-3, but it is topological and hence does not modify the
equations of motion. The cubic correction is somewhat
canonical and it has often been called “cosmological

Einsteinian cubic gravity” [22]. This density is usually
expressed as follows

Rð3Þ ¼ −
1

8
ðP − 8CÞ; ð2Þ

where P and C are given by

P ¼ 12Rμ
ρ
ν
σRρ

δ
σ
γRδ

μ
γ
ν þ Rμν

ρσRρσ
αβRαβ

μν

− 12RμνρσRμρRνσ þ 8Rμ
νRν

ρRρ
μ; ð3Þ

C ¼ RμνρσRμνρ
λRσλ −

1

4
RμνρσRμνρσR − 2RμνρσRμρRνσ

þ 1

2
RμνRμνR: ð4Þ

The densityP is the one corresponding to Einsteinian cubic
gravity [33], while the term C was identified in [36], and
both belong to the GQT class. Unlike P, it turns out that C
does not contribute to the equations of motion for static
spherically symmetric solutions, but nevertheless it con-
tributes to the FL equations, and it is this precise combi-
nation of P and C that yields second-order equations. An
example of a quartic theory satisfying the points 1 and 2 can
be found in [24] but the condition 3 was not taken into
account. Here we have extended that analysis by searching
for the most general quartic Lagrangian satisfying all three
conditions. We have found that there are three independent
Lagrangians RA

ð4Þ, R
B
ð4Þ and RC

ð4Þ. There are infinite forms

of expressing these densities because out of the 26 possible
quartic Riemann invariants only 13 of them are linearly
independent in D ¼ 4, but eliminating redundant terms
[44] we can write them as follows

RA
ð4Þ ¼

3

32
RμνρσRμν

δγRδγ
χξRρσχξ −

1

16
ðRμνρσRμνρσÞ2 þ 1

6
RRμ

ρ
ν
σRρ

δ
σ
γRδ

μ
γ
ν −

3

4
RμνRρσRδγ

μρRδγνσ

þ 1

16
R2RμνρσRμνρσ þ 1

2
RRμνρσRμρRνσ −

3

4
Rμ

νRν
ρRρ

σRσ
μ þ 5

8
ðRμνRμνÞ2 þ RRμ

νRν
ρRρ

μ

−
7

8
R2RμνRμν þ 3

32
R4; ð5Þ

RB
ð4Þ ¼

3

16
RμνρσRμν

δγRδγ
χξRρσχξ −

3

64
ðRμνρσRμνρσÞ2 − 1

4
RRμ

ρ
ν
σRρ

δ
σ
γRδ

μ
γ
ν −

9

4
RμνRρσRδγ

μρRδγνσ

−
3

2
RμνRν

ρRσδγ
μRσδγρ þ

3

16
R2RμνρσRμνρσ þ 15

4
RRμνρσRμρRνσ −

15

4
Rμ

νRν
ρRρ

σRσ
μ þ 21

8
ðRμνRμνÞ2

þ 7RRμ
νRν

ρRρ
μ − 6R2RμνRμν þ 47

64
R4; ð6Þ

4The theories with second-order cosmological equations and those of the GQT class in principle form two independent
sets with a nonzero overlap. Although for cosmology we only need those of the first set, choosing theories belong
ing to the intersection brings additional advantages. For instance the holographic dictionary of GQT theories is known—see
Sec. VI.
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RC
ð4Þ ¼ −4RμνRν

ρRσδγ
μRσδγρ þ RδγRδγRμνρσRμνρσ þ 4RRμνρσRμρRνσ þ 16

3
RRμ

νRν
ρRρ

μ − 5R2RμνRμν

þ 2

3
R4: ð7Þ

Out of these densities, only RA
ð4Þ contributes to the

FL equations and it is normalized according to (1). On
the other hand, RB

ð4Þ contributes to the linearized equations

around FLRW backgrounds but not to the FL equations,
while RC

ð4Þ contributes to neither and is therefore irrelevant

for early-time cosmology. The full quartic term with
the proper normalization can be written as a linear
combination,

Rð4Þ ¼ RA
ð4Þ þ νRB

ð4Þ þ γRC
ð4Þ: ð8Þ

where ν and γ are free parameters.
Higher-order densities satisfying conditions 1 and 2 were

obtained in [24] up to n ¼ 8, although the point 3 was
overlooked. Nevertheless, given the present amount of
evidence, we see no obstruction for the existence of
densities satisfying points 1-3 at all orders in curvature.
One interesting observation made in [24] is that we do

not need to know the explicit form of these Lagrangians in
order to derive the FL equations. In fact, we already
remarked that the current evidence allows one to conclude
that at each order in the curvature these terms modify in a
unique way the FL equations. By studying the first cases
n ¼ 3;…8, one notices that the modification takes a simple
form and that it is possible to derive a pattern for general n.
On the other hand, we have checked that no simple pattern
seems to exist for the perturbation equations and in fact at
each order there may be more than one way in which these
geometric terms modify the linearized equations—see
Appendix A 1. However, this shall be sufficient for our
purposes since we will only carry out a detailed analysis of
cosmological perturbations in the case of the cubic and
quartic theory.

B. Geometric extensions of R2 inflation

The simplest version of Starobinsky’s model of inflation
is based on the following action,

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ α

12
l2R2

�
; ð9Þ

where α > 0 is a dimensionless coupling constant that we
take to be positive, and l is a characteristic length scale.
Despite having fourth-order equations of motion, this
theory is equivalent to a scalar-tensor theory with sec-
ond-order EOMs and hence it is a theoretically viable
cosmological model.

We note that at the same order in the curvature
expansion, we may add to the action the Gauss-Bonnet
term X 4 and the Weyl2 term. The first one is topological,
but the Weyl2 term affects the tensor perturbations. It gives
rise to fourth-order tensor perturbation equations and
therefore ghosts, although these can plausibly be dealt
with at least in certain situations [45,46]. Also at the same
order one may consider the effect of the trace anomaly of
the matter fields stress-energy tensor on the Einstein’s
equations [5] as Starobinsky originally did. At higher
orders in the derivative expansion many more terms can
be added to the action, but for simplicity, we focus on the
geometric terms we have described in the previous sub-
section. Since those terms give rise to second-order
equations for the background evolution and for the linear
perturbations, these provide an interesting and computa-
tionally feasible variation of the Rþ R2 model.
Thus, we consider the following purely metric model of

inflation,

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ α

12
l2R2 þ

X∞
n¼2

λnl2n−2RðnÞ

�

ð10Þ
in which the R2 term is treated in a nonperturbative manner
and the remaining terms as corrections. As anticipated, due
to the R2 term, the Ricci scalar itself becomes a propagating
degree of freedom in this theory. In order to make this
manifest it is convenient to work with the following
equivalent action instead:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p �
Rð1þ 2αl2ψÞ − 12αl2ψ2

þ
X∞
n¼2

λnl2n−2RðnÞ

�
: ð11Þ

The equations of motion obtained from the variation of the
metric and of the scalar field ψ read, respectively

ð1þ 2αl2ψÞGμν þ
X∞
n¼2

λnl2n−2EðnÞ
μν

− 2αl2½∇μ∇νψ − gμνð3ψ2 þ∇2ψÞ� ¼ 0 ð12Þ

R − 12ψ ¼ 0: ð13Þ

Here EðnÞ
μν denotes the contribution to the equation of motion

obtained from the variation of the density RðnÞ:

CANO, FRANSEN, and HERTOG PHYS. REV. D 103, 103531 (2021)

103531-4



EðnÞ
μν ¼ PðnÞðμρσγRνÞρσγ −

1

2
gμνRðnÞ þ 2∇σ∇ρPðnÞ

μσνρ; ð14Þ

where

PðnÞ
αβργ ¼

∂RðnÞ
∂Rαβργ : ð15Þ

From the second equation (13) we get ψ ¼ R=12, and
plugging this value into the first equation we recover the
equations of motion of the original theory (10).

C. Generalized Friedmann-Lemaître equations

Consider a flat cosmological FLRW ansatz,

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ: ð16Þ

and ψðtÞ. Inserting this in the EOM we obtain

FðH2Þ ¼ 2αl2½ψðψ −H2Þ −H _ψ �; ð17Þ

_HF0ðH2Þ ¼ −αl2½ψ̈ −H _ψ þ 2 _Hψ �; ð18Þ

6 _H þ 12H2 − 12ψ ¼ 0; ð19Þ

where H ¼ _a=a, with _ψ ¼ dψ=dt, etc, and F is a function
defined as

FðxÞ ¼ xþ l−2
X∞
n¼3

ð−1Þnλnðl2xÞn: ð20Þ

In addition, F0ðxÞ ¼ dF=dx. The general form of the FL
equations can be obtained by explicitly evaluating (12) for a
few lower-order densities Rð3Þ;Rð4Þ;… These follow a
very simple pattern captured by the function F in (20) and
this allows us to generalize the result to arbitrary orders in
the curvature—see [24]. Note that in the absence of higher-
order corrections we have FðH2Þ ¼ H2, and the equations
above reduce to those of R2 gravity. As we already
remarked earlier, the densitiesRðnÞ do not introduce higher
derivatives in the equations of motion but modify FL
equations only through the function FðH2Þ, which essen-
tially determines the response of the geometry to the matter.
In this case the “matter” is the inflaton field generated by
the R2 term.
Note that the Eq. (18) can be derived from (17) and (19)

by taking derivatives of those, and hence we do not need to
include it in the resolution process. Thus, as usual, we can
keep only the Eqs. (17) and (19) which are of first order and
define a dynamical system for H and ψ . Since we shall be
interested in inflationary solutions, it is useful to para-
metrize the evolution of the system in terms of the number
of e-folds, N ¼ log ða0=aðtÞÞ, measured backwards from
the end of inflation This is related to the time variable t
according to

dN ¼ −Hdt: ð21Þ

Thus, from (17) and (19) we get the following system of
equations,

dψ
dN

¼ 1

H2

�
−ψðψ −H2Þ þ 1

2αl2
FðH2Þ

�
; ð22Þ

dH
dN

¼ −
2

H
ðψ −H2Þ: ð23Þ

Given that the origin of the R2-term potentially differs
from the other corrections we will often have in mind that
α ≫ 1, while λn ∼ 1. We can then distinguish three differ-
ent regimes
(1) A general relativity regime when 1≫ αl2ψ ≫ l2H2

(2) An R2-phase when αl2ψ ≳ 1 ≫ l2H2

(3) A higher-derivative phase when αl2ψ ≫ 1 and
l4H6 ≳ αl2ψ

In the first case, the effect of all the higher-derivative
terms is small, and the dynamics is ruled by the Einstein-
Hilbert term. In the second item, the R2 term is com-
parable or even larger than the EH one, but the additional
higher-derivative corrections are still small. In the third
regime, the EH term is negligible and the geometric higher-
derivative corrections overcome the R2 term. Thus, we
expect that the higher-order terms are especially relevant
earlier on during inflation. Since our theories depend on the
choice of an arbitrary function FðH2Þ, in the following we
shall first investigate the choices of this F that lead to
desirable cosmologies. By this we mean that
(1) the theory admits a sufficiently long inflationary

regime.
(2) Inflation acts as an attractor in the sense that there is

an open set of initial conditions that give rise to
inflation.

(3) Inflation ends in the general relativity regime.
First, however, it should be remarked that when there

are no higher derivative corrections in addition to R2,
these conditions are satisfied with an appropriate choice
of α and/or the characteristic scale l. Taking R2 inflation
as our reference model, we are interested in the range of
λn that preserve these nice properties. One particular
point that should be considered is the initial value of the
scalar ψ (equivalently R) required to produce a suffi-
ciently large number of e-folds. The higher-order cor-
rections will modify this value with respect to the R2

prediction.

