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We investigate the cosmological observational test of the extended quintessence model, i.e., a scalar-
tensor gravity model with a scalar field potential serving as dark energy, by using the Planck 2018 cosmic
microwave background (CMB) data, together with the baryon acoustic oscillations (BAO) and redshift-
space distortion (RSD) data. As an example, we consider the model with a Brans-Dicke kinetic term
ωðϕÞ
ϕ ϕ;μϕ

;μ and a quadratic scalar potential VðϕÞ ¼ Aþ Bðϕ − ϕ0Þ þ C
2
ðϕ − ϕ0Þ2, which reduces to general

relativity (GR) in the limit ωðϕÞ → ∞, and the cosmological constant in the limit B ¼ C ¼ 0. In such a
model, the scalar field typically rolls down the potential and oscillates around the minimum of VðϕÞ.
We find that the model parameter estimate for the CMBþ BAOþ RSD data set is given by lg α ¼
−3.6þ0.66

−0.54 ð68%Þ [α is defined in Eq. (3)], corresponding to 3.8 × 105 < ω0 < 9.5 × 107 (68%) and lgC ¼
4.9� 1.4 (68%). However, the GR ΛCDM model can fit the data almost as good as this extended
quintessence model and is favored by the Akaike information criterion. The variation of the gravitational
constant since the epoch of Recombination is constrained to be 0.97 < Grec=G0 < 1.03ð1σÞ. In light of a
recent report that the CMB data favor a closed universe, we consider the case with nonflat geometry in our
fit and find that the mean value of Ωk shifts a little bit from −0.049 to −0.036, and the parameters in our
model are not degenerate with Ωk.

DOI: 10.1103/PhysRevD.103.103527

I. INTRODUCTION

The scalar-tensor theories of gravity are extended rela-
tivistic theories of gravity. They can arise naturally as
effective theories of the higher dimensional theories, for
instance, the Kaluza-Klein theory, on four-dimensional
spacetime [1]. They also provide a natural and simple
framework to model the time variation of the gravitational
constant via the dynamics of a scalar field [2]. In the scalar-
tensor theory, the Ricci scalar couples to a scalar field. In its
simplest version, the Brans-Dicke theory [3], a constant
parameter ω is introduced. In the more general cases, ω can
evolve with the Brans-Dicke field ϕ, and the potential of the
Brans-Dicke field VðϕÞ should be considered. Such a scalar
field may also be regarded as an extended quintessence
model [4,5], i.e., a canonical scalar field which couples to
gravity nonminimally, and can be used to explain the late-
time cosmic acceleration [6].
The action of the extended quintessence model can be

written as

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðQÞR−1

2
Q;μQ;μ−ṼðQÞþLfluid

�
; ð1Þ

where FðQÞ ¼ 1
8πG0

þ ξðQ2 −Q2
0Þ, and Q;μ denotes covar-

iant derivative of Q. Rewriting it in the Brans-Dicke form,
ϕ≡ 8πG0FðQÞ, and the transformed action is

S ¼ 1

16πG0

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

ϕ;μϕ
;μ − VðϕÞ

�
þ SmðΨ; gμνÞ; ð2Þ

where Ψ denotes the matter field. The dimensionless scalar
field ϕ has a present day value ϕ0, which is very close to 1,
and its potential VðϕÞ is tightly constrained by observa-
tions. As ωðϕÞ → ∞, the model reduces to general rela-
tivity (GR). As in the harmonic attractor model [2,7], we
parametrize ωðϕÞ as

2ωðϕÞ þ 3 ¼ 1

α2 − β lnðϕ=ϕ0Þ
; ð3Þ

where α and β are model parameters. Note that at present
day, ϕ → ϕ0, the model reduces to the GR case in the limits
α → 0, β → 0.
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Here, we consider a model with an evolving scalar field
potential VðϕÞ, which is responsible for dark energy. We
assume that the effective potential VðϕÞ can be expanded at
the low orders as

VðϕÞ ¼ Aþ Bðϕ − ϕ0Þ þ
C
2
ðϕ − ϕ0Þ2: ð4Þ

In the limit B → 0, C → 0, the quintessence reduces to a
cosmological constant with A ¼ Λ.
The scalar tensor theory has been tested extensively with

various astronomical observations. Solar system experi-
ments have put strong constraints on Brans-Dicke theory
up to ω> 40000 at 2σ level [8]. Nonetheless, it is conceiv-
able that gravity theory differs from GR in the early
Universe, while it behaves like GR at present. It is therefore
necessary to probe the behavior of gravity in different
environments and scales, the cosmic evolution can provide
a good laboratory to test gravity in the low density and low
curvature regime, and the cosmic microwave background
(CMB) data and large scale structure (LSS) data can be used
to constrain such evolution [9,10]. While CMB provides the
cleanest observational data, the geometrical redshift-dis-
tance relations measured by galaxy redshift surveys are
useful for breaking the degeneracies in the CMB data. For
the LSS, the simplest approach is to use the baryon acoustic
oscillation (BAO) distance measurements, which we will
use in the present paper, though there are also other
approaches, for example, a measurement based on topology
[11]. The redshift-distance relation as measured by standard
candles such as the type Ia supernovae explosion is less
reliable for this test, as the luminosity of the supernovaemay
depend on the gravitational constant, which varies in the
scalar-tensor model, though such evolution has not been
detected observationally [12]. In the present work, we will
only use the distance measured with the CMB and LSS.
In addition, the growth of the structure is expected to be