III. SLOW ROLL REGIME

Before studying the full dynamical system given by (22)
and (23), we analyze its slow roll regime. A necessary
condition in order for a theory to be a viable candidate
model of inflation is that its slow roll regime allows for
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sufficiently many e-folds5 N. Typically one needs N in the
range of 50 to 60, reheating being the largest source of
uncertainty [47].
It is customary to introduce the slow roll parameter ϵ,

ϵ ¼ 1

H
dH
dN

; ð24Þ

so that, during inflation, ϵ ≪ 1, and inflation ends when
ϵ ≈ 1. From (23) we obtain

ϵ ¼ −
2

H2
ðψ −H2Þ: ð25Þ

Replacing H in terms of ψ and ϵ in (22) yields

dψ
dN

¼ 1

2
ϵψ þ 1 − ϵ=2

2αl2ψ
F

�
ψ

1 − ϵ=2

�
: ð26Þ

Now, let us take into account that, since H2 ≈ ψ during
inflation, we have the following approximation

ϵ ≈
1

2ψ

dψ
dN

: ð27Þ

Therefore, to leading order in ϵ:

dψ
dN

≈
2FðψÞ
3αl2ψ

: ð28Þ

This equation governs the dynamics of the system during
the slow roll phase. On the other hand, ϵ is given in terms of
ψ by

ϵ ≈
FðψÞ
3αl2ψ2

: ð29Þ

Our goal in this section is to determine which conditions
F should satisfy in order for there to be a large (N ∼ 60)
number of e-folds. For R2 inflation without additional
higher-order terms we haveFðψÞ ¼ ψ , and the Eq. (28) can
be integrated to yield

ψ ¼ ψ end þ
2N
3αl2

: ð30Þ

We recall that N measures the e-folds till the end of
inflation. On the other hand, ϵ ¼ ð3αl2ψÞ−1, so that
inflation ends at ψ end ∼ ð3αl2Þ−1, which implies that

ψ ¼ 1þ 2N
3αl2

; ϵ ¼ 1

1þ 2N
: ð31Þ

Notice that the initial value ψ ini ¼ 1þ2Ntotal
3αl2 can be quite large

in units of l−2, since Ntotal should be at least ∼60.
Therefore, the possible higher-order effects can be very
relevant. Of course, due to the freedom in choosing the
function F, the possible number of situations is endless. We
distinguish three general cases that we consider most
natural. A simple possibility is to assume that the
higher-order corrections modify the function F in a
monotonous manner, so that it either grows faster than
in R2 inflation or more slowly. A third situation arises when
F has a zero. As an overview of the following discussion,
Fig. 1 shows the representative examples we will consider
in each case while Fig. 2 gives a comparison between the
evolution of ψ and ϵ in the different cases.

A. F is larger than in R2: FðψÞ > ψ

First assume that F is modified by the higher-order
corrections so that it is larger than for R2. We see from
Eq. (28) that this implies that the velocity at which the
scalar field “rolls down” will be increased, meaning that the
initial value in order to achieve 60e-folds will be higher. On
the other hand, the slow roll parameter (29) becomes larger
than in R2 inflation. Thus, in this case the higher-order
corrections tend to spoil the nice properties of the R2

scenario, although inflation is still possible depending on
the values of the couplings. It is convenient to consider two
subcases that we illustrate next with two examples.

1. Asymptotically FðψÞ > Oðψ2Þ
The first subcase corresponds to having a function

FðψÞ > ψ and such that FðψÞ > cψ2 when ψ → ∞ for

0 1 2 3 4 5
–2

0

2

4

6

FIG. 1. Representative examples of the function FðψÞ that
characterizes the higher derivative gravity at the background
level. The expressions for F1, F2, F3, F4 and F5 are given
respectively in (32), (39), (42), (47) and (49), each with λ ¼ 0.1.
As a reference, the R2 case FðψÞ ¼ ψ is also shown.

5It should be noted that, to match cosmological observations,
the required number of such e-folds is model-dependent. In
particular, it increases with the reduction of curvature scales from
ψobs to ψend as ∼ 1

2
log ψobs

ψend
, which could become significant in a

subset of the theories under consideration. However, we will later
derive holographic constraints which effectively rule out that
possibility.
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any proportionality constant c. A very simple example is
given by the choice of parameters λ3 ¼ −λ < 0, λn>3 ¼ 0,
so that

F1ðψÞ ¼ ψ þ λl4ψ3; ð32Þ

which corresponds to simply having a cubic term in the
action. Now, integrating (28) yields

1ffiffiffi
λ

p arctanð
ffiffiffi
λ

p
l2ψÞ − 1ffiffiffi

λ
p arctanð

ffiffiffi
λ

p
l2ψ endÞ ¼

2N
3α

: ð33Þ

On the other hand, the slow roll parameter reads

ϵ ¼ 1þ λl4ψ2

3αl2ψ
: ð34Þ

At the end of inflation ϵ ¼ 1, so that

l2ψ end ¼
1

2λ
½3α −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α2 − 4λ

p
�; ð35Þ

and therefore

l2ψ ¼ 1ffiffiffi
λ

p tan

�
2
ffiffiffi
λ

p
N

3α
þ arctan

�
3α

2
ffiffiffi
λ

p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α2

4λ
− 1

r ��
:

ð36Þ

As we can see, a peculiarity of this model is that ψ diverges
at finite N. In other words, this implies that there is a
maximum amount of e-folds, which is approximately

Nmax ≈
3πα

4
ffiffiffi
λ

p ; ð37Þ

when
ffiffiffi
λ

p
≪ α. Thus, the ratio λ=α2 must be small enough

in order to achieve inflation. These features are shared by

any other model with FðψÞ > Oðψ2Þ asymptotically, since
from (28) we get

N ¼ 3αl2

Z
ψ

ψ end

dψ 0ψ 0

2Fðψ 0Þ ; ð38Þ

and the integral converges to a finite value when ψ → ∞.

2. Asymptotically FðψÞ ≤ Oðψ2Þ
A second subcase of FðψÞ > ψ has asymptotically

FðψÞ ≤ cψ2 for any positive c. Contrary to the previous
subcase, the curvature only diverges asymptotically toward
the past. This behavior can be illustrated by choosing, for
example

F2ðψÞ ¼ ψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λl4ψ2

q
; λ > 0: ð39Þ

Note that in this case would correspond to a summa-
tion of (20) for a particular choice of the infinite set of
higher-order couplings fλngn≥3. In the slow roll regime we
have

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λl4ψ2

p
3αl2ψ

; ð40Þ

and

l2ψ ¼ 1ffiffiffi
λ

p sinh

�
2
ffiffiffi
λ

p
N

3α
þ arcsinh

� ffiffiffi
λ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α2 − λ

p
��

: ð41Þ

In this case it is possible to achieve an arbitrary number of
e-folds, although this may require a quite large initial value
of ψ .
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FIG. 2. Slow roll evolution of ψ ¼ 12R (left) and slow roll parameter (right) for the different higher-derivative theories discussed in
Sec. III. The FðψÞ functions that determine the examples at the background level are shown in Fig. 1. The parameters used in each case
are α ¼ 10, λ ¼ 0.1. The approximate expressions for these slow roll evolutions are given in (36), (41), (46) (asymptotically), (48),
and (50).
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B. F is smaller than in R2: 0 < FðψÞ < ψ

Assuming instead that F is modified by the higher order
corrections to be smaller than for R2, 0 < FðψÞ < ψ , more
e-folds will be realized given similar initial values. Such
higher-curvature corrections would therefore be theoreti-
cally preferable if inflation is to happen at modest relative
curvatures or for small α. Let us again consider two
subcases with representative examples.

1. Asymptotically FðψÞ=OðψαÞ for some α < 1

This first subcase of 0 < FðψÞ < ψ , has FðψÞ behaving
as a power law for ψ → ∞. Consider the following example

F3ðψÞ ¼
ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λl4ψ2
p ; λ > 0; ð42Þ

which is a monotonous function that tends to a constant
value for ψ → ∞. By Eq. (28), the slow roll evolution
satisfies

l2ψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4ψ2λ

q
þ 1ffiffiffi

λ
p arcsinhðl2ψ

ffiffiffi
λ

p
Þ ¼ 4ðN − N0Þ

3α
;

ð43Þ

with

−
4N0

3α
¼ l2ψ end

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4ψ2

endλ
q

þ 1ffiffiffi
λ

p arcsinhðl2ψ end

ffiffiffi
λ

p
Þ;

ð44Þ

l2ψ end ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ

ffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4λ

α2

q
6λ

vuut
: ð45Þ

In the limit of large N one gets

l2ψ ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
4N

3α
ffiffiffi
λ

p
s

; ð46Þ

so that ψ scales with N1=2 rather than linearly with N, and
hence it is much smaller than in the R2 case. In addition, the
slow-roll parameter ϵ ≈ 1=ð4NÞ is half of the R2 prediction.

2. Asymptotically FðψÞ= oðψαÞ for all α < 0

The second subcase of 0 < FðψÞ < ψ , has F going to
zero faster than any inverse power law. For instance

F4ðψÞ ¼ ψe−λl
4ψ2

; λ > 0: ð47Þ

The slow roll curvature evolution of this model is
given by

l2ψ ¼ 1ffiffiffi
λ

p erfi−1
 
4
ffiffiffi
λ

p
N

3α
ffiffiffi
π

p þ erfi

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

�
2λ

9α2

�
=2

s !!
; ð48Þ

with erfi the imaginary error function and W Lambert’s
productlog function. In this case, ψ depends logarithmi-
cally on N in the limit of large N, so one can achieve a very
long inflationary regime with relatively small values of the
curvature.

C. F has a zero for positive ψ

In case F has a zero for positive ψ , there is a fixed point
corresponding to an exact de Sitter vacuum. This can easily
give rise to a long period of inflation, the danger now rather
being that the GR regime is never reached. For example,
take F1 with λ → −λ

F5ðψÞ ¼ ψ − λl4ψ3; λ > 0; ð49Þ
so that the slow-roll evolution is equivalent to Eq. (32) with
λ → −λ,

l2ψ ¼ 1ffiffiffi
λ

p tanh

�
2
ffiffiffi
λ

p
N

3α
þ arctanhð

ffiffiffi
λ

p
ψ endÞ

�
: ð50Þ

This can be considered to have evolved from the fixed point
l2ψ ¼ 1ffiffi

λ
p asymptotically to the past and in this way is in

practice not very different from the example in Eq. (47)
above. However, it is not the only possibility as one can
also be driven away from the fixed point with growing
curvature if, in this case, l2ψ > 1ffiffi

λ
p . In that situation the

slow roll parameter is negative

ϵ ¼ 1 − λl4ψ2

3αl2ψ
; ð51Þ

meaning that inflation accelerates. The slow-roll regime
ends around ϵ ¼ −1, for which

l2ψ end ¼
1

2λ
ð−3αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α2 þ 4λ

p
Þ; ð52Þ

but at this point the solution keeps expanding at an
accelerated rate and the GR regime is never reached.
Clearly this is undesirable. The behavior around general
fixed points will be analyzed in more detail in the next
section where we explore the phase space of (22) and (23)
beyond the slow roll regime.