suppressed or enhanced in modified gravity compared to
the standard GR model. So complementing distance
measurements, the growth function is particularly sensitive
to impose constraints on the modified gravity models [13].
The CMB data together with the LSS data had been used

to constrain scalar-tensor models. In Ref. [14], the region of
−120.0 < ω < 97.8 was excluded at 2σ level by using
WMAP 5 year data, other CMB experiments data and LSS
data measured by the luminous red galaxy (LRG) survey of
Sloan Digital Sky Survey (SDSS) data release 4. The
constraint was improved to ω < −407.0 or ω> 175.87 by
using Planck data [15]. Avilez and Skordis [16] reported
ω> 1808, by using Planck temperature and WMAP 9-year
polarization data. Ooba et al. [2,7] obtained constraints on
the harmonic attractor model, and some more recent
constraints were given in [17–20]. In addition to the
Brans-Dicke gravity, there have also been many inves-
tigations on more general classes of scalar-tensor models,

such as the fðRÞ gravity, early modified gravity [21,22],
and the Horndeski gravity, which is the most general form
with second-order field equations; see Refs. [23,24] for
reviews. Note that these limits are dependent on the prior
used, even for the same data, quite different limits can be
derived with different priors.
The commencement of multimessenger astronomy with

gravitational wave (GW) detection opens up a new window
to test gravity theories. Based on the detections of GW
signal produced by the binary neutron star merger
(GW170817) [25] and its electromagnetic counterpart
(gamma ray burst GRB170817A) [26,27], the speed of
GW is constrained to be c2T − 1≲ 10−15. These measure-
ments have several crucial implications for cosmological
scalar-tensor theories [28–33]. As a result, the quartic and
quintic Galileons are strongly excluded. The remaining
viable models include simple Horndeski, e.g., Brans-Dicke
and fðRÞ, and specific models beyond Horndeski theory,
which is either conformally equivalent to theories with
cT ¼ c or disformally fine-tuned.
Due to the vast number of gravity models in the market,

it is important to test gravity in a model-independent way.
In the past few years, several perturbation parametrizations
are proposed and implemented in the Boltzmann solvers
CAMB [34,35], such as EFTCAMB [36] and MGCAMB [37].
Although these formalisms cover a broad class of models,
they have some limitations. There are a large number of free
functions to be constrained, and simple parametrizations of
these functions are unlikely to be successful, even missing
the signature of modified gravity in the observations. Also,
the connection between the formalism and physical models
is not intuitive [38,39].
Most previous works on the scalar-tensor theory were

performed for the cosmological model of flat geometry.
Recently, it has been shown that the Planck CMB power
spectra prefer a closed universe if the CMB lensing data are
not used [40] for the models with gravity given by general
relativity. The preference for the closed universe exists in
both Planck 2015 and Planck 2018 data release and can not
be removed by switching the likelihoods [41]. The positive
curvature can explain the anomalous lensing amplitude
Alens but lead to the discordances for the local observations
such as BAO. These discordances may originate from
systematics or new physics. In Ref. [42], the constraint
from Planck data and cosmic chronometers (CCs) gives
Ωk ¼ −0.0054� 0.0055, without causing strong tension
between Planck and CC data in the nonflat universe.
To constrain the model, we use the latest cosmological

observations, including the CMB data together with BAO
data and redshift-space distortion (RSD) data. We also
investigate the curvature in this model to explore the
possibility that the CMB temperature and polarization data
might be compatible with the flat universe in the context of
modified gravity, so that the discordances caused by the
closed universe can be eliminated.
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The rest of the paper is organized as follows: in Sec. II,
we discuss the formalism of our computation, including
background (II. A) and perturbation evolution (II. B), as
well as numerical method (II. C). In Sec. III, we review the
observational data used. We present our results in Sec. IV
and conclude in Sev. V.
In this paper, we use natural units with c ¼ 1. Following

the convention of the CLASS code, all physical quantities
are in unit of Mpcn, so, for example, the units of VðϕÞ, A,
B, C, ρ, p are all Mpc−2.

II. FORMALISM

The generalized Einstein equation and the equation of
motion for the scalar field in this model are

ϕGμν þ
�
□ϕþ 1

2

ωðϕÞ
ϕ

ð∇ϕÞ2 þ 1

2
VðϕÞ

�
gμν −∇μ∇νϕ

−
ωðϕÞ
ϕ

∇μϕ∇νϕ ¼ 8πG0Tμν; ð5Þ

½2ωðϕÞ þ 3�□ϕþ dωðϕÞ
dϕ

ð∇ϕÞ2 þ 2VðϕÞ − ϕ
dVðϕÞ
dϕ

¼ 8πG0T; ð6Þ

where T is the trace of the energy-momentum tensor. We
use a perturbative approach to compute the observables in
this model.