IV. ATTRACTOR MECHANISM

Our analysis in the previous section was restricted to the
slow roll regime of the cosmologies. We now explore the
full phase space of the system (22)–(23) and show that in a
wide range of the higher-curvature extensions of R2

inflation, slow roll inflation is an attractor solution. We
also derive a convenient bound, Eq. (55), that quantifies the
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initial curvature scale that is required to obtain a prolonged
phase of inflation that subsequently transitions into a
FLRW regime governed by GR.
First, note that aside from the term 1

2αl2 FðH2Þ, the
dynamical system (22), (23) tends toward ψ ≈H2 for
decreasing N, on the assumption that ψ > 0. To see this,
combine (22) and (23) to

−
d
dN

�
ψ

H2

�
¼ −

3ψ

H2

�
ψ

H2
− 1

�
−

FðH2Þ
2αl2H4

: ð53Þ

If ψ
H2 ð ψ

H2 − 1Þ ≫ FðH2Þ
2αl2H4, the ratio of (22) and (23) approxi-

mately becomes

dψ
dH

≈
ψ

2H
; ð54Þ

which implies that ψ ∝
ffiffiffiffi
H

p
. Now, inflation starts when

ψ ≈H2, and at that point we demand that ψ ≥ ψ start, where
ψ start is the minimum initial value of ψ in order to have a
sufficient number of e-folds Nstart. This translates into the
following condition for the initial values H0, ψ0,

l2ψ0 ≥ ðl2ψ startÞ3=4
ffiffiffiffiffiffiffiffiffi
lH0

p
; ð55Þ

Of course this analysis neglects the contribution of the
FðH2Þ
2αl2H4 term in Eq. (53), but this only becomes important
when one approaches ψ ≈H2.
Now consider instead ψ

H2 ≪ 1. If FðH2Þ > 0 and
ψ
H2 ≪ FðH2Þ

2αl2H4, then Eq. (53) implies that ψ
H2 will decrease

further, away from possible slow roll. The only way to
nevertheless reach slow roll would therefore be for FðH2Þ
to decrease even faster

FðH2Þ < 4H2F0ðH2Þ
9

: ð56Þ

For R2 this inequality does not hold, so we may just assume
that it does not hold for the higher-order gravities either.
Therefore, from the onset of inflation one must have
ψ
H2 ≳ FðH2Þ

2αl2H4. For simplicity, say ψ0

H2
0

≫ FðH2
0
Þ

2αl2H4
0

. Then we can

apply the same reasoning as before and we are left again
with the bound (55).
For R2 inflation, Eq. (31) indicates that we need ψ start ¼

1þ2Nstart
3αl2 to have Nstart e-folds of slow roll inflation, while for

the models introduced in Sec. III, ψ start is (approximately)
given by (36), (41), (46), (48), and (50) as a function of the
desired number of e-folds. For some of these theories,
Fig. 3 shows the flow in phase space and the region of
initial conditions leading to Nstart > 60 e-folds of inflation.
As we can see, the bound (55) provides a reasonably good
approximation for the allowed region of initial conditions,

and, overall, it captures the main differences between these
models. Of course it should be noted that the differences
become more pronounced as the contribution of FðH2Þ
increases. Also, the approximation breaks down at large H.
The fact that these theories give rise to a regular

dynamical system with a global attractor toward inflation
is in itself a non-trivial result. If one considered generic
higher-order corrections to R2 inflation, one would find
singularities in the dynamical system and that inflation is
not an attractor for arbitrary initial conditions. This can be
checked for simple examples, such as adding a Riemann3

term in the action rather than our cubic density (2). This is
yet another reason why the set of theories we are consid-
ering is appealing for cosmology.
When the model has a fixed point and thus a sign change

of FðH2Þ, one needs to worry about the additional require-
ment that inflation ends in a phase described by general
relativity. Consider the general case where FðH2Þ has a
zeroHdS. The dynamical system (22)–(23) linearized about
the fixed point H ¼ HdS, ψ ¼ H2

dS is given by

−

 
dδψ
dN
dδH
dN

!
¼
 

1 −2HdS −
F0ðH2

dSÞ
HdSl2α

2
HdS

−4

!�
δψ

δH

�
; ð57Þ

with δH ¼ H −HdS and δψ ¼ ψ −H2
dS. The eigenvalues

λ� ¼ −
3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
2F0ðH2

dSÞ
H2

dSl
2α

s
; ð58Þ

and associated eigenvectors

e� ¼

0
B@ H0

4

�
5� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− 2F0ðH2

dSÞ
H2

dSl
2α

r �
1

1
CA; ð59Þ

indicate that, when F0ðH2
dSÞ > 0 the fixed point is stable,6

whereas when F0ðH2
dSÞ < 0, the fixed point is a saddle. The

latter case is most relevant since it occurs for the smallest
positive zero in FðH2Þ, assuming FðH2Þ → H2 for smallH
and this is what happens for the model F5 (49). The saddle,
in this case, is roughly attractive toward the line ψ ¼ H2

and unstable along this line. Crucially, when ψ ≈H2 and
H > HdS, the evolution is now driven toward higher H,
never to reach the general relativity regime lH ≪ 1. This is
shown, for the model (49) in Fig. 3 (bottom right) and it is
the reason an upper bound must be introduced in this
model. Following the same procedure as for Eq. (55), this
upper bound can be approximated as

l2ψ0 ≤ ðl2ψdSÞ3=4
ffiffiffiffiffiffiffiffiffi
lH0

p
; ð60Þ

6For increasing time or decreasing N.
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As Fig. 3 shows, in this case there is only a narrow
region in the phase space leading to successful inflation,
and this region becomes narrower if we increase λ.

Thus, if FðψÞ has a zero we may need fine-tuned initial
conditions in order to produce inflation. By contrast,
functions 0 < FðψÞ < ψ enlarge the region of initial
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FIG. 3. Flow in phase space for the dynamical system (22), (23) in the case of pure R2 (top left), F1 as defined in Eq. (32) (top right),
F3 as defined in Eq. (42) (bottom left) and F5 as defined in Eq. (49) (bottom right), for α ¼ 10 and λ ¼ 0.1. The flow shows the
evolution forward in time and the vector field is indicative of the direction of the flow, not its speed. Shown as well is the line ψ ¼ H2

(full, orange), indicative of the slow roll regime, and the region of phase space which gives rise 60e-folds of slow roll inflation (shaded)
as well as the approximation Eq. (55) to the boundary of this region (dashed, black). For the model F5 (bottom right), the additional
nontrivial requirement that inflation ends in a regime described by general relativity leads to an upper bound, given approximately by
(60), and strongly reduces the phase space region with a capacity to realise enough inflation.
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conditions in the phase space leading to a long infla-
tionary period.

V. HARTLE-HAWKING INITIAL CONDITIONS

We have seen that in a wide range of the geometric
higher-curvature corrections to R2 inflation that we con-
sider, inflation is an attractor. This means there is an open
set of initial values of H and ψ that give rise to inflation.
This does not mean, however, that inflation is “likely.”
Reasonable classical measures on phase space clearly point
toward the need for a quantum theory of initial conditions
to explain the origin of inflation [48]. Here we gen-
eralize earlier work [4,5] on the quantum cosmology of
Starobinsky inflation to include the geometric higher-
curvature corrections in the action.7 Second, we generalize
the analysis of [5] to so-called fuzzy instantons which
describe not a sharp but a gradual transition from a quantum
regime to a classical, Lorentzian slow roll inflationary
phase. We will find that in any given model, the no-
boundary wave function selects a one-parameter family of
cosmologies which can be labeled by different starting
values ψ0 of the curvature.
To find fuzzy instantons specifying the semiclassical no-

boundary wave function, we follow [7] and start with a
complex ansatz of the following form,

ds2 ¼ dt2NðtÞ2 þ a2ðtÞdΩ2
ð3Þ; ψ ¼ ψðtÞ: ð61Þ

where dΩ2
ð3Þ is the metric of the 3-sphere, and N2, a2 and ψ

are complex functions of t. We can define a new time
variable dτ ¼ Ndt, so that τ takes complex values. In terms
of τ, the first FL equation and the equation for ψ read

F

�
1 − _a2

a2

�
¼ 2αl2

�
ψ

�
ψ −

1 − _a2

a2

�
þ _a _ψ

a

�
; ð62Þ

1 − _a2 − aä
a2

¼ 2ψ ; ð63Þ

where _a ¼ da
dτ ¼ 1

N
da
dt , etc. In order to solve these equations,

we search for solutions that have a regular Euclidean
section near a ¼ 0. This happens if and only if

að0Þ ¼ 0; _að0Þ ¼ 1; ð64Þ

in which case τ ¼ 0 is just a smooth cap of the geometry,
usually called the south pole. Thus, the only remaining
boundary condition is the value of ψ at the south pole,
which is in general a complex number,

ψð0Þ ¼ ψ0eiθ; ψ0 ¼ jψð0Þj: ð65Þ

Now, ψð0Þ must be chosen in a precise way so that there
exists a section of the complex solution that tends to a real
Lorentzian metric. Otherwise the saddle does not contribute
to the no-boundary wave function in a regime where the
latter describes classical spacetime. To find those values of
ψð0Þ, first note that the solutions satisfying (64) can be
analytically continued to all the complex τ-plane, since one
can solve (62) and (63) using a power series. We focus on a
contour Cðx0Þ in the complex τ-plane defined as follows:

Cðx0Þ ¼ fxj0 ≤ x ≤ x0g ∪ fx0 þ iyjy ≥ 0g: ð66Þ

Numerically solving (62)–(63) along this contour with the
boundary conditions (64)–(65) and demanding

lim
y→∞

Im½aðx0 þ iyÞ� ¼ 0; lim
y→∞

Im½ψðx0 þ iyÞ� ¼ 0: ð67Þ

we obtain an asymptotically real Lorentzian solution. Note
that these are two “classicality” conditions, which fix two
constants. It turns out that once the norm ψ0 is specified,
there is a unique phase θ and turning point x0 along which
the solution gives rise to classical behavior. For increasing y
the corresponding solution soon tends to one of the infla-
tionary solutions we considered above, with an initial value
of inflation close to ψ0.

8 Varying ψ0 yields a one-parameter
family of inflationary solutions which differ in the number
of e-folds. The initial conditions specified by the no-
boundary proposal thus select a line in the inflationary
band in the phase space diagrams shown above.
As an illustration, consider the case

FðxÞ ¼ x − λx3: ð68Þ

Numerically solving the complex FL equations for
several values of λ leads to the plots shown in Fig. 4,
where we can see both the real and imaginary parts of ψ , the
imaginary part of a and the Lorentzian Hubble parameter
Ĥ ¼ −Reð _aÞ=ReðaÞ. The phase of ψð0Þ and the turning
point x0 of the contour have been tuned so that the
imaginary parts of a and ψ rapidly decay to zero, yielding
an asymptotically real, Lorentzian solution. From these
graphs we extract two main conclusions.
(1) Once the solution behaves classically—that is, when

ImðaÞ ≪ ReðaÞ and ImðψÞ ≪ ReðψÞ—the values of
H and ψ lie approximately on the slow roll line
ψ ≈H2. Thus the origin of classical spacetime and
inflation go hand in hand [7].

7See [49] for a related analysis.

8A caveat in our analysis is that we considered flat FLRW
metrics in the previous sections whereas the Hartle-Hawking
wave function selects closed universes. However, since the scale
factor grows exponentially during inflation, the effect of the
curvature becomes negligible soon after the classicalization of the
background.
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(2) The values of H and ψ in the classical domain are
almost independent of the higher-curvature correc-
tions. We get approximately H2 ≈ ψ ≈ jψð0Þj.

Regarding the second point, Fig. 4 shows that all curves for
ReðψÞ agree at y ≈ 0.6, which is roughly when ImðψÞ has
decayed away. For Ĥ, the different curves cannot be
distinguished until ImðaÞ ≪ 1. We have verified that the
same conclusions hold for larger values of the coupling λ
and ψ0 and different choices of FðxÞ. Thus, the higher-
order corrections do not seem to modify in a substantial
way the initial conditions predicted by the no-boundary
proposal. In practice one may assume that the initial state is
given by H2

in ≈ ψ in ≈ ψ0.
Not all solutions along this line are equally probable in

the no-boundary state. Their relative probabilities are given
by the real part of the Euclidean action which tends to a
constant when the solution classicalizes [6,7]. It is well
known that the no-boundary wave function an sich favors
a low amount of inflation. Quantum cosmological proba-
bilities for observables such as the CMB fluctuations,
however, are conditioned on the observational situation

and dominated by histories with an extended phase of
inflation [50–52].

VI. CONSTRAINTS FROM HOLOGRAPHY

We now put forward a novel proposal to theoreti-
cally constrain the range of higher-curvature corrections
to inflationary models based on the application of
AdS=CFT. The idea is to add a negative cosmological
constant Λ to the action (11) and to study the properties of
the resulting theories in an AdS background. Using the
holographic dictionary one can compute various quantities
in the dual CFT, such as correlators of the boundary stress-
energy tensor Tab. These must satisfy certain well-known
constraints in order for the dual theory to be unitary. It
seems reasonable to restrict the parameter range of higher-
curvature bulk theories to the range that corresponds to
well-defined duals. Indeed in the AdS context, unitarity of
the dual CFT must be closely related to having a bulk
theory with physically reasonable properties, such as
positivity of energy and causality. In this section we derive

FIG. 4. The evolution of complex no-boundary saddle points that describe the creation of real Lorentzian inflationary cosmologies,
along the line τ ¼ x0 þ iy for five different values of λ in the cubic theory. From left to right and from top to bottom: real part of ψ ,
Lorentzian Hubble parameter Ĥ ¼ −Reð _aÞ=ReðaÞ, imaginary part of ψ and imaginary part of a. These curves correspond to the initial
value l2jψð0Þj ¼ 4 in each theory and we have set α ¼ 10. The phase of ψð0Þ and the turning point x0 of the contour have been tuned so
that the imaginary parts of a and ψ rapidly decay to zero, yielding a real Lorentzian solution.
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two such “AdS=CFT constraints” on the higher-order
couplings λ3 and λ4, resp. from the computation of the
two—and three-point functions of the stress-energy tensor
in the dual. Since these are plausibly independent of the
value of Λ, we then continue these to the inflationary
theories (11) of interest. In fact, these constraints only
depend on the background curvature, which is related to the
cosmological constant only on-shell. As support for the
validity of our method, we present an independent deriva-
tion directly in a de Sitter context of the first constraint
stemming from the computation of the two-point function.
We first consider the two-point function of the dual

stress-energy tensor. In a CFT3 this is given by

hTabðxÞTcdð0ÞiR3 ¼ CT

jxj6 Iac;bdðxÞ; ð69Þ

where Iac;bd is a fixed tensorial structure and the only
theory-dependent quantity is the central charge CT .
Unitarity implies CT > 0. Luckily, the value of this central
charge for the holographic dual of the higher-curvature
theories in (11) for ψ ¼ 0 has already been computed [53–
55]. That result can be easily extended to the case of ψ ≠ 0
by noticing that, whenever ψ is kept fixed, it can be
reabsorbed by redefining the cosmological and Newton’s
constants. The result then reads

CT ¼ CE
TðF0ð−χÞ þ 2αl2ψÞ; ð70Þ

where CE
T ¼ 3

χGπ3 is the corresponding result in Einstein

gravity in AdS and F is the function defined in (20). Here χ
is a constant representing the curvature of the background,

Rμνρσ ¼ −2χgμ½ρgσ�ν; ð71Þ

and thus ultimately determined by the cosmological con-
stant and the other parameters of the theory. In the case of
AdS, χ > 0 and the positivity of the central charge implies

CT

CE
T
¼ F0ð−χÞ þ 2αl2ψ > 0: ð72Þ

Now, since this expression only involves the evaluation
of a quantity on a constant curvature background, we might
as well evaluate it on a de Sitter space, for which χ ¼ −H2.
Of course, in doing so we are implicitly continuing the
cosmological constant from a negative to a positive value.
In addition, de Sitter solutions in the theory (11) have
ψ ¼ H2, and therefore we arrive to the following constraint

F0ðH2Þ þ 2αl2H2 > 0: ð73Þ

Once again, we stress this condition has been obtained by
continuing the constraint (72) from negative to positive
curvature. This means we lose contact with the original

dual theory although it should be noted that at least in some
versions, dS=CFT and Euclidean AdS=CFT share the same
dual [56]. Further evidence for the validity of this procedure
can be obtained by studying metric perturbations around de
Sitter backgrounds in the theory (11). In that case, one finds
that the linearized equations coincide with those of Einstein
gravity except that G is replaced by an effective Newton’s
constant Geff that reads [57]

Geff ¼
G

F0ðH2Þ þ 2αl2H2
: ð74Þ

Therefore, (73) must hold indeed in order to avoid Geff < 0
which would imply the existence of graviton ghosts. Thus
we see that the constraint (73) derived from AdS holo-
graphy translates into an entirely reasonable physical
requirement on the theories (11).
Motivated by this, we move on to the less trivial case of

the 3-point function hTTTi. In a 3-dimensional CFT this
correlator is characterized by CT and by an additional
dimensionless parameter, customarily denoted as t4.
Equivalently, the 3-point function can be obtained by
measuring energy fluxes at the boundary of AdS after a
local perturbation created by an insertion of the stress-
energy tensor of the form ϵabTab [58]. The energy flux at
infinity in the direction of the unit vector n⃗ is then

hEðn⃗Þi ¼ E
2π

�
1þ t4

�jϵ�abnanbj2
ϵ�abϵ

�
ab

−
1

4

��
; ð75Þ

where E is an overall constant. To avoid negative energy
fluxes, t4 must be bounded by

−4 ≤ t4 ≤ 4: ð76Þ

Luckily, t4 is also known for the holographic dual of (11)
for ψ ¼ 0 [53,55]. Again, an extension to the case of ψ ≠ 0
yields

t4 ¼ −
210χF00ð−χÞ

F0ð−χÞ þ 2αl2ψ
: ð77Þ

As before, this only depends on the background curvature,
and hence replacing χ ¼ −H2 and ψ ¼ H2, and taking into
account (76), we arrive at the following constraint

−4 ≤
210H2F00ðH2Þ

F0ðH2Þ þ 2αl2H2
≤ 4: ð78Þ

This is a much stronger bound than (73). It is clearly
violated in theories where F0ðH2Þ þ 2αl2H2 approaches
zero somewhere.
It would be very interesting to better understand the

physical implications in the bulk of the violation of (78). In
the case of Lovelock gravities in AdS, it is known that the
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unitarity constraints arising from the positivity of energy
fluxes coincide with causality constraints in the bulk [59–
63]. Hence (78) in de Sitter space might similarly be related
to causality. It was noticed in Refs. [64,65], however, that in
theories other than Lovelock gravity, this correspondence
does not seem to hold. This is because the terms with
higher-order derivatives dominate at large momentum,
yielding a dispersion relation without corrections. We
briefly discuss this in the next section when we compute
gravitational perturbations. Clearly the physical meaning in
the bulk of (78) deserves further study. For now, we
investigate the consequences of these two bounds upon
the assumption that they must hold in order for the theory to
be physically reasonable.
To be explicit we consider the relevant case of a single

cubic term in the action, corresponding to

FðH2Þ ¼ H2 − λ3l4H6: ð79Þ

The first constraint (73) implies

1þ 2αðlHÞ2 − 3λ3ðlHÞ4 > 0: ð80Þ

Now, strictly speaking, this is a condition that applies in de
Sitter vacua. That is, in this final derivation we have
assumed a positive cosmological constant on top of the
action (11). Nevertheless, it is easy to see that the same
condition should hold throughout the quasi–de Sitter
phases of interest. In particular, if 1þ 2αðlHÞ2 −
3λ3ðlHÞ4 < 0 during inflation, with ϵ ≪ 1, one necessarily
runs into ghostly gravitational waves. Note that in the
model given by (79), with λ3 > 0, we have H2 ≤ 1

l2
ffiffiffi
λ3

p
during inflation, with the upper bound corresponding to the
exact (unstable) de Sitter solution. Hence (80) is satisfied
for an arbitrary number of e-folds as long as λ3 ≤ α2.9

Notice that λ3 ≲ α2 means that the higher-order terms can
dominate when N is large enough. On the other hand, if
λ3 < 0 there is no constraint from (80), although in that
case there is a lower bound on λ3 in order to achieve a
sufficient number of e-folds according to (37).
The conditions in (78) in turn read

1þ 2αðlHÞ2 − 318λ3ðlHÞ4 ≥ 0; ð81Þ

1þ 2αðlHÞ2 þ 312λ3ðlHÞ4 ≥ 0; ð82Þ

These are much stronger than (80). During the slow-roll
phase we can obtain HðNÞ by using (50) and H2 ≈ ψ .
Imposing that the conditions above hold for N ≤ 60, leads
to the constraints on λ3 shown in Table I. These strongly
restrict the range of allowed values of λ3=α2, eliminating in

particular the possibility of large corrections to R2 inflation.
Table I also shows the bounds for other choices of FðH2Þ
with the same cubic term but differing in the asymptotic
behavior for H → ∞. As we see, the constraints arising
from (78) are similar in order of magnitude in all cases, and
roughly imply jλ3j=α2 ≲ 10−4. However, the quantity that
determines whether higher derivative corrections are re-
levant during inflation is N2jλ3j=α2 and this can approach 1
at the beginning of inflation N ∼ 60. Therefore, the
possibility of Oð1Þ corrections is not ruled out.
Finally, we also show in Table I the bounds correspond-

ing to a quartic correction, FðH2Þ ¼ H2 þ λ4l6H8. In this
case, the effect of the corrections is of the order of
N3jλ4j=α3, and we again conclude that this quantity can
be of order Oð1Þ at the beginning of inflation. Of course
one may similarly consider the effect of a combination of
higher-order terms (e.g., cubic and quartic together), in
which case the conditions (78) constrain the couplings λn to
a certain region of the parameter space—see Fig. 6 below.
Finally we note that imposing the constraints (73) and (78)
to hold for N ≤ 60 is the weakest condition in order to keep
things under control in the observationally relevant range.
However, if inflation lasts for more than 60e-folds then one
may want to demand that (73) and (78) hold for higherN, in
which case the constraints on the couplings would be even
stronger.

VII. PERTURBATIONS

With the background analysis, the initial conditions, and
(some of) the theoretical constraints in place, we finally
turn to the phenomenology of the higher-curvature exten-
sions (11) of R2 inflation. In this section we compute the
linear scalar and tensor perturbations in some of the
theories (11), around the inflationary backgrounds dis-
cussed in Section III. We focus on the phenomenologically
relevant cubic and quartic terms given in resp. (2) and (8).
We calculate the corrections to the power spectrum of
tensor and scalar perturbations at leading order in the
parameters λ3 and λ4. This is a reasonable choice since the
theoretical analysis carried out in the previous section as
well as current observational constraints imply that the
hypothetical higher-curvature corrections must be small.

TABLE I. Constraints to the higher-order couplings λ3 and λ4
coming from the unitarity conditions (73) and (78). In each case
we demand that the corresponding condition is satisfied during
inflation for at least N ≤ 60.