A. Background evolution

The equations governing the homogeneous background
evolution of the Universe are

H¼ 1

a

"
−
ϕ0

2ϕ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2V
6ϕ

þa2ρ
ϕ

þ 2ωþ 3

12

�
ϕ0

ϕ

�
2

− κ

s #
; ð7Þ

H0 ¼−
3ap
2ϕ

−
3

2

a02

a3
−

κ

2a
−

ϕ00

2aϕ
−
a0

a2
ϕ0

ϕ
−
ωϕ02

4aϕ2
þaV
4ϕ

; ð8Þ

ϕ00 ¼ −2
a0

a
ϕ0 þ 1

2ωþ 3

×

�
3a2ðρ − 3pÞ þ 2a2V − a2ϕ

dV
dϕ

− ϕ02 dω
dϕ

�
; ð9Þ

where the prime denotes the derivative with respect to the
conformal time τ≡ R

dt=aðtÞ, H ≡ a0
a2 is the proper time

Hubble rate, κ ¼ −ΩkH2
0 is a number characterizing the

spacetime curvature in the cosmological model, and ρ and
p are the rescaled total density and pressure of all matter
components,

ρ ¼ 8πG0

3
ρphysical; p ¼ 8πG0

3
pphysical:

The effective gravitational constant measured by
Cavendish-type experiments is given by [3]

GðϕÞ ¼ G0

ϕ

2ωðϕÞ þ 4

2ωðϕÞ þ 3
; ð10Þ

so the value of ϕ at present day is set to be

ϕ0 ¼
2ω0 þ 4

2ω0 þ 3
: ð11Þ

Figure 1 shows the evolution of the scalar field ϕ for
three models: the best-fit model obtained with the latest
cosmological observations as detailed in the later sections,
and the models with parameters lgC ¼ 4.3 and lgC ¼ 4.7.
As we shall see later, all of these models are within the 1σ
bound of lgC.
The field ϕ began to increase after matter-radiation

equality and converged to the present day ϕ0. The corre-
sponding evolutions of the generalized Brans-Dicke param-
eter ωðϕÞ and the potential term VðϕÞ are plotted in the
bottom panels of Fig. 1. Note that in all of these models the
present day gravitation is indistinguishable from GR as
ωðϕÞ are high above the current solar system experimental
limit. The scalar potential VðϕÞ decreases from a higher
value to its present day value for the three example models
shown in the figure. Its value at high redshift can be 1–3
orders of magnitude higher than the present day, so in these
models, the dark energy can be important in the early
evolution of the Universe.
In all the subplots of Fig. 1, the curves oscillated before

converging to the present day value. It is easy to understand
such oscillation behavior: the scalar field ϕ eventually
settles down at the minimum of the potential, but near the
bottom of the potential, it behaves like a damped oscillator.
If we focus on the oscillatory terms containing ϕ00, ϕ0, ϕ,
and the dominant constant term, and neglect the other
nonoscillatory terms of Eq. (9), the equation of motion
reduces to a damped harmonic oscillator form,

ϕ00 þ 2Haϕ0 þ kðτÞðϕ − ϕ0Þ ¼ 0; ð12Þ

where kðτÞ ¼ a2
2ωþ3

ðCϕ0 − BÞ. If we take Ha, kðτÞ as
slowly varying, this can be solved analytically with the
Wentzel-Kramers-Brillouin (WKB) approximation (see,
e.g., [43]). To first order,

ϕðτÞ − ϕ0 ¼ I0fðτÞ−1
4e−

R
Hadτ

× cos

�Z
τ

τ2

� ffiffiffiffiffiffiffiffiffi
fðxÞ

p
−

bðxÞ0
4

ffiffiffiffiffiffiffiffiffi
fðxÞp �

dx

�
; ð13Þ
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where I0 is a constant, and

fðτÞ ¼ a2

2ωðϕÞ þ 3
ðCϕ0 − BÞ − ðaHÞ2: ð14Þ

As ϕ0 ≈ 1, B ≪ C, and ðHaÞ2 is also very small, these
terms are negligible and

fðτÞ ≈ a2C
2ωðϕÞ þ 3

; ð15Þ

¼ a2C½α2 − β lnðϕ=ϕ0Þ�: ð16Þ

where the last is obtained by substituting Eq. (3). Also,

e−
R

Hadτ ¼ e−
R

da
a ¼ a−1;

we then have approximately,

ϕðτÞ−ϕ0∼ I0a−
3
2½Cðα2− β lnðϕ=ϕ0ÞÞ�−1

4

×cos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2Cðα2− β lnðϕ=ϕ0ÞÞ
q

τþψ
i
: ð17Þ

Compared with the oscillation term, the Hubble drag
term is small, H2=fC½α2 − β lnðϕ=ϕ0Þ�g ∼ 7 × 10−4, so the
oscillation is underdamped. To examine the accuracy of this
solution, we compare the period and amplitude obtained
from the above analytical solution and the numerical
solution. We take the model lgC ¼ 4.3 (the green line
in Fig. 1) as an example. The conformal period estimated
from Eq. (17) at z¼5 ðcτ¼6206MpcÞ is cT ¼ 537.3 Mpc,
which agrees well with the 539.6 Mpc as measured from
the numerical solution. The ratio of amplitude between first
and second peak estimated from the above equation is

FIG. 1. Top left: The redshift evolution of the scalar field ϕ in a few of our extended quintessence models. The orange solid line
represents the best-fit model with the CMBþ BAO þ RSD data set. The green and blue solid lines show models in which lgC is set to
some selected values within the 1σ bound, while other parameters are set to the best-fit values. Top right: Evolution of ϕ with respect to
the conformal time τ. Bottom left: Evolutions of the generalized Brans-Dicke parameter ωðϕÞ. Bottom right: Evolution of the scalar
potential VðϕÞ.
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about 4.2, while the one obtained from numerical solution
is 2.7.
These oscillations occur mostly at high redshifts, and the

amplitude for the ωðϕÞ and VðϕÞ dropped low at low
redshift. Nevertheless, they may be observable in high
redshift precision observations in the future.

B. Perturbation evolution

In perturbation theory, gμν ¼ a2ðγμν þ hμνÞ, where γμν ¼
diagð−1; 1; 1; 1Þ and hμν are, respectively, the unperturbed
and perturbed part of the metric. We choose to work in the
synchronous gauge, where h00 ¼ h0i ¼ 0, and follow the
formalisms developed in Refs. [44–47]. The perturbations
could be decomposed into the eigentensors of the Laplacian
∇2QðmÞ ¼ −k2QðmÞ,

hij ¼
X
m

2hLQðmÞγij þ 2hTQ
ðmÞ
ij ð18Þ

¼
X
m

h
3
QðmÞγij − ð6ηþ hÞQðmÞ

ij ; ð19Þ

δϕ ¼
X
m

χðmÞQðmÞ: ð20Þ

The stress energy tensor can be expressed as Tμν ¼
T̄μν þ δTμν, and the unperturbed components are
T̄0

0 ¼ −ρ, T̄0
i ¼ T̄i

0 ¼ 0, and T̄i
j ¼ pδij. The stress

energy perturbations can likewise be decomposed as

δT0
0 ¼ −

X
m

δρðmÞQðmÞ; ð21Þ

δT0
i ¼

X
m

ðρþ pÞθðmÞ

k
QðmÞ

i ; ð22Þ

δTi
0 ¼ −

X
m

ðρþ pÞθðmÞ

k
QðmÞi; ð23Þ

δTi
j ¼

X
m

δpðmÞδijQðmÞ þ 3

2
ðρþ pÞσðmÞQðmÞi

j: ð24Þ

If we only consider the scalar perturbations, the per-
turbed equations read

h0 ¼
�
k2s2ηþ 3a2

2ϕ
δρ −

wϕ02χ
2ϕ3

þ 1

ϕ2

�
−
3

2
a2ρχ þ ϕ02dω

4dϕ
χ

þ ωϕ0χ0

2
þ 3a0

2a
ϕ0χ −

1

4
a2Vχ

�
þ 1

ϕ

�
−
1

2
k2χ −

3a0

2a
χ0

þ a2dV
4dϕ

χ

���
a0

2a
þ ϕ0

4ϕ

�
−1
; ð25Þ

η0 ¼
�
3a2

2ϕ
ðρþ pÞθ þ 1

2
κh0

þ k2
�
ωϕ0χ
2ϕ2

þ 1

2ϕ

�
χ0 −

a0χ
a

���
1

k2s2
; ð26Þ

h00 ¼ −
�
2
a0

a
þ ϕ0

ϕ

�
h0 þ 2k2s2η −

9a2

ϕ
δpþ 9a2χ

ϕ2
p

þ 3ϕ02ωχ
ϕ3

þ 1

ϕ2

�
−
3dω
2dϕ

ϕ02χ − 3ωϕ0χ0 þ 3ϕ00χ

−
3

2
a2Vχ þ 3

a0

a
ϕ0χ

�
þ 1

ϕ

�
−3χ00 − 3

a0

a
χ0

þ 3a2dV
2dϕ

χ − 2k2χ
�
; ð27Þ

α0 ¼ −
�
2
a0

a
þ ϕ0

ϕ

�
αþ η −

9a2

2k2ϕ
ðρþ pÞσ −

χ

ϕ
; ð28Þ

χ00 ¼ −2
a0

a
χ0 − k2χ −

1

2
ϕ0h0

þ 1

2ωþ 3

�
−2

dω
dϕ

χ

�
ϕ00 þ 2

a0

a
ϕ0
�

−
d2ω
dϕ2

ϕ02χ − 2
dω
dϕ

χ0ϕ0 þ a2
dV
dϕ

χ

− a2
d2V
dϕ2

ϕχ þ 3a2ðδρ − 3δpÞ
�
; ð29Þ

where s2 ¼ 1 − 3κ
k2 and α ¼ ðh0 þ 6η0Þ=2k2.