FðH2Þ Constraint (73) Constraint (78)

H2 − λ3l4H6 λ3
α2
< 1 −1.5 ≤ 104 λ3

α2
≤ 1.7

H2ð1 − 2λ3l4H4Þ1=2 λ3
α2
< 0.00074 −2.4 ≤ 104 λ3

α2
≤ 1.2

H2ð1þ 2λ3l4H4Þ−1=2 none −0.72 ≤ 104 λ3
α2
≤ 10

H2 þ λ4l6H8 λ4
α3
> − 8

27
−2.1 ≤ 106 λ4

α3
≤ 1.9

9The bound is approximately the same if one only demands
(80) holds for N ≤ 60.
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One remarkable property of the densities (2) and (8) is that
their linearized equations around FLRW backgrounds are
of second order in time derivatives, greatly simplifying the
analysis. In what follows we perform in detail the analysis
of perturbations in the cubic theory, while the computations
for the quartic theory can be found in the Appendix A.

A. Tensor perturbations

Gravitational waves are easier to study since they do not
couple to the scalar field ψ . They can be written in terms of
the following metric perturbation,

ds2 ¼ aðτÞ2ð−dτ2 þ ðδij þ hijÞdxidxjÞ; ð83Þ

where we are using the conformal time τ. Additional gauge
freedom allows us to choose hij to be transverse and
traceless:

hii ¼ 0; ∂ihij ¼ 0: ð84Þ

Working in momentum space and separating hij in its
two polarizations, we can write

hij ¼
Z

d3khðþÞ
k eðþÞ

ij eik⃗·x⃗ þ
Z

d3khð×Þk eð×Þij eik⃗·x⃗; ð85Þ

where for both polarization tensors

eðλÞii ¼ 0; kieðλÞij ¼ 0: ð86Þ

In addition, they are orthogonal and normalized to unity:

ðeðλÞij Þ�eðλ
0Þ

ij ¼ δλλ0 : ð87Þ

Expanding the action quadratically in the perturbation
and integrating by parts several times, we are left with the
following action for each of the two polarizations (we omit
the (þ) and ð×Þ labels as well as the integration over k from
now on),

Sh ¼
1

32πG

Z
dτ

a2

2
½fh02k − ω2h2k�; ð88Þ

where a prime denotes a derivative with respect to the
conformal time, h0k ¼ dhk=dτ, and f and ω2 are the
following functions,

ω2 ¼ k2
�
1þ 2αl2ψ − 3ð38H4 − 70H2ψ þ 33ψ2Þl4λ3 −

9l2λ3
2α

ð−5H2 þ 4ψ þ ð13H6 − 12H4ψÞl4λ3Þ
�

þ 6k4

a2
ðψ −H2Þl4λ3; ð89Þ

f ¼ 1þ 2αl2ψ þ
�
42H4 þ 27ψ2 −

9H2ð1þ 16αψÞ
2α

�
l4λ3 þ

9l6H6λ23
2α

−
6k2

a2
ðH2 − ψÞl4λ3: ð90Þ

Notice that hk does not have a canonically normalized
kinetic term, but we can achieve that by performing the
redefinition

hk ¼
2χk
MPβ

; where β ¼ a
ffiffiffi
f

p
; ð91Þ

and whereMP ¼ ð8πGÞ−1=2 is the reduced Planck mass. In
this case, performing again an integration by parts in (88),
we get the following action for χk:

Sh ¼
Z

dτ
1

2
½χ02k − ω̂2χ2k�; ω̂2 ¼ ω2=f −

β00

β
: ð92Þ

Then, χk satisfies the equation

χ00k þ ω̂2χk ¼ 0: ð93Þ

The last step is to evaluate the quantity ω̂2 on the slow roll
phase. We will perform an expansion in the slow roll
parameter so that we will only keep the leading terms in ϵ.
Likewise, we will work perturbatively in λ3, which means
that we perform an expansion in the parameter

ζ ¼ λ3
α2ϵ2

; ð94Þ

and we stay at linear order in ζ. The computation of ω2=f −
β00
β presents an added challenge in the fact that the terms

linear in ϵ terms vanish—as is known to happen for R2

inflation—so that we need to go to second order in the slow
roll expansion. This can be done by introducing additional
slow roll parameters that capture higher derivatives of H.
There are many ways of doing this, but we have checked
that they yield the same result. For instance, we may define
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ϵn ¼ ð−1Þn HðnÞ

Hnþ1
; ð95Þ

where the derivatives are taken with respect to the cosmic
time t. Then we can achieve higher-order slow roll
approximations by assuming that ϵn ≈ 0 for some n. In
particular, the first-order approximation can be obtained
from ϵ2 ¼ 0. The second-order approximation can be
obtained from ϵ3 ¼ 0, which yields the equation

6þ 4ϵ − 3αϵð6þ 5ϵÞl2H2 − 6ζα2ϵ2ð1þ 2ϵÞl4H4 ¼ 0:

ð96Þ

From here we get

l2H2 ¼ 1 − ζ=9
3αϵ

−
9þ 5ζ

162α
þOðϵ; ζ2Þ: ð97Þ

On the other hand, we also need to approximate the value of
aH at order ϵ2. Now aH satisfies the following equation

ðaHÞ0 ¼ ðaHÞ2ð1 − ϵÞ: ð98Þ

Assume further that this equation has the following solution
when ϵ ≪ 1,

1

aH
¼ −τð1 − ϵþ cϵ2Þ; ð99Þ

for some constant c. Taking into account that ϵ0 ∼Oðϵ2Þ,
the equation above then implies that

cϵ2 þ ϵ0

aH
¼ Oðϵ3Þ: ð100Þ

Thus, this constant must be given by

c ¼ −lim
ϵ→0

ϵ0

ϵ2aH
: ð101Þ

Using (29) we can compute the derivative of ϵ and we get

c ¼ −4þ lim
ϵ→0

2F0ðH2Þ
3αl2H2ϵ

: ð102Þ

Finally, taking into account (97) we obtain

c ¼ −2 −
4ζ

9
: ð103Þ

Thus, we have derived aH and H at second order in ϵ and
at first order in ζ. We can now insert these expressions in
(93) and we obtain the following result after expanding
once again:

χ00k þ
�
k̃2 −

1

τ2

�
ν2 −

1

4

��
χk ¼ 0; ð104Þ

where

k̃2 ¼ k2
�
1þ 3ζϵ2

2

�
; ν2 ¼ 9

4
þ 3ð3þ ζÞϵ2: ð105Þ

Equation (104) is solved in terms of the Hankel functions

Hð1;2Þ
ν ðxÞ as follows,

χk ¼
ffiffiffiffiffiffi
−τ

p ½c1Hð1Þ
ν ð−k̃τÞ þ c2H

ð2Þ
ν ð−k̃τÞ�: ð106Þ

Now the integration constants must be chosen so that χk
becomes a canonically normalized positive-frequency
plane wave on sub-Hubble scales k ≫ aH ð−kτ ≫ 1Þ:

χk ≈
e−ik̃τffiffiffiffiffi
2k̃

p when k ≫ aH: ð107Þ

According to this formula, the gravitational waves at large

momentum kwould have a frequency ω2 ¼ k2ð1þ 3ζϵ2

2
Þ, so

one would need to take λ3 < 0 in order to avoid super-
luminal propagation. However, one has to be cautious when
taking the limit k → ∞. In fact, the Eq. (104) does not
capture the limit of large momentum correctly. As we can
see in Eqs. (89) and (90) there are terms which are
proportional to λ3 that contain higher powers of k. As it
turns out, these terms do not appear in (104) because they
are subleading in the expansion in ζ and ϵ. However, they
will become relevant if k is large enough. Indeed in order to
neglect those terms we must have

k2

ðaHÞ2 ζϵ
2 ≪ 1: ð108Þ

Note that even if ζ ∼ 1 it is still possible to satisfy both
k ≫ aH and the constraint above. Nevertheless, in the
limit k → ∞ those terms become dominant and have to be
taken in account. We may compute then the velocity of the
wave as

v2 ¼ lim
k→∞

ω̂2

k2
; ð109Þ

where ω̂2 was defined in (92). If we perform this limit
without any approximation we find the result v ¼ 1, so that
gravitational waves move at the speed of light, contrarily as
we found before. This would also imply that, at least in this
setup, no causality violations are found. This is quite
similar to the results in [64,65] in the case of AdS.
Nevertheless, it would be interesting to explore if causality
bounds can be obtained by analyzing perturbations on less
symmetric asymptotically dS solutions.
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Now, let us continue with the discussion of the solution
of the Eq. (104). In the range ðaHÞ=ð ffiffiffi

ζ
p

ϵÞ ≫ k ≫ aH the
solution (106) tends to the plane wave (107) if the

integration constants are chosen as c1 ¼
ffiffi
π

p
2
eiðνþ1=2Þπ=2,

c2 ¼ 0. This leads to

χk ¼
ffiffiffiffiffiffi
−τ

p ffiffiffi
π

p
2

eiðνþ1=2Þπ=2Hð1Þ
ν ð−k̃τÞ: ð110Þ

On the other hand, on super-Hubble scales k ≪ aH the
wave freezes and we have

χk ≈ eiðν−1=2Þπ=22ν−3=2
ΓðνÞ

Γð3=2Þ
ð−k̃τÞ1=2−νffiffiffiffiffi

2k̃
p : ð111Þ

Now, using (91) we recover the metric perturbation hk in
the super-Hubble regime. Taking into account that
ν ¼ 3=2þOðϵ2Þ, we have

jhkj ≈
2

MPa
ffiffiffiffiffiffiffiffi
2fk

p
�

k
aH

�
1=2−ν

when k ≪ aH; ð112Þ

where we are neglecting the Oðϵ2Þ terms in the amplitude
of hk, but not in the exponent of k, 1=2 − ν. It is interesting
to note at this point that the function f appearing in the
denominator of this expression can be shown to become
negative during inflation if the bound (73) is not satisfied.
This would lead to a catastrophic breakdown of the
linearized perturbations, which shows the importance
of (73).
For the power spectrum, given by

PTðkÞ ¼
k3

2π2
ðjhðþÞ

k j2 þ jhð×Þk j2Þ; ð113Þ

we find that

PTðkÞ ¼ A2
T

�
k
aH

�
nT
; ð114Þ

where the amplitude AT and spectral index nT of tensor
perturbations read

A2
T ¼ 8

M2
Pf

�
H
2π

�
2

≈
12ϵð1þ ζ=9Þ

M2
P

�
H
2π

�
2

; ð115Þ

nT ¼ 3 − 2ν ≈ −2ð3þ ζÞϵ2: ð116Þ

Finally, taking into account the relation (29) and the
evolution of ψ as a function of the number of e-folds
given by (50), we obtain, at linear order in λ3,

ϵ ≈
1

2N
−

4λ3
27α2

N: ð117Þ

Thus, we obtain our final answer for the spectral index
expressed in terms of the number of e-folds before the end
of inflation,

nT ¼ −
3

2N2
−
10λ3
9α2

: ð118Þ

Notice that for λ3 ¼ 0 we recover the known result for R2

inflation.
The approach presented here for the cubic action (2) can

be straightforwardly extended to include the quartic cor-
rections from (8). We simply state the final result and give
more details in Appendix A 1

nT ¼ −
3

2N2
−
10λ3
9α2

þ 2λ4N
α3

: ð119Þ

Let us note that the density RB
ð4Þ from (8) in principle

contributes to the tensor perturbations but only at higher
order in the slow-roll expansion.