C. Numerical methods

Wemodify the publicly available Boltzmann code CLASS

to numerically solve the equations above and compute
CMB temperature and polarization anisotropy.
To recover the present day value of the effective gravita-

tional constant given by Eq. (11), we use a “shooting”
algorithm [9]; i.e., we evolve the background evolution
equation from a very early time with a set of given model
parameters and initial value of the scalar field ϕi to the
present day time,ϕi is adjusted gradually until the Eq. (11) is
satisfied to the required precision. In each “shooting,” the
model parameters that affect the background dynamics must
be specified; these include the spatial curvature Ωk, the total
nonrelativistic matter density Ωm, the Hubble constant H0,
gravity parameters α, β, and the scalar parameters A, B, C,
and the second order differential equation also requires the
initial values of the field ϕi and ϕ0

i. However, as in many
quintessencemodels, theϕ0 damps to a “terminal velocity" at
a later time, so that within a plausible range ϕ0

i practically
does not affect the result. Of course, when the deviation is too
large, there would be no ϕi that could yield the desired
solution, but the solution could be found if the deviation from
GR iswithin a reasonable range. In the simplest Brans-Dicke
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model, ϕ0 increases monotonically with ϕi. However, in the
present model, the evolution of ϕ is more complicated. As a
result, in some parameter space, more than oneϕi can evolve
to the same desired ϕ0. For this case, we choose the one
which is closest to ϕ0.
Also, at z ¼ 0, the left-hand side (lhs) of Eq. (7) reduces

to H0, and if we neglect the kinetic term (the first term) in
the right-hand side (rhs) of Eq. (7), which is only of the
order ∼10−6 of the second term, we see this determines
the value of VðϕÞ, which in turn determines almost
completely the value of A, which must be numerically
very close to the cosmological constant in the cold dark
matter (ΛCDM) model. We update ϕ0

0 and A by the
iteration process in the “shooting” algorithm.
In order to constrain the parameters in the gravity model

with observations, we use the publicly available code
Monte PYTHON [48,49], which adopts the Markov chain
Monte Carlo (MCMC) method to explore the parameter
space and obtain a Bayesian estimate of the parameters. At
each point in the parameter space, the form of the potential
VðϕÞ must be specified for CLASS to make the back-
ground run.
The parameters that varied in the Markov chains are the

dynamical parameters listed above (Ωk, H0, α, β, B, C,
matter physical density ωm ¼ Ωmh2, where h is defined by
H0 ¼ 100 h km s−1Mpc−1), and the baryon physical den-
sity ωb ¼ Ωbh2, (the cold dark matter physical density is
given by ωcdm ¼ Ωcdmh2 ¼ ωm − ωb), the amplitude of
scalar perturbations ln 1010As, the spectral index for scalar
perturbations ns, and the reionization optical depth τreio.
Following the Planck analysis, we assume two massless
and one massive neutrinos with mass m ¼ 0.06 eV in this
paper. We have also checked that if assuming three
massless neutrinos; the results only have minor changes.
To avoid deviating too much in parameter space that

could derail the code running, we set the priors as

lg α ∈ ð−6;−1Þ;
β ∈ ð0; 1Þ;
B ∈ ð−0.1; 0.1Þ;

lgC ∈ ð−10; 20Þ:

Note that the limits derived with the Bayesian method is
dependent on the priors. The limits derived for priorswith the
linear and logarithmic distribution can be different. Here we
adopt the logarithmic prior for α, this allow us to measure its
posterior distribution near α ¼ 0 in more detail. We note that
theGR limitα ¼ 0 corresponds to lgα ¼ −∞, which can not
be attained in the current range of parameter, and if the peak
of distribution is close to the lower limit of lg α, it could be the
GR limit is favored. We shall see later that fitting the
observation data constrains these parameters to a range well
within these bounds. In a trial run, we found that the data

favor a positive C, which allow us to also take a logarithmic
prior on C to explore a large range of its value.

III. OBSERVATIONAL DATA

We use the primary CMB data from Planck 2018
[50,51], including the temperature spectrum (TT), polari-
zation spectra (TE, EE), and lensing measurements.
We also use a compilation of BAO data and RSD data

from galaxy redshift surveys. The BAO and RSD data
adopted in this paper are identical with Ref. [52], including
the measurements from the 6dF Galaxy Survey (6dFGS)
[53,54], the Sloan Digital Sky Survey (SDSS) main galaxy
sample (MGS) [55,56], the luminous red galaxy (LRG)
[57,58], SDSS DR12-BOSS [59], SDSS DR14 [60,61],
velocities from SNe [62], GAMA [63], WiggleZ [64],
VIPERS [65], and FastSound [66].
Table I lists the BAO measurements used in this paper.

DV is a combination of the Hubble parameter HðzÞ and the
angular diameter distance DAðzÞ,

TABLE I. Data points measured by BAO surveys used in this
work.

Redshift Measurement Value Surveys

0.106 rs=DV 0.327� 0.015 6dFGS
0.15 DV=rs 4.47� 0.16 SDSS DR7-MGS
0.35 DV=rs 9.11� 0.33 SDSS DR7-LRG
0.38 DMðrs;fid=rsÞ 1518.4� 22.4 SDSS DR12-BOSS
0.38 HðzÞðrs=rs;fidÞ 81.51� 1.91 SDSS DR12-BOSS
0.51 DMðrs;fid=rsÞ 1977.4� 26.5 SDSS DR12-BOSS
0.51 HðzÞðrs=rs;fidÞ 90.45� 1.94 SDSS DR12-BOSS
0.61 DMðrs;fid=rsÞ 2283.2� 31.9 SDSS DR12-BOSS
0.61 HðzÞðrs=rs;fidÞ 97.26� 2.09 SDSS DR12-BOSS
1.52 DV=rs 26.005� 0.995 SDSS DR14

FIG. 2. The evolution of fσ8ðzÞ with respect to the redshift z in
the ΛCDM model (dashed black line) and the same scalar-tensor
models as Fig. 1. The data points with error bars denote
measurements from galaxy redshift surveys.
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DVðzÞ ¼
�
ð1þ zÞ2D2

AðzÞ
cz

HðzÞ
�
1=3

; ð30Þ

while rs is the comoving sound horizon at the end of the
baryon drag epoch. Note that the fiducial value of rs used
by some observational groups is based on the analytical
formula given by Eisenstein and Hu [67], and it is essential
to replace it by the accurate value given by CLASS.
The RSD effect induced by the peculiar motion of

galaxies can provide a powerful way to constrain the growth
of structure. A large number of researches are conducted to
measure the parameter combination fðzÞσ8ðzÞ, in which the
growth function is defined as

fðzÞ ¼ d lnD
d ln a

; ð31Þ

where DðaÞ ¼ δðaÞ=δða0Þ is the linear growth function.
We plot the current RSD constraints on the growth function
in Fig. 2. For the BOSS data, the measurements are
ð1þ zÞDAðrs;fid=rsÞ, HðzÞðrs=rs;fidÞ, and fσ8, and we use
the full 9 × 9 covariance matrix to calculate the likelihood,
so the correlation of fσ8 among different redshift bins and
the correlation between FAPðzÞ ¼ ð1þ zÞDAHðzÞ=c and
fσ8 are taken into account. For the other RSD data, only the
diagonal terms of the covariance matrix are used. For the
WiggleZ data, as noted in Ref. [39], the points are condi-
tionally plotted for themeanPlanck cosmology according to
the covariance matrix. In Ref. [68], the data points are
rescaled by the ratios of HðzÞDAðzÞ for the appropriate
cosmology to take into account the Alcock-Paczynski (AP)
effect. However, except for BOSS and WiggleZ, the mea-
surements at low redshift are almost independent of cos-
mology models (e.g., 6dFGS and velocities from SNe), or
the error bars are too large for this to matter. The AP effect

correction ½ HðzÞDAðzÞ
HðzÞfidDAðzÞfid − 1� is about 0.8%, which is negli-

gible comparedwith theRSDdata error bar of 17%.Wehave
checked and found that the total impact of AP effect and the
nondiagonal terms of the covariance matrix on the

FIG. 3. The relative difference of the matter power spectrum
(top panel), and the differences of the CMB temperature (middle
panel) and EE polarization (bottom panel) angular power
spectrum between the three scalar-tensor models and the
ΛCDM model. For the CMB, we also plotted the Planck 2018
best fit model and the binned Planck measurements [69]. In order
to present the result more clearly, the horizontal axis switches

from log to linear at l ¼ 30 as in Ref. [50], and we plot Dl ¼
lðlþ1Þ

2π Cl for TT spectrum and Cl for EE spectrum.

TABLE II. CMB constraints and CMBþ BAOþ RSD joint constraints on the parameters.