B. Scalar perturbations

We now turn to the more involved case of scalar
perturbations. We assume that the inflaton ψ is perturbed
so that

ψ → ψ þ δψ ; ð120Þ

while scalar metric perturbations can always be written in a
gauge such that they take the following form

ds2 ¼ aðτÞ2½−dτ2ð1þ 2ΦÞ þ ð1 − 2ΨÞδijdxidxj�: ð121Þ

Our goal shall be to compute the power spectrum of the
comoving curvature perturbation, given by

R ¼ Ψþ aH
δψ

ψ 0 : ð122Þ

It is interesting to note that this quantity is not only gauge
invariant, but also frame invariant under redefinitions of gμν
and ψ of the form g̃μν ¼ fðψÞgμν, ψ̃ ¼ gðψÞ. Now we
decompose the perturbations in Fourier modes,

Ψ ¼
Z

d3kΨkeik⃗·x⃗; ð123Þ

Φ ¼
Z

d3kΦkeik⃗·x⃗; ð124Þ

δψ ¼
Z

d3kδψkeik⃗·x⃗: ð125Þ

and we evaluate the Einstein equations Eμν given by (12)
and the equation of the scalar (13). For each mode k, we

NOVEL HIGHER-CURVATURE VARIATIONS OF R2 … PHYS. REV. D 103, 103531 (2021)

103531-17



find that the linearized Einstein’s equations have the
following structure

Eττ; Eτi ¼ kiA; Eij ¼ Bkikj þ Cgij: ð126Þ
The explicit form of the four components Eττ, A, B and C is
shown in the appendix. These, together with Eq. (13), would
make a total of five equations of motion; however, the
Bianchi identity of the Einstein’s equations imply two
relations among these equations, so that only three of them
are independent. In addition, instead of working with the
Eq. (13), we find it more convenient to consider the equation

6αl2∇2ψ − 12ψ þ λ3l2Eð3Þμ
μ ¼ 0; ð127Þ

which is obtained by combining (13) with the trace of
Einstein’s equations (12).
In order to solve these equations, it proves useful to

perform first the following change of variables,

Ψk ¼ Ψ̃k þ
αl2δψk

1þ 2αl2ψ
; ð128Þ

Φk ¼ Φ̃k −
αl2δψk

1þ 2αl2ψ
: ð129Þ

The reason for this redefinition is that, in the case of λ3 ¼ 0,
Ψ̃k and Φ̃k correspond to the metric perturbation in the
Einstein frame. Now, when λ3 ¼ 0 one can check that the
equation B ¼ 0 implies that Φ̃k ¼ Ψ̃k, so that both vari-
ables are equal. It turns out that this property is broken
when λ3 ≠ 0. However, since we treat λ3 as a small
coupling we can write

Φ̃k ¼ Ψ̃k þ λ3l4φk: ð130Þ
The form of the equations of motion is very cumbersome,
but since we are only interested in the slow roll regime and

small couplings, we can expand them in ϵ and in
ζ ¼ λ3=ðα2ϵ2Þ, using the relations (97) and (99). Doing
so, the equations A ¼ 0 andB ¼ 0 become, at leading order
in ϵ and first order in ζ,

0¼ 4ð9− ζÞ
27ϵ

ðaHΨ̃k þ Ψ̃0
kÞ þ αl2ϵðaHð6þ ζÞδψk − ζδψ 0

kÞ

þ 4

3
aHα2l4ϵζφk ð131Þ

0 ¼ ϵζ

�
2

3
α2l4φk þ αl2δψk þ

1

6

�
−2þ 3k2

ðaHÞ2
�
Ψ̃k þ

Ψ̃0
k

aH

þ Ψ̃00
k

2ðaHÞ2
�
: ð132Þ

In each case we are only keeping the leading term of every
field. For instance, in the first equation there are subleading
terms of the form ∼aHΨ̃k but these are negligible in
comparison with the leading term which is of order
∼aHΨ̃k=ϵ. Now, looking at the powers of ϵ in (131) it
is clear that Ψ̃k ∼Oðϵ2δψk; ϵ2φkÞ. Then, we can neglect the
terms with Ψk in (132) and we get

φk ≈ −
3

2αl2
δψk: ð133Þ

On the other hand, we are interested in the evolution of
perturbations for super-Hubble scales, k ≪ aH, and in this
regime we expect that the perturbations freeze so that
jΨ0

kj ≪ aHjΨkj, jδΨ0
kj ≪ aHjδψkj—a expectation that is

confirmed later. Thus, neglecting the derivatives in (131)
and using the result (133) we obtain

Ψ̃k ¼ −
3

4
ð6 − ζ=3Þαl2ϵ2δψk: ð134Þ

Now, consider Eq. (127), which at next-to-leading order in
ϵ reads

0 ¼ δψ 00
k þ 2aHð1þ ϵÞδψ 0

k þ
�
k2 −

4

3
a2H2ϵζ

�
δψk þ

ð3 − ϵÞζΨ̃00
k

9αl2
þ
�
4aHð6 − ϵÞ þ aHð84 − 248ϵÞζ

9

�
Ψ̃0

k

9αl2

þ
�
a2H2ð4 − 2ϵÞ þ ζ

�
a2H2ð24 − 98ϵÞ

27
þ k4ϵ
9a2H2

−
k2ð−3þ 13ϵÞ

27

��
Ψ̃k

αl2
þ 4a2H2αl2ϵ2ζφk þ

2

3
aHαl2ϵ2ζφ0

k:

ð135Þ

Inserting (134) and (133) in (135) we realize that the terms
with Ψ̃k and φk are of order Oðϵ2Þ, and hence, negligible at
the order we are working. Thus, we obtain the master
equation for δψk:

δψ 00
k þ 2aHð1þ ϵÞδψ 0

k þ
�
k2 −

4

3
a2H2ϵζ

�
δψk ¼ 0:

ð136Þ

Finally, we redefine δψk in terms of a new variable,

δψk ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2αl2ψ

q
δχk
a

; ð137Þ

where A0 is a normalization constant that will be
determined later. Then, we derive the following equation
for χk:
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δχ00k þ
�
k2 −

1

τ2

�
ν2s −

1

4

��
δχk ¼ 0; ð138Þ

where

ν2s ¼
9

4
þ 6ϵ

�
1þ 2ζ

9

�
: ð139Þ

Following the same discussion as in the previous
section, we conclude that the properly normalized solution
is given by

δχk ¼
ffiffiffiffiffiffi
−τ

p ffiffiffi
π

p
2

eiðνsþ1=2Þπ=2Hð1Þ
νs ð−kτÞ; ð140Þ

so that on super-Hubble scales we have

jδχkj ≈
ð−kτÞ1=2−νsffiffiffiffiffi

2k
p : ð141Þ

To determine the normalization constant we have to study
the solution on sub-Hubble scales and make sure that δχk
has a canonically normalized kinetic term. However, due to
the gauge freedom there is no well-defined Lagrangian for
this variable. In particular, the redefinitions of the other
variables Ψk, Φk will affect the kinetic term of δχk. Instead,
one should treat the three quantities Ψk, Φk and δψk as a
single degree of freedom. To verify the normalization of the
solution on sub-Hubble scales, we propose the following
procedure. First we compute the reduced action for the
fields Ψk, Φk and δψk and we evaluate it on the solution for
−kτ ≫ 1, which corresponds to a plane wave ∼e−iωτ. Next,
we identify the ω2 term in the action, after which we can
already set ω ¼ k. Then, by comparing the result with that
of a canonically normalized scalar field,10

1

2
ϕ02 ¼ Ke−2ikτ; K ¼ −

k
4

when ϕ ¼ e−ikτffiffiffiffiffi
2k

p ; ð142Þ

we may be able to identify the constant A0.
First of all we need to determine the solution on sub-

Hubble scales k ≫ aH. In that case, δχk reads (140)

δχk ¼
e−ikτffiffiffiffiffi
2k

p : ð143Þ

On the other hand, the values of Ψ̃k and φk can be obtained
from the rest of the equations, and they read, to lowest order
in ϵ and first order in ζ,

Ψ̃k ¼ −
ffiffiffiffiffiffiffiffi
αl2

p
A0ϵ

�
6i −

ζk
aH

�
e−ikτ

4k3=2
; ð144Þ

φk ¼ −
A0

2aHðαl2Þ3=2ϵ ffiffiffi
k

p e−ikτ: ð145Þ

Note that the amplitude of these fields is determined by the
one of δψk (137), indicating that these are not independent
degrees of freedom. Inserting this in the reduced action, we
identify the following kinetic term K (again, at lowest order
in ϵ):

K ¼ −
3A2

0α
2l4k

16πG
: ð146Þ

Thus, demanding that this term is canonically normalized,
K ¼ −k=4, yields the normalization constant,

A0 ¼
1ffiffiffi

6
p

αl2MP

: ð147Þ

which has no corrections with respect to the R2 case.
We are now in position to compute the comoving

curvature perturbation (122) and its power spectrum on
super-Hubble scales. First, note that

aH
δψk

ψ 0 ≈ −
δψk

2H2ϵ
≈ −

3αl2

2
ð1þ ζ=9Þδψk: ð148Þ

Thus, on account of (134) we have jΨkj ≪ jaH δψk
ψ 0 j, and

therefore

jRkj ≈
3α

2
ð1þ ζ=9Þjδψkj: ð149Þ

Then, using Eqs. (137), (141), and (147) we get

jRkj ≈
ffiffiffi
3

p
Hð1þ ζ=9Þ
4
ffiffiffiffiffi
k3

p
MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2αl2ψ

q �
k
aH

�
3=2−νs

: ð150Þ

Therefore, the power spectrum reads

PSðkÞ ¼
k3

2π2
jRkj2 ¼ A2

S

�
k
aH

�
ns−1

; ð151Þ

where the amplitude AS and spectral index ns read

A2
S ¼

ð1þ ζ=9Þ
4ϵM2

P

�
H
2π

�
2

; ð152Þ

ns − 1 ¼ −4ϵ
�
1þ 2ζ

9

�
: ð153Þ

Expressed as a function of the number of e-folds we have

ns ¼ 1 −
2

N
−
32Nλ3
27α2

: ð154Þ10The usage of K here is unrelated to that in Sec. II.
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Again, this reproduces the result for Starobinsky inflation
when λ3 ¼ 0. Finally, the tensor-to-scalar ratio reads

r ¼ A2
T

A2
S
¼ 48ϵ2 ≈

12

N2
−
64λ3
9α2

: ð155Þ

We have again repeated this entire calculation for the
quartic density (8) but we refer to Appendix A 2 for details.
The spectral index and tensor-to-scalar ratio including this
quartic density are given by

ns ≈ 1 −
2

N
−
32λ3N
27α2

þ 4λ4N2

3α3
; ð156Þ

r ≈
12

N2
−
64λ3
9α2

þ 16λ4N
3α3

: ð157Þ

Thus we see that the so-called “consistency relation” gets
modified,

r
nT

¼ −8þ 32N2λ3
3α2

−
128N3λ4

9α3
: ð158Þ

This shows that our model is a non-trivial modification of
GR. Note also that, even though the quartic theory (8)

contains three different parameters, only one of them
contributes to the observables we have considered.

C. Observational predictions

We can now compare the predictions of our theories (10)
with the current constraints on inflationary theory from
observations of CMB fluctuations. Although our formu-
las (156) and (157) contain free parameters, we recall that
these are bounded by the unitarity constraints we derived in
Sec. VI. In Fig. 5 we show the region in the ðns; rÞ plane
that is allowed by these theoretical constraints in the range
50 < N < 60. In these plots we consider separately the
cases in which we have either a cubic correction or a quartic
one. As we can see, in both cases the theoretical bounds
from holography on the range of values of the scalar tilt ns
coincide almost exactly with the observational constraints.
In the range in which the constraints are satisfied the
corrections are smaller than 1, and hence the formulas (156)
and (157) should apply.11 We see that the higher-curvature
corrections do measurably change the combination ðns; rÞ,
while keeping their overall order of magnitude unchanged.