CMB CMB CMB CMBþ BAOþ RSD CMBþ BAOþ RSD CMBþ BAOþ RSD

Parameter 68% C.L. 95.4% C.L. 99.7% C.L. 68% C.L. 95.4% C.L. 99.7% C.L.

lg α −2.41þ0.72
−0.65 −2.4þ1.4

−1.3 −2.4þ1.4
−2.2 −3.59þ0.66

−0.54 −3.6þ1.1
−1.2 −3.6þ1.7

−1.8
β 0.253þ0.13

−0.082 0.25þ0.17
−0.25 0.25þ0.29

−0.25 0.16þ0.044
−0.16 0.16þ0.29

−0.16 0.16þ0.46
−0.16

ω0 3.3 × 104 þ6.3×105

−3.2×104 3.3 × 104 þ1.3×107

−3.3×104 3.3 × 104 þ8.3×108

−3.3×104 7.6 × 106 þ8.3×107

−7.2×106 7.6 × 106 þ1.9×109

−7.5×106 7.6 × 106 þ3.0×1010

−7.6×106

107A 1.11þ0.62
−0.37 1.11þ0.92

−1.0 1.1þ1.2
−1.1 1.993þ0.21

−0.046 � � � � � �
B 0.0006þ0.0045

−0.0034 0.001þ0.025
−0.024 0.001þ0.040

−0.034 0.0011þ0.0070
−0.0087 0.001þ0.025

−0.022 0.001þ0.050
−0.050

lgC 2.2þ1.8
−1.7 2.2þ3.2

−3.3 2.2þ4.7
−3.8 4.9þ1.4

−1.4 4.9þ3.0
−2.8 4.9þ4.1

−4.8
H0½km s−1 Mpc−1� 56.9þ3.0

−4.8 56.9þ8.7
−7.8 57þ13

−10 67.5þ1.2
−1.2 67.5þ2.5

−2.5 67.5þ4.1
−3.7

Ωk −0.036þ0.014
−0.015 −0.036þ0.031

−0.030 −0.036þ0.041
−0.043 −0.0004þ0.0031

−0.0029 −0.0004þ0.0060
−0.0063 −0.0004þ0.0090

−0.010
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likelihood is about Δ lnL ∼ 0.15, so the correction due to
AP effect is really small, and the overall effect to the final
constraints is negligible. The best fit model preferred by
CMBþ BAOþ RSD data set overlaps with the ΛCDM
model at z > 0.25. As an example, we choose lgC ¼ 4.3,
which is within the 1σ bounds. We find that it fits the RSD
data points better thanΛCDMmodel, showing the ability of
this model to provide a better fit to RSD data while being
consistent with CMBþ BAO data.

IV. RESULTS

In Fig. 3, we show the relative difference of matter
power spectrum and the CMB temperature (TT) and
polarization (EE) angular power spectrum between
ΛCDM model and the three example models we use.
The locations of the acoustic peaks shift to larger or smaller
angular scales, depending on the parameters used. Note for
these four models, the six cosmological parameters are set
to be the same, so the ΛCDM model (red line) adopts

FIG. 4. The 68% and 95% confidence regions in the scalar-tensor model together with the 1D marginalized posterior distributions for
the CMB and the CMBþ BAOþ RSD data sets.
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different cosmological parameters from the Planck 2018
best fit model.
We can derive constraints on single parameters or joint

constraints on two parameters after marginalizing over the
other parameters. Table II lists the 1σ (68%), 2σ (95.4%),
and 3σ (99.7%) credible intervals for the various param-
eters. Two cases are given: CMB only case, in which the
Planck 2018 temperature and polarizations data are used in
the fitting, and the CMBþ BAOþ RSD case, in which in
addition to the CMB data, the Planck CMB lensing
measurements and the BAO and RSD data set are also
used. A is not very well constrained by the CMBþ BAOþ
RSD data set, so only 1σ confidence region is given
by MCMC.
To visualize the constraints from the observations, in

Fig. 4, we also show the 68% and 95% credible level
contours of each pair of parameters, and the 1D margin-
alized posterior distributions of each parameter. While the
CMB data already constrained the parameters, the contours
are tightened considerably with the additional BAO and
RSD data, and the center of the contours are also shifted
significantly. We found that although the best fit values of
H0 and σ8 are nearly the same as the ΛCDM case, the
corresponding errors are enhanced by a factor of 2–3, so in
some sense, our model could potentially reduce the present
tension in these parameters. Specifically, for our model,
the constraint from CMBþ BAOþ RSD data set is
H0 ¼ 67.5� 1.2 km s−1 Mpc−1, while for ΛCDM model,
H0 ¼ 67.50� 0.59 km s−1Mpc−1. And the constraint
from SN Ia and geometric distances from Milky Way
parallaxes and eclipsing binaries is H0 ¼ 73.5�
1.4 km s−1Mpc−1 [70]. For the σ8 tension, the constraint
from CMBþ BAOþ RSD data set in our model is S8 ≡
σ8ðΩm=0.3Þ0.5 ¼ 0.822� 0.036 and Ωm ¼ 0.311� 0.011,
while the ΛCDM model yields S8 ¼ 0.827� 0.011,
Ωm ¼ 0.3123� 0.0068, and DES-Y1 galaxy clustering,
and the weak lensing data gives S8 ¼ 0.773þ0.026

−0.020 and
Ωm ¼ 0.267þ0.030

−0.017 [71].
Except for the parameter β, the 1D posterior distribu-

tions, we obtain all have narrow peaks well within the
allowed range, so the result is not overtly dependent on the
adopted prior. The β parameter distribution also has a peak,
and for the CMB-only data, it is in the middle of the
allowed range, but for the CMBþ BAOþ RSD data
combination, the peak is near 0, which is the border of
the prior.
We find good consistency with the ΛCDMmodel for the

parameters β, A, and B. Interestingly, the fit gives a nonzero
value for α, which deviates from the GR ΛCDM model
limit (α ¼ 0) at the>3σ level, but we should be very careful
in interpreting this result. First, the corresponding ω value
is quite large, so the deviation from the GR is in fact fairly
small. Furthermore, if we inspect the value of the like-
lihood, the maximum logarithm likelihood values are
−1391.87 and −1391.90 for our extended quintessence

model and the GR ΛCDM model, respectively. This shows
that the GRΛCDMmodel can fit the data almost as good as
our extended quintessence model. When only one param-
eter lg α is singled out, it may appear that the best fit is
several σ away from the GR limit (in our case, the minimum
of lg α), but the Bayes estimator is obtained by integrating
the posterior distribution over the parameter space, and this
is not completely accurate for the GRΛCDMmodel, which
essentially has fewer parameters, i.e., lower dimensions. If
we use the Akaike information criterion (AIC) to compare
our model with the GR ΛCDM model [72,73],

AIC ¼ −2 lnLmax þ 2k; ð32Þ

where k is the number of parameters, then the extended
quintessence model is penalized for its additional four
parameters, and the ΛCDM model would be the bet-
ter model.
The data also favor a positive C, in which case the dark

energy VðϕÞ is not constant but has an evolution. There is
some degeneracy between the parameter C and α, as the
α − C contour has a linear shape. This raises the possibility
that the nonzero α best fit may be partially due to this
degeneracy; i.e., the observation data favor a dark energy
model, and due to the degeneracy, a nonzero α value is
induced.
We can derive the variation of the gravitational constant

Grec=G0 in this model, defined as the ratio of the gravi-
tational constant during the recombination epoch and the
present day. The 1σ bound from the CMBþ BAOþ RSD
constraint is 0.97 < Grec=G0 < 1.03.

FIG. 5. The 1D marginalized posterior distributions of curva-
ture. The red line represents the constraint from Planck 2018
temperature and polarization data for the nonflat ΛCDM model.
The blue line shows the constraint from the same data but for our
extended quintessence model. The green line shows the constraint
on our model with the CMBþ BAO þ RSD data.
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Finally, as we discussed earlier, in this work, we consider
nonflat geometry for both the extended quintessence model
and the GR ΛCDM model. Figure 5 shows the constraints
on the curvature in our extended quintenssence model,
compared with the ΛCDM model. As in ΛCDM model
case, the closed model is also slightly favored by the Planck
2018 data in the scalar-tensor model. The flat universe case
Ωk ¼ 0 is still about 2σ from the best fit. The peak of the
distribution shifts toward the flat limit a little bit, from
−0.049 to −0.036. So in this extended quintessence model,
the closed model is still a favored fit, only slightly closer to
the flat case than the GR ΛCDM model.

V. SUMMARY

In this paper, we investigated a specific scalar-tensor
theory, with a quadratic scalar potential, i.e., an extended
quintessence model of dark energy. We parametrize the
Brans-Dicke parameter in a form similar to the harmonic
attractor model, then we follow the standard formalism to
derive the background and perturbation equations.
Constraints on the model parameters are derived by using
a MCMC program, with the latest cosmological data,
including the Planck 2018 CMB data, and the BAO and
RSD data from various galaxy redshift surveys.
We found that in the quadratic potential extended

quintessence model, the scalar field rolls down and oscil-
lates around the minimum point of the potential VðϕÞ. This
behavior is typical, for the oscillation is underdamped. And
its energy density can be several orders of magnitude higher
than the present day value, so it may play a role even in the
early Universe.
Our global fitting gives a statistically significant nonzero

α and C values. This shows that at least the quadratic

potential extended quintessence model considered here is
allowed by current observations. However, we found that
the maximum likelihood value is nearly the same for the
GR ΛCDM model and our extended quintessence model.
The nonzero value of α and C is partly because the GR
ΛCDM model has fewer dimensions; hence, it is disad-
vantaged in the integration over parameter space. With less
parameters, the GR ΛCDM model would be preferred with
the Akaike information criterion. The best fit values of H0

and σ8 are similar to those obtained in the ΛCDM case;
however, the errors are enhanced by a factor of 2–3. So in
some sense, our model could partially alleviate the present
tension in these parameters. The variation of the gravita-
tional constant between the recombination epoch and the
present day is constrained as 0.97 < Grec=G0 < 1.03ð1σÞ.
In addition, we have constrained the curvature Ωk in this

gravity model with only CMB data. Compared with
ΛCDM model, the peak of the posterior distribution has
a small shift from −0.049 to −0.036. This shows the
possibility of alleviating the curvature problem raised
recently in the context of modified gravity theories.
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