0.94 0.95 0.96 0.97 0.98
0.000

0.002

0.004

0.006

0.008

0.010

0.94 0.95 0.96 0.97 0.98
0.000

0.002

0.004

0.006

0.008

0.010

FIG. 5. Predictions for the scalar spectral tilt ns and tensor-to-scalar ratio r in the cubic theory (2) (left) and quartic theory (8) (right),
given respectively in Eq. (157) and Eq. (156), for between 50 and 60 observable e-folds. Indicated are the R2 (λ3 ¼ 0, λ4 ¼ 0) results
(black, dotted) and the regions allowed by holographic bound (78) (green for λ4 ¼ 0 and red for λ3 ¼ 0) as summarized in Table I. As a
reference, we also show the marginalized joint 68% and 95% confidence levels for these parameters as obtained by Planck 2018 (TT,
TE, EEþ lowEþ lensing) for the scale k ¼ 0.002 Mpc−1 [8]. This is based on observations by Planck [66], an ESA science mission
with instruments and contributions directly funded by ESA Member States, NASA, and Canada.

11Recall that these constraints were found by imposing
unitarity for N ≤ 60. If inflation lasts longer than 60 e-folds then
the constraints would be even stronger. This is relevant in
particular in considerations of eternal inflation.
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The models we have considered, therefore, smear out as it
were the “dot” (or the line, if you wish) corresponding to R2

inflation in the ðns; rÞ-plane. Higher-curvature corrections
enrich the phenomenology of R2 inflation.
In theories featuring both cubic and quartic corrections

the holographic constraints still allow for a narrow but
infinite band in the ðλ3; λ4Þ plane—we show this partially in
Fig. 6. One can compare this region with the bound on the
parameters implied by the observations. Figure 6 shows the
corresponding contour assuming N ¼ 60, and astonish-
ingly we observe that it almost coincides with the holo-
graphic constraints. However, if λ3 or λ4 are too large, then
the perturbative results (156) and (157) cannot be applied,
and for that reason in Fig. 6 we restrict to values of λ3 and
λ4 such that jλ3jN2=α2 < 1, jλ4jN3=α3 < 1. It would be
interesting to extend the results for ns and r to large values
of the couplings, in order to complete this comparison
between the holographic constraints and experimental
bounds.
The next generation of CMB experiments will begin to

probe the phenomenology of R2-inflation and its higher
derivative corrections. In particular, future satellite mis-
sions dedicated to the observation of the B-mode polari-
zation are set to test the models we have presented [67]. The
(JAXA) LiteBIRD mission will, for instance, constrain r <
0.002 at 95% confidence level, or otherwise determine r up
to an error smaller than 0.001 [68]. Other proposals such as
CORE [69] or PIXIE [70] could improve upon this,

depending on the configuration. Moreover, in time this
region of parameter space will be further explored by
complementary ground-based experiments including
CLASS [71], POLARBEAR [72], the South Pole
Telescope [73] and the next generation BICEP array
[74], Simons Observatory [75] and CMB-S4 [76]. To
match these exciting prospects, it would be desirable to
explore the phenomenology of this class of models in more
detail, e.g., by including reheating and non-Gaussianity.

VIII. DISCUSSION

We have extended Starobinsky inflation with a particular
class of geometric higher-curvature corrections that feature
in generalized quasitopological gravity theories. We found
that a wide range of models within this class admit an
extended phase of slow roll inflation as an attractor.
Evaluating the semiclassical no-boundary wave function
in these models, we found it predicts the universe to start
out within the slow roll patch. By embedding these theories
in anti–de Sitter space and using AdS=CFT, we have
derived theoretical bounds on the higher-curvature terms.
These constrain the leading cubic and quartic corrections to
be much smaller than the coefficient of the R2 term,
justifying our perturbative treatment of the former.
Within these bounds we have computed the leading
corrections to the primordial perturbation spectrum, includ-
ing the modified consistency relation r ≠ −8nT , and found
these to be within reach of the next generation of CMB
experiments. This opens up the exciting prospect to probe
through future CMB observations geometric corrections to
general relativity.
Our analysis relies heavily on the fact that the higher-

curvature theories we have considered, give rise to
second-order equations for cosmological backgrounds
and perturbations. This renders possible a fully nonpertur-
bative analysis of the background evolution and it means
that the linearized spectrum around FLRW solutions
contains no ghosts or additional modes.
However, the theories (10) do not violate Lovelock’s

theorem. Their equations of motion are in general of higher
order indeed. It is known that the reduction of the order of
the equations in certain highly symmetric backgrounds
usually leads to strong coupling issues. For example, for the
theories we consider it was explicitly shown in [41,42] that
an instability arises in anisotropic cosmological solutions.12

This indicates that models of this kind must be regarded as
effective theories and this has been our point of view in this

FIG. 6. Constraints on parameters λ3=α2, associated to the
cubic density (2), and λ4=α3, associated to the quartic density (8),
based on the holographic bound (78) (green) and the margin-
alized joint 68% (inner grey) and 95% (outer grey) confidence
intervals as obtained by Planck 2018 (TT, TE, EEþ lowEþ
lensing) for the scale k ¼ 0.002 Mpc−1 [8], given 60 observable
e-folds of slow roll inflation.

12We note that Refs. [41,42] only consider the cubic correc-
tion. Reference [42] briefly considers quartic terms but those
differ from those we have studied. We have included, in principle,
an arbitrary number of terms. One should not discard a priori the
possibility that, when the full tower of higher-derivative terms is
considered, the instabilities disappear. A similar mechanism is
known to happen in infinite-derivative gravity [19].
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paper. An EFT interpretation assumes that pathologies of
the kind identified in [41,42] arise from the truncation of
additional massive degrees of freedom and conjectures that
when the full theory is considered, these disappear.
In any case, the most relevant results of this paper have

been obtained perturbatively in the cubic and quartic
couplings. These should be valid regardless one’s point
of view on the nature of the theory. It is worth pointing out
that we have found no obvious problems, neither with the
background evolution nor with the linear perturbations in
our models. This suggests that the additional degrees of
freedom in a UV completion of our theories may not affect
the dynamics even when the couplings become large. At
least, there seems to be no a priori reason they must.
Our results open up numerous avenues for further

explorations of these models, both theoretically and phe-
nomenologically. In light of the promising future observa-
tional prospects, it would be interesting to refine our
predictions for observables associated with the CMB by
following the evolution of the perturbations through reheat-
ing and onwards. Our theories can be distinguished from
most single-field models in the fact that the consistency
relation is broken, r ≠ −8nT , but it would be interesting to
further characterize particular signatures of our geometric
corrections by studying, e.g., non-Gaussianities or the
running of the spectral indices with the momentum. A
nice generalization of our models would entail the inclusion
of Starobinsky’s original trace anomaly terms in this
analysis. Finally, especially in the context of discussions
of initial conditions, it would be interesting to study the
effect of the higher-curvature corrections on the regime of
eternal inflation in these models. It may well be that this
further constrains the range of values of the parameters.

From a more theoretical perspective, it would be inter-
esting to better understand the generality of our results in
the context of an EFT expansion around GR. In the absence
of matter, the cubic term (2) is the only nontrivial correction
to GR at cubic order, but matter either in the form of an R2

term or as a scalar ψ may change this. Nevertheless, due to
the high symmetry of cosmological solutions, there are
possibly not many other independent corrections at the six-
derivative level. Finally it would be interesting to put the
derivation of the holographic bounds on the parameters on
firm footing, for instance by exploiting formulations of
dS=CFT in terms of Euclidean AdS=CFT [56] or by
calculating these directly in de Sitter space.
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APPENDIX A: DETAILS FOR PERTURBATION
THEORY: CUBIC AND QUARTIC

LAGRANGIANS

1. Equations for tensor perturbations

In this appendix, we extend the quadratic action for
tensor perturbations (88) to include corrections from the
quartic term (8)

Sh ¼
1

32πG

Z
dτ

a2

2
½f̃h02k − ω̃2h2k�; ðA1Þ

with

ω̃2 ¼ ω2 þ k2
�
p1λ4ðlHÞ6 þ p2

λ3λ4ðlHÞ8
α

þ p3

λ24ðlHÞ10
α

− 6
λ23λ4ðlHÞ10

α2
þ 12

λ3λ
2
4ðlHÞ12
α2

− 6
λ34ðlHÞ14

α2

�

þ 12λ4k4

a2
ðH2 − ψÞψ ; ðA2Þ

p1 ¼ 394 − 972ϵþ 726ϵ2 − 120ϵ3 − 24ϵ4 þ 1

αðlHÞ2 ð87 − 168ϵþ 72ϵ2Þ − 6

α2ðlHÞ4 ; ðA3Þ

p2 ¼ −
645

2
þ 504ϵ − 168ϵ2 þ 12

αðlHÞ2 ; ðA4Þ

p3 ¼ 339 − 564ϵþ 216ϵ2 −
12

αðlHÞ2 ; ðA5Þ

and
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f̃ ¼ f þ q1ðlHÞ6λ4 −
3λ3λ4l8H6

2α
ðH2 þ 8ψÞ − 3l10H8λ24

α
ðH2 − 4ψÞ þ k2

a2
λ4ð12l4H2ðH2 − ψÞ þ 24l4ðH2 − ψÞ2νÞ;

ðA6Þ

q1 ¼ −38þ 168ϵ − 174ϵ2 þ 48ϵ3 þ 3

αðlHÞ2 ð7 − 4ϵÞ: ðA7Þ

Here, ω and f are respectively given in (89), (90) and ϵ is still the slow roll parameter

ϵ ¼ 2

�
1 −

ψ

H2

�
ðA8Þ

Using these quantities, the analysis is identical to the one presented in the main text. In particular, we first find the
appropriate slow roll expressions, extending (97) to

l2H2 ¼ 1 − ζ=9þ ξ=27
3αϵ

−
9þ 5ζ − 8ξ=3

162α
þOðϵ; ζ2; ξ2; ξζÞ; ðA9Þ

with

ξ ¼ λ4
α3ϵ3

; ðA10Þ

and keep (99) but now with

c ¼ −2 −
4ζ

9
þ 2

9
ξ: ðA11Þ

This leads to (104) with

k̃2 ¼ k2
�
1þ ϵ2

�
3ζ

2
− ξ

��
ν2 ¼ 9

4
þ ϵ2ð9þ 3ζ − 2ξÞ:

ðA12Þ

Therefore, using (112) and (113) and (114)

A2
T ≈

12ϵð1þ ζ=9 − ξ=27Þ
M2

P

�
H
2π

�
2

; ðA13Þ

nT ≈ −2
�
3þ ζ −

2ξ

3

�
ϵ2: ðA14Þ

Taking into account

ϵ ≈
1

2N
−

4λ3
27α2

N þ λ4
9α3

N2: ðA15Þ

This finally yields

nT ¼ −
3

2N2
−
10λ3
9α2

þ 2λ4N
α3

: ðA16Þ

2. Equations for scalar perturbations

The linearized Einstein equations that govern the scalar
perturbations were summarized in Sec. VII B as

Eττ; Eτi ¼ kiA; Eij ¼ Bkikj þ Cgij: ðA17Þ

The explicit expressions for Eττ, A, B, C, including only
the additional cubic term (2) in the action (11), are as follows

Eττ ¼ 2αðk2 þ 3a2ðH2 − 2ψÞÞδψk þ ð−12a2αψ2 þ 12a2H6λ3ÞΦk þ Ψk

�
−2k2 − 4k2αψ þ λ3

�
6H4k2 þ 3k4H0

a3

��
þ 6aHαδψ 0

k þ ð−6aH þ 18aH5λ3 − 6αð2aHψ þ ψ 0ÞÞΨ0
k; ðA18Þ

A ¼ 2aHαδψk þΦk

�
2aH þ λ3

�
−6aH5 −

3Hk2H0

a2

�
þ 2αð2aHψ þ ψ 0Þ

�
− 2αδψ 0

k

þ
�
2þ 4αψ þ λ3

�
−6H4 −

3k2H0

a3

��
Ψ0

k −
3k2λ3ΨkH00

a3
; ðA19Þ
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B ¼ 2αδψk −
9Hλ3H0Φ0

k

2a2
þ 9λ3Ψ0

kðaHH0 − 2H00Þ
2a3

þΦk

�
1þ 2αψ −

3λ3ð2a3H4 þ k2H0 þ 3aððH0Þ2 þHH00ÞÞ
2a3

�

−
9λ3H0Ψ00

k

2a3
þ Ψk

�
−1 − 2αψ þ 3λ3ð2a3H4 þ 8a2H2H0 − 2k2H0 þ 3aHH00 − 3Hð3ÞÞ

2a3

�
; ðA20Þ

C ¼ −2αδψkðk2 þ 3a2ðH2 − 2ψÞ þ 2aH0Þ − 2aHαδψ 0
k þ

�
2aH þ λ3

�
−6aH5 þ 3Hk2H0

2a2

�
þ 2αð2aHψ þ ψ 0Þ

�
Φ0

k

þ Ψ0
k

�
4aH þ 4αð2aHψ þ ψ 0Þ þ λ3

�
−12aH5 − 24H3H0 −

3Hk2H0

2a2
þ 3k2H00

a3

��

þΦkð6a2H2 − k2 þ 4aH0 þ 3

2
λ3

�
−12a2H6 þ 2H4ðk2 − 12aH0Þ þ k2H0ðk2 þ aH0Þ

a3
þHk2H00

a2

�

þ αð−2ψð−6a2H2 þ k2 − 4aH0Þ þ 4ðaHψ 0 þ ψ 00ÞÞÞ − 2αδψ 00
k þ

�
2þ 4αψ þ λ3

�
−6H4 þ 3k2H0

2a3

��
Ψ00

k

þ Ψk

�
6a2H2 þ k2 þ 4aH0 þ 2αð−6a2ψ2 þ ψð6a2H2 þ k2 þ 4aH0Þ þ 2ðaHψ 0 þ ψ 00ÞÞ

−
3λ3
2a3

ð4a5H6 þ 2a3H4k2 þ 8a4H4H0 þ 8a2H2k2H0 þ aHk2H00 − k2ð2k2H0 þHð3ÞÞÞ
�
: ðA21Þ

On the other hand, Eq. (127) reads

0 ¼ 3k2λ3Ψk

a3
ð−4a3H4 − 8a2H2H0 þ k2H0Þ þ δψkð−12a2 − 6αðk2 þ 4a2ðH2 − ψÞ þ 2aH0ÞÞ − 12aHαδψ 0

k

þ ð−18aH5λ3 þ 6αψ 0ÞΦ0
k þ ð−18λ3ð3aH5 þ 4H3H0Þ þ 18αψ 0ÞΨ0

k

þΦk

�
λ3

�
−72a2H6 þ 3k4H0

a3
þ 6H4ðk2 − 18aH0Þ

�
þ 12αð2aHψ 0 þ ψ 00Þ

�
− 6αδψ 00

k − 18H4λ3Ψ00
k: ðA22Þ

When, in addition, we include (8), the structure is unchanged but there is an additional correction

Eττ þ λ4E
ð4Þ
ττ ; Eτi ¼ kiðAþ λ4Að4ÞÞ; Eij ¼ ðBþ λ4Bð4ÞÞkikj þ ðCþ λ4Cð4ÞÞgij: ðA23Þ

with

Eð4Þ
ττ ¼ −18a2H8Φk − 2k2

Ψk

a4
ð4a4H6 þ k2ð3aH2H0 þH02ÞÞ − 24aH7Ψ0

k; ðA24Þ

Að4Þ ¼ Φk

a3
ð8a4H7 þ k2Hð6aH2H0 þ 2H02ÞÞ þΨ0

k

�
8H6 þ k2

a4
ð6aH2H0 þ 2H02Þ

�

þ 2k2
Ψk

a4
ð2H0H00 þ aHð2H02 þ 3HH00ÞÞ; ðA25Þ

Bð4Þ ¼ 3
Φ0

k

a3
HH0ð3aH2 þH0Þ þ 3

Ψ0
k

a4
ð−3a2H3H0 þ 4H0H00 þ 6aHðH02 þHH00ÞÞ

þΦk

a4
ð4H6a4 þ 3aH0ðH02 þ 2HH00Þ þ 3a2H2ð8H02 þ 3HH00Þ þ k2ðH02 þ 3aH0H2ÞÞ

þ 3
Ψ00

k

a4
H0ð3aH2 þH0Þ þΨk

a4
ðk2ð6aH2 −H0ÞH0 − 4a4H6 − 24a3H4H0 − 3a2H2ð2H02 þ 3HH00Þ

þ 3að2H03 þ 6HH0H00 þ 3H2H000Þ þ 6ðH002 þH0H000ÞÞ; ðA26Þ
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Cð4Þ ¼ Φ0
k

a3
ð8a4H7 − k2HH0ð3aH2 þH0ÞÞ þ Ψ00

k

�
8H6 −

k2

a4
H0ð3aH2 þH0Þ

�

þ Ψ0
k

�
16aH7 þ 48H5H0 þ k2

a4
ð3a2H3H0 − 4H0H00 − 6aHðH02 þHH00ÞÞ

�

þΦk

�
8að3aH8 þ 8H6H0Þ − k2

a4
ð4a3H6 þH03 þ 2HH0H00 þ aH2ð8H02 þ 3H00ÞÞ − k4

a4
H0ð3aH2 þH0Þ

�

þ Ψk

�
k2

a4
ðha4H6 þ 24a3H4H0 þ a2H2ð2H02 þ 3HH00Þ − að2H03 þ 6HH0H00 þ 3H2H000Þ − 2ðH002 þH0H000ÞÞ

�

þ Ψk

�
2að3aH8 þ 8H6H0Þ þ k4

a4
H0ð−6aH2 þH0Þ

�
: ðA27Þ

Similarly, Eq. (127) becomes

6α∇2ψ − 12ψ þ λ3Eð3Þμ
μ þ λ4Eð4Þμ

μ ¼ 0; ðA28Þ

or explicitly

0 ¼ 3k2λ3Ψk

a3
ð−4a3H4 − 8a2H2H0 þ k2H0Þ þ δψkð−12a2 − 6αðk2 þ 4a2ðH2 − ψÞ þ 2aH0ÞÞ − 12aHαδψ 0

k

þ ð−18aH5λ3 þ 6αψ 0ÞΦ0
k þ ð−18λ3ð3aH5 þ 4H3H0Þ þ 18αψ 0ÞΨ0

k

þΦk

�
λ3

�
−72a2H6 þ 3k4H0

a3
þ 6H4ðk2 − 18aH0Þ

�
þ 12αð2aHψ 0 þ ψ 00Þ

�
− 6αδψ 00

k − 18H4λ3Ψ00
k

þ 2k2λ4Ψk

a4
ð8a4H6 þ 24a3H4H0 þ k2ð−3aH2H0 þ 2H02ÞÞ þ 2λ4Ψ0

k

a4
ð36a5H7 þ 72a4H5H0Þ þ 24λ4H6Ψ00

k

þ λ4Φk

a4
ð96a6H8 þ 192a5H6H0 − 8k2a4H6 þ 2k4ð−3aH2H0 −H02ÞÞ þ 24λ4aH7Φ0

k: ðA29Þ

The subsequent analysis of the main text can again be done mutatis mutandis. For reference, the corrected
equations (131), (132) and (135) are respectively as follows

0 ¼ 4ð9 − ζ þ ξ=3Þ
27ϵ

ðaHΨ̃k þ Ψ̃0
kÞ þ αϵðaHð6þ ζÞδψk þ ð−ζ þ 4ξ=9Þδψ 0

kÞ þ
4

3
aHα2ϵζφk ðA30Þ

0 ¼ ϵ

�
2

3
α2ζφk þ α

�
ζ −

4ξ

9

�
δψk þ

ζ − 2ξ=3
6

�
−2þ 3k2

ðaHÞ2
�
Ψ̃k þ ðζ − 2ξ=3Þ Ψ̃

0
k

aH
þ ðζ − 2ξ=3Þ Ψ̃00

k

2ðaHÞ2
�
; ðA31Þ

0 ¼ δψ 00
k þ 2aHð1þ ϵÞδψ 0

k þ
�
k2 −

4

3
a2H2ϵζ þ 2

3
a2H2ϵξ

�
δψk þ

Ψ̃00
k

9α
ðð3 − ϵÞζ − ð4=3 − 2=3ϵÞξÞ

þ
�
4aHð6 − ϵÞ þ aHð84 − 248ϵÞζ

9
−
aHð40 − 428=3ϵÞξ

9

�
Ψ̃0

k

9α
þ ða2H2ð4 − 2ϵÞÞ Ψ̃k

α

þ ζ

�
a2H2ð24 − 98ϵÞ

27
þ k4ϵ
9a2H2

−
k2ð−3þ 13ϵÞ

27

�
Ψ̃k

α
− ξ

�
a2H2ð12 − 54ϵÞ

27
þ 2k4ϵ
27a2H2

−
k2ð−4þ 26ϵÞ

81

�
Ψ̃k

α

þ 4a2H2αϵ2ζφk þ
2

3
aHαϵ2ζφ0

k: ðA32Þ

Now, with

φk ≈ −
ð3ζ − 4ξ=3Þ

2αζ
δψk; Ψ̃k ≈ −

3

4
ð6 − ζ=3þ 2ξ=3Þαϵ2δψk; ðA33Þ
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we obtain the master equation

δψ 00
k þ 2aHð1þ ϵÞδψ 0

k

þ
�
k2 −

4

3
a2H2ϵζ þ 2

3
a2H2ϵξ

�
δψk ¼ 0: ðA34Þ

The redefinition (137) now implies (138) with

ν2s ¼
9

4
þ 6ϵ

�
1þ 2

9
ζ −

1

9
ξ

�
: ðA35Þ

and, with A0 not corrected with respect to R2, we find

jRkj ≈
ffiffiffi
3

p
Hð1þ ζ

9
− ξ

27
Þ

4
ffiffiffiffiffi
k3

p
MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2αψ

p �
k
aH

�
3=2−νs

: ðA36Þ

Therefore, the corrected amplitude AS and spectral index
ns are given by

A2
S ¼

1þ ζ=9 − ξ=27
4ϵM2

P

�
H2

2π

�
2

; ðA37Þ

ns ¼ 1 − 4ϵ

�
1þ 2

9
ζ −

1

9
ξ

�
≈ 1 −

2

N
−
32λ3N
27α2

þ 4λ4N2

3α3
:

ðA38Þ

Finally, the tensor-to-scalar ratio as a function of the
number of e-folds reads

r ¼ 48ϵ2 ≈
12

N2
−
64λ3
9α2

þ 16λ4N
3α3

: ðA39Þ
